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Abstract. The World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) coordinates high-quality 16 

atmospheric greenhouse gas observations globally and provides these observations through the WMO World Data Centre for 17 

Greenhouse Gases (WDCGG) supported by Japan Meteorological Agency. The WDCGG and the National Oceanic and 18 

Atmospheric Administration (NOAA) analyse these measurements using different methodologies and site selection to 19 

calculate global annual mean surface CO2 and its growth rate as a headline climate indicator. This study proposes a third 20 

hybrid method named semi-NOAA, which is used as an independent validation of the methods as described by NOAA and 21 

WDCGG. We apply the semi-NOAA to incorporate observations from most WMO GAW stations and 3D modelled CO2 22 

fields from CarbonTracker Europe (CTE). We found that different observational networks (i.e., the NOAA, GAW, and CTE 23 

networks) and analysis methods result in differences in the calculated global surface CO2 mole fractions equivalent to the 24 

current atmospheric growth rate over a three-month period. However, the CO2 growth rate derived from these networks and 25 

CTE model output shows good agreement. Over the long-term period (40 years), both networks with and without continental 26 

sites exhibit the same trend in the growth rate (0.030 ± 0.002 ppm per year). However, a clear difference emerges in the short-27 

term (one month) change of the growth rate. The network that includes continental sites improves the early detection of 28 

changes in biogenic emissions. 29 
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1 Introduction 37 

Global mean surface temperature averaged over 2011-2020 has increased by about 1.09°C relative to the average temperature 38 

of 1850–1900 (Gulev et al., 2021). The increasing amount of atmospheric carbon dioxide (CO2), together with increases in 39 

other greenhouse gases, is the main driver of the warming (Eyring et al., 2021). After being relatively stable between 180 ppm 40 

(ice age) and 280 ppm (interglacial) for the last 800,000 years (Lüthi et al., 2008),  the annual average CO2 level of the 41 

atmosphere has increased since the industrial revolution from roughly 277 ppm in 1750 to 415.7±0.2 ppm in 2021 (WMO, 42 

2022), due to emissions of CO2 related to human activities like burning of fossil fuels and land use changes (Friedlingstein et 43 

al., 2022). Mean global atmospheric CO2 annual growth rate (GATM) is an important constraint on the global carbon cycle. 44 

Based on the most recent Global Carbon Budget (GCB) analysis (Friedlingstein et al., 2022), the total emission of CO2 due to 45 

human activities was 10.2 ± 0.8 GtC yr-1 in 2020, of which 3.0 ± 0.4 GtC yr-1 was captured by the ocean sink and 2.9 ± 1 GtC 46 

yr-1 by the terrestrial sink, leaving a net increase of 5.0 ± 0.2 GtC yr-1 of CO2 in the atmosphere, corresponding to an 47 

atmospheric CO2 mole fraction increase of 2.4 ± 0.1 ppm yr-1.  48 

As the atmosphere mixes the contributions of all sources and sinks, an observational global average CO2 mole fraction can be 49 

constructed if there are enough observations to represent the spatial and temporal variation across the globe. Since most land 50 

masses are concentrated in the Northern Hemisphere, and the highest anthropogenic emissions (e.g. during winter) occur in 51 

the relatively narrow latitudinal band between 30 oN and 60 oN, relatively large spatial and temporal gradients in CO2 mole 52 

fraction exist in and around that region. Due to convective and advective mixing, the average mixing time of air within the 53 

same latitudinal bands varies from several weeks to a month. However, mixing between latitudinal bands is slower, especially 54 

the exchange between the northern and southern hemispheres, which has an approximate interhemispheric transport time of 55 

1.4 ± 0.2 years (Patra et al., 2011). The interplay of the latitudinal and interhemispheric differences in fossil fuel emissions 56 

and seasonal exchange with land biota (Denning et al., 1995) creates a latitudinal and interhemispheric gradient that requires 57 

a sufficiently dense network to capture a representative global annual mean.   58 

However, measurement stations that are close to sources or sinks may not be representative of a large atmosphere volume and 59 

the average signal at their latitude. Therefore, inclusion of these observations might introduce significant biases on the global 60 

mean CO2 and its growth rate. These biases can be avoided by filtering of data and a careful selection of spatially representative 61 

stations, as done by NOAA in their use of 43 stations (Fig. 1) that are considered to be representative for the Marine Boundary 62 

Layer (MBL reference network, https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html). An additional data processing step 63 

developed by NOAA to further avoid biases due to unrepresentative local signals is filtering and smoothing, by using a 64 

combination of a low pass filter and decomposition into a fitted long-term trend and seasonal cycle (Thoning et al., 1989), 65 

hereafter refered to as the NOAA analysis. These fits can also be used to fill gaps for missing data, though care must be taken 66 

to avoid extrapolation errors before and beyond the time covered by the data record of the station. The WMO Global 67 

Atmosphere Watch (GAW) World Data Centre for Greenhouse Gases (WDCGG) also publishes global averages mole fraction 68 

for CO2 and the other major greenhouse gases. They use curve fitting and filter methods that are very similar to those developed 69 

by NOAA, but WDCGG includes continental locations that are potentially influenced by local sources and sinks (Tsutsumi et 70 

al., 2009).  71 

The NOAA MBL observations are all part of the NOAA cooperative global air sampling network and analysed in the same 72 

laboratory. All NOAA flask-air observations are traceable to the WMO X2019 CO2 scale that is maintained by NOAA Global 73 

Monitoring Laboratory (GML). In contrast, the WDCGG data originate from multiple independent laboratories (including 74 

NOAA GML), that together form a network of hundreds of stations coordinated by WMO GAW. Having a multitude of 75 
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independent laboratories carries an additional risk of biases due to differences in sampling, measurement, and analysis 76 

methods, for example calibration scales, although much care is taken to avoid these by coordination in the network and use of 77 

a common calibration scale from the WMO Central Calibration Laboratory (CCL) guided by a set of strict measurement 78 

compatibility goals (WMO, 2022). The different selection of stations results in a larger seasonal cycle amplitude in WDCGG 79 

results compared to those of NOAA and a small but quite consistent bias in global surface annual mean CO2 mole fraction 80 

(Tsutsumi et al., 2009).  The NOAA estimate of global surface annual mean CO2 mole fraction is expected to be negatively 81 

biased (e.g. ~0.35 ppm lower than the WDCGG estimate, Tsutsumi et al., 2009) compared to a full global surface average 82 

because areas with large sources are not represented. However, none of the two afore mentioned approaches represents those 83 

parts that have the atmosphere with low CO2 mole fraction levels, i.e. the full troposphere (up to ~8-15 km altitude) and the 84 

stratosphere or the regions of the world with substantial observational gaps. 85 

In this paper we propose a data integration method to estimate the global mean surface CO2 and its growth rate, named semi-86 

NOAA, which is used as an independent validation of the methods as described by NOAA and WDCGG through a completely 87 

independent and open-source implementation. We apply the semi-NOAA methodology to incorporate CO2 data from the 88 

GAW network (139 stations, Fig. 1) and a well-established 3D global transport model (TM5: Transport Model 5, Peters et al., 89 

2004, Krol et al., 2005). We investigate the influence of small differences between the three methodologies and whether these 90 

are significant or not for calculating the global mean surface CO2 and its growth rate, how consistent the semi-NOAA and 91 

WDCGG approaches are with each other, and how they compare with NOAA analysis and estimates derived from a CO2 92 

simulation with the 3D transport model TM5. These 3D CO2 results for 2001-2020 using TM5 are performed in the 93 

CarbonTracker Europe framework (CTE, Peters et al., 2004, Van Der Laan-Luijkx et al., 2017), where the CO2 uptake and 94 

emission fluxes are optimized by the inversion system to minimize the mismatch between the in situ observations and the 95 

modelled CO2 mole fraction.  CTE generally has a good representation of the CO2 field, with mean biases with respect to 96 

independent aircraft measurements of generally less than 0.5 ppm (Friedlingstein et al., 2022). Furthermore, the inferred CO2 97 

fluxes from CTE fit well within the ensemble of those of other inversions used for the evaluation of Global Carbon Budget 98 

(e.g. Friedlingstein et al., 2022). 99 
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2 Methods and data  100 

 101 
Figure 1. The selected GAW global network for CO2 measurement (139 sites, red dots), the global network for the 102 
CTE evaluations (230 sites, blue dots), and the NOAA network (43 sites, yellow stars). 103 

2.1 The WMO GAW observations and WDCGG analysis method 104 

The WMO GAW network measurements are archived and distributed by WDCGG (World Data Center for Greenhouse Gases), 105 

hosted by the Japan Meteorological Agency. The GAW observations used in this study originate from 139 selected stations 106 

of the GAW network, and all observations are on the WMO standard scale, WMO-CO2-X2019 (Hall et al., 2021). The details 107 

on the station selection are described in Tsutsumi et al., (2009), which mainly excludes stations located in the northern 108 

hemisphere that show large standard deviations from the latitudinal fitted curve. The remaining 139 stations show a more 109 

reasonable latitudinal scatter range (Fig. 1).  110 

The WDCGG global analysis method (hereafter WDCGG method), as described in Tsutsumi et al., (2009), includes the 111 

mentioned station selection, a data fitting and filter (involves data interpolation and extrapolation), and calculation of the zonal 112 

and global mean mole fractions, trends, and growth rates. The procedure is also summarized in Text S1. 113 

The output from the global analysis by the WDCGG method are used to compare against an alternative method (semi-NOAA) 114 

that we designed to follow as closely as possible the fit and filter method (Conway et al., 1994) deployed by NOAA and is 115 

described in the section 2.3.  116 

2.2 CTE model output and station observations 117 

CarbonTracker Europe (CTE) is a global model of atmospheric CO2 and designed to keep track of CO2 uptake and release at 118 

the Earth's surface over time (Van Der Laan-Luijkx et al., 2017). CTE incorporates an off-line atmospheric transport module 119 

(TM5, Peters et al., 2004, Krol et al., 2005) driven by ECMWF ERA5 data, and there are four prescribed fluxes (i.e. from 120 

ocean, biosphere, fire and fossil fuel), which are transported in the model, together with the transported initial CO2 field. CTE 121 

also includes a data assimilation system that applies an ensemble Kalman filter to optimize the biogenic and ocean fluxes for 122 

a combination of plant-functional types and climate zones to improve the fit of the simulated concentrations with observations. 123 
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The optimized fluxes from the data assimilation have been used in Global Carbon Project (GCP) 2021 (Friedlingstein et al., 124 

2022), and CTE compares well to the other data assimilation systems used in GCP.   125 

The CTE model data used here consisted of simulated monthly CO2 mole fraction at 1x1 degree horizontal resolution and 25 126 

levels in the vertical, the data period ranges from 2001 to 2020 which has no influence of model spin-up (Krol et al., 2018). 127 

From the CTE output a set of simulated synthetic atmospheric CO2 mole fractions with monthly resolution can be extracted 128 

within grid cells where stations are situated. This study analyses monthly observation data (1980-2020) and synthetic time 129 

series (2001-2020) by using the semi-NOAA method (section 2.3) and attempts to estimate global mean CO2 mole fraction 130 

and its growth rate. The observed CO2 mole fractions are taken from 230 out of 290 global-wide distributed stations (Fig. 1, 131 

the station selection is summarized in Text S2), the data come from the GLOBALVIEW-plus ObsPack data product (Kenneth 132 

N., 2022), and include surface-based, shipboard-based and tower-based measurements.    133 

2.3 The semi-NOAA method 134 

The temporal pattern of CO2 measurement records at locations around the globe can be explained as the combination of 135 

roughly three components: a long-term trend, a non-sinusoidal yearly cycle (or seasonality), and short-term variations. This 136 

study synchronizes monthly CO2 records with the fitting and filter method obtained from the NOAA Global Monitoring 137 

Laboratory (Thoning et al., 1989, Conway et al., 1994), without extrapolation. The station selection and CO2 averaging method 138 

are kept the same as in the WDCGG method (Text S1). This method will be referred to as the semi-NOAA method and will 139 

be compared to the WDCGG method without extrapolation. The only difference from WDCGG method without extrapolation 140 

is the fitting and filter method. All code for the method described here was developed in Python and is available as a Jupyter 141 

notebook under a GPL license [https://doi.org/10.18160/Q788-9081]. The semi-NOAA method can be summarized by the 142 

following three steps. 143 

2.3.1. Fitting and filter  144 

CO2 records from each station can be abstracted as a combination of long-term trend and seasonality, which can be fitted by 145 

a function consisting of polynomial and harmonics. We applied a linear regression analysis based on 3 polynomial coefficients 146 

and 4 harmonics (Eq. 1) to fit CO2 data using general linear least-squares fit (LFIT, Press et al., 1988). 147 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎0 +  𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2 + ⋯+ 𝑎𝑎𝑘𝑘𝑡𝑡𝑘𝑘 + �(𝐴𝐴𝑛𝑛 cos 2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝐵𝐵𝑛𝑛 sin 2𝜋𝜋𝜋𝜋𝜋𝜋)
𝑛𝑛ℎ

𝑛𝑛=1

                                                                              (1) 148 

where 𝑎𝑎𝑘𝑘 , 𝐴𝐴𝑛𝑛  and 𝐵𝐵𝑛𝑛  are fitted parameters, 𝑡𝑡 is the time from the beginning of the observation and it is in months and 149 

expressed as a decimal of its year. 𝑘𝑘  denotes polynomial number, 𝑘𝑘 = 2. 𝑛𝑛ℎ  denotes harmonic number, 𝑛𝑛ℎ = 4. Fig. 2 150 

illustrates the function fit to CO2 data to gain the annual oscillation (red line in Fig. 2a), is a combination of a polynomial fit 151 

to the trend (blue line in Fig. 2a) and harmonic fit to the seasonality (green line in Fig. 2b).  152 

The residuals are the difference between raw data and the function fit (black dots in Fig. 2c). The filtering method is based on 153 

Thoning et al. (1989) which transforms CO2 data from time domain to frequency domain using a Fast Fourier Transform 154 

(FFT), then applies of a low pass filter to the frequency data to remove high-frequency variations, and then transform the 155 

filtered data back to the time domain using an inverse FFT. The short term (a cut-off value of 80 days, red line in Fig. 2c) and 156 

long term (a cut-off value of 667 days, blue line in Fig. 2c) filters used here are the same as in NOAA method, and applied to 157 

obtain the short term and interannual variations that are not determined by the fit function. The original part of the code is also 158 

available as Python code from the NOAA website [https://gml.noaa.gov/aftp/user/thoning/ccgcrv/].  159 
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2.3.2. Calculate smoothed CO2 and long-term trend 160 

The results of the filtering residuals are then added to the fitted curve to obtain smoothed CO2 and its long-term trend. The 161 

smoothed CO2 comprises the fitted trend, the fitted seasonality and the smoothed residuals (red line in Fig. 2d), which only 162 

removes short-term variations or noise. The long-term trend comprises fitted trend and residual trend, which removes seasonal 163 

cycle and noise (blue line in Fig. 2d). 164 

2.3.3. Calculate CO2 growth rate, GATM 165 

GATM is determined by taking the first derivative of the long-term trend. However, the growth is made up of discrete points, 166 

e.g. the black dots in Fig. 3a shows the trend points. In this case, a cubic spline interpolation is applied to the trend points, in 167 

which the spline curve passes through each trend points, as the blue line in Fig. 3a. GATM is obtained by taking the derivative 168 

of the spline at each trend point (Fig. 3b). 169 

 170 
Figure 2. Example of analysed CO2 data from PAL station (Pallas, Finland), illustrating semi-NOAA curve fitting and 171 
filter method.  Panel (a) shows monthly averaged CO2 (dots), curve fitting with 2-degree polynomial and 4-degree 172 
harmonics (red line), and long-term trend estimated by a 2-degree polynomial (blue line).  Panel (b) shows seasonality 173 
estimated by 4-degree harmonics. Panel (c) shows the residuals of raw data from the function fit (black dots), the red 174 
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line is obtained by the short-term filter and the blue line is obtained by the long-term filter. The cyan dots show the 175 
residuals of raw data from the sum of fitted curve and smoothed residuals. Panel (d) shows final processed CO2, which 176 
comprises fitted trend, fitted seasonality and smoothed residuals (red line). The blue line shows final trend which 177 
comprises fitted trend and residuals trend.  178 

 179 

Figure 3. Example of CO2 growth rate, the raw data is the same as used in Fig. 2 from station PAL (Pallas, Finland). 180 
Panel (a) shows the trend points (black dots) and its cubic spline interpolation (blue line). Panel (b) shows the GATM at 181 
each trend point. 182 

3 Results 183 

Global averaged surface CO2 and its GATM are calculated from the GAW observations from 139 sites (Fig. 1) using the 184 

WDCGG method with and without extrapolation and our semi-NOAA method, namely GAW (WDCGG+), GAW (WDCGG) 185 

and GAW (semi-NOAA). The semi-NOAA method is also applied to three CTE datasets: 1) observations from 230 sites 186 

selected in the CTE dataset (hereafter these sites are named as CTE network, Fig. 1) which comes from the ObsPack data 187 

product (Kenneth N., 2022), namely CTE_obs (semi-NOAA); 2) CTE model output at the sites (sampled at the same location, 188 

altitude and time), namely CTE_output (semi-NOAA); and 3) model output for full global grids (averaged over the first three 189 

levels, 0 to 0.35 km Alt.), namely CTE_global (semi-NOAA). We calculated the global means and its GATM by area-weighted 190 

averaging the zonal means over each latitudinal band (30°), as same as the CO2 averaging method in Tsutsumi et al. (2009). 191 

A bootstrap method is used to estimate the uncertainties of global CO2 mean and its GATM, which is an almost identical 192 

uncertainty analysis as presented by Conway et al. (1994) who constructed 100 bootstrap networks for the NOAA analysis. 193 

We construct 200 bootstrap networks which is consistent with the WDCGG analysis in Tsutsumi et al., (2009). For each 194 

bootstrap network, we randomly draw the same number of sites (as the actual network, e.g. 139 sites for GAW network) with 195 

replacement (or restitution) from the actual network, which means some sites are missing whereas others will be represented 196 
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twice or more often. We calculate global mean CO2 mole fraction and its GATM for each network, and then calculate the 197 

statistics (i.e. mean and 68% confidence interval, CI) on the 200 networks. All uncertainties in this paper are reported as ± 198 

68% CI. 199 

3.1 Globally averaged surface CO2 mole fraction and its GATM 200 

 201 
Figure 4. Comparison of globally averaged CO2 mole fraction (a) and its GATM (b) from 1980 to 2020. Panel (a) shows 202 
the global monthly CO2 mole fraction from 139 GAW sites (estimated from observations only) and those from 230 sites 203 
used in CTE (either from observations or model output) differs from NOAA estimates based on 43 MBL sites. Red 204 
and blue lines show the CO2 derived from the GAW observations using semi-NOAA and WDCGG method without 205 
extrapolation, respectively. Green and orange lines show the CO2 derived from observations and model output at the 206 
230 sites assimilated by CTE using semi-NOAA method, respectively. The dash lines show the mean over the available 207 
period. Panel (b) compares the global CO2 growth rate derived from GAW observations using semi-NOAA (red line) 208 
and WDCGG method without extrapolation (blue line), CTE observations (green line) and model output (orange line) 209 
using semi-NOAA method, and the NOAA analysis (black line). The shadow area shows the uncertainty as 68% 210 
confidence interval obtained by the bootstrap analysis. 211 

Global averaged surface CO2 mole fraction derived from the GAW network (GAW (semi-NOAA) or GAW (WDCGG)) is 212 

0.329 or 0.336 ppm significantly (p<0.05) higher than the NOAA analysis during 1980-2020 (red or blue line in Fig. 4a, Table 213 

S1a-b), this result is consistent with Tsutsumi et al., (2009) who found a 0.350 ppm higher global average in the GAW network 214 

during 1983-2006. The higher estimate from the GAW network can be explained by inclusion of more diverse sites, not only 215 

NOAA’s MBL sites, but also more continental sites (Fig. 1). Both global CO2 and its GATM derived from the GAW (semi-216 
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NOAA) and GAW (WDCGG) are nearly overlapping (the red and blue lines) in Fig. 4a and 4b (as can also be seen by 217 

comparing Fig. S1 and S2). The statistic metrics (Table S1a) show high agreement (r=0.999, RMSE=0.053 ppm, ME=0.007 218 

ppm for the CO2 mole fraction; r=0.991, RMSE=0.081 ppm yr-1, ME=0.005 ppm yr-1 for the GATM) between these two 219 

methods, which confirms that the semi-NOAA method agrees well with WDCGG method without extrapolation. The 220 

WDCGG method with extrapolation (i.e. GAW (WDCGG+)), where the long-term trend of each station is extrapolated to the 221 

most long-running station period and added to its average seasonal variation to synchronize data period of all stations 222 

(Tsutsumi et al., 2009), produces ~0.096 ppm significantly (p<0.05) higher values than the global surface CO2 mole fraction 223 

derived from the GAW (WDCGG) during the common period 1984-2020 (see Table S2), while the extrapolation has tiny 224 

effect (RMSE=0.062 ppm yr-1, ME=-0.011 ppm yr-1, Table S2) on the CO2 growth rate.  225 

Global averaged surface CO2 derived from CTE_obs (semi-NOAA) and CTE_output (semi-NOAA) are 0.422 ppm (1980-226 

2020) and 0.656 ppm (2001-2020) significantly (p<0.05) higher compared to the NOAA analysis, respectively (green and 227 

orange lines in Fig. 4a). Comparing the global mean of CTE_obs (semi-NOAA) with CTE_output (semi-NOAA) during the 228 

common period 2001-2020, we find a low bias (0.069 ppm in CTE_output, Table S1d-e and Table S3), which indicates that 229 

the CTE model results can reproduce the global mean CO2 levels reasonably well. The global annual CO2 mole fraction from 230 

CTE_obs (semi-NOAA), CTE_output (semi-NOAA) and CTE_global (semi-NOAA) is 0.368 (2001-2020), 0.299 (2001-231 

2020) and 0.186 (2001-2020) ppm significantly (p<0.05) higher than the result of the GAW (semi-NOAA), respectively (Table 232 

S1d-f). The higher global mean from CTE_obs (semi-NOAA) and CTE_output (semi-NOAA) is mainly due to more sites in 233 

the Northern Hemisphere in the CTE network compared to the GAW network. The lower bias between GAW (semi-NOAA) 234 

and CTE_global (semi-NOAA) indicates that the GAW network provides a good representation of the low-level atmosphere 235 

(i.e. 0 to 0.35 km altitude) at global scale (Table S1f), or the CTE model has a good performance in the low-level atmosphere.   236 
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 237 
Figure 5. Trend analysis of the global CO2 growth rate from 1980 to 2020. Panel (a) shows the trends of CO2 growth 238 
rate for the GAW network (red line), the CTE network (green line) and the NOAA network (black line) during the 239 
whole period 1980-2020, the CO2 growth rate is derived from GAW (semi-NOAA), CTE_obs (semi-NOAA) and NOAA 240 
analysis (Fig. 4b). Panel (b) shows the trend of CO2 growth rate for each month during 1980-2020, calculated as the 241 
derivative of the growth rate. The grey bands mark the period of three strong El Niño events, i.e 1987-1988, 1997-1998 242 
and 2014-2016. 243 

Despite differences in the global averaged surface CO2 mole fractions derived from different networks and analysis methods, 244 

the GATM derived from GAW network, CTE network and its model output, and NOAA network agree well (r>0.903, 245 

RMSE<0.192 ppm yr-1, MAE<0.158 ppm yr-1, ME<0.025 ppm yr-1, Table S1) during the common period (Fig. 4b). The trend 246 

analysis shows that the GATM increased steadily (0.030 ± 0.002 ppm per year each year) from 1980 to 2020 (Fig. 5a) based on 247 

the observations from the three networks (i.e. GAW, CTE and NOAA).  This implies that over long-term period (here 40 248 

years) the networks with and without continental sites show the same trend of the GATM. Hence, the CO2 advective transport 249 

and mixing plays a negligible role in estimating the long-term change of the GATM. However, there is a clear difference in the 250 

short-term (here one month) change of the GATM between the networks with and without continental sites (Fig. 5b). The El 251 

Niño event often diminishes net global C uptake (due to e.g. droughts, floods and fires) and increases global CO2 growth rate 252 

(Sarmiento et al., 2010). The GATM derived from the GAW and CTE network (red and blue lines) increases earlier before the 253 

three strong El Niño events (marked as blue circles in Fig. 5b) and reaches the peak earlier during the El Niño events (marked 254 

as orange circles in Fig. 5b), compared to the GATM derived from the NOAA network (black line). This indicates that 255 

continental sites can help early detection of the change of GATM which is caused by biogenic emission or uptake changes. The 256 
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CTE network (green line) detects the change even earlier than the GAW network (red line) for the three El Niño events (Fig. 257 

5b), which is due to even more continental sites included in the CTE network (Fig. 1), although the more continental sites also 258 

induce the larger variability.  259 

Table 1 shows the global annual CO2 and its GATM derived from GAW (semi-NOAA), together with the uncertainty estimated 260 

by the bootstrap method. The global average surface CO2 mole fraction has increased from 339.17±0.38 ppm in 1980 to 261 

413.06±0.16 ppm in 2020 (Table 1, Fig. S1). The uncertainty before 1990 is larger than after 1990, due to fewer measurement 262 

stations over the globe before 1990. The average GATM for the two decades before 2000 is about 1.54±0.08 ppm yr-1, however, 263 

in the following two decades it increases to 1.91±0.05 ppm yr-1 (2000-2009) and 2.41±0.06 ppm yr-1 (2010-2019) (Table 1, 264 

Fig. S1).  265 

Table 1. Annual global averaged CO2 mole fraction (Mean, ppm) and its GATM (ppm yr-1) derived from GAW 266 
observations using semi-NOAA method. U(Mean) and U(GATM) respectively indicate the uncertainty of Mean and its 267 
GATM as 68% confidence interval. The annual value is averaged over the monthly values of the year.  268 

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 

Mean 339.17 340.16 341.03 342.59 344.46 345.69 347.08 348.99 351.45 353.15 

U(Mean) 0.38 0.24 0.19 0.24 0.26 0.22 0.14 0.15 0.12 0.15 

GATM 1.65 1.07 0.88 2.02 1.32 1.38 1.55 2.38 2.08 1.23 

U(GATM) 0.12 0.10 0.15 0.13 0.08 0.11 0.14 0.08 0.09 0.06 

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 

Mean 354.22 355.64 356.37 357.09 358.51 360.52 362.27 363.40 366.14 368.10 

U(Mean) 0.10 0.11 0.10 0.10 0.11 0.12 0.12 0.10 0.10 0.10 

GATM 1.41 1.03 0.65 1.22 1.72 2.06 1.16 1.82 2.89 1.34 

U(GATM) 0.08 0.06 0.05 0.05 0.05 0.08 0.07 0.05 0.05 0.05 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Mean 369.30 370.77 372.92 375.45 377.22 379.28 381.38 383.20 385.26 386.78 

U(Mean) 0.12 0.11 0.10 0.10 0.10 0.10 0.09 0.10 0.10 0.11 

GATM 1.58 1.58 2.33 2.17 1.66 2.42 1.75 2.20 1.71 1.68 

U(GATM) 0.05 0.06 0.06 0.04 0.04 0.03 0.05 0.04 0.05 0.04 

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Mean 389.01 390.97 393.14 396.00 397.79 400.12 403.47 405.70 407.93 410.57 

U(Mean) 0.12 0.12 0.14 0.11 0.10 0.10 0.11 0.09 0.10 0.13 

GATM 2.32 1.73 2.74 2.30 1.91 2.98 2.95 2.04 2.50 2.61 

U(GATM) 0.05 0.06 0.09 0.05 0.04 0.05 0.06 0.06 0.07 0.05 

Year 2020          

Mean 413.06          

U(Mean) 0.16          

GATM 2.60          

U(GATM) 0.16          
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3.2 Vertical profile of global CO2 mole fraction 269 

 270 
Figure 6. Global vertical profile of CO2 mole fraction derived from CTE model output. Panel (a) shows the vertical 271 
profile in 2020. Panel (b) shows the difference of the vertical profile between 2001 and 2020. Panel (c) shows the annual 272 
mean vertical profile from 2001 to 2020, the dots mark CTE vertical level heights and lines are the linear interpolation 273 
between the heights.  274 

The CTE model simulates CO2 mole fraction over a global 3D grid, which allows us to view the modelled vertical CO2 profile. 275 

In the lower atmosphere, highest CO2 mole fraction are found in the Northern mid-latitude (dark red between 30 oN and 40 276 
oN, Fig. 6a), where more anthropogenic emissions take place, which are subsequently transported towards northern and 277 

southern latitudes. The latitudinal and interhemispheric gradient of atmospheric CO2 found in Fig. 6a, is not only determined 278 

by the latitudinal and interhemispheric differences in fossil fuel emissions and seasonal exchange with terrestrial biota 279 

(Denning et al., 1995), but is also due to atmospheric transport (Patra et al., 2011). With increasing altitude, the gradient 280 
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between Northern and Southern hemisphere becomes small and levels out at higher altitudes (e.g. >50 km). When comparing 281 

the vertical profile change between 2001 and 2020 (Fig. 6b and 6c), the CO2 mole fraction increases slower at the higher 282 

atmosphere (>25 km altitude) than the increase at the lower atmosphere (<25 km altitude). Fig. 6c shows that the vertical 283 

gradient (difference between 50 km and 0.05 km) changes from ~5 ppm for 2001 to ~13 ppm for 2020. The high vertical 284 

gradient in 2020 reflects the accumulation of CO2 in the lower atmosphere, which is caused by continuous CO2 emissions 285 

from the surface during 2001-2020 and slow vertical transport. The low vertical gradient in 2001 is partly due to low surface 286 

emission.    287 

3.3 Relationship between the surface CO2 mole fraction and atmospheric CO2 mass 288 

 289 
Figure 7. Relationship between the monthly surface CO2 mole fraction and atmospheric CO2 mass. The atmospheric 290 
CO2 mass calculated from the 3D CTE output. In panel (a), the monthly surface CO2 derived from the CTE_output 291 
(semi-NOAA), GAW (semi-NOAA) and NOAA analysis, presented as blue, red and green dots, respectively. Panel (b) 292 
compare the corresponding interannual variability (IAV) of the atmospheric CO2 mass and the surface CO2. The IAV 293 
is calculated as the anomaly departure from a quadratic trend.  294 

Atmospheric CO2 mass calculated from the CTE output as a function of air mass and CO2 concentration (Text S3), has 295 

increased from 789.46 PgC in 2001 to 877.88 PgC in 2020 (Fig. S3a). The spatial distribution of the atmospheric CO2 mass 296 

can be seen in Fig. S3b and Fig. S3c. Monthly global surface CO2 mole fraction derived from CTE output (red dots, Fig. 7a) 297 

at the 230 sites used in CTE with the semi-NOAA method (CTE_output (semi-NOAA)) and GAW observations (blue dots, 298 

Fig. 7a) at 139 GAW sites with the semi-NOAA method (GAW (semi-NOAA)) has a similar linear relationship (showing the 299 

same slope of 2.08±0.01 PgC ppm-1) as the monthly atmospheric CO2 total mass derived from the CTE output. The NOAA 300 

CO2 (green dots, Fig. 7a) shows a similar linear relationship (has a slope of 2.09±0.01 PgC ppm-1). The slope or conversion 301 

factor in Fig. 7a is slightly lower than the factor 2.12 PgC ppm-1 used in Ballantyne et al. (2012) for the period 1980-2010. 302 

The small difference in conversion factor is expected, considering the different model and data used. We further compare the 303 

interannual variability (IAV, calculated as the anomaly departure from a quadratic trend) of the atmospheric CO2 mass and 304 

the surface CO2 (Fig. 7b), the coefficient of the linear relationship is very close to ~1.0, which indicates the temporal change 305 

in atmospheric CO2 mass agrees with temporal change in surface CO2 mole fraction. The NOAA network tracks atmospheric 306 

CO2 change slightly better (r=0.938) than the GAW (r=0.861) and CTE (r=0.812) networks, given the long resident time and 307 

well-mixed nature of atmospheric CO2. Overall, the relationship found in Fig. 7 implies that the current surface CO2 network 308 

can be a good indicator of the CO2 mass change in the whole atmosphere through a linear relationship.  309 
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3.4 Annual absolute change and interannual variability of global CO2 mole fraction 310 

 311 
Figure 8. Annual absolute change and interannual variability of global CO2 mole fraction derived from different data 312 
(CTE model, GAW observation and NOAA observation) and analysis methods (semi-NOAA method, WDCGG method 313 
and NOAA method) for 2000-2020. Panel (a) shows the annual absolute change which is the difference between annal 314 
mean. Averages over 2001-2010 and 2011-2020 are also shown. Panel (b) shows the IAV which is calculated as the 315 
anomaly departure from a quadratic trend. 316 

Pressure-weighted average CO2 in the lower atmosphere and whole atmosphere is derived from CTE output. The annual 317 

absolute change (calculated as the difference between annual mean) of CO2 in the lower atmosphere (0 to 0.35 km altitude, 318 

orange bars in Fig. 8a) is more sensitive to surface sink and source than the change in the whole atmosphere (blue bars). The 319 

reason is that the whole atmosphere has a larger air volume than the lower atmosphere, and the change of the surface CO2 is 320 

diluted due to horizontal and vertical transport. The CO2 change derived from the observations of the GAW network (red bars 321 

for semi-NOAA method, purple bars for WDCGG method) and the NOAA network (brown bars), shows a small positive or 322 

negative difference from the CTE results over the different years. However, over the long term (e.g. decadal scale, 2001-2010 323 

and 2011-2020), the CTE model derived change of lower and whole atmospheric CO2 shows good agreement (<0.09 ppm yr-324 
1) with the surface observation-based estimate, especially for the lower atmospheric CO2 (<0.07 ppm yr-1). Fig. 8b shows the 325 

IVA derived from CTE (blue, orange and green bars) follows a similar temporal pattern as the observation-based IVA derived 326 
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from the GAW and NOAA network (red, purple and brown bars), especially the IVA of the low-level atmosphere (orange 327 

bars) show good agreement with the observation-based IVA (r>0.971, RMSE<0.178 ppm).   328 

4 Discussion 329 

During the past few decades, observational networks have been extended (e.g. from the NOAA MBL network) to the 330 

continents (e.g. GAW network and CTE network, Fig. 1) in order to monitor global CO2 concentrations and quantify CO2 331 

sources and sinks. Although the continental observations include contributions from both big sources of anthropogenic 332 

emissions and big sources/sinks from terrestrial vegetation off/during the growing season, these continental observations show 333 

an overall higher global surface CO2 mole fraction in the global CO2 analysis which indicates that they are influenced by a 334 

net source. We find that the global mean derived from the GAW network is on average 0.329 (semi-NOAA method) or 0.336 335 

(WDCGG method) ppm consistently higher than that derived from the NOAA network during 1980-2020, similarly ~0.350 336 

ppm higher mole fraction in the GAW network was found in Tsutsumi et al. (2009) for 1983-2006. The CTE network even 337 

leads to a higher global mean (0.422 ppm during 1980-2020), which is likely due to more observational sites locate in the 338 

Northern Hemisphere where the highest anthropogenic emissions take place. This also explains the large fluctuation of CO2 339 

concentration during the winters and summers during 2001-2020 (green and orange lines, Fig. 4a). In future, we expect that 340 

adding new observation sites (specially in Northern Hemisphere) into the current observational network (e.g. GAW network), 341 

would lead to higher global surface CO2 and a larger amplitude of the global CO2 seasonal cycle in the global CO2 analysis.  342 

Although Friedlingstein et al. (2022) reported a 5.4% drop (~0.52 PgC) in fossil fuel CO2 emissions in 2020 (due to restrictions 343 

on e.g. transport, industry, power etc during the COVID-19 pandemic), the increase in annual CO2 from 2019 to 2020 344 

(2.60±0.16 ppm yr-1) remains at a similar level as from 2018 to 2019 (2.61±0.05 ppm yr-1). In principle, an equivalent drop of 345 

roughly 0.25 ppm yr-1 (according to the conversion factor 2.08 PgC ppm-1 in Fig. 7a) or roughly 0.13 ppm yr-1 (according to 346 

the annual absolute change, red bars in Fig. 8a) in the growth rate should be visible for period 2019-2020 due to the declined 347 

CO2 emission. However, such short-term human activity induced change of the CO2 growth rate may be hidden by the natural 348 

variability. The bootstrap analysis is used in this study (also in Conway et al., (1994) and Tsutsumi et al., (2009)) to estimate 349 

the uncertainty of the CO2 temporal mean and its growth rate and to assess how sensitive the global value is to the distribution 350 

of sampling sites. The relatively large uncertainty (±0.16 ppm yr-1) at the end of 2020 compared to previous years (Table 1) 351 

is likely due to end-effect associated with the curve fitting and filter procedure. The end-effect is a tendency for the growth 352 

rate to turn toward the mean value at the end of the record (Conway et al., 1994), therefore Conway et al. (1994) suggested 353 

the last 6 months of the growth rate curves should be viewed with caution.  354 

Our analysis shows that basing the CO2 growth rate on GAW surface observations does not introduce a large bias (on average 355 

agreement within 0.015 ppm yr-1) compared to a full atmospheric analysis (Fig. 4b and 8, Table S1e-f). This full atmosphere 356 

CO2 was provided by the CTE model, in which the global annual mean CO2 is significantly overestimated compared to GAW 357 

observations (e.g. 0.299 ppm higher in CTE_output (semi-NOA), or 0.186 ppm higher in the CTE_global (semi-NOAA) 358 

during 2001-2020). The overestimate derived from the CTE_output (semi-NOAA), i.e. CTE outputs at the CTE 230 sites, is 359 

mainly due to more sites in the Northern Hemisphere in the CTE network than in the GAW network. The lower overestimate 360 

derived from the CTE_global (semi-NOAA), i.e. CTE outputs at full global grids at the low-level atmosphere, implies that 361 

the biases in CTE are not uniform spatially and attempt to balance out. We estimate the CTE bias by comparing the 362 

observations and CTE outputs at the same sites, which results in 0.069 ppm low bias derived from the CTE outputs in 363 

calculating the global surface CO2 mole fraction.  364 
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Different observational networks (i.e. NOAA network, GAW network and CTE network) are analysed in this study, which 365 

shows a difference in calculated global surface CO2 mole fractions equivalent to the current atmospheric growth rate over a 366 

three-month period. This implies that the station selection, especially if and how many continental observations are used, has 367 

some but not a particularly strong influence on the derived global surface CO2. Nowadays more and more continental 368 

observations are established in order to monitor biogenic sources and sinks, and further provide insight into the climate change 369 

and the associated ecosystem processes (Ciais et al., 2005, Ramonet et al., 2020). Such continental observations carry more 370 

variability in measurements than the marine observations, which needs some caution when used in the mix of stations for 371 

determining global surface CO2 mole fraction. However, our study shows that continental sites can help early detect the change 372 

of CO2 growth rate caused by biogenic emission change (e.g. caused by El Niño events). Besides, current observational 373 

networks (with and without continental sites) and CTE model show a good agreement within 0.025 ppm yr-1 on the global 374 

CO2 growth rate over long-term period. This implies that the current observation networks (e.g. as shown in Fig. 1, represent 375 

for multiple ecosystems, multiple sinks and sources, and different latitudes) have a similar good capacity to capture the global 376 

surface CO2 changes, although there is the spatial and temporal variability of the CO2 growth rate (e.g. Conway et al. 1994). 377 

We also notice that the uncertainty global CO2 growth rate is approximately 0.07 ppm yr-1, as derived from GAW (semi-378 

NOAA) and averaged over 1980-2020 (Table 1). In order to reduce this uncertainty, we recommend adding more stations to 379 

the current observation network. We conducted an experiment (Fig. S4) which demonstrates that the uncertainty of the global 380 

CO2 growth rate exponentially increases as the number of land observation sites is reduced. To reduce the uncertainty to 0.02 381 

ppm yr-1 (equivalent to 1% of the global CO2 growth rate), our experiment indicates that 332 land observation sites are required 382 

(Fig. S4). However, the required number of sites also depends on their geographical distribution (i.e. CO2 footprint coverage 383 

of observation network, and the importance of the network design was addressed by Storm et al. (2022)), measurement 384 

accuracy, and consistency.  385 

Extrapolation beyond the measurement period extends knowledge gained from a limited period of measurements. During a 386 

limited period of measurement, we can define the average seasonality, long-term trend, and short-term variation at a 387 

measurement site. The long-term trend of individual site is extrapolated, for example by referring to the latitude reference 388 

time series (Masarie and Tans, 1995) or the mean long-term trend over sites within a certain (e.g. 30°) latitudinal zone 389 

(Tsutsumi et al., 2009), and then combining the extrapolated trend with average seasonality to produce the estimate beyond 390 

measurement period. The extrapolation requires the assumption that the relationship of an individual site to the latitude 391 

reference is invariant in time, however, the relationship between nearby sites is continuously changing (Masarie and Tans, 392 

1995). Besides, the short-term variation is ignored or estimated from nearby sites, which introduces extra uncertainty from 393 

extrapolation. In this study, we find that the WDCGG method with extrapolation (GAW (WDCGG+)) results in ~0.096 ppm 394 

higher in the global surface CO2 mole fraction than the WDCGG method without extrapolation (GAW (WDCGG)) using the 395 

same GAW observations, although the extrapolation has a tiny effect on the growth rate (Table S2). Therefore, extrapolation 396 

beyond the measurement period is not used in our analysis. With the increasing number of long-term measurements, this 397 

extrapolation becomes less and less necessary. 398 

5 Conclusions 399 

The WMO Global Atmosphere Watch CO2 network documents the gradual global accumulation of CO2 in the atmosphere 400 

due to human activities, and has been used to assess large-scale and long-term environmental consequence of fossil CO2 401 

emission and land use changes. Although the current CO2 network is sparse due to operational costs and logistical constraints, 402 

it has a good capacity to represent global surface CO2 mole fraction and its growth rate and trends in atmospheric CO2 mass 403 
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changes. The three different analysis methods yield very similar global CO2 increase from 2001 to 2020, which gives 404 

confidence to use either one of them in climate change study. The continuous monitoring the atmospheric CO2, basing on the 405 

current GAW network together with reliable global data integration methods, provides essential information for policymakers 406 

to support their efforts in mitigating the global warming.  407 

6 Data and Code Availability 408 

All data and code necessary to calculate the global mean surface CO2 mole fraction and Atmospheric CO2 mass is freely 409 

available from ICOS Carbon Portal [https://doi.org/10.18160/Q788-9081]. The file list of results and code can be found in 410 

Text S4. 411 
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