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Abstract. The World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) coordinates high-quality 17 

atmospheric greenhouse gas observations globally and provides these observations through the WMO World Data Centre for 18 

Greenhouse Gases (WDCGG) supported by Japan Meteorological Agency. The WDCGG and the National Oceanic and 19 

Atmospheric Administration (NOAA) analyse these measurements using different methodologies and site selection to 20 

calculate global annual mean surface CO2 and its growth rate as a headline climate indicator. This study introduces a third 21 

hybrid method named GFIT, which serves as an independent validation and open-source alternative to the methods described 22 

by NOAA and WDCGG. We apply GFIT to incorporate observations from most WMO GAW stations and 3D modelled CO2 23 

fields from CarbonTracker Europe (CTE). We find that different observational networks (i.e., NOAA, GAW, and CTE 24 

networks) and analysis methods result in differences in the calculated global surface CO2 mole fractions equivalent to the 25 

current atmospheric growth rate over a three-month period. However, the CO2 growth rate derived from these networks and 26 

CTE model output shows good agreement. Over the long-term period (40 years), both networks with and without continental 27 

sites exhibit the same trend in the growth rate (0.030 ± 0.002 ppm per year each year). However, a clear difference emerges in 28 

the short-term (one-month) change in the growth rate. The network that includes continental sites improves the early detection 29 

of changes in biogenic emissions. 30 
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1 Introduction 40 

Global mean surface temperature averaged over 2011-2020 has increased by about 1.09°C relative to the average temperature 41 

of 1850–1900 (Gulev et al., 2021). The increasing amount of atmospheric carbon dioxide (CO2), together with increases in 42 

other greenhouse gases, is the main driver of the warming (Eyring et al., 2021). After being relatively stable between 180 ppm 43 

(ice age) and 280 ppm (interglacial) for the last 800,000 years (Lüthi et al., 2008),  the annual average CO2 level of the 44 

atmosphere has increased since the industrial revolution from roughly 277 ppm in 1750 to 415.7±0.2 ppm in 2021 (WMO, 45 

2022), due to emissions of CO2 related to human activities like burning of fossil fuels and land use changes (Friedlingstein et 46 

al., 2022). Mean global atmospheric CO2 annual growth rate (GATM) is an important constraint on the global carbon cycle. 47 

Based on the most recent Global Carbon Budget (GCB) analysis (Friedlingstein et al., 2022), the total emission of CO2 due to 48 

human activities was 10.2 ± 0.8 GtC yr-1 in 2020, of which 3.0 ± 0.4 GtC yr-1 was captured by the ocean sink and 2.9 ± 1 GtC 49 

yr-1 by the terrestrial sink, leaving a net increase of 5.0 ± 0.2 GtC yr-1 of CO2 in the atmosphere, corresponding to an 50 

atmospheric CO2 mole fraction increase of 2.4 ± 0.1 ppm yr-1 (the conversion factor comes from Ballantyne et al. (2012)).  51 

As the atmosphere mixes the contributions of all sources and sinks, an observational global average CO2 mole fraction can be 52 

constructed if there are enough observations to represent the spatial and temporal variation across the globe. Since most land 53 

masses are concentrated in the Northern Hemisphere, and the highest anthropogenic emissions (e.g. during winter) occur in 54 

the relatively narrow latitudinal band between 30 oN and 60 oN, relatively large spatial and temporal gradients in CO2 mole 55 

fraction exist in and around that region. Due to convective and advective mixing, the average mixing time of air within the 56 

same latitudinal bands varies from several weeks to a month. However, mixing between latitudinal bands is slower, especially 57 

the exchange between the northern and southern hemispheres, which has an approximate interhemispheric transport time of 58 

1.4 ± 0.2 years (Patra et al., 2011). The interplay of the latitudinal and interhemispheric differences in fossil fuel emissions 59 

and seasonal exchange with land biota (Denning et al., 1995) creates a latitudinal and interhemispheric gradient that requires 60 

a sufficiently dense network to capture a representative global annual mean.   61 

However, measurement stations that are close to sources or sinks may not be representative of a large atmospheric volume and 62 

the average signal at their latitude. Therefore, inclusion of these observations might introduce biases on the global mean CO2 63 

and its growth rate. These biases can be avoided by filtering of data and a careful selection of spatially representative stations, 64 

as done by NOAA in their use of 43 stations (Fig. 1) that are considered to be representative for the Marine Boundary Layer 65 

(MBL reference network, https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html). An additional data processing step developed 66 

by NOAA to further avoid biases due to unrepresentative local signals is filtering and smoothing, by using a combination of a 67 

low pass filter and decomposition into a fitted long-term trend and seasonal cycle (Thoning et al., 1989), hereafter refered to 68 

as the NOAA analysis. These fits can also be used to fill gaps for missing data, though care must be taken to avoid extrapolation 69 

errors before and beyond the time covered by the data record of the station. The WMO Global Atmosphere Watch (GAW) 70 

World Data Centre for Greenhouse Gases (WDCGG) publishes global averages mole fraction for CO2 and the other major 71 

greenhouse gases in the annual WMO GAW Greenhouse Gas Bulletin (latest version: WMO, 2022). They use curve fitting 72 

and filter methods that are very similar to those developed by NOAA, but WDCGG includes continental locations that are 73 

potentially more influenced by local sources and sinks (Tsutsumi et al., 2009).  74 

The NOAA MBL observations are all part of the NOAA cooperative global air sampling network and analysed in the same 75 

laboratory. All NOAA flask-air observations are traceable to the current scale WMO-CO2-X2019 (Hall et al., 2021) that is 76 

maintained by NOAA Global Monitoring Laboratory (GML). In contrast, the WDCGG data originate from multiple 77 

independent laboratories (including NOAA GML), that together form a network of hundreds of stations coordinated by WMO 78 

GAW [http://gawsis.meteoswiss.ch]. Having a multitude of independent laboratories carries an additional risk of biases due to 79 

differences in sampling, measurement, and analysis methods, for example calibration scales, although much care is taken to 80 

avoid these by coordination in the network and use of a common calibration scale from WMO Central Calibration Laboratories 81 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html
http://gawsis.meteoswiss.ch/
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(CCL) guided by a set of strict measurement compatibility goals (WMO, 2022). The different selection of stations results in a 82 

larger seasonal cycle amplitude in WDCGG results compared to those of NOAA and a small but quite consistent bias in global 83 

surface annual mean CO2 mole fraction (Tsutsumi et al., 2009).  The NOAA estimate of global surface annual mean CO2 mole 84 

fraction is expected to be lower (e.g. ~0.35 ppm lower than the WDCGG estimate, Tsutsumi et al., 2009) compared to a full 85 

global surface average because areas with large sources are not represented. However, the two aforementioned approaches 86 

neither represent the parts of the atmosphere with low CO2 mole fraction levels (i.e., the full troposphere, up to ~8-15 km 87 

altitude, and the stratosphere), nor do they cover the regions of the world with substantial observational gaps. 88 

In this paper, we propose a data integration method to estimate the global mean surface CO2 and its growth rate, named GFIT. 89 

This method serves as an independent validation of the methods as described by NOAA and WDCGG through a completely 90 

independent and open-source implementation. The global mean surface CO2 refers to the mean CO2 mole fraction within the 91 

planetary boundary layer, which extends from the Earth's surface up to a few hundred or thousand meters in height. We apply 92 

the GFIT methodology to incorporate CO2 data from the GAW network (139 stations, Fig. 1) and the modelled CO2 distribution 93 

from a well-established 3D global transport model (TM5: Transport Model 5, Peters et al., 2004, Krol et al., 2005). We 94 

investigate the influence of small differences between the three methodologies and whether these are significant or not for 95 

calculating the global mean surface CO2 and its growth rate, how consistent the GFIT and WDCGG approaches are with each 96 

other, and how they compare with NOAA analysis and estimates derived from a CO2 simulation with the 3D transport model 97 

TM5. These 3D CO2 results for 2001-2020 using TM5 are performed in the CarbonTracker Europe framework (CTE, Peters 98 

et al., 2004, van der Laan-Luijkx et al., 2017), where the CO2 uptake and emission fluxes are optimized by the inversion system 99 

to minimize the mismatch between the in situ observations and the modelled CO2 mole fraction.  CTE generally has a good 100 

representation of the CO2 field, with mean biases with respect to independent aircraft measurements of generally less than 0.5 101 

ppm (Friedlingstein et al., 2022). Furthermore, the inferred CO2 fluxes from CTE fit well within the ensemble of those of other 102 

inversions used for the evaluation of Global Carbon Budget (e.g. Friedlingstein et al., 2022). 103 

2 Methods and data  104 

 105 

Figure 1. Three observation networks are employed to assess the impact of continental site inclusion when calculating 106 

global CO2 mole fraction and its growth rates. The NOAA network (43 sites, yellow stars) comprises MBL sites only. 107 

The selected GAW global network (139 sites, red dots) includes both MBL sites and continental sites, for example from 108 

the Advanced Global Atmospheric Gases Experiment (AGAGE) and European ICOS contribution network. The CTE 109 

network serves as the global network for the CTE model evaluations (230 sites, blue dots), comprises MBL sites and a 110 

more extensive inclusion of continental sites. 111 
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2.1 The WMO GAW observations and WDCGG analysis method 112 

The WMO GAW network measurements are archived and distributed by WDCGG, hosted by the Japan Meteorological 113 

Agency. The GAW observations used in this study originate from 139 selected stations of the GAW network, and all 114 

observations are on the WMO standard scale WMO-CO2-X2019. The details on the station selection are described in Tsutsumi 115 

et al., (2009), which mainly excludes stations located in the northern hemisphere that show large standard deviations from the 116 

latitudinal fitted curve. The remaining 139 stations show a more reasonable latitudinal scatter range (Fig. 1).  117 

The WDCGG global analysis method (hereafter WDCGG method), as described in Tsutsumi et al., (2009), includes the 118 

mentioned station selection, a data fitting and filter (involves data interpolation and extrapolation), and calculation of the zonal 119 

and global mean mole fractions, trends, and growth rates. The procedure is also summarized in Text S1. The output from the 120 

global analysis by the WDCGG method is used to compare against an alternative method (GFIT) that we designed to follow 121 

as closely as possible the fit and filter method (Conway et al., 1994) deployed by NOAA and is described in the section 2.3.  122 

2.2 CTE model output and station observations 123 

CarbonTracker Europe (CTE) is a global model of atmospheric CO2 and designed to keep track of CO2 uptake and release at 124 

the Earth's surface over time (van der Laan-Luijkx et al., 2017). CTE incorporates an off-line atmospheric transport module 125 

(TM5, Peters et al., 2004, Krol et al., 2005) driven by ECMWF ERA5 data, and there are four prescribed fluxes (i.e. from 126 

ocean, biosphere, fire and fossil fuel), which are transported in the model, together with the transported initial CO2 field. CTE 127 

also includes a data assimilation system that applies an ensemble Kalman filter to optimize the biogenic and ocean fluxes for 128 

a combination of plant-functional types and climate zones to improve the fit of the simulated concentrations with observations. 129 

The optimized fluxes from the data assimilation have been used in Global Carbon Project (GCP) 2021, and the comparison of 130 

CTE CO2 product to the other data assimilation systems used in GCP shows good agreement (within 0.8 ppm at all latitude 131 

bands) (Friedlingstein et al., 2022).   132 

The CTE model data used here consists of simulated monthly CO2 mole fraction at 1x1 degree horizontal resolution and 25 133 

levels in the vertical, the data period ranges from 2001 to 2020 which has no influence of model spin-up (Krol et al., 2018). 134 

From the CTE output a set of simulated synthetic atmospheric CO2 mole fractions with monthly resolution can be extracted 135 

within grid cells where stations are situated. This study analyses monthly observation data (1980-2020) and synthetic time 136 

series (2001-2020) by using the GFIT method (section 2.3) and attempts to estimate global mean CO2 mole fraction and its 137 

growth rate. The observed CO2 mole fractions are taken from 230 out of 290 global-wide distributed stations (Fig. 1, the station 138 

selection is summarized in Text S2), the data come from the GLOBALVIEW-plus V8 ObsPack data product (Schuldt et al., 139 

2022), and include surface-based, shipboard-based and tower-based measurements.    140 

2.3 The GFIT method 141 

The temporal pattern of CO2 measurement records at locations around the globe can be explained as the combination of roughly 142 

three components: a long-term trend, a non-sinusoidal yearly cycle (or seasonality), and short-term variations. This study 143 

synchronizes monthly CO2 records with the fitting and filter method developed at the NOAA Global Monitoring Laboratory 144 

(Thoning et al., 1989, Conway et al., 1994), without extrapolation. The station selection and CO2 averaging method are kept 145 

the same as in the WDCGG method (Text S1). This method will be referred to as the GFIT method and will be compared to 146 

the WDCGG method without extrapolation. The only difference from WDCGG method without extrapolation is the fitting 147 

and filter method. All code for the method described here was developed in Python and is available as a Jupyter notebook 148 

under a GPL license [https://doi.org/10.18160/Q788-9081]. The GFIT method can be summarized and illustrated by the 149 

following three steps. 150 

https://doi.org/10.18160/Q788-9081
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2.3.1. Fitting and filter  151 

CO2 records from each station can be abstracted as a combination of long-term trend and seasonality, which can be fitted by a 152 

function consisting of polynomial and harmonics. We applied a linear regression analysis based on 3 polynomial coefficients 153 

and 4 harmonics (Eq. 1) to fit CO2 data using general linear least-squares fit (LFIT, Press et al., 1988). 154 

𝑓(𝑥) = 𝑎0 +  𝑎1𝑡 + 𝑎2𝑡2 + ⋯ + 𝑎𝑘𝑡𝑘 + ∑(𝐴𝑛 cos 2𝜋𝑛𝑡 + 𝐵𝑛 sin 2𝜋𝑛𝑡)

𝑛ℎ

𝑛=1

                                                                              (1) 155 

where 𝑎𝑘, 𝐴𝑛 and 𝐵𝑛 are fitted parameters, 𝑡 is the time from the beginning of the observation and it is in months and expressed 156 

as a decimal of its year. 𝑘 denotes polynomial number, 𝑘 = 2. 𝑛ℎ denotes harmonic number, 𝑛ℎ = 4. Fig. 2 illustrates the 157 

function fit to CO2 data to obtain the annual oscillation (red line in Fig. 2a), is a combination of a polynomial fit to the trend 158 

(blue line in Fig. 2a) and harmonic fit to the seasonality (green line in Fig. 2b).  159 

The residuals are the difference between raw data and the function fit (black dots in Fig. 2c). The filtering method is based on 160 

Thoning et al. (1989) which transforms CO2 data from time domain to frequency domain using a Fast Fourier Transform 161 

(FFT), then applies a low pass filter to the frequency data to remove high-frequency variations, and then transforms the filtered 162 

data back to the time domain using an inverse FFT. The short-term (a cut-off value of 80 days, red line in Fig. 2c) and long-163 

term (a cut-off value of 667 days, blue line in Fig. 2c) filters used here are the same as in NOAA method, and applied to obtain 164 

the short term and interannual variations that are not determined by the fit function. The original code is also available as 165 

Python code from the NOAA website [https://gml.noaa.gov/aftp/user/thoning/ccgcrv/].  166 

2.3.2. Calculate smoothed CO2 and long-term trend 167 

The result of filtering residuals is added to the fitted curve to obtain smoothed CO2 and its long-term trend. The smoothed CO2 168 

comprises fitted trend, fitted seasonality and smoothed residuals (red line in Fig. 2d), the latter removes only short-term 169 

variations or noise. The long-term trend comprises fitted trend and residual trend, which removes seasonal cycle and noise 170 

(blue line in Fig. 2d). 171 

2.3.3. Calculate CO2 growth rate, GATM 172 

The CO2 growth rate (GATM) is determined by taking the first derivative of the long-term trend. However, the growth is made 173 

up of discrete points, e.g. the black dots in Fig. 3a shows the trend points. In this case, a cubic spline interpolation is applied 174 

to the trend points, in which the spline curve passes through each trend points, as the blue line in Fig. 3a. GATM is obtained by 175 

taking the derivative of the spline at each trend point (Fig. 3b). 176 
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 177 

Figure 2. Example of analysed CO2 data from station Pallas (PAL, Finland), illustrating GFIT curve fitting and filter 178 

method.  Panel (a) shows monthly averaged CO2 (dots), curve fitting with 2-degree polynomial and 4-degree harmonics 179 

(red line), and long-term trend estimated by a 2-degree polynomial (blue line).  Panel (b) shows seasonality estimated 180 

by 4-degree harmonics. Panel (c) shows the residuals of raw data from the function fit (black dots), the red line is 181 

obtained by the short-term filter and the blue line is obtained by the long-term filter. The cyan dots show the residuals 182 

of raw data from the sum of fitted curve and smoothed residuals. Panel (d) shows final processed CO2, which comprises 183 

fitted trend, fitted seasonality and smoothed residuals (red line). The blue line shows the final trend which comprises 184 

fitted trend and residuals trend.  185 
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 186 

Figure 3. Example of CO2 growth rate, the raw data is the same as used in Fig. 2 from station Pallas (PAL, Finland). 187 

Panel (a) shows the trend points (black dots) and its cubic spline interpolation (blue line). Panel (b) shows the GATM at 188 

each trend point. 189 

3 Results 190 

Global averaged surface CO2 and its GATM are calculated using the WDCGG method and our GFIT method based on the data 191 

from the GAW and CTE networks (Fig. 1). The different observation networks and their analysis methods are listed in Table 192 

1. We calculated the global means and its GATM by area-weighted averaging the zonal means over each latitudinal band (30°), 193 

following the same CO2 averaging method as described in Tsutsumi et al. (2009). A bootstrap method is used to estimate the 194 

uncertainties of global CO2 mean and its GATM, which is an almost identical uncertainty analysis as presented by Conway et 195 

al. (1994) who constructed 100 bootstrap networks for the NOAA analysis. We construct 200 bootstrap networks, consistent 196 

with the WDCGG analysis in Tsutsumi et al., (2009). For each bootstrap network, we randomly draw the same number of sites 197 

as the actual network (e.g. 139 sites for GAW network) with replacement from the actual network, which means some sites 198 

are missing whereas others will be represented twice or more often. We calculate global mean CO2 mole fraction and its GATM 199 

for each network, and then calculate the statistics (i.e. mean and 68% confidence interval, CI) on the 200 networks. All 200 

uncertainties in this paper are reported as ± 68% CI. 201 

Table 1. Description of the three observation networks and their analysis methods. 202 

Terminology Description  

NOAA network NOAA network comprises MBL sites only (43 sites).  

GAW network 
The selected GAW global network (139 sites) includes both MBL sites and 

some continental sites. 
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CTE network 

The CTE network serves as the global network for the CTE model 

evaluations (230 sites), comprises MBL sites and a more extensive inclusion 

of continental sites. 

GAW (GFIT) GAW network observations analysed using the GFIT method 

GAW (WDCGG) 
GAW network observations analysed using the WDCGG method without 

extrapolation 

GAW (WDCGG+) 
GAW network observations analysed using the WDCGG method with 

extrapolation 

CTE_obs (GFIT) 
CTE network observations analysed using the GFIT method. The 

observations come from the ObsPack data product (Schuldt et al., 2022) 

CTE_output (GFIT) 
CTE model output at the 230 sites (sampled at the same location, altitude, 

and time) analysed using the GFIT method 

CTE_global (GFIT) 
CTE model output for full global grids (averaged over the first three levels, 

0 to 0.35 km Alt.) analysed using the GFIT method 

MLO (GFIT) Mauna Loa (MLO) observations analysed using the GFIT method 

SPO (GFIT) South Pole (SPO) observations analysed using the GFIT method 

 203 

3.1 Globally averaged surface CO2 mole fraction and its GATM 204 

 205 

Figure 4. Comparison of globally and locally averaged CO2 mole fraction (a) and its GATM (b) from 1980 to 2020. Panel 206 

(a) shows the global monthly CO2 mole fraction from 139 GAW sites (estimated from observations only), 43 NOAA 207 
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MBL sites and those from 230 sites used in CTE (either from observations or model output). The two local CO2 mole 208 

fractions are from Mauna Loa (MLO, cyan line) and South Pole (SPO, magenta line) stations, analysed using the GFIT 209 

method. The red and blue lines show the CO2 derived from GAW (GFIT) and GAW (WDCGG), respectively. The 210 

green and orange lines show the CO2 derived from CTE_obs (GFIT) and CTE_output (GFIT), respectively. The right 211 

y-axis shows their difference from NOAA CO2 mole fraction, and the dashed lines show the mean of the difference over 212 

the available period. Panel (b) compares the corresponding global and local CO2 growth rate, the legend refers to panel 213 

(a). The shadow area shows the uncertainty as 68% confidence interval obtained by the bootstrap analysis. 214 

Fig. 4 presents a monthly comparison of globally and locally averaged CO2 mole fractions and their GATM from 1980 to 2020. 215 

The statistical metrics assessing the agreement of these monthly comparisons are available in Fig. 5 (for 2001-2020) and Fig. 216 

S1 (for 1980-2020). The statistical metrics for the annual comparisons can be found in Fig. S2 (for 2001-2020) and Fig. S3 217 

(for 1980-2020). They exhibit a similar pattern to the monthly comparisons (i.e. Fig.5 and Fig. S1). 218 

Globally averaged monthly surface CO2 mole fractions, derived from the GAW network (GAW (GFIT) or GAW (WDCGG)), 219 

are significantly (p<0.05) higher by 0.329-0.335 ppm during 1980-2020 (Fig. S1a) and 0.370-0.390 ppm during 2001-2020 220 

(Fig. 5a) when compared to the NOAA analysis (Fig. 4a). This finding aligns with Tsutsumi et al., (2009), who reported a 221 

0.350 ppm higher global average in the GAW network during 1983-2006. The higher estimate from the GAW network can be 222 

attributed to the inclusion of more diverse sites, encompassing not only NOAA’s MBL sites but also additional continental 223 

sites (Fig. 1).  224 

Both global CO2 and its GATM derived from the GAW (GFIT) and GAW (WDCGG) are nearly overlapping (the red and blue 225 

lines) in Fig. 4a and 4b. The statistical metrics (Fig. 5 and S1) indicate a high agreement (ME<0.020 ppm, RMSE<0.145 ppm, 226 

r>0.999 for CO2 mole fraction; ME<0.005 ppm yr-1, RMSE<0.108 ppm yr-1, r>0.982 for GATM) between these two methods, 227 

which confirms that the GFIT method agrees well with WDCGG method without extrapolation. The WDCGG method with 228 

extrapolation (i.e. GAW (WDCGG+)), which involves extrapolating the long-term trend of each station to match the period 229 

of the most long-running station and adding it to the average seasonal variation to synchronize data period of all stations 230 

(Tsutsumi et al., 2009), produces 0.096 ppm significantly (p<0.05) higher values than the global monthly surface CO2 mole 231 

fraction derived from the GAW (WDCGG) during the common period 1984-2020 (Table S1). However, the extrapolation has 232 

a minimal effect (RMSE=0.076 ppm yr-1, ME=-0.011 ppm yr-1, Table S1) on the CO2 growth rate.  233 

Globally averaged monthly surface CO2 derived from CTE_obs (GFIT) and CTE_output (GFIT) are 0.422 ppm (1980-2020, 234 

Fig. S1) and 0.668 ppm (2001-2020, Fig. 5) significantly (p<0.05) higher compared to the NOAA analysis, respectively (Fig. 235 

4a). Comparing the global mean of CTE_obs (GFIT) with CTE_output (GFIT) during the common period of 2001-2020, we 236 

observe a low bias (0.069 ppm in CTE_output, Fig 5a), which suggests that the CTE model results can reasonably reproduce 237 

the global mean CO2 levels. The global annual CO2 mole fraction from CTE_obs (GFIT), CTE_output (GFIT) and CTE_global 238 

(GFIT) is 0.367, 0.299 and 0.186 ppm significantly (p<0.05) higher than the result of the GAW (GFIT), respectively (Fig 5a). 239 

The higher global mean from CTE_obs (GFIT) and CTE_output (GFIT) can be attributed to the presence of more sites in the 240 

Northern Hemisphere within the CTE network compared to the GAW network. The lower bias observed between GAW (GFIT) 241 

and CTE_global (GFIT) suggests that the GAW network provides a good representation of the low-level atmosphere (i.e. 0 to 242 

0.35 km altitude) at global scale, or the CTE model performs well in the low-level atmosphere. 243 

A common approach to estimate global surface CO2 mole fraction is by using one or two representative sites, such as Mauna 244 

Loa (MLO) and South Pole (SPO). The globally averaged monthly surface CO2 mole fractions, derived from the GAW, CTE, 245 

and NOAA networks, are significantly (p<0.05) lower by 0.46-0.88 ppm during 1980-2020 (Fig. S1a) and 0.45-1.19 during 246 

2001-2020 (Fig. 5a) than the local CO2 estimates solely based on MLO measurements. Conversely, these global monthly CO2 247 

mole fractions are significantly (p<0.05) higher by 1.91-2.24 ppm during 1980-2020 (Fig. S1a) and 2.21-2.94 during 2001-248 

2020 (Fig. 5a) when compared to local measurements at SPO site. Furthermore, the global seasonal cycle leads the local cycle 249 
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at MLO by approximately one month (estimated by averaging the time difference between the peaks of their seasonal cycles). 250 

In contrast, the local cycle at SPO is not evident and is opposite to the global seasonal cycle (Fig. 4a).  251 

 252 

Figure 5. Pair-wise statistical metrics assess the agreement of monthly global and local CO2 mole fraction (ppm) and 253 

its GATM (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the period 2001-2020. Panel 254 

(a) presents the Mean Error (ME) quantifying the difference for each pair, focusing on CO2 mole fraction, while panel 255 

(b) does the same for GATM. The significance levels of paired t-test for ME are indicated as follows: * p<0.1, ** p<0.05, 256 

*** p<0.01. Panel (c) and (d) present the Root Mean Squared Error (RMSE) for CO2 mole fraction and GATM, 257 

respectively. Panel (e) and (f) present the Pearson Correlation Coefficient (r) for CO2 mole fraction and GATM, 258 

respectively. 259 
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 260 

Figure 6. Trend analysis of the global CO2 growth rate from 1980 to 2020. Panel (a) shows the trends of CO2 growth 261 

rate for the GAW network (red line), the CTE network (green line) and the NOAA network (black line) during the 262 

whole period 1980-2020, the CO2 growth rate is derived from GAW (GFIT), CTE_obs (GFIT) and NOAA analysis (Fig. 263 

4b). Panel (b) shows the trend of CO2 growth rate for each month during 1980-2020, calculated as the derivative of the 264 

growth rate. The grey bands mark the period of three strong El Niño events, i.e 1987-1988, 1997-1998 and 2014-2016. 265 

Despite differences in the global averaged surface CO2 mole fractions derived from different networks and analysis methods, 266 

the GATM derived from GAW network, CTE network and its model output, and NOAA network exhibits strong agreement 267 

during 1980-2020 (ME<0.031 ppm yr-1, RMSE<0.217 ppm yr-1, r>0.948, Fig. 4b and S1). The differences in the GATM remain 268 

below 0.023 ppm yr-1 during 2001-2020, with low or no significance level (Fig. 5b), especially when comparing the annual 269 

GATM (Fig. S2b). Furthermore, over the long-term period of 40 years, the estimated local growth rate at MLO (ME<0.046 ppm 270 

yr-1 higher, RMSE<0.272 ppm yr-1, r>0.915) and SPO (ME<0.049 ppm yr-1 lower, RMSE<0.305 ppm yr-1, r>0.888) behaves 271 

similarly to the GATM derived from GAW, CTE and NOAA network (Fig. 4b and S1). However, noticeable monthly differences 272 

between the local and global growth rates, deviating up to approximately 0.8 ppm yr-1, and time shifts are observed (Fig. 4b).  273 

The trend analysis reveals that with development of continental sites, the slope of the trend of annual global CO2 mole fraction 274 

changes from NOAA network (1.832 ± 0.029 ppm yr-1) to CTE network (1.859 ± 0.029 ppm yr-1) during 1980-2020 (Fig. S4). 275 

However, the GATM increased steadily at a rate of 0.030 ± 0.002 ppm per year each year from 1980 to 2020 (Fig. 6a), based on 276 

the observations from the three networks (i.e. GAW, CTE and NOAA). This implies that over long-term period (here 40 years), 277 

the networks with and without continental sites exhibits the same trend of the GATM and has little effect on the transient change 278 

in the rate of CO2 increase in the atmosphere. Hence, the role of CO2 advective transport and mixing in estimating the long-279 

term change of the GATM appears negligible. However, a notable difference emerges in the short-term (here one month) change 280 

of the GATM between the networks with and without continental sites (Fig. 6b). El Niño events are known to diminish net global 281 
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C uptake (due to factors such as droughts, floods and fires) while increasing global CO2 growth rate (Sarmiento et al., 2010). 282 

During three strong El Niño events, which are marked as grey bands in Fig. 6b, the GATM derived from the GAW and CTE 283 

network (red and green lines) begins to increase approximately 1-2 months (Table S2) earlier before the El Niño events (marked 284 

as blue circles in Fig. 6b) and reaches its peak approximately 1-2 months (Table S2) earlier during the El Niño events (marked 285 

as orange circles in Fig. 6b), compared to the GATM derived from the NOAA network (black line). This suggests that continental 286 

sites can aid in the early detection of GATM changes resulting from changes in biogenic emission or uptake. The CTE network 287 

(green line) even detects the change one month earlier than the GAW network (red line) e.g. for the El Niño 1997-1998 event 288 

(Fig. 6b, Table S2). This earlier detection is attributed to the inclusion of even more continental sites in the CTE network (Fig. 289 

1), although the more continental sites also induce the greater variability.  290 

Table 2 presents the global annual CO2 mole fraction and its GATM derived from GAW (GFIT), along with the uncertainty 291 

estimates using the bootstrap method. The global average surface CO2 mole fraction has increased from 339.17±0.38 ppm in 292 

1980 to 413.06±0.16 ppm in 2020. Notably, the uncertainty is greater before 1990, primarily due to the limited number of 293 

measurement stations worldwide during that period. The average GATM for the two decades before 2000 is approximately 294 

1.54±0.08 ppm yr-1. However, in the following two decades, it has experienced increases, reaching 1.91±0.05 ppm yr-1 during 295 

2000-2009 and further rising to 2.41±0.06 ppm yr-1 during 2010-2019 (Table 2, Fig. S5).  296 

Table 2. Annual global averaged CO2 mole fraction (Mean, ppm) and its GATM (ppm yr-1) derived from GAW 297 

observations using GFIT method. U(Mean) and U(GATM) respectively indicate the uncertainty of Mean and its GATM as 298 

68% confidence interval. The annual value is averaged over the monthly values of the year.  299 

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 

Mean 339.17 340.16 341.03 342.59 344.46 345.69 347.08 348.99 351.45 353.15 

U(Mean) 0.38 0.24 0.19 0.24 0.26 0.22 0.14 0.15 0.12 0.15 

GATM 1.65 1.07 0.88 2.02 1.32 1.38 1.55 2.38 2.08 1.23 

U(GATM) 0.12 0.10 0.15 0.13 0.08 0.11 0.14 0.08 0.09 0.06 

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 

Mean 354.22 355.64 356.37 357.09 358.51 360.52 362.27 363.40 366.14 368.10 

U(Mean) 0.10 0.11 0.10 0.10 0.11 0.12 0.12 0.10 0.10 0.10 

GATM 1.41 1.03 0.65 1.22 1.72 2.06 1.16 1.82 2.89 1.34 

U(GATM) 0.08 0.06 0.05 0.05 0.05 0.08 0.07 0.05 0.05 0.05 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Mean 369.30 370.77 372.92 375.45 377.22 379.28 381.38 383.20 385.26 386.78 

U(Mean) 0.12 0.11 0.10 0.10 0.10 0.10 0.09 0.10 0.10 0.11 

GATM 1.58 1.58 2.33 2.17 1.66 2.42 1.75 2.20 1.71 1.68 

U(GATM) 0.05 0.06 0.06 0.04 0.04 0.03 0.05 0.04 0.05 0.04 

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Mean 389.01 390.97 393.14 396.00 397.79 400.12 403.47 405.70 407.93 410.57 

U(Mean) 0.12 0.12 0.14 0.11 0.10 0.10 0.11 0.09 0.10 0.13 

GATM 2.32 1.73 2.74 2.30 1.91 2.98 2.95 2.04 2.50 2.61 

U(GATM) 0.05 0.06 0.09 0.05 0.04 0.05 0.06 0.06 0.07 0.05 

Year 2020          

Mean 413.06          

U(Mean) 0.16          

GATM 2.60          
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U(GATM) 0.16          

3.2 Vertical profile of global CO2 mole fraction 300 

 301 

Figure 7. Global vertical profile of CO2 mole fraction derived from CTE model output. Panel (a) presents the vertical 302 

profile in 2020. Panel (b) presents the difference of the vertical profile between 2001 and 2020. Panel (c) presents the 303 

annual mean vertical profile from 2001 to 2020, the dots mark CTE vertical level heights and lines are the linear 304 

interpolation between the heights.  305 

The CTE model simulates CO2 mole fraction on global 3D grids, enabling us to visualize the modelled vertical CO2 profile. 306 

In the lower atmosphere, highest CO2 mole fraction is found in the Northern mid-latitude region (dark red between 30 oN and 307 

40 oN, Fig. 7a). This area experiences more anthropogenic emissions, which are subsequently transported towards both 308 

northern and southern latitudes. The latitudinal and interhemispheric gradient of atmospheric CO2, as shown in Fig. 7a, is 309 

influenced not only by differences in the latitudinal and interhemispheric fossil fuel emissions and seasonal exchanges with 310 

terrestrial biota (Denning et al., 1995), but also by atmospheric transport (Patra et al., 2011). As altitude increases, the gradient 311 

between the Northern and Southern hemisphere becomes small and levels out at higher altitudes (e.g. >50 km). When 312 
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comparing the vertical profile change between 2001 and 2020 (Fig. 7b and 7c), we observe that the CO2 mole fraction increases 313 

slowly in the higher atmosphere (>25 km altitude) compared to the lower atmosphere (<25 km altitude). Fig. 7c shows that the 314 

vertical gradient (difference between 50 km and 0.05 km) changes from approximately 5 ppm in 2001 to around 13 ppm in 315 

2020. The high vertical gradient in 2020 reflects the accumulation of CO2 in the lower atmosphere, resulting from continuous 316 

CO2 emissions from the surface during 2001-2020 and slow vertical transport. The low vertical gradient in 2001 is partly due 317 

to lower surface emissions.    318 

Pressure-weighted average CO2 mole fraction in the lower atmosphere (0 to 0.35 km altitude) and the entire atmosphere are 319 

calculated from CTE output. The annual absolute change in CO2 mole fraction, computed as the difference between annual 320 

means, is more pronounced in the lower atmosphere (orange bars in Fig. S6a) than in the entire atmosphere (blue bars in Fig. 321 

S6a). The reason is that the entire atmosphere has a larger air volume than the lower atmosphere, and changes in the surface 322 

CO2 sinks and sources are diluted due to atmospheric horizontal and vertical transport. The CO2 annual absolute change derived 323 

from GAW (GFIT), GAW (WDCGG) and NOAA (represented by red, purple and brown bars in Fig S6a) shows small positive 324 

or negative differences from the CTE_output (GFIT) and CTE_global (GFIT) across different years. However, over the long 325 

term (e.g. on a decadal scale, 2001-2010 and 2011-2020), the CTE model-derived changes in lower and entire atmospheric 326 

CO2 shows good agreement (<0.09 ppm yr-1) with the surface observation-based estimate, especially for lower atmospheric 327 

CO2 (<0.07 ppm yr-1). In Fig. S6b, the interannual variability (IAV) of CO2 mole fraction derived from CTE model follows a 328 

similar temporal pattern as the observation-based IAV derived from the GAW and NOAA network, especially the IAV of the 329 

low-level atmosphere (orange bars) exhibits strong agreement with the observation-based IAV (r>0.971, RMSE<0.178 ppm).   330 

3.3 Relationship between the surface CO2 mole fraction and atmospheric CO2 mass 331 

 332 

Figure 8. Relationship between the monthly surface CO2 mole fraction and atmospheric CO2 mass. The atmospheric 333 

CO2 mass calculated from the 3D CTE output. In panel (a), the monthly surface CO2 derived from the CTE_output 334 

(GFIT), GAW (GFIT) and NOAA analysis, presented as blue, red and green dots, respectively. Panel (b) compares the 335 

corresponding interannual variability (IAV) of the atmospheric CO2 mass and the surface CO2. The IAV is calculated 336 

as the anomaly departure from a quadratic trend.  337 

The atmospheric CO2 mass, calculated from the CTE output as a function of air mass and CO2 concentration (Text S3), has 338 

increased from 789.46 PgC in 2001 to 877.88 PgC in 2020 (Fig. S7a). The spatial distribution of the atmospheric CO2 mass is 339 

presented in Fig. S7b and Fig. S7c. Monthly global surface CO2 mole fraction derived from CTE_output (GFIT) and GAW 340 

(GFIT), represented as red and blue dots in Fig. 8a, exhibit a similar linear relationship with the monthly atmospheric CO2 341 

total mass, both showing the same slope of 2.08±0.01 PgC ppm-1. Similarly, NOAA CO2 (green dots, Fig. 8a) also demonstrates 342 
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a comparable linear relationship with a slope of 2.09±0.01 PgC ppm-1. Notably, the slopes or conversion factors in Fig. 8a are 343 

slightly lower than the factor 2.12 PgC ppm-1 used in Ballantyne et al. (2012) for the period 1980-2010. This minor difference 344 

in the conversion factor is expected, considering the different model and data used.  345 

We further compare the interannual variability (IAV), calculated as the anomaly departure from a quadratic trend, of the 346 

atmospheric CO2 mass and the surface CO2 (Fig. 8b). The coefficient of the linear relationship closely approaches ~1.0, 347 

indicating the temporal changes in atmospheric CO2 mass align with the temporal changes in surface CO2 mole fraction. The 348 

CO2 IAV based on the NOAA network exhibits a slightly closer relationship (r=0.938) with the CTE atmospheric CO2 mass 349 

estimates than the GAW (r=0.861) and CTE (r=0.812) networks. This finding is consistent with the long atmospheric residence 350 

time and well-mixed nature of CO2 in the NOAA network. Overall, the relationship found in Fig. 8 implies that the current 351 

surface CO2 network can effectively serve as an indicator of the CO2 mass changes throughout the entire atmosphere through 352 

a linear relationship.  353 

4 Discussion 354 

Over the past few decades, observational networks have been extended beyond the NOAA MBL network to include more 355 

continental sites, such as in the GAW and CTE networks (Fig. 1). These expansions aim to better monitor global CO2 356 

concentrations and quantify CO2 sources and sinks. While the continental observations encompass contributions from both 357 

substantial sources of anthropogenic emissions and sources/sinks from terrestrial vegetation and soil, these continental 358 

observations consistently yield a higher global surface CO2 mole fraction in the overall global CO2 analysis, indicating that 359 

they are influenced by a bigger net source. We find that the global mean derived from the GAW network is consistently 0.329 360 

(GFIT method) or 0.335 (WDCGG method) ppm higher than that derived from the NOAA network during 1980-2020. 361 

Similarly, Tsutsumi et al. (2009) reported a roughly 0.350 ppm higher mole fraction in the GAW network for years 1983-2006. 362 

Notably, the CTE network leads to an even higher global mean (0.422 ppm during 1980-2020), which is likely due to more 363 

observational sites locate in the Northern Hemisphere, where the highest anthropogenic emissions occur. This also explains 364 

the large fluctuation of CO2 concentrations observed during the winters and summers during 2001-2020 (Fig. 4a). In the future, 365 

with the addition of new observation sites, particularly in the Northern Hemisphere, to the existing observational network (e.g. 366 

GAW network), we expect that this would lead to higher global surface CO2 levels and a greater amplitude in the global CO2 367 

seasonal cycle in the global CO2 analysis.  368 

Although Friedlingstein et al. (2022) reported a 5.4% drop (~0.52 PgC) in fossil fuel CO2 emissions in 2020 (due to restrictions 369 

on e.g. transport, industry, power etc during the COVID-19 pandemic), the increase in annual CO2 from 2019 to 2020 370 

(2.60±0.16 ppm yr-1) remains at a similar level as from 2018 to 2019 (2.61±0.05 ppm yr-1). In principle, an equivalent drop of 371 

roughly 0.25 ppm yr-1 (according to the conversion factor 2.08 PgC ppm-1 in Fig. 8a) or roughly 0.13 ppm yr-1 (according to 372 

the annual absolute change, red bars in Fig. S6a) in the growth rate should be visible for period 2019-2020 due to the declined 373 

CO2 emissions. However, such a short-term human activity induced change in the CO2 growth rate may be hidden by the 374 

natural variability. The bootstrap analysis is used in this study (also in Conway et al., (1994) and Tsutsumi et al., (2009)) to 375 

estimate the uncertainty of the CO2 temporal mean and its growth rate and to assess how sensitive the global value is to the 376 

distribution of sampling sites. The relatively large uncertainty (±0.16 ppm yr-1) at the end of 2020 compared to previous years 377 

(Table 2) is likely due to an end-effect associated with the curve fitting and filter procedure. The end-effect is a tendency for 378 

the growth rate to converge toward the mean value at the end of the record (Conway et al., 1994). Therefore, Conway et al. 379 

(1994) suggested that the growth rate curves for the last 6 months should be viewed with caution. Reducing the end-effect 380 

requires further study, such as using machine learning or bias-correction methods to extrapolate the smoothed trend for a short 381 

period (e.g. one year) before and after. This extrapolated portion is used exclusively for calculating local mole fraction and 382 

growth rate, while it is not included in the global or zonal average, as it could introduce additional uncertainty. 383 
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Extrapolation beyond the measurement period extends knowledge gained from a limited period of measurements. During a 384 

limited measurement period, we can define the average seasonality, long-term trend, and short-term variation at a measurement 385 

site. The long-term trend of an individual site can be extrapolated by various methods, such as referring to the latitude reference 386 

time series (Masarie and Tans, 1995) or calculating the mean long-term trend over sites within a certain latitudinal zone (e.g. 387 

30°) (Tsutsumi et al., 2009). This extrapolated trend is then combined with the average seasonality to produce estimates beyond 388 

the measurement period. However, the extrapolation process relies on the assumption that the relationship of an individual site 389 

to the latitude reference remains invariant in time, while in reality the relationship between nearby sites is continuously 390 

changing (Masarie and Tans, 1995). In addition, the short-term variation is often ignored or estimated from nearby sites, 391 

introducing extra uncertainty into the extrapolation process. In this study, we find that the WDCGG method with extrapolation 392 

(GAW (WDCGG+)) results in a global surface CO2 mole fraction approximately 0.096 ppm higher than the WDCGG method 393 

without extrapolation (GAW (WDCGG)) using the same GAW observations, although the extrapolation has a minor effect on 394 

the growth rate (Table S1). Therefore, we chose not to use extrapolation beyond the measurement period in our analysis. As 395 

the number of long-term measurements increases, the need for such extrapolation becomes less necessary. 396 

Our analysis shows that basing the CO2 growth rate on GAW surface observations does not introduce a large bias (with an 397 

average agreement within 0.016 ppm yr-1) compared to a full atmospheric analysis (Fig. 4b and 5). This full atmosphere CO2 398 

was provided by the CTE model, in which the global annual mean CO2 is significantly overestimated compared to GAW 399 

observations (e.g. 0.299 ppm higher in CTE_output (GFIT), or 0.186 ppm higher in the CTE_global (GFIT) during 2001-400 

2020). The overestimate derived from the CTE_output (GFIT) is mainly due to more sites in the Northern Hemisphere in the 401 

CTE network than in the GAW network. The lower overestimate derived from the CTE_global (GFIT) implies that the biases 402 

in CTE outputs are not uniform spatially and tend to balance out. We estimate the CTE bias by comparing the observations 403 

and CTE outputs at the same sites, which results in a 0.069 ppm low bias derived from the CTE outputs in calculating the 404 

global surface CO2 mole fraction.  405 

The local growth rate at MLO and SPO generally behaves similarly to the global growth rate derived from the GAW, CTE, 406 

and NOAA networks (Fig. 4b and S1). However, the local CO2 mole fraction and its seasonal cycle noticeably differ from 407 

global estimates derived from different observational networks. In this regard, the utilization of individual sites for the 408 

evaluation of the global average mole fraction and its growth rate is not precise and can only be used for illustration rather 409 

than as a substitute for the proper global average calculation. The local observation sites, often situated away from significant 410 

local sources and sinks, such as MLO, provide long-term and high-quality data, serving as reference data for global CO2 mole 411 

fraction. However, a single observation site cannot capture the CO2 spatial variability, transport, and mixing. To overcome 412 

these limitations, global CO2 trends and variations are best assessed by integrating data from multiple sources and locations. 413 

Different observational networks (i.e. NOAA network, GAW network and CTE network) are analysed in this study, revealing 414 

differences in calculated global surface CO2 mole fractions equivalent to the current atmospheric growth rate over a three-415 

month period. This suggests that the station selection, especially if and how many continental observations are used, has some 416 

influence on the derived global surface CO2 levels, but it is not particularly strong. Nowadays, an increasing number of 417 

continental observations are established to monitor biogenic sources and sinks, providing further insight into the climate 418 

change and the associated ecosystem processes (Ciais et al., 2005, Ramonet et al., 2020). Such continental observations carry 419 

more variability in measurements than the marine observations, which requires caution when including them in the mix of 420 

stations used to determine global surface CO2 mole fraction. Our study demonstrates that continental sites can help early detect 421 

changes in CO2 growth rate caused by biogenic emission change, such as those resulting from El Niño events. Furthermore, 422 

the current observational networks (with and without continental sites) and CTE model show a good agreement on the global 423 

CO2 growth rate, with low or no significant differences within 0.023 ppm yr-1 during 2001-2020 and 0.031 ppm yr-1 during 424 

1980-2020. This implies that the current observation networks (as shown in Fig. 1, represent for various ecosystems, sinks, 425 
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sources, and latitudes) have a similar good capacity to capture changes in the global surface CO2, although there is the spatial 426 

and temporal variability in the CO2 growth rate (e.g. Conway et al. 1994).  427 

We also notice that the uncertainty in global CO2 growth rate is approximately 0.07 ppm yr-1, as derived from GAW (GFIT) 428 

and averaged over 1980-2020 (Table 2).  To reduce the uncertainty to 0.02 ppm yr-1 (equivalent to 1% of the global CO2 429 

growth rate), in principle it would theoretically requires adding more stations to the current observation network. We conducted 430 

an experiment that demonstrates how the uncertainty of the global CO2 growth rate exponentially increases as the number of 431 

land observation sites decreased (Fig. S8). According to our experiment, to achieve the goal of reducing the uncertainty to 0.02 432 

ppm yr-1, 332 land observation sites are required (Fig. S8). However, the required number of sites also depends on their 433 

measurement accuracy, consistency, and geographical distribution (i.e. CO2 footprint coverage of observation network, and 434 

the importance of the network design was addressed by Storm et al. (2022)).  435 

5 Conclusions 436 

The WMO GAW CO2 network documents the gradual global accumulation of CO2 in the atmosphere due to human activities. 437 

It has been used to assess the large-scale and long-term environmental consequence of fossil CO2 emission and land use 438 

changes. The high-quality observations conducted by the WMO GAW network include not only background stations (most of 439 

NOAA MBL stations) but also continental stations. This comprehensive network enables proper global average calculation. 440 

Furthermore, the WMO has initiated a new program, Global Greenhouse Gas Watch (GGGW), with the aim of establishing a 441 

reference network. This network will be built on the high-quality observations already performed under the WMO GAW 442 

program that follows consistent good practices and standards. Although the current monitoring networks have limitations in 443 

terms of geographical coverage, data consistency, and long-term measurements, they are well-equipped and have the capacity 444 

to effectively represent global surface CO2 mole fraction and its growth rate and trends in atmospheric CO2 mass changes. The 445 

three different analysis methods yield very similar global CO2 increases from 2001 to 2020, which gives confidence in using 446 

any one of them in climate change studies. Continuous monitoring of atmospheric CO2, based on the current GAW network 447 

together with reliable global data integration methods, provides essential information. This includes understanding trends in 448 

atmospheric CO2 concentration, assessing the impacts of past policies, identifying high-emission areas, informing climate 449 

models, forecasting future scenarios, and raising public awareness. Policymakers can rely on this information to support their 450 

efforts in mitigating the global warming.  451 

6 Data and Code Availability 452 

All data and code necessary to calculate the global mean surface CO2 mole fraction and Atmospheric CO2 mass is freely 453 

available from ICOS Carbon Portal [https://doi.org/10.18160/Q788-9081]. The file list of results and code can be found in 454 

Text S4. 455 
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