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Abstract. In-situ measurements of liquid cloud and precipitation drop size distributions from aircraft-mounted probes are used 

to examine the relationship of the width of drop size distributions to cloud drop number. The width of the size distribution is 

quantified in terms of the parameter k=(rv/re)3, where rv is the volume mean radius and re is the effective radius of the 10 

distributions. We find that on small spatial scales (~100 m), k is positively correlated with cloud drop number. This correlation 

is robust across a variety of campaigns using different probe technology. A new parameterization of k versus cloud drop 

number is developed. This new parameterization of k is used in an algorithm to derive cloud drop number in liquid phase 

clouds using satellite measurements of cloud optical depth and effective radius from the MODIS (Moderate Resolution 

Imaging Spectroradiometer) sensor on Aqua. This algorithm is compared to the standard approach to derive drop number 15 

concentration that assumes a fixed value for k. The general tendency of the parameterization is to narrow the distribution of 

derived number concentration. The new parameterization generally increases the derived number concentration over ocean, 

where N is low, and decreases it over land, where N is high. Regional biases are as large as 20% with the magnitude of the 

bias closely tracking the regional mean number concentration. Interestingly, biases are smallest in regions of frequent 

stratocumulus cloud cover, which are a regime of significant interest for study of the aerosol indirect effect on clouds. 20 

1 Introduction 

Satellite Visible and ShortWave InfraRed VSWIR imagers provide measurements of cloud optical depth () and effective 

radius (re) using the bispectral method (Nakajima and King, 1990). There has been an abundance of literature that proposes a 

translation of these radiative properties to the microphysical properties, liquid water path (W) and cloud drop number (N), 

using an adiabatic cloud model (e.g. Boers, 2006; Bennartz 2007; Grosvenor and Wood; 2014; Bennartz and Rausch, 2017). 25 

Following the adiabatic model, the number concentration can be expressed as (Grosvenor et al., 2018) 

𝑁 =
1

2𝜋𝑘
√

5𝑓𝑎𝑑𝑐𝑤𝜏

𝑄𝑒𝑥𝑡𝜌𝑤𝑟𝑒
5,           (1) 
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where 𝑓𝑎𝑑  is the adiabatic fraction (constrained between 0 and 1), 𝑄𝑒𝑥𝑡 is the extinction efficiency (commonly approximated 

as 2 in the geometric scattering limit), 𝑐𝑤  is the condensation rate, and 𝜌𝑤 is the density of liquid water.  

 The parameter k is defined as 30 

𝑘 = (
𝑟𝑣

𝑟𝑒
)

3

,            (2) 

where rv is the volume mean radius and re is the effective radius. For a given assumption regarding the shape of the drop size 

distribution k can be related to various measures of the droplet spectral width. In particular, many studies evaluate the relative 

dispersion of the DSD defined as the standard deviation normalized by the mean radius, which can be directly related to k. For 

realistic parameterization of the drop size distribution, k is inversely related to the relative dispersion of the DSD. 35 

 

Grosvenor et al. (2018) have presented a comprehensive uncertainty analysis of N retrievals that use Equation 1. They suggest 

a pixel-scale uncertainty of 78%, which is dominated by uncertainty in the retrieved re owing to the -5/2 power to which it is 

raised. Note that the parameter with the second largest power in Equation 1 is k, which is raised to the -1 power. To our 

knowledge, all published algorithms that derive N from  and re have assumed a fixed value of k. The review of Grosvenor et 40 

al. (2018) propose k = 0.8 +/- 0.1 whereas Bennartz and Rausch (2017) suggest a 20% uncertainty in k. This intent of this paper 

is to revisit the uncertainty in remotely sensed N resulting from the assumption of a constant k. 

 

The sign of the corelation between k and N is not clear in the published literature. Some analyses of probe data suggest a 

negative correlation between k and N. For example, Martin et al., (1994) find k = 0.67 and k = 0.88 for a polluted continental 45 

cloud and clean oceanic cloud respectively. Similarly, McFarquhar and Heymfield (2001) find k = 0.73 and k = 0.83 for 

polluted and pristine clouds respectively. Liu and Daum (2002) show data implying a negative k-N correlation based on probe 

data from several field campaigns. Other analysis of probe data show a positive k-N correlation. Lu et al. (2007) show a positive 

k-N relationship in DSDs measured during the Marine Stratus/Stratocumulus Experiment. Brenguier et al. (2011) evaluate data 

from five field experiments, finding no discernible k-N correlation while attributing some of the correlations reported by 50 

previous studies to instrument measurement and sampling artifacts. 

 

Some of the disagreement in the reported k-N correlation can be explained by the spatio-temporal scale on which it is 

quantified. For example, Pawlowska et al. (2006) show that the relative dispersion of the DSD tends to decrease with N within 

a given flight leg (implying a positive k-N correlation), however the sign of this relationship reverses when evaluating flight 55 

averages. Hu et al. (2021) find no correlation for inter-cloud correlation either within campaigns or across the five campaigns 

they analysed. However, consistent with Pawloswka et al. (2006), they find when analysing the high-resolution 1 Hz DSDs 

that intra-cloud relative dispersion decreases with increasing number concentration. Hu et al. (2021) further show that the 

variance explained in the k-N relationship exceeds 40% up to scales of 10 km and quickly decreases at scales above 30 km. 
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An analytical model based purely on the condensational growth process (Liu et al., 2006) has demonstrated that for a fixed 60 

updraft velocity an increase in CCN concentration leads to an increase in N and an increase in relative dispersion, whereas a 

for fixed CCN an increase in updraft velocity leads to an increase in N but a decrease in relative dispersion. The former effect 

is interpreted to be relevant at larger scales (inter-cloud) while the later effect is interpreted to be relevant at smaller scales 

(intra-cloud). Data from aircraft penetrations of non-precipitating cumulus have confirmed the positive/negative correlation of 

updraft velocity with N/k respectively on the intra-cloud scale (Lu et al., 2012) 65 

 

The above explanations do not consider the role of the collision-coalescence process. Recent observations that incorporate 

measurement of the radar Doppler skewness suggest that 40-50% of marine boundary layer clouds with liquid water path < 50 

gm-2 contain drizzle drops and that drizzle is ubiquitous for thicker clouds (Zhu et al., 2022), which indicates that collision-

coalescence process cannot be ignored in explanations of drop size distribution broadening.  A few studies have examined the 70 

effect of precipitation on the estimation of k from probe data. Wood (2000) show a reduction in k when drizzle sized drops are 

included in the calculation and that the ratio of the drizzle and cloud mode liquid water contents can accurately parameterize 

this reduction. Ackerman et al. (2000) present data from the Monterey Area Ship Track field project which demonstrate that 

the correlation between k and N can take either positive or negative sign. They show examples in which the sign of the 

correlation was negative in a non-precipitating Stratocumulus with relatively large N and positive in precipitating 75 

Stratocumulus with relatively low N. Large Eddy Simulation (LES) of Stratocumulus coupled with bin microphysics shows 

that coalescence broadening is a key process in the development of a positive k-N correlation and that the k-N relationship is 

highly non-linear with the steepest slope at low values N in the presence of precipitation (Lu and Seinfeld, 2006). 

 

Two points are evident in the body of literature seeking to parameterize k: (1) the spatial scale of the data is a critical 80 

determinant of the derived k-N relationship, (2) the effects of coalescence broadening have frequently been ignored. This paper 

specifically addresses these issues in the context of deriving N from passive VSWIR remote sensing data.  

 

2 Data and Methods 

2.1 Probe Data 85 

We evaluate measurements of drops size distribution from three combinations of cloud microphysical probes spanning five 

airborne experiments: 

1. The Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) was a deployment of Atmospheric 

Radiation Measurement (ARM) Gulfstream-1 (G-1) between June 2017 and February 2018 around the ARM Eastern 

North Atlantic site (Wang et al., 2022).  The G-1 sampled primarily marine Stratocumulus within 50 km of the ENA 90 

site. The primary sampling strategy was an L-shaped pattern in the horizontal with the vertex at the ARM surface 
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site: one leg parallel to the mean PBL flow and one leg perpendicular. The vertical sampling module consisted of in-

cloud level legs at cloud base, mid-cloud and cloud top followed by a sawtooth pattern between cloud top and the 

inversion layer above. Probe data includes the Fast Cloud Droplet Probe (FCDP) and the 2D-Stereo (2DS) Particle 

Imaging Probe. The FCDP measures drops of diameter 3-50 µm in bins 1.5-3 µm across (increasing with drop size). 95 

The 2DS measures drops 10<d<3000 µm in 10 µm increments. We combine the data from each probe using data from 

the FCDP (d < 30 m) and 2DS (d > 30 m). 

2. The Cloud System Evolution over the Trades (CSET; Albrecht et al., 2019) sampled Stratocumulus and Cumulus 

clouds along Lagrangian trajectories between California and Hawaii with the National Science Foundation 

Gulfstream-V (G-V). The focus of the campaign was understanding the evolution of cloud, thermodynamic, and 100 

aerosol properties along the Stratocumulus to Cumulus transition. Boundary layer sampling modules were composed 

of a sub-cloud level leg, a cloud base level leg and a sawtooth leg between cloud top and the inversion layer above. 

The G-V microphysical probes include a Holographic Detector for Clouds (HOLODEC) and a 2D Cloud (2DC) 

probe. The HOLODEC samples drops 6<d<500 µm with bins from 4-50 µm width (increasing with drop size). The 

2DC samples drops 25<d<1550 µm in 25 µm increments. We combine the data from each probe using data from the 105 

HOLODEC (d < 75 m) and 2DC (d > 75 m). 

3. The Center for Interdisciplinary Remotely-Piloted Airborne Studies (CIRPAS) Twin Otter is frequently flown in 

coastal stratocumulus (Sorooshian et al. 2018). Here we examine data from two campaigns flown off the coast of 

Monterey, CA and one off the coast of Iquique, Chile, respectively: Marine Stratus/Stratocumulus Experiment 

(MASE; Lu et al. 2007); Physics Of Stratocumulus Top (POST; Witte et al. 2017); and VAMOS Ocean-Cloud-110 

Atmosphere-Lands Study (VOCALS; Zheng et al. 2011). Level legs at cloud base, mid-cloud and cloud top were 

flown for MASE and VOCALS while POST primarily used sawtooth patterns from 100 m below cloud top to 100 m 

above. Probe data includes the Phase Doppler Interferometer (PDI) and the Cloud Imaging Probe (CIP). The PDI 

measures drops 2<d<100 µm in logarithmically space bins of width dlog10d=0.0156. The CIP is essentially identical 

to the 2DC probe used in CSET and samples drops 25<d<1550 µm in 25 µm increments. We combine the data from 115 

each probe using data from the PDI (d<75 µm) and CIP (d>75 µm). 

Figure 1 shows an example of a merged DSD from each of the three probe combinations. 
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Figure 1: An example of merged drop size distributions from each campaign.  120 

 

For each 1 Hz DSD, several microphysical quantities are calculated. The number concentration is calculated as 

𝑁 = ∑ 𝑛(𝑟)Δ𝑟
𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

.           (3) 

Liquid water content is calculated as 

𝑙 =
4

3
𝜌𝑙𝜋 ∑ 𝑛(𝑟)𝑟3Δ𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

.          (4) 125 

The volume mean radius is calculated as 

𝑟𝑣 = (
3𝑙

4𝜋𝜌𝑙𝑁
)

1 3⁄
.            (5) 

The effective radius is defined as 

𝑟𝑒 =
∑ 𝑁(𝑟)𝑟3Δ𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

∑ 𝑁(𝑟)𝑟2Δ𝑟
𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

.           (6) 

Each quantity is calculated three times for the cloud mode, precipitation mode, and total DSD. A threshold radius of 27.5 m 130 

is used to separate the cloud and precipitation modes. The parameter k is further derived from the calculated 𝑟𝑣  and 𝑟𝑒. In doing 

so a decision must be made as to whether to include precipitation sized drops in the calculation. In principle, VSWIR imagers 

see the radiative effects of the entire drop size distribution. However, the SWIR bands from which the measurement of 𝑟𝑒 are 
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derived are heavily weighted towards cloud top (Platnick, 2000). Gravitational settling effectively removes most large drops 

from the cloud top, therefore here we make the assumption that only the cloud-mode drops (r < 27.5 m) contribute to the 135 

radiatively effective k. 

 

We perform filtering of the data to ensure robust sampling of the cloud mode DSD. We require lc > 0.01 gm-3, Nc > 0.1 cm-3, 

and at least three of the cloud mode bins have non-zero counts. We further perform additional filtering of the data to ensure 

that we are sampling cloudy liquid-phase volumes as opposed to sub-cloud drizzle or ice cloud. Specifically, we require relative 140 

humidity > 98%, temperature > 273.15 K, and aircraft altitude > 700 m. After filtering there are 157,117 DSDs including 

13,205 from CSET, 90,172 DSDs ACE-ENA, and 53,740 from the PDI dataset. Of these 31% have precipitation water content 

greater than 0.01 gm-3. 

 

2.2 Satellite Data 145 

This study uses the collection 6 MODIS cloud products from Aqua subset to a 15 pixel (5 km) swath centered on the CloudSat 

ground track called MAC06S0 (Savtchenko et al. 2008). These files contain the same data fields as their parent product, 

MYD06 (Platnick et al. 2017). Data from 2007-2016 are used. Equation 1 is used to derive the cloud drop number concentration 

using the effective radius derived from the MODIS band 20, 3.7 m channel. Only single layer liquid phase clouds are 

considered. Cloud phase is determined from the MODIS cloud phase optical properties flag. The parameter 𝑓𝑎𝑑  is set to 0.66 150 

following Grosvenor et al., 2018 and the condensation rate is expressed as, 

𝑐𝑤 = 𝜌𝑎𝑖𝑟
𝑐𝑝

𝐿𝑣
(Γ𝑑 − Γ𝑚)           (7) 

where 𝜌𝑎𝑖𝑟 is the density of air, 𝑐𝑝 is the specific heat of dry air at constant pressure, 𝐿𝑣 is the latent heat of vaporization, Γ𝑑  is 

the dry adiabatic lapse rate, and Γ𝑚 is the moist adiabatic lapse rate. Calculation of 𝑐𝑤  requires an estimate of cloud base 

temperature, which we take as the temperature at the Lifting Condensation Level (LCL) estimated from weather analysis fields 155 

from the ECMWF-aux (Partain and Cronk, 2017) pressure and temperature fields, which is a weather analysis interpolated in 

space and time to the CloudSat data. The details of this calculation are provided in Appendix A. Two representations of k are 

used; we compare a fixed value of k = 0.8 with a parameterization of k based on N derived from probe data in Section 3.1. 

 

3 Results 160 

3.1 Drop Size Distribution Properties 

We begin by showing the distributions of microphysical variables for the three datasets in Figure 2. The range of cloud drop 

number spans 0-500 cm-3. The PDI dataset is weighted towards higher N while the FCDP and especially the HOLODEC 

datasets are weighted towards the lowest N. These differences are a consequence of the geographic regimes sampled by the 
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different campaigns: the CIRPAS Twin Otter is constrained to fly near the coast and the associated natural and anthropogenic 165 

aerosol sources, while much of the boundary layer sampling in CSET took place over extremely clean remote oceanic regions. 

The corresponding effective radii distributions range between roughly 5 – 25 m. Cloud liquid water content distributions are 

similar across the datasets, with a broad range of values from the artificial cut off at 0.01 gm-3 to greater than 1 gm-3. The 

distributions of k show that the PDI have the largest k followed by the FCDP and then the HOLODEC. The mean value of k is 

0.8, which is consistent with the recommended value of Grosvenor et al., 2018, however there is a large spread and the 170 

distributions are negatively skewed with values below 0.6 not uncommon. 

 

 

Figure 2: Distribution of cloud drop number (A), cloud liquid water content (B), effective radius (C), and k (D) for the three datasets. 

 175 

We now turn to the relationship between N and k. Figure 3 shows the mean DSDs for each dataset sorted by the cloud drop 

number concentration. Here we include two filters applied to the data; The first includes all DSDs (Panels A-C), while the 

second includes only DSD’s that have no water in the precipitation mode (Panels D-F). Note that the calculation of k is only 

based on the cloud mode drops (r < 27.5 m) even for the DSDs that do have precipitation sized drops. Including precipitation 

sized drops in the calculation (not shown) results in significantly smaller values of k consistent with Wood (2000), however as 180 

discussed in Section 2.1 we believe that including precipitation sized drops is not appropriate in the context of the remote 

(A) (B)

(C) (D)
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sensing application. There are some clear biases in the data. First, the FCDP data from ACE-ENA show consistently low 

counts in several bins around 6 m radius. This minimum is not observed in the DSD’s from the other datasets nor is there any 

microphysical reason to expect this feature. Second, the CSET DSD’s are limited by an inability to sample the smallest drops. 

Third, the PDI data shows noisiness in the smallest bins. Despite these artifacts, there is a clear broadening signature as N 185 

decreases in all of the DSDs, which use completely different probes and sample different cloud regimes. The broadening is 

most obvious in the drizzle sized drops but is also clearly present in the cloud-size drops (Panels A-C). It is also apparent in 

the DSD’s that have no precipitation water (Panels D-F). Furthermore, these results are robust when controlling for variation 

in the cloud liquid water content (Figure S1). 

 190 
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Figure 3: The mean probability density function (pdf) of the drop concentration sorted by the cloud mode drop number 

concentration for the three datasets. Panels A-C show results for all DSDs and panels D-F shows results filtered for DSDs with no 

precipitation water. The parameter k is calculated using only the cloud-sized drops even when precipitation is present in the DSD. 

The grey bar shows a notional range of radius 20-30 m separating cloud from precipitation sized drops. 195 
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Figure 4 shows the dependence of k on N for each of the three datasets. Panel A shows the results for non-precipitating DSDs, 

while panel B is filtered for only precipitating DSDs. The increase of k with N is clear across all three datasets. The median 

values increase from around 0.6 to 0.9 across the range of N from 0 – 500 cm-3. The variability around this mean value is large 200 

for small N but decreases consistently as N increases. The general relationship is consistent across all three datasets however 

there are some quantitative differences especially for the lowest N where the HOLODEC data have smaller k values than either 

the FCDP or the PDI data. It is possible that this low bias in HOLODEC results from the inability to sample the smallest drops, 

however this is not guaranteed. For example, revisiting Figure 3, it is clear that the smallest drops increase the DSD width for 

the FCDP data but decrease it for the PDI data. More work is warranted to resolve the differences between the probes with 205 

regards to the N-dependence of the sampling of smallest drops. Returning to Figure 4, the dependence of k on N appears 

regardless of the presence of precipitation in the DSDs, however, there is a tendency for k to be larger (narrower DSD) when 

the precipitating DSDs are removed, which is particularly evident at low values of N. This effect is especially evident in the 

CSET HOLODEC data which happens to be the dataset with the lowest number concentration. This suggests, that although 

collision-coalescence is not necessary to explain the observed k-N correlation it likely plays a role in strengthening that 210 

correlation. 
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Figure 4: Box and whisker plot shows the distribution quartiles and outliers of k as a function of N for the three different instruments. 

Panel A shows results for non-precipitating DSDs and panel B shows results filtered for DSDs with precipitation water. The 215 
parameter k is calculated using only the cloud-sized drops even when precipitation is present in the DSD. 
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Given these results, we propose the following parameterization for the N-dependence of k for clouds 220 

𝑘(𝑁) = 𝑘𝐵 + (𝑘𝑇 − 𝑘𝐵) (
𝑁

𝑁+𝑁∗),         (8) 

with 0 ≤ 𝑘𝐵 < 𝑘𝑇 ≤ 1, 𝑁∗ > 0. This functional form is bounded between 𝑘𝐵 and 𝑘𝑇 and increases monotonically but fastest 

at low N, as we observe in the data. We use the python curvefit package to implement the Levenberg-Marquardt method to 

perform a non-linear least-squares regression to fit the parameters of Equation 8 for each dataset individually, and for a 

weighted-combined dataset. Fitting parameters are shown in Table 1. The weighting in the combined data is given by 1 √𝑀⁄  225 

where M is the sample count for each dataset. In the absence of this weighting the combined fit is nearly identical to the ACE-

ENA fit, which has the largest sample size. The raw data and the curve fits are shown in Figure 5. All of the fits show a clear 

positive correlation between N and k, however the PDI and FCDP k values are larger than the CSET values, particularly for 

the smallest N. In contrast the PDI data and the ACE-ENA have larger values of k at large N. By design, the combined fit falls 

in the middle of the distributions. Given the limitations of each of the probe datasets (e.g. Figure 3) and the limited sampling 230 

of the datasets used here, we take this combined fit as our best-estimate parameterization of 𝑘(𝑁). 

 

 

Figure 5: Curve fits for Equation 7 to the data from each of the three data sets as well as a weighted combined dataset. The weighting 

normalizes the influence of each of the three datasets due to the dramatically different number of data points in each dataset. 235 

 

Table 1: Fitting parameters for Equation 7. 
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 𝑘𝐵 𝑘𝑇 𝑁∗ 

Combined 0.61 0.90 43 

HOLODEC: CSET 0.53 0.85 22 

FCDP: ACE-ENA 0.69 0.94 73 

PDI: MASE/POST/VOCALS 0.68 1.0 163 

 

3.2 Satellite Retrievals 

 240 

Here we incorporate the new parameterization of k into retrievals of N. To begin, we write Equation 1 as 

𝑁 =
𝜙(𝜏,𝑟𝑒)

𝑘(𝑁)
.            (9) 

Plugging in Equation 8 for 𝑘(𝑁) and rearranging terms results in the quadratic equation 

𝑘𝑇𝑁2 + (𝑘𝐵𝑁∗ − 𝜙)𝑁 − 𝜙𝑁∗ = 0.         (10) 

Employing the quadratic formula and taking the positive root, gives the following solution for N, 245 

𝑁 =
𝜙−𝑘𝐵𝑁∗+√(𝑘𝐵𝑁∗−𝜙)2+4𝑘𝑇𝜙𝑁∗

2𝑘𝑇
.          (11) 

Equation 11 is specific to the parametric form of 𝑘(𝑁) provided in Equation 8, however we note that if k is an arbitrary 

monotonic function of N, an iterative solution can also be employed to solve for N. In the results that follow we use the 

parameters for the combined fit for 𝑘(𝑁) given in Table 1. 

 250 

Figure 6 shows N as a function of  and re derived from Equation 11, along with the bias in the derived N caused by ignoring 

the parameterized k-N correlation. The parameterization decreases N for the largest values and increases it for the smallest 

values. Over the range of  and re shown the bias varies between roughly -10 % and 30 %. The sign of the bias switches near 

the value of 81.7 cm-3. The co-distributions of the observed MODIS re and  that are used in this study are also overlaid on 

these plots. Note in Figure 6B that these observed distributions span the range of positive and negative bias, with a tendency 255 

to lie near the zero-bias ridge. A result is that the mean bias in derived N caused by ignoring k-N correlation will be small even 

if it can be significant in the case of the extreme values. 
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 260 

Figure 6: Derived N using the parameterized k and cw = 0.004 gm-4 (A) and bias between the parameterized k and constant k retrievals 

(B). The black contours show the base 10 logarithm of the counts of the observed MODIS effective radius and optical depth used in 

the study. 

 

Figure 7 shows the regional pattern of N derived using the k-N parameterization in panel A. Implementing the parameterization 265 

makes essentially no difference in the qualitative understanding of the distribution of N globally. The mean N tends to be 

lowest over remote ocean areas, increasing in regions of low altitude stratocumulus over ocean, and highest over populated 

regions over land. Nevertheless, there are subtle quantitative difference in the retrieved N when using the parameterized k. The 

Root-Mean-Square-Deviation can be as large as 20% in regions of low mean N. Importantly, the RMSD is smallest in the 

regions of stratocumulus off the west coasts of the continents and in the mid-latitude storm tracks. This results from the fact 270 

that the k-N parameterization is near k = 0.8 given the mean N in these cloud regimes. This result explains why assuming a 

constant k = 0.8 tends to work reasonably well, since these are the regimes that contribute the bulk of the observed low cloud 

retrievals by the VSWIR sensors. Finally, the regional distribution of uncertainties are reflected in a bias in the mean which 

approaches -20% in remote ocean areas and is smaller than about 5% in polluted areas over land. 

(A) (B)

https://doi.org/10.5194/egusphere-2023-1176
Preprint. Discussion started: 14 June 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

 

 275 

Figure 7: Derived N using the parameterized k (A), Root-Mean-Square-Deviation (RMSD) between parameterized and constant k 

retrievals (B), and mean bias between the parameterized k and constant k retrievals (C). Here Bias is defined as a bias of the constant 

k retrieval relative to a variable k retrieval. 

4 Summary and Discussion 

We have quantified the dependence of a parameter describing the droplet spectrum width (k) on the cloud droplet number 280 

concentration (N). We specifically address this dependence at the small spatial scales relevant to cloud remote sensing by using 
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1 hZ data that corresponds to approximately a 100 m spatial scale. We find that, using the high-frequency data, k and N are 

positively correlated, which is in agreement with a number of recent studies. This finding is robust across 5 different campaigns 

employing three different drop measurement technologies. The sign of this correlation is consistent with theoretical 

expectations that at small scales, variation in vertical velocity within a cloud, affect the supersaturation in a manner that induce 285 

a positive k-N correlation (Liu et al., 2006). We have further shown here that when the drop size distributions are sorted by the 

presence of precipitation, the distribution of k broadens, and the slope of the k-N correlation increases. This finding points to 

the added importance of the collision-coalescence process in droplet spectrum broadening, which is consistent with large eddy 

simulations coupled to bin microphysics (Lu and Seinfeld, 2006). 

 290 

Based on these findings, a parameterization of k given N is presented for use in satellite remote sensing of the droplet number 

concentration. This parameterization can easily be incorporated into the existing techniques to derive N from VSWIR imagery. 

We show that imposing the positive k-N correlation tends to narrow the distribution of retrieved N by increasing the smallest 

values and decreasing the largest values. The parameterization is applied to retrievals of N using data from Aqua-MODIS. The 

fractional bias in the remotely sensed number concentration approaches -20% in areas of the remote ocean where number 295 

concentrations are low. A smaller positive bias is found over polluted land regions. We do emphasize that the absolute 

magnitude of the bias in N tends to be relatively small, on the order of 1-2 cm-3. Nevertheless, the data are robust in showing 

that there is a positive k-N correlation and employing this dependence in retrievals is relatively straightforward. Therefore, we 

argue that these findings inform the implementation of future retrievals of drop number concentration from satellite remote 

sensing. 300 

Appendix A 

Calculation of the moist adiabatic condensation rate requires an estimate of the difference between the dry and moist adiabatic 

lapse rates and the density of air. The dry adiabatic lapse rate is, 

Γ𝑑 =
𝑔

𝑐𝑝
             (A1) 

where 𝑔 is the gravitational acceleration and 𝑐𝑝 is the specific heat at constant pressure of dry air. The moist adiabatic lapse 305 

rate is given by, 

Γ𝑚 = 𝑔
1+

𝐿𝑣𝑟𝑣
𝑅𝑑𝑇

𝑐𝑝+
𝐿𝑣

2𝑟𝑣𝜖

𝑅𝑑𝑇2

            (A2) 

where 𝐿𝑣 is the latent heat of vaporization, 𝑟𝑣  is the mixing ratio of water vapor, T is the temperature, and 𝑅𝑑  is the gas constant 

for dry air. To include the temperature dependence in gamma we estimate cloud-base temperature as the temperature at the 

LCL. We calculate the LCL height (𝑍𝐿𝐶𝐿) following Bolton (1980) from the surface relative humidity (RH) 310 

𝑍𝐿𝐶𝐿 =
1

Γ𝑑
(𝑇 − 55 − (

1

𝑇−55
−

ln(𝑅𝐻)

2840
)

−1

)         (A3) 
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where the RH varies between 0 and 1 and the T is in K. The surface RH is calculated from the ECMWF specific humidity (𝑞) 

𝑅𝐻 =
𝑞

𝑞𝑠𝑎𝑡
            (A4) 

and the saturation specific humidity (𝑞𝑠𝑎𝑡) is calculated from the saturation water vapor mixing ratio (𝑟𝑠𝑎𝑡) 

𝑞𝑠𝑎𝑡 =
𝑟𝑠𝑎𝑡

1+𝑟𝑠𝑎𝑡
            (A5) 315 

which in turn is calculated from the saturation vapor pressure (𝑒𝑠𝑎𝑡) and the surface Pressure (P) 

𝑟𝑠𝑎𝑡 = 𝜖
𝑒𝑠𝑎𝑡

𝑃−𝑒𝑠𝑎𝑡
            (A6) 

where 𝜖 = 0.622. The saturation vapor pressure is calculated following the Tetens formula 

𝑒𝑠𝑎𝑡 = 6.1078𝑒
17.269388𝑇

𝑇+237.3            (A7) 

Where T is degrees Celsius and 𝑒𝑠𝑎𝑡 in mb. The temperature at the LCL is calculated assuming a dry adiabatic lapse rate using 320 

the ECMWF 2-meter temperature 

𝑇𝐿𝐶𝐿 = 𝑇2𝑚 − Γ𝑑𝑍𝐿𝐶𝐿           (A8) 

The pressure at the LCL is calculated using the surface pressure and a scale height (𝑍∗ = 8 𝑘𝑚) 

𝑃𝐿𝐶𝐿 = 𝑃0𝑒−𝑍𝐿𝐶𝐿 𝑍∗⁄            (A9) 

The air density at the LCL is calculated 325 

𝜌𝑎𝑖𝑟,𝐿𝐶𝐿 =
𝑃𝐿𝐶𝐿

𝑅𝑑𝑇𝐿𝐶𝐿
            (A10) 

Finally, the water vapor mixing ratio at the LCL, needed in A2, is assumed to be the saturated mixing ratio and is calculated 

A6 and A7 using the 𝑇𝐿𝐶𝐿 and 𝑃𝐿𝐶𝐿. 
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