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Abstract. The World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) coordinates
high-quality atmospheric greenhouse gas observations globally and provides these observations through the
WMO World Data Centre for Greenhouse Gases (WDCGG) supported by Japan Meteorological Agency. The
WDCGG and the National Oceanic and Atmospheric Administration (NOAA) analyse these measurements us-
ing different methodologies and site selection to calculate global annual mean surface CO2 and its growth rate
as a headline climate indicator. This study introduces a third hybrid method named GFIT, which serves as an
independent validation and open-source alternative to the methods described by NOAA and WDCGG. We apply
GFIT to incorporate observations from most WMO GAW stations and 3D modelled CO2 fields from Carbon-
Tracker Europe (CTE). We find that different observational networks (i.e. NOAA, GAW, and CTE networks)
and analysis methods result in differences in the calculated global surface CO2 mole fractions equivalent to the
current atmospheric growth rate over a 3-month period. However, the CO2 growth rate derived from these net-
works and the CTE model output shows good agreement. Over the long-term period (40 years), both networks
with and without continental sites exhibit the same trend in the growth rate (0.030± 0.002 ppm yr−1 each year).
However, a clear difference emerges in the short-term (1-month) change in the growth rate. The network that
includes continental sites improves the early detection of changes in biogenic emissions.
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1 Introduction

Global mean surface temperature averaged over 2011–2020
has increased by about 1.09 ◦C relative to the average tem-
perature of 1850–1900 (Gulev et al., 2021). The increas-
ing amount of atmospheric carbon dioxide (CO2), together5

with increases in other greenhouse gases, is the main driver
of the warming (Eyring et al., 2021). After being rela-
tively stable between 180 ppm (ice age) and 280 ppm (in-
terglacial) for the past 800 000 years (Lüthi et al., 2008),
the annual average CO2 level of the atmosphere has in-10

creased since the industrial revolution from roughly 277 ppm
in 1750 to 415.7± 0.2 ppm in 2021 (WMO, 2022), due to
emissions of CO2 related to human activities like burning
of fossil fuels and land use changes (Friedlingstein et al.,
2022). Mean global atmospheric CO2 annual growth rate15

(GATM) is an important constraint on the global carbon cycle.
Based on the most recent global carbon budget (GCB) anal-
ysis (Friedlingstein et al., 2022), the total emission of CO2
due to human activities was 10.2± 0.8 GtC yr−1 in 2020,
of which 3.0± 0.4 GtC yr−1 was captured by the ocean sink20

and 2.9± 1 GtC yr−1 by the terrestrial sink, leaving a net in-
crease of 5.0 ± 0.2 GtC yr−1 of CO2 in the atmosphere, cor-
responding to an atmospheric CO2 mole fraction increase of
2.4± 0.1 ppm yr−1. (The conversion factor comes from Bal-
lantyne et al., 2012.)25

As the atmosphere mixes the contributions of all sources
and sinks, an observational global average CO2 mole fraction
can be constructed if there are enough observations to rep-
resent the spatial and temporal variations across the globe.
Since most land masses are concentrated in the Northern30

Hemisphere, and the highest anthropogenic emissions (e.g.
during winter) occur in the relatively narrow latitudinal band
between 30 and 60◦ N, relatively large spatial and temporal
gradients in CO2 mole fraction exist in and around that re-
gion. Due to convective and advective mixing, the average35

mixing time of air within the same latitudinal bands varies
from several weeks to a month. However, mixing between
latitudinal bands is slower, especially the exchange between
the Northern and Southern hemispheres, which has an ap-
proximate interhemispheric transport time of 1.4± 0.2 years40

(Patra et al., 2011). The interplay of the latitudinal and inter-
hemispheric differences in fossil fuel emissions and seasonal
exchange with land biota (Denning et al., 1995) creates a lat-
itudinal and interhemispheric gradient that requires a suffi-
ciently dense network to capture a representative global an-45

nual mean.
However, measurement stations that are close to sources

or sinks may not be representative of a large atmospheric
volume and the average signal at their latitude. There-
fore, inclusion of these observations might introduce bi-50

ases on the global mean CO2 and its growth rate. These
biases can be avoided by filtering of data and a careful
selection of spatially representative stations, as done by
NOAA in their use of 43 stations (Fig. 1) that are consid-

ered to be representative for the Marine Boundary Layer 55

(MBL reference network, https://www.esrl.noaa.gov/gmd/
ccgg/mbl/mbl.html;last access: 7 December 2023TS3 ). An
additional data processing step developed by NOAA to fur-
ther avoid biases due to unrepresentative local signals is fil-
tering and smoothing, by using a combination of a low pass 60

filter and decomposition into a fitted long-term trend and sea-
sonal cycle (Thoning et al., 1989), hereafter referred to as the
NOAA analysis. These fits can also be used to fill gaps for
missing data, though care must be taken to avoid extrapola-
tion errors before and beyond the time covered by the data 65

record of the station. The WMO Global Atmosphere Watch
(GAW) World Data Centre for Greenhouse Gases (WDCGG)
publishes global averages mole fraction for CO2 and the
other major greenhouse gases in the annual WMO GAW
Greenhouse Gas Bulletin (latest version: WMO, 2022). They 70

use curve fitting and filter methods that are very similar to
those developed by NOAA, but WDCGG includes continen-
tal locations that are potentially more influenced by local
sources and sinks (Tsutsumi et al., 2009).

The NOAA MBL observations are all part of the NOAA 75

cooperative global air sampling network and analysed in the
same laboratory. All NOAA flask–air observations are trace-
able to the current scale WMO–CO2–X2019 (Hall et al.,
2021) that is maintained by NOAA Global Monitoring Lab-
oratory (GML). In contrast, the WDCGG data originate from 80

multiple independent laboratories (including NOAA GML),
that together form a network of hundreds of stations coordi-
nated by WMO GAW (http://gawsis.meteoswiss.ch; last ac-
cess: 7 December 2023). Having a multitude of independent
laboratories carries an additional risk of biases due to dif- 85

ferences in sampling, measurement, and analysis methods,
for example calibration scales, although much care is taken
to avoid these by coordination in the network and use of a
common calibration scale from WMO Central Calibration
Laboratories (CCL) guided by a set of strict measurement 90

compatibility goals (WMO, 2022). The different selection of
stations results in a larger seasonal cycle amplitude in WD-
CGG results compared with those of NOAA and a small
but quite consistent bias in global surface annual mean CO2
mole fraction (Tsutsumi et al., 2009). The NOAA estimate of 95

global surface annual mean CO2 mole fraction is expected to
be lower (e.g. ∼ 0.35 ppm lower than the WDCGG estimate,
Tsutsumi et al., 2009) compared with a full global surface
average because areas with large sources are not represented.
However, the two aforementioned approaches neither repre- 100

sent the parts of the atmosphere with low CO2 mole fraction
levels (i.e. the full troposphere, up to∼ 8–15 km altitude, and
the stratosphere), nor do they cover the regions of the world
with substantial observational gaps.

In this paper, we propose a data integration method to esti- 105

mate the global mean surface CO2 and its growth rate, named
GFIT. This method serves as an independent validation of
the methods as described by NOAA and WDCGG through
a completely independent and open-source implementation.

https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html
https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html
https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html
http://gawsis.meteoswiss.ch
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The global mean surface CO2 refers to the mean CO2 mole
fraction within the planetary boundary layer, which extends
from the earth’s surface up to a few hundred or thousand me-
tres in height. We apply the GFIT methodology to incorpo-
rate CO2 data from the GAW network (139 stations; Fig. 1)5

and the modelled CO2 distribution from a well-established
3D global transport model (TM5: Transport Model 5; Krol
et al., 2005; Peters et al., 2004). We investigate the influ-
ence of small differences between the three methodologies
and whether these are significant or not for calculating the10

global mean surface CO2 and its growth rate, how consis-
tent the GFIT and WDCGG approaches are with each other,
and how they compare with NOAA analysis and estimates
derived from a CO2 simulation with the 3D transport model
TM5. These 3D CO2 results for 2001–2020 using TM5 are15

performed in the CarbonTracker Europe framework (CTE;
Peters et al., 2004; Van Der Laan-Luijkx et al., 2017), where
the CO2 uptake and emission fluxes are optimized by the in-
version system to minimize the mismatch between the in situ
observations and the modelled CO2 mole fraction. CTE gen-20

erally has a good representation of the CO2 field, with mean
biases with respect to independent aircraft measurements of
generally less than 0.5 ppm (Friedlingstein et al., 2022). Fur-
thermore, the inferred CO2 fluxes from CTE fit well within
the ensemble of those of other inversions used for the evalua-25

tion of global carbon budget (e.g. Friedlingstein et al., 2022).

2 Methods and data

2.1 The WMO GAW observations and WDCGG
analysis method

The WMO GAW network measurements are archived and30

distributed by WDCGG, hosted by the Japan Meteorologi-
cal Agency. The GAW observations used in this study origi-
nate from 139 selected stations of the GAW network, and all
observations are on the WMO standard scale WMO–CO2–
X2019. The details on the station selection are described in35

Tsutsumi et al. (2009), which mainly excludes stations lo-
cated in the Northern Hemisphere that show large standard
deviations from the latitudinal fitted curve. The remaining
139 stations show a more reasonable latitudinal scatter range
(Fig. 1).40

The WDCGG global analysis method (hereafter WDCGG
method), as described in Tsutsumi et al. (2009), includes the
mentioned station selection, a data fitting and filter (involves
data interpolation and extrapolation), and calculation of the
zonal and global mean mole fractions, trends, and growth45

rates. The procedure is also summarized in Sect. S1 in the
Supplement. The output from the global analysis by the WD-
CGG method is used to compare with an alternative method
(GFIT) that we designed to follow as closely as possible
the fit and filter method (Conway et al., 1994) deployed by50

NOAA and is described in the Sect. 2.3.

2.2 CTE model output and station observations

CarbonTracker Europe is a global model of atmospheric CO2
and designed to keep track of CO2 uptake and release at
the earth’s surface over time (Van Der Laan-Luijkx et al., 55

2017). CTE incorporates an off-line atmospheric transport
module (TM5, Peters et al., 2004; Krol et al., 2005) driven
by ECMWF ERA5 data, and there are four prescribed fluxes
(i.e. from ocean, biosphere, fire, and fossil fuel), which are
transported in the model, together with the transported initial 60

CO2 field. CTE also includes a data assimilation system that
applies an ensemble Kalman filter to optimize the biogenic
and ocean fluxes for a combination of plant-functional types
and climate zones to improve the fit of the simulated con-
centrations with observations. The optimized fluxes from the 65

data assimilation have been used in Global Carbon Project
(GCP) 2021, and the comparison of CTE CO2 product with
the other data assimilation systems used in GCP shows good
agreement (within 0.8 ppm at all latitude bands) (Friedling-
stein et al., 2022). 70

The CTE model data used here consist of simulated
monthly CO2 mole fraction at 1× 1◦ horizontal resolution
and 25 levels in the vertical direction, and the data period
ranges from 2001 to 2020 which has no influence of model
spin-up (Krol et al., 2018). From the CTE output a set of 75

simulated synthetic atmospheric CO2 mole fractions with
monthly resolution can be extracted within grid cells where
stations are situated. This study analyses monthly observa-
tion data (1980–2020) and synthetic time series (2001–2020)
by using the GFIT method (Sect. 2.3) and attempts to es- 80

timate global mean CO2 mole fraction and its growth rate.
The observed CO2 mole fractions are taken from 230 out of
290 global-wide distributed stations (Fig. 1; the station se-
lection is summarized in Sect. S2). The data come from the
GLOBALVIEW-plus V8 ObsPack data product (Schuldt et 85

al., 2022) and include surface-based, shipboard-based, and
tower-based measurements.

2.3 The GFIT method

The temporal pattern of CO2 measurement records at lo-
cations around the globe can be explained as the combina- 90

tion of roughly three components: a long-term trend, a non-
sinusoidal yearly cycle (or seasonality), and short-term vari-
ations. This study synchronizes monthly CO2 records with
the fitting and filter method developed at the NOAA Global
Monitoring Laboratory (Conway et al., 1994; Thoning et 95

al., 1989), without extrapolation. The station selection and
CO2 averaging method are kept the same as in the WD-
CGG method (Sect. S1). This method will be referred to as
the GFIT method and will be compared with the WDCGG
method without extrapolation. The only difference from the 100

WDCGG method without extrapolation is the fitting and fil-
ter method. All code for the method described here was de-
veloped in Python and is available as a Jupyter notebook un-
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Figure 1. Three observation networks are employed to assess the impact of continental site inclusion when calculating global CO2 mole
fraction and its growth rates. The NOAA network (43 sites; yellow stars) comprises MBL sites only. The selected GAW global network
(139 sites; red dots) includes both MBL sites and continental sites, for example from the Advanced Global Atmospheric Gases Experiment
(AGAGE) and European ICOS contribution network. The CTE network serves as the global network for the CTE model evaluations (230
sites; blue dots), and comprises MBL sites and a more extensive inclusion of continental sites.

der a GPL license (https://doi.org/10.18160/Q788-9081, Wu,
2023). The GFIT method can be summarized and illustrated
by the three steps described in the next subsections.

2.3.1 Fitting and filter

CO2 records from each station can be abstracted as a combi-5

nation of long-term trend and seasonality, which can be fit-
ted by a function consisting of polynomial and harmonics.
We applied a linear regression analysis based on three poly-
nomial coefficients and four harmonics (Eq. 1) to fit CO2
data using general linear least-squares fit (LFIT, Press et al.,10

1988):

f (x)= a0+ a1t + a2t
2
+ . . .+ akt

k

+

nh∑
n=1

(An cos2πnt +Bn sin2πnt) , (1)

where ak ,An, and Bn are fitted parameters; t is the time from
the beginning of the observation and it is in months and ex-
pressed as a decimal of its year; k denotes the polynomial15

number, k = 2; nh denotes harmonic number; and nh = 4.
Figure 2 illustrates the function fit to CO2 data to obtain the
annual oscillation (red line in Fig. 2a), is a combination of
a polynomial fit to the trend (blue line in Fig. 2a), and is a
harmonic fit to the seasonality (green line in Fig. 2b).20

The residuals are the difference between raw data and the
function fit (black dots in Fig. 2c). The filtering method is
based on Thoning et al. (1989) which transforms CO2 data
from time domain to frequency domain using a fast Fourier
transform (FFT), then applies a low pass filter to the fre-25

quency data to remove high-frequency variations, and then
transforms the filtered data back to the time domain using an

inverse FFT. The short-term (a cut-off value of 80 d; red line
in Fig. 2c) and long-term (a cut-off value of 667 d; blue line
in Fig. 2c) filters used here are the same as in NOAA method 30

and applied to obtain the short-term and interannual varia-
tions that are not determined by the fit function. The orig-
inal code is also available as Python code from the NOAA
website (https://gml.noaa.gov/aftp/user/thoning/ccgcrv/; last
access: 7 December 2023). 35

2.3.2 Calculate smoothed CO2 and long-term trend

The result of filtering residuals is added to the fitted curve to
obtain smoothed CO2 and its long-term trend. The smoothed
CO2 comprises fitted trend, fitted seasonality and smoothed
residuals (red line in Fig. 2d), the latter removes only short- 40

term variations or noise. The long-term trend comprises fitted
trend and residual trend, which removes seasonal cycle and
noise (blue line in Fig. 2d).

2.3.3 Calculate CO2 growth rate, GATM

The CO2 growth rate (GATM) is determined by taking the 45

first derivative of the long-term trend. However, the growth is
made up of discrete points, e.g. the black dots in Fig. 3a show
the trend points. In this case, a cubic spline interpolation is
applied to the trend points, in which the spline curve passes
through each trend point, such as the blue line in Fig. 3a. 50

GATM is obtained by taking the derivative of the spline at
each trend point (Fig. 3b).

https://doi.org/10.18160/Q788-9081
https://gml.noaa.gov/aftp/user/thoning/ccgcrv/
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Figure 2. Example of analysed CO2 data from station Pallas (PAL, Finland), illustrating GFIT curve fitting and filter method. Panel (a)
shows monthly averaged CO2 (dots), curve fitting with 2-degreeTS4 polynomial and 4-degree harmonics (red line), and long-term trend
estimated by a 2-degree polynomial (blue line). Panel (b) shows seasonality estimated by 4-degree harmonics. Panel (c) shows the residuals
of raw data from the function fit (black dots). The red line is obtained by the short-term filter and the blue line is obtained by the long-term
filter. The cyan dots show the residuals of raw data from the sum of fitted curve and smoothed residuals. Panel (d) shows final processed
CO2, which comprises fitted trend, fitted seasonality, and smoothed residuals (red line). The blue line shows the final trend which comprises
fitted trend and residuals trend.

3 Results

Global averaged surface CO2 and itsGATM are calculated us-
ing the WDCGG method and our GFIT method based on the
data from the GAW and CTE networks (Fig. 1). The different
observation networks and their analysis methods are listed in5

Table 1. We calculated the global means and its GATM by
area-weighted averaging the zonal means over each latitudi-
nal band (30◦), following the same CO2 averaging method
as described in Tsutsumi et al. (2009). A bootstrap method
is used to estimate the uncertainties of global CO2 mean and10

its GATM, which is an almost identical uncertainty analysis
as presented by Conway et al. (1994) who constructed 100
bootstrap networks for the NOAA analysis. We construct
200 bootstrap networks, consistent with the WDCGG anal-
ysis in Tsutsumi et al. (2009). For each bootstrap network,15

we randomly draw the same number of sites as the actual
network (e.g. 139 sites for GAW network) with replacement
from the actual network, which means some sites are miss-

ing whereas others are represented twice or more often. We
calculate global mean CO2 mole fraction and its GATM for 20

each network and then calculate the statistics (i.e. mean and
68 % confidence interval (CI)) on the 200 networks. All un-
certainties in this paper are reported as ± 68 % CI.

3.1 Globally averaged surface CO2 mole fraction and its
GATM 25

Figure 4 presents a monthly comparison of globally and lo-
cally averaged CO2 mole fractions and their GATM from
1980 to 2020. The statistical metrics assessing the agree-
ment of these monthly comparisons are available in Fig. 5
(for 2001–2020) and Fig. S1 in the Supplement (for 1980– 30

2020). The statistical metrics for the annual comparisons can
be found in Fig. S2 (for 2001–2020) and Fig. S3 (for 1980–
2020). They exhibit a similar pattern to the monthly compar-
isons (i.e. Figs. 5 and S1).
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Figure 3. Example of CO2 growth rate. The raw data is the same as in Fig. 2 from station Pallas (PAL, Finland). Panel (a) shows the trend
points (black dots)CE1 and its cubic spline interpolation (blue line). Panel (b) shows the GATM at each trend point.

Table 1. Description of the three observation networks and their analysis methods.

Terminology Description

NOAA network NOAA network comprises MBL sites only (43 sites).

GAW network The selected GAW global network (139 sites) includes both MBL sites and some continental sites.

CTE network The CTE network serves as the global network for the CTE model evaluations (230 sites), and comprises
MBL sites and a more extensive inclusion of continental sites.

GAW (GFIT) GAW network observations analysed using the GFIT method.

GAW (WDCGG) GAW network observations analysed using the WDCGG method without extrapolation.

GAW (WDCGG+) GAW network observations analysed using the WDCGG method with extrapolation.

CTE_obs (GFIT) CTE network observations analysed using the GFIT method. The observations come from the ObsPack
data product (Schuldt et al., 2022).

CTE_output (GFIT) CTE model output at the 230 sites (sampled at the same location, altitude, and time) analysed using the
GFIT method.

CTE_global (GFIT) CTE model output for full global grids (averaged over the first three levels, 0–0.35 km altitude) analysed
using the GFIT method.

MLO (GFIT) Mauna Loa (MLO) observations analysed using the GFIT method.

SPO (GFIT) South Pole (SPO) observations analysed using the GFIT method.

Globally averaged monthly surface CO2 mole frac-
tions, derived from the GAW network (GAW (GFIT) or
GAW (WDCGG)), are significantly (p < 0.05) higher by
0.329–0.335 ppm during 1980–2020 (Fig. S1a) and 0.370–
0.390 ppm during 2001–2020 (Fig. 5a) when compared with5

the NOAA analysis (Fig. 4a). This finding aligns with that

of Tsutsumi et al. (2009), who reported a 0.350 ppm higher
global average in the GAW network during 1983–2006. The
higher estimate from the GAW network can be attributed
to the inclusion of more diverse sites, encompassing not 10

only NOAA’s MBL sites but also additional continental sites
(Fig. 1).
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Figure 4. Comparison of globally and locally averaged CO2 mole fraction (a) and its GATM (b) from 1980 to 2020. Panel (a) shows the
global monthly CO2 mole fraction from 139 GAW sites (estimated from observations only), 43 NOAA MBL sites, and those from 230 sites
used in CTE (either from observations or model output). The two local CO2 mole fractions are from Mauna Loa (MLO; cyan line) and
South Pole (SPO; magenta line) stations, analysed using the GFIT method. The red and blue lines show the CO2 derived from GAW (GFIT)
and GAW (WDCGG), respectively. The green and orange lines show the CO2 derived from CTE_obs (GFIT) and CTE_output (GFIT),
respectively. The right y axis shows their difference from NOAA CO2 mole fraction, and the dashed lines show the mean of the difference
over the available period. Panel (b) compares the corresponding global and local CO2 growth rate; the legend refers to (a). The shadow area
shows the uncertainty as a 68 % confidence interval obtained by the bootstrap analysis.

Both global CO2 and its GATM derived from the GAW
(GFIT) and GAW (WDCGG) are nearly overlapping (the
red and blue lines) in Fig. 4a and b. The statistical metrics
(Figs. 5 and S1) indicate a high agreement (ME< 0.020 ppm,
RMSE< 0.145 ppm, and r > 0.999 for CO2 mole frac-5

tion; ME< 0.005 ppm yr−1, RMSE< 0.108 ppm yr−1, and
r > 0.982 for GATM) between these two methods, which
confirms that the GFIT method agrees well with WDCGG
method without extrapolation. The WDCGG method with
extrapolation (i.e. GAW (WDCGG+)), which involves ex-10

trapolating the long-term trend of each station to match the
period of the most long-running station and adding it to the
average seasonal variation to synchronize data period of all
stations (Tsutsumi et al., 2009), produces 0.096 ppm signifi-
cantly (p < 0.05) higher values than the global monthly sur-15

face CO2 mole fraction derived from the GAW (WDCGG)
during the common period 1984–2020 (Table S1 in the Sup-
plement). However, the extrapolation has a minimal effect
(RMSE= 0.076 ppm yr−1 and ME=−0.011 ppm yr−1; Ta-
ble S1) on the CO2 growth rate.20

Globally averaged monthly surface CO2 derived from
CTE_obs (GFIT) and CTE_output (GFIT) are 0.422 ppm
(1980–2020; Fig. S1) and 0.668 ppm (2001–2020; Fig. 5)
significantly (p < 0.05) higher compared with the NOAA
analysis, respectively (Fig. 4a). Comparing the global mean 25

of CTE_obs (GFIT) with CTE_output (GFIT) during the
common period of 2001–2020, we observe a low bias
(0.069 ppm in CTE_output; Fig. 5a), which suggests that
the CTE model results can reasonably reproduce the global
mean CO2 levels. The global annual CO2 mole fraction from 30

CTE_obs (GFIT), CTE_output (GFIT), and CTE_global
(GFIT) is 0.367, 0.299, and 0.186 ppm significantly (p <
0.05) higher than the result of the GAW (GFIT), respectively
(Fig. 5a). The higher global mean from CTE_obs (GFIT) and
CTE_output (GFIT) can be attributed to the presence of more 35

sites in the Northern Hemisphere within the CTE network
compared with the GAW network. The lower bias observed
between GAW (GFIT) and CTE_global (GFIT) suggests that
the GAW network provides a good representation of the low-
level atmosphere (i.e. 0 to 0.35 km altitude) at global scale, 40

or the CTE model performs well in the low-level atmosphere.
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A common approach to estimate global surface CO2 mole
fraction is by using one or two representative sites, such as
MLO and SPO. The globally averaged monthly surface CO2
mole fractions, derived from the GAW, CTE, and NOAA net-
works, are significantly (p < 0.05) lower by 0.46–0.88 ppm5

during 1980–2020 (Fig. S1a) and 0.45–1.19 during 2001–
2020 (Fig. 5a) than the local CO2 estimates solely based on
MLO measurements. Conversely, these global monthly CO2
mole fractions are significantly (p < 0.05) higher by 1.91–
2.24 ppm during 1980–2020 (Fig. S1a) and 2.21–2.94 ppm10

during 2001–2020 (Fig. 5a) when compared with local mea-
surements at the SPO site. Furthermore, the global seasonal
cycle leads the local cycle at MLO by approximately 1 month
(estimated by averaging the time difference between the
peaks of their seasonal cycles). In contrast, the local cycle15

at SPO is not evident and is opposite to the global seasonal
cycle (Fig. 4a).

Despite differences in the global averaged surface
CO2 mole fractions derived from different networks and
analysis methods, the GATM derived from GAW net-20

work, CTE network and its model output, and NOAA
network exhibits strong agreement during 1980–2020
(ME< 0.031 ppm yr−1, RMSE< 0.217 ppm yr−1, and
r > 0.948; Figs. 4b and S1). The differences in the GATM
remain below 0.023 ppm yr−1 during 2001–2020, with low25

or no significance level (Fig. 5b), especially when comparing
the annualGATM (Fig. S2b). Furthermore, over the long-term
period of 40 years, the estimated local growth rate at MLO
(ME< 0.046 ppm yr−1 higher, RMSE< 0.272 ppm yr−1,
and r > 0.915) and SPO (ME< 0.049 ppm yr−1 lower,30

RMSE< 0.305 ppm yr−1, and r > 0.888) behaves similarly
to the GATM derived from the GAW, CTE, and NOAA
networks (Figs. 4b and S1). However, noticeable monthly
differences between the local and global growth rates,
deviating up to approximately 0.8 ppm yr−1, and time shifts35

are observed (Fig. 4b).
The trend analysis reveals that with development of

continental sites, the slope of the trend of annual
global CO2 mole fraction changes from the NOAA
network (1.832± 0.029 ppm yr−1) to the CTE network40

(1.859± 0.029 ppm yr−1) during 1980–2020 (Fig. S4).
However, the GATM increased steadily at a rate of
0.030± 0.002 ppm yr−1 each year from 1980 to 2020
(Fig. 6a), based on the observations from the three networks
(i.e. GAW, CTE, and NOAA). This implies that over long-45

term periods (here 40 years), the networks with and with-
out continental sites exhibit the same trend in the GATM and
have little effect on the transient change in the rate of CO2
increase in the atmosphere. Hence, the role of CO2 advec-
tive transport and mixing in estimating the long-term change50

in the GATM appears negligible. However, a notable differ-
ence emerges in the short-term (here 1 month) change in the
GATM between the networks with and without continental
sites (Fig. 6b). El Niño events are known to diminish net
global C uptake (due to factors such as droughts, floods, and55

fires) while increasing global CO2 growth rate (Sarmiento
et al., 2010). During three strong El Niño events, marked as
grey bands in Fig. 6b, the GATM derived from the GAW and
CTE networks (red and green lines) begins to increase be-
fore the El Niño events (marked as blue circles in Fig. 6b), 60

approximately 1–2 months earlier than that derived from the
NOAA network (black line) and it also reaches its peak dur-
ing El Niño events (marked as orange circles in Fig. 6b) about
1–2 months earlier (Table S2).CE2 This suggests that conti-
nental sites can aid in the early detection of GATM changes 65

resulting from changes in biogenic emission or uptake. The
CTE network (green line) even detects the change 1 month
earlier than the GAW network (red line), e.g. for the El Niño
1997–1998 event (Fig. 6b; Table S2). This earlier detection
is attributed to the inclusion of even more continental sites 70

in the CTE network (Fig. 1), although the more continental
sites also induce the greater variability.

Table 2 presents the global annual CO2 mole frac-
tion and its GATM derived from GAW (GFIT), along
with the uncertainty estimates using the bootstrap method. 75

The global average surface CO2 mole fraction increased
from TS5339.17± 0.38 ppm in 1980 to 413.06± 0.16 ppm in
2020. Notably, the uncertainty is greater before 1990, pri-
marily due to the limited number of measurement stations
worldwide during that period. The averageGATM for the two 80

decades before 2000 is approximately 1.54± 0.08 ppm yr−1.
However, in the subsequent two decades, has experienced
increases, reaching 1.91± 0.05 ppm yr−1 during 2000–2009
and further rising to 2.41± 0.06 ppm yr−1 during 2010–2019
(Fig. S5; Table 2). 85

3.2 Vertical profile of global CO2 mole fraction

The CTE model simulates CO2 mole fraction on global 3D
grids, enabling us to visualize the modelled vertical CO2 pro-
file. In the lower atmosphere, highest CO2 mole fraction is
found in the northern mid-latitude region (dark red between 90

30 and 40◦ N; Fig. 7a). This area experiences more anthro-
pogenic emissions, which are subsequently transported to-
wards both northern and southern latitudes. The latitudinal
and interhemispheric gradient of atmospheric CO2, as shown
in Fig. 7a, is influenced not only by differences in the latitu- 95

dinal and interhemispheric fossil fuel emissions and seasonal
exchanges with terrestrial biota (Denning et al., 1995), but
also by atmospheric transport (Patra et al., 2011). As alti-
tude increases, the gradient between the Northern and South-
ern hemispheres becomes small and levels out at higher al- 100

titudes (e.g. > 50 km). When comparing the vertical profile
change between 2001 and 2020 (Fig. 7b and c), we observe
that the CO2 mole fraction increases slowly in the higher at-
mosphere (> 25 km altitude) compared with the lower atmo-
sphere (< 25 km altitude). Figure 7c shows that the vertical 105

gradient (difference between 50 and 0.05 km) changes from
approximately 5 ppm in 2001 to around 13 ppm in 2020. The
high vertical gradient in 2020 reflects the accumulation of
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Figure 5. Pair-wise statistical metrics assess the agreement of monthly global and local CO2 mole fraction (ppm) and its GATM (ppm yr−1)
across various networks and methodologies (see Fig. 4 and Table 1) for the period 2001–2020. Panel (a) presents the mean error (ME)
quantifying the difference for each pair, focusing on CO2 mole fraction, while (b) does the same forGATM. The significance levels of paired
t test for ME are indicated as follows: ∗ p < 0.1, ∗∗ p < 0.05 and ∗∗∗ p < 0.01. Panels (c) and (d) present the root mean squared error
(RMSE) for CO2 mole fraction and GATM, respectively. Panels (e) and (f) present the Pearson correlation coefficient (r) for CO2 mole
fraction and GATM, respectively.

CO2 in the lower atmosphere, resulting from continuous CO2
emissions from the surface during 2001–2020 and slow ver-
tical transport. The low vertical gradient in 2001 is partly due
to lower surface emissions.

Pressure-weighted average CO2 mole fraction in the lower5

atmosphere (0–0.35 km altitude) and the entire atmosphere
are calculated from CTE output. The annual absolute change
in CO2 mole fraction, computed as the difference between
annual means, is more pronounced in the lower atmosphere
(orange bars in Fig. S6a) than in the entire atmosphere (blue10

bars in Fig. S6a). The reason is that the entire atmosphere has
a larger air volume than the lower atmosphere, and changes
in the surface CO2 sinks and sources are diluted due to at-
mospheric horizontal and vertical transport. The CO2 annual

absolute change derived from GAW (GFIT), GAW (WD- 15

CGG), and NOAA (represented by red, purple, and brown
bars in Fig. S6a) shows small positive or negative differ-
ences from the CTE_output (GFIT) and CTE_global (GFIT)
across different years. However, over the long term (e.g.
on a decadal scale, 2001–2010 and 2011–2020), the CTE 20

model-derived changes in lower and entire atmospheric CO2
show good agreement (< 0.09 ppm yr−1) with the surface
observation-based estimate, especially for lower atmospheric
CO2 (< 0.07 ppm yr−1). In Fig. S6b, the interannual variabil-
ity (IAV) of CO2 mole fraction derived from the CTE model 25

follows a similar temporal pattern as the observation-based
IAV derived from the GAW and NOAA network, and es-
pecially the IAV of the low-level atmosphere (orange bars)



10 Z. Wu et al.: Investigating the differences in calculating global mean surface CO2 abundance

Figure 6. Trend analysis of the global CO2 growth rate from 1980 to 2020. Panel (a) shows the trends in CO2 growth rate for the GAW
network (red line), the CTE network (green line), and the NOAA network (black line) during the whole period 1980–2020. The CO2 growth
rate is derived from GAW (GFIT), CTE_obs (GFIT), and NOAA analysis (Fig. 4b). Panel (b) shows the trend in CO2 growth rate for each
month during 1980–2020, calculated as the derivative of the growth rate. The grey bands mark the period of three strong El Niño events, i.e
1987–1988, 1997–1998, and 2014–2016.

exhibits strong agreement with the observation-based IAV
(r > 0.971 and RMSE< 0.178 ppm).

3.3 Relationship between the surface CO2 mole fraction
and atmospheric CO2 mass

The atmospheric CO2 mass, calculated from the CTE output5

as a function of air mass and CO2 concentration (Sect. S3),
has increased from 789.46 PgC in 2001 to 877.88 PgC in
2020 (Fig. S7a). The spatial distribution of the atmospheric
CO2 mass is presented in Fig. S7b and c. Monthly global
surface CO2 mole fraction derived from CTE_output (GFIT)10

and GAW (GFIT), represented as red and blue dots in Fig. 8a,
exhibit a similar linear relationship with the monthly atmo-
spheric CO2 total mass, both showing the same slope of
2.08± 0.01 PgC ppm−1. Similarly, NOAA CO2 (green dots
in Fig. 8a) also demonstrates a comparable linear relationship15

with a slope of 2.09± 0.01 PgC ppm−1. Notably, the slopes
or conversion factors in Fig. 8a are slightly lower than the
factor 2.12 PgC ppm−1 used in Ballantyne et al. (2012) for
the period 1980–2010. This minor difference in the conver-
sion factor is expected, considering the different model and20

data used.

We further compare the interannual variability (IAV), cal-
culated as the anomaly departure from a quadratic trend, of
the atmospheric CO2 mass and the surface CO2 (Fig. 8b).
The coefficient of the linear relationship closely approaches 25

∼ 1.0, indicating that the temporal changes in atmospheric
CO2 mass align with the temporal changes in surface CO2
mole fraction. The CO2 IAV based on the NOAA network ex-
hibits a slightly closer relationship (r = 0.938) with the CTE
atmospheric CO2 mass estimates than the GAW (r = 0.861) 30

and CTE (r = 0.812) networks. This finding is consistent
with the long atmospheric residence time and well-mixed na-
ture of CO2 in the NOAA network. Overall, the relationship
found in Fig. 8 implies that the current surface CO2 network
can effectively serve as an indicator of the CO2 mass changes 35

throughout the entire atmosphere through a linear relation-
ship.

4 Discussion

Over the past few decades, observational networks have been
extended beyond the NOAA MBL network to include more 40

continental sites, such as in the GAW and CTE networks
(Fig. 1). These expansions aim to better monitor global CO2
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Table 2. AnnualTS6 global averaged CO2 mole fraction (mean in ppm) and its GATM (in ppm yr−1) derived from GAW observations using
the GFIT method. U (Mean) and U (GATM) respectively indicate the uncertainty of the mean and its GATM as a 68 % confidence interval.
The annual value is averaged over the monthly values of the year.

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

Mean 339.17 340.16 341.03 342.59 344.46 345.69 347.08 348.99 351.45 353.15
U (Mean) 0.38 0.24 0.19 0.24 0.26 0.22 0.14 0.15 0.12 0.15
GATM 1.65 1.07 0.88 2.02 1.32 1.38 1.55 2.38 2.08 1.23
U (GATM) 0.12 0.10 0.15 0.13 0.08 0.11 0.14 0.08 0.09 0.06

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Mean 354.22 355.64 356.37 357.09 358.51 360.52 362.27 363.40 366.14 368.10
U (Mean) 0.10 0.11 0.10 0.10 0.11 0.12 0.12 0.10 0.10 0.10
GATM 1.41 1.03 0.65 1.22 1.72 2.06 1.16 1.82 2.89 1.34
U (GATM) 0.08 0.06 0.05 0.05 0.05 0.08 0.07 0.05 0.05 0.05

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Mean 369.30 370.77 372.92 375.45 377.22 379.28 381.38 383.20 385.26 386.78
U (Mean) 0.12 0.11 0.10 0.10 0.10 0.10 0.09 0.10 0.10 0.11
GATM 1.58 1.58 2.33 2.17 1.66 2.42 1.75 2.20 1.71 1.68
U (GATM) 0.05 0.06 0.06 0.04 0.04 0.03 0.05 0.04 0.05 0.04

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Mean 389.01 390.97 393.14 396.00 397.79 400.12 403.47 405.70 407.93 410.57
U (Mean) 0.12 0.12 0.14 0.11 0.10 0.10 0.11 0.09 0.10 0.13
GATM 2.32 1.73 2.74 2.30 1.91 2.98 2.95 2.04 2.50 2.61
U (GATM) 0.05 0.06 0.09 0.05 0.04 0.05 0.06 0.06 0.07 0.05

Year 2020

Mean 413.06
U (Mean) 0.16
GATM 2.60
U (GATM) 0.16

concentrations and quantify CO2 sources and sinks. While
the continental observations encompass contributions from
both substantial sources of anthropogenic emissions and
sources/sinks from terrestrial vegetation and soil, these con-
tinental observations consistently yield a higher global sur-5

face CO2 mole fraction in the overall global CO2 analysis,
indicating that they are influenced by a bigger net source.
We find that the global mean derived from the GAW net-
work is consistently 0.329 (GFIT method) or 0.335 (WD-
CGG method) ppm higher than that derived from the NOAA10

network during 1980–2020. Similarly, Tsutsumi et al. (2009)
reported a roughly 0.350 ppm higher mole fraction in the
GAW network for the years 1983–2006. Notably, the CTE
network leads to an even higher global mean (0.422 ppm dur-
ing 1980–2020), which is likely due to more observational15

sites located in the Northern Hemisphere, where the highest
anthropogenic emissions occur. This also explains the large
fluctuation of CO2 concentrations observed during the win-
ters and summers during 2001–2020 (Fig. 4a). In the future,
with the addition of new observation sites, particularly in20

the Northern Hemisphere, to the existing observational net-

work (e.g. GAW network), we expect that this would lead to
higher global surface CO2 levels and a greater amplitude in
the global CO2 seasonal cycle in the global CO2 analysis.

Although Friedlingstein et al. (2022) reported a 5.4 % drop 25

(∼ 0.52 PgC) in fossil fuel CO2 emissions in 2020 (due to
restrictions on transport, industry, power, etc., during the
COVID-19 pandemic), the increase in annual CO2 from 2019
to 2020 (2.60± 0.16 ppm yr−1) remains at a similar level
as from 2018 to 2019 (2.61± 0.05 ppm yr−1). In principle, 30

an equivalent drop of roughly 0.25 ppm yr−1 (according to
the conversion factor 2.08 PgC ppm−1 in Fig. 8a) or roughly
0.13 ppm yr−1 (according to the annual absolute change; red
bars in Fig. S6a) in the growth rate should be visible for the
period 2019–2020 due to the declined CO2 emissions. How- 35

ever, such a short-term human activity induced change in the
CO2 growth rate may be hidden by the natural variability.
The bootstrap analysis is used in this study (also in Con-
way et al., 1994, and Tsutsumi et al., 2009) to estimate the
uncertainty of the CO2 temporal mean and its growth rate 40

and to assess how sensitive the global value is to the dis-
tribution of sampling sites. The relatively large uncertainty
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Figure 7. Global vertical profile of CO2 mole fraction derived from CTE model output. Panel (a) presents the vertical profile in 2020.
Panel (b) presents the difference in the vertical profile between 2001 and 2020. Panel (c) presents the annual mean vertical profile from 2001
to 2020. The dots mark CTE vertical level heights and the lines are the linear interpolation between the heights.

(± 0.16 ppm yr−1) at the end of 2020 compared with previ-
ous years (Table 2) is likely due to an end-effect associated
with the curve fitting and filter procedure. The end-effect is
a tendency for the growth rate to converge toward the mean
value at the end of the record (Conway et al., 1994). There-5

fore, Conway et al. (1994) suggested that the growth rate
curves for the last 6 months should be viewed with caution.
Reducing the end effect requires further study, such as using
machine learning or bias-correction methods to extrapolate
the smoothed trend for a short period (e.g. 1 year) before and10

after. This extrapolated portion is used exclusively for cal-
culating local mole fraction and growth rate, while it is not
included in the global or zonal average, as it could introduce
additional uncertainty.

Extrapolation beyond the measurement period extends15

knowledge gained from a limited period of measurements.

During a limited measurement period, we can define the av-
erage seasonality, long-term trend, and short-term variation
at a measurement site. The long-term trend of an individual
site can be extrapolated by various methods, such as referring 20

to the latitude reference time series (Masarie and Tans, 1995)
or calculating the mean long-term trend over sites within a
certain latitudinal zone (e.g. 30◦) (Tsutsumi et al., 2009).
This extrapolated trend is then combined with the average
seasonality to produce estimates beyond the measurement 25

period. However, the extrapolation process relies on the as-
sumption that the relationship of an individual site to the lat-
itude reference remains invariant in time, while in reality the
relationship between nearby sites is continuously changing
(Masarie and Tans, 1995). In addition, the short-term varia- 30

tion is often ignored or estimated from nearby sites, intro-
ducing extra uncertainty into the extrapolation process. In
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Figure 8. Relationship between the monthly surface CO2 mole fraction and atmospheric CO2 mass. The atmospheric CO2 mass calculated
from the 3D CTE output. In (a), the monthly surface CO2 is derived from the CTE_output (GFIT), GAW (GFIT), and NOAA analysis,
presented as blue, red, and green dots, respectively. Panel (b) compares the corresponding interannual variability (IAV) of the atmospheric
CO2 mass and the surface CO2. The IAV is calculated as the anomaly departure from a quadratic trend.

this study, we find that the WDCGG method with extrapo-
lation (GAW (WDCGG+)) results in a global surface CO2
mole fraction approximately 0.096 ppm higher than the WD-
CGG method without extrapolation (GAW (WDCGG)) using
the same GAW observations, although the extrapolation has5

a minor effect on the growth rate (Table S1). Therefore, we
chose not to use extrapolation beyond the measurement pe-
riod in our analysis. As the number of long-term measure-
ments increases, the need for such extrapolation becomes
less necessary.10

Our analysis shows that basing the CO2 growth rate on
GAW surface observations does not introduce a large bias
(with an average agreement within 0.016 ppm yr−1) com-
pared with a full atmospheric analysis (Figs. 4b and 5). This
full atmosphere CO2 was provided by the CTE model, in15

which the global annual mean CO2 is significantly overes-
timated compared with GAW observations (e.g. 0.299 ppm
higher in CTE_output (GFIT), or 0.186 ppm higher in the
CTE_global (GFIT) during 2001–2020). The overestimate
derived from the CTE_output (GFIT) is mainly due to more20

sites in the Northern Hemisphere in the CTE network than in
the GAW network. The lower overestimate derived from the
CTE_global (GFIT) implies that the biases in CTE outputs
are not uniform spatially and tend to balance out. We esti-
mate the CTE bias by comparing the observations and CTE25

outputs at the same sites, which results in a 0.069 ppm low
bias derived from the CTE outputs in calculating the global
surface CO2 mole fraction.

The local growth rate at MLO and SPO generally behaves
similarly to the global growth rate derived from the GAW,30

CTE, and NOAA networks (Figs. 4b and S1). However, the
local CO2 mole fraction and its seasonal cycle noticeably
differ from global estimates derived from different observa-

tional networks. In this regard, the utilization of individual
sites for the evaluation of the global average mole fraction 35

and its growth rate is not precise and can only be used for
illustration rather than as a substitute for the proper global
average calculation. The local observation sites, often situ-
ated away from significant local sources and sinks, such as
MLO, provide long-term and high-quality data, serving as 40

reference data for the global CO2 mole fraction. However, a
single observation site cannot capture the CO2 spatial vari-
ability, transport, and mixing. To overcome these limitations,
global CO2 trends and variations are best assessed by inte-
grating data from multiple sources and locations. 45

Different observational networks (i.e. NOAA, GAW, and
CTE) are analysed in this study, revealing differences in
calculated global surface CO2 mole fractions equivalent to
the current atmospheric growth rate over a 3-month period.
This suggests that the station selection, especially if and how 50

many continental observations are used, has some influence
on the derived global surface CO2 levels, but it is not partic-
ularly strong. Nowadays, an increasing number of continen-
tal observations are established to monitor biogenic sources
and sinks, providing further insight into the climate change 55

and the associated ecosystem processes (Ciais et al., 2005;
Ramonet et al., 2020). Such continental observations carry
more variability in measurements than the marine observa-
tions, which require caution when including them in the mix
of stations used to determine global surface CO2 mole frac- 60

tion. Our study demonstrates that continental sites can help
in early detection of changes in CO2 growth rate caused
by biogenic emission change, such as those resulting from
El Niño events. Furthermore, the current observational net-
works (with and without continental sites) and CTE model 65

show a good agreement on the global CO2 growth rate, with
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low or no significant differences within 0.023 ppm yr−1 dur-
ing 2001–2020 and 0.031 ppm yr−1 during 1980–2020. This
implies that the current observation networks (as shown in
Fig. 1, representing various ecosystems, sinks, sources, and
latitudes) have a similar good capacity to capture changes in5

the global surface CO2, although there is the spatial and tem-
poral variability in the CO2 growth rate (e.g. Conway et al.,
1994).

We also notice that the uncertainty in global CO2 growth
rate is approximately 0.07 ppm yr−1, as derived from GAW10

(GFIT) and averaged over 1980–2020 (Table 2). To reduce
the uncertainty to 0.02 ppm yr−1 (equivalent to 1 % of the
global CO2 growth rate), in principle it would theoretically
require adding more stations to the current observation net-
work. We conducted an experiment that demonstrates how15

the uncertainty of the global CO2 growth rate exponentially
increases as the number of land observation sites decreased
(Fig. S8). According to our experiment, to achieve the goal
of reducing the uncertainty to 0.02 ppm yr−1, 332 land ob-
servation sites are required (Fig. S8). However, the required20

number of sites also depends on their measurement accuracy,
consistency, and geographical distribution (i.e. the CO2 foot-
print coverage of the observation network and the importance
of the network design have been addressed by Storm et al.,
2023).25

5 Conclusions

The WMO GAW CO2 network documents the gradual global
accumulation of CO2 in the atmosphere due to human activ-
ities. It has been used to assess the large-scale and long-term
environmental consequence of fossil CO2 emission and land30

use changes. The high-quality observations conducted by
the WMO GAW network include not only background sta-
tions (most of the NOAA MBL stations) but also continental
stations. This comprehensive network enables proper global
average calculation. Furthermore, the WMO has initiated a35

new programme, Global Greenhouse Gas Watch (GGGW),
with the aim of establishing a reference network. This net-
work will be built on the high-quality observations already
performed under the WMO GAW programme that follows
consistent good practices and standards. Although the cur-40

rent monitoring networks have limitations in terms of ge-
ographical coverage, data consistency, and long-term mea-
surements, they are well equipped and have the capacity to
effectively represent global surface CO2 mole fraction and
its growth rate as well as trends in atmospheric CO2 mass45

changes. The three different analysis methods yield very sim-
ilar global CO2 increases from 2001 to 2020, which gives us
confidence in using any one of them in climate change stud-
ies. Continuous monitoring of atmospheric CO2, based on
the current GAW network together with reliable global data50

integration methods, provides essential information. This in-
cludes understanding trends in atmospheric CO2 concentra-

tion, assessing the impacts of past policies, identifying high-
emission areas, informing climate models, forecasting future
scenarios, and raising public awareness. Policymakers can 55

rely on this information to support their efforts in mitigating
global warming.
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