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Abstract. The World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) coordinates high-quality 17 

atmospheric greenhouse gas observations globally and provides these observations through the WMO World Data Centre for 18 

Greenhouse Gases (WDCGG) supported by Japan Meteorological Agency. The WDCGG and the National Oceanic and 19 

Atmospheric Administration (NOAA) analyse these measurements using different methodologies and site selection to 20 

calculate global annual mean surface CO2 and its growth rate as a headline climate indicator. This study proposes introduces 21 

a third hybrid method named semi-NOAAGFIT, which servesis used as an independent validation and open-source alternative 22 

of to the methods as described by NOAA and WDCGG. We apply the semi-NOAAGFIT to incorporate observations from 23 

most WMO GAW stations and 3D modelled CO2 fields from CarbonTracker Europe (CTE). We found find that different 24 

observational networks (i.e., the NOAA, GAW, and CTE networks) and analysis methods result in differences in the calculated 25 

global surface CO2 mole fractions equivalent to the current atmospheric growth rate over a three-month period. However, the 26 

CO2 growth rate derived from these networks and CTE model output shows good agreement. Over the long-term period (40 27 

years), both networks with and without continental sites exhibit the same trend in the growth rate (0.030 ± 0.002 ppm per year 28 

each year). However, a clear difference emerges in the short-term (one one-month) change of in the growth rate. The network 29 

that includes continental sites improves the early detection of changes in biogenic emissions. 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

1 Introduction 38 

Global mean surface temperature averaged over 2011-2020 has increased by about 1.09°C relative to the average temperature 39 

of 1850–1900 (Gulev et al., 2021). The increasing amount of atmospheric carbon dioxide (CO2), together with increases in 40 

other greenhouse gases, is the main driver of the warming (Eyring et al., 2021). After being relatively stable between 180 ppm 41 
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(ice age) and 280 ppm (interglacial) for the last 800,000 years (Lüthi et al., 2008),  the annual average CO2 level of the 42 

atmosphere has increased since the industrial revolution from roughly 277 ppm in 1750 to 415.7±0.2 ppm in 2021 (WMO, 43 

2022), due to emissions of CO2 related to human activities like burning of fossil fuels and land use changes (Friedlingstein et 44 

al., 2022). Mean global atmospheric CO2 annual growth rate (GATM) is an important constraint on the global carbon cycle. 45 

Based on the most recent Global Carbon Budget (GCB) analysis (Friedlingstein et al., 2022), the total emission of CO2 due to 46 

human activities was 10.2 ± 0.8 GtC yr-1 in 2020, of which 3.0 ± 0.4 GtC yr-1 was captured by the ocean sink and 2.9 ± 1 GtC 47 

yr-1 by the terrestrial sink, leaving a net increase of 5.0 ± 0.2 GtC yr-1 of CO2 in the atmosphere, corresponding to an 48 

atmospheric CO2 mole fraction increase of 2.4 ± 0.1 ppm yr-1 (the conversion factor comes from Ballantyne et al. (2012)).  49 

As the atmosphere mixes the contributions of all sources and sinks, an observational global average CO2 mole fraction can be 50 

constructed if there are enough observations to represent the spatial and temporal variation across the globe. Since most land 51 

masses are concentrated in the Northern Hemisphere, and the highest anthropogenic emissions (e.g. during winter) occur in 52 

the relatively narrow latitudinal band between 30 oN and 60 oN, relatively large spatial and temporal gradients in CO2 mole 53 

fraction exist in and around that region. Due to convective and advective mixing, the average mixing time of air within the 54 

same latitudinal bands varies from several weeks to a month. However, mixing between latitudinal bands is slower, especially 55 

the exchange between the northern and southern hemispheres, which has an approximate interhemispheric transport time of 56 

1.4 ± 0.2 years (Patra et al., 2011). The interplay of the latitudinal and interhemispheric differences in fossil fuel emissions 57 

and seasonal exchange with land biota (Denning et al., 1995) creates a latitudinal and interhemispheric gradient that requires 58 

a sufficiently dense network to capture a representative global annual mean.   59 

However, measurement stations that are close to sources or sinks may not be representative of a large atmospherice volume 60 

and the average signal at their latitude. Therefore, inclusion of these observations might introduce significant biases on the 61 

global mean CO2 and its growth rate. These biases can be avoided by filtering of data and a careful selection of spatially 62 

representative stations, as done by NOAA in their use of 43 stations (Fig. 1) that are considered to be representative for the 63 

Marine Boundary Layer (MBL reference network, https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html). An additional data 64 

processing step developed by NOAA to further avoid biases due to unrepresentative local signals is filtering and smoothing, 65 

by using a combination of a low pass filter and decomposition into a fitted long-term trend and seasonal cycle (Thoning et al., 66 

1989), hereafter refered to as the NOAA analysis. These fits can also be used to fill gaps for missing data, though care must 67 

be taken to avoid extrapolation errors before and beyond the time covered by the data record of the station. The WMO Global 68 

Atmosphere Watch (GAW) World Data Centre for Greenhouse Gases (WDCGG) also publishes global averages mole fraction 69 

for CO2 and the other major greenhouse gases in the annual WMO GAW Greenhouse Gas Bulletin (latest version: WMO, 70 

2022). They use curve fitting and filter methods that are very similar to those developed by NOAA, but WDCGG includes 71 

continental locations that are potentially more influenced by local sources and sinks (Tsutsumi et al., 2009).  72 

The NOAA MBL observations are all part of the NOAA cooperative global air sampling network and analysed in the same 73 

laboratory. All NOAA flask-air observations are traceable to the current WMO X2019 CO2 scale that is maintained by NOAA 74 

Global Monitoring Laboratory (GML). In contrast, the WDCGG data originate from multiple independent laboratories 75 

(including NOAA GML), that together form a network of hundreds of stations coordinated by WMO GAW 76 

[http://gawsis.meteoswiss.ch]. Having a multitude of independent laboratories carries an additional risk of biases due to 77 

differences in sampling, measurement, and analysis methods, for example calibration scales, although much care is taken to 78 

avoid these by coordination in the network and use of a common calibration scale from the WMO Central Calibration 79 

Laboratoriesy (CCL) guided by a set of strict measurement compatibility goals (WMO, 2022). The different selection of 80 

stations results in a larger seasonal cycle amplitude in WDCGG results compared to those of NOAA and a small but quite 81 

consistent bias in global surface annual mean CO2 mole fraction (Tsutsumi et al., 2009).  The NOAA estimate of global surface 82 

annual mean CO2 mole fraction is expected to be negatively biasedlower (e.g. ~0.35 ppm lower than the WDCGG estimate, 83 
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Tsutsumi et al., 2009) compared to a full global surface average because areas with large sources are not represented. However, 84 

none of the two afore mentioned approaches neither represents theose parts ofthat have the atmosphere with low CO2 mole 85 

fraction levels, (i.e., the full troposphere, (up to ~8-15 km altitude,) and the stratosphere), nor do they cover or the regions of 86 

the world with substantial observational gaps. 87 

In this paper, we propose a data integration method to estimate the global mean surface CO2 and its growth rate, named semi-88 

NOAAGFIT, . This method serves aswhich is used as an independent validation of the methods as described by NOAA and 89 

WDCGG through a completely independent and open-source implementation. The global mean surface CO2 refers to the mean 90 

CO2 mole fraction within the planetary boundary layer, which extends from the Earth's surface up to a few hundred or thousand 91 

meters in height. We apply the semi-NOAAGFIT methodology to incorporate CO2 data from the GAW network (139 stations, 92 

Fig. 1) and the modelled CO2 distribution from a well-established 3D global transport model (TM5: Transport Model 5, Peters 93 

et al., 2004, Krol et al., 2005). We investigate the influence of small differences between the three methodologies and whether 94 

these are significant or not for calculating the global mean surface CO2 and its growth rate, how consistent the semi-95 

NOAAGFIT and WDCGG approaches are with each other, and how they compare with NOAA analysis and estimates derived 96 

from a CO2 simulation with the 3D transport model TM5. These 3D CO2 results for 2001-2020 using TM5 are performed in 97 

the CarbonTracker Europe framework (CTE, Peters et al., 2004, van der Laan-Luijkx et al., 2017), where the CO2 uptake and 98 

emission fluxes are optimized by the inversion system to minimize the mismatch between the in situ observations and the 99 

modelled CO2 mole fraction.  CTE generally has a good representation of the CO2 field, with mean biases with respect to 100 

independent aircraft measurements of generally less than 0.5 ppm (Friedlingstein et al., 2022). Furthermore, the inferred CO2 101 

fluxes from CTE fit well within the ensemble of those of other inversions used for the evaluation of Global Carbon Budget 102 

(e.g. Friedlingstein et al., 2022). 103 

2 Methods and data  104 

 105 

Figure 1. Three observation networks are employed to assess the impact of continental site inclusion when calculating 106 

global CO2 mole fraction and its growth rates. The NOAA network (43 sites, yellow stars) comprises MBL sites only. 107 

The selected GAW global network  for CO2 measurement (139 sites, red dots) includes both MBL sites and continental 108 

sites, for example from the Advanced Global Atmospheric Gases Experiment (AGAGE) and European ICOS 109 

contribution network. The, CTE network serves as the global network for the CTE model evaluations (230 sites, blue 110 

dots), comprises MBL sites and a more extensive inclusion of continental sitesand the NOAA network (43 sites, yellow 111 

stars). 112 
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2.1 The WMO GAW observations and WDCGG analysis method 113 

The WMO GAW network measurements are archived and distributed by WDCGG, (World Data Center for Greenhouse Gases), 114 

hosted by the Japan Meteorological Agency. The GAW observations used in this study originate from 139 selected stations of 115 

the GAW network, and all observations are on the WMO standard scale, WMO-CO2-X2019 (Hall et al., 2021). The details on 116 

the station selection are described in Tsutsumi et al., (2009), which mainly excludes stations located in the northern hemisphere 117 

that show large standard deviations from the latitudinal fitted curve. The remaining 139 stations show a more reasonable 118 

latitudinal scatter range (Fig. 1).  119 

The WDCGG global analysis method (hereafter WDCGG method), as described in Tsutsumi et al., (2009), includes the 120 

mentioned station selection, a data fitting and filter (involves data interpolation and extrapolation), and calculation of the zonal 121 

and global mean mole fractions, trends, and growth rates. The procedure is also summarized in Text S1.  122 

The output from the global analysis by the WDCGG method are is used to compare against an alternative method (semi-123 

NOAAGFIT) that we designed to follow as closely as possible the fit and filter method (Conway et al., 1994) deployed by 124 

NOAA and is described in the section 2.3.  125 

2.2 CTE model output and station observations 126 

CarbonTracker Europe (CTE) is a global model of atmospheric CO2 and designed to keep track of CO2 uptake and release at 127 

the Earth's surface over time (van der Laan-Luijkx et al., 2017). CTE incorporates an off-line atmospheric transport module 128 

(TM5, Peters et al., 2004, Krol et al., 2005) driven by ECMWF ERA5 data, and there are four prescribed fluxes (i.e. from 129 

ocean, biosphere, fire and fossil fuel), which are transported in the model, together with the transported initial CO2 field. CTE 130 

also includes a data assimilation system that applies an ensemble Kalman filter to optimize the biogenic and ocean fluxes for  131 

a combination of plant-functional types and climate zones to improve the fit of the simulated concentrations with observations. 132 

The optimized fluxes from the data assimilation have been used in Global Carbon Project (GCP) 2021 (Friedlingstein et al., 133 

2022), and the comparison of CTE CO2 product to the other data assimilation systems used in GCP shows good agreement 134 

(within 0.8 ppm at all latitude bands)and CTE compares well to the other data assimilation systems used in GCP (Friedlingstein 135 

et al., 2022).   136 

The CTE model data used here consisted consists of simulated monthly CO2 mole fraction at 1x1 degree horizontal resolution 137 

and 25 levels in the vertical, the data period ranges from 2001 to 2020 which has no influence of model spin-up (Krol et al., 138 

2018). From the CTE output a set of simulated synthetic atmospheric CO2 mole fractions with monthly resolution can be 139 

extracted within grid cells where stations are situated. This study analyses monthly observation data (1980-2020) and synthetic 140 

time series (2001-2020) by using the semi-NOAAGFIT method (section 2.3) and attempts to estimate global mean CO2 mole 141 

fraction and its growth rate. The observed CO2 mole fractions are taken from 230 out of 290 global-wide distributed stations 142 

(Fig. 1, the station selection is summarized in Text S2), the data come from the GLOBALVIEW-plus V8 ObsPack data product  143 

(Schuldt et al., 2022)(Kenneth N., 2022), and include surface-based, shipboard-based and tower-based measurements.    144 

2.3 The semi-NOAAGFIT method 145 

The temporal pattern of CO2 measurement records at locations around the globe can be explained as the combination of roughly 146 

three components: a long-term trend, a non-sinusoidal yearly cycle (or seasonality), and short-term variations. This study 147 

synchronizes monthly CO2 records with the fitting and filter method obtained developed atfrom the NOAA Global Monitoring 148 

Laboratory (Thoning et al., 1989, Conway et al., 1994), without extrapolation. The station selection and CO2 averaging method 149 

are kept the same as in the WDCGG method (Text S1). This method will be referred to as the semi-NOAAGFIT method and 150 

will be compared to the WDCGG method without extrapolation. The only difference from WDCGG method without 151 

extrapolation is the fitting and filter method. All code for the method described here was developed in Python and is available 152 
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as a Jupyter notebook under a GPL license [https://doi.org/10.18160/Q788-9081]. The semi-NOAAGFIT method can be 153 

summarized and illustrated by the following three steps. 154 

2.3.1. Fitting and filter  155 

CO2 records from each station can be abstracted as a combination of long-term trend and seasonality, which can be fitted by a 156 

function consisting of polynomial and harmonics. We applied a linear regression analysis based on 3 polynomial coefficients 157 

and 4 harmonics (Eq. 1) to fit CO2 data using general linear least-squares fit (LFIT, Press et al., 1988). 158 

𝑓(𝑥) = 𝑎0 +  𝑎1𝑡 + 𝑎2𝑡2 + ⋯ + 𝑎𝑘𝑡𝑘 + ∑(𝐴𝑛 cos 2𝜋𝑛𝑡 + 𝐵𝑛 sin 2𝜋𝑛𝑡)

𝑛ℎ

𝑛=1

                                                                              (1) 159 

where 𝑎𝑘, 𝐴𝑛 and 𝐵𝑛 are fitted parameters, 𝑡 is the time from the beginning of the observation and it is in months and expressed 160 

as a decimal of its year. 𝑘 denotes polynomial number, 𝑘 = 2. 𝑛ℎ denotes harmonic number, 𝑛ℎ = 4. Fig. 2 illustrates the 161 

function fit to CO2 data to gain obtain the annual oscillation (red line in Fig. 2a), is a combination of a polynomial fit to the 162 

trend (blue line in Fig. 2a) and harmonic fit to the seasonality (green line in Fig. 2b).  163 

The residuals are the difference between raw data and the function fit (black dots in Fig. 2c). The filtering method is based on 164 

Thoning et al. (1989) which transforms CO2 data from time domain to frequency domain using a Fast Fourier Transform 165 

(FFT), then applies of a low pass filter to the frequency data to remove high-frequency variations, and then transforms the 166 

filtered data back to the time domain using an inverse FFT. The short term (a cut-off value of 80 days, red line in Fig. 2c) and 167 

long term (a cut-off value of 667 days, blue line in Fig. 2c) filters used here are the same as in NOAA method, and applied to 168 

obtain the short term and interannual variations that are not determined by the fit function. The original part of the code is also 169 

available as Python code from the NOAA website [https://gml.noaa.gov/aftp/user/thoning/ccgcrv/].  170 

2.3.2. Calculate smoothed CO2 and long-term trend 171 

The results of the filtering residuals are then added to the fitted curve to obtain smoothed CO2 and its long-term trend. The 172 

smoothed CO2 comprises the fitted trend, the fitted seasonality and the smoothed residuals (red line in Fig. 2d), which onlythe 173 

latter removes only short-term variations or noise. The long-term trend comprises fitted trend and residual trend, which 174 

removes seasonal cycle and noise (blue line in Fig. 2d). 175 

2.3.3. Calculate CO2 growth rate, GATM 176 

The CO2 growth rate (GATM) GATM is determined by taking the first derivative of the long-term trend. However, the growth is 177 

made up of discrete points, e.g. the black dots in Fig. 3a shows the trend points. In this case, a cubic spline interpolation is 178 

applied to the trend points, in which the spline curve passes through each trend points, as the blue line in Fig. 3a. GATM is 179 

obtained by taking the derivative of the spline at each trend point (Fig. 3b). 180 

https://doi.org/10.18160/Q788-9081
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 181 

Figure 2. Example of analysed CO2 data from PAL station (Pallas (PAL, Finland), illustrating semi-NOAAGFIT curve 182 

fitting and filter method.  Panel (a) shows monthly averaged CO2 (dots), curve fitting with 2-degree polynomial and 4-183 

degree harmonics (red line), and long-term trend estimated by a 2-degree polynomial (blue line).  Panel (b) shows 184 

seasonality estimated by 4-degree harmonics. Panel (c) shows the residuals of raw data from the function fit (black 185 

dots), the red line is obtained by the short-term filter and the blue line is obtained by the long-term filter. The cyan dots 186 

show the residuals of raw data from the sum of fitted curve and smoothed residuals. Panel (d) shows final processed 187 

CO2, which comprises fitted trend, fitted seasonality and smoothed residuals (red line). The blue line shows the final 188 

trend which comprises fitted trend and residuals trend.  189 
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 190 

Figure 3. Example of CO2 growth rate, the raw data is the same as used in Fig. 2 from station PAL (Pallas (PAL, 191 

Finland). Panel (a) shows the trend points (black dots) and its cubic spline interpolation (blue line). Panel (b) shows the 192 

GATM at each trend point. 193 

3 Results 194 

Global averaged surface CO2 and its GATM are calculated from the GAW observations from 139 sites (Fig. 1) using the 195 

WDCGG method with and without extrapolation and our semi-NOAAGFIT method based on the data from the GAW and 196 

CTE networks (Fig. 1). , namely GAW (WDCGG+), GAW (WDCGG) and GAW (semi-NOAA)The different observation 197 

networks and their analysis methods are listed in Table 1. The semi-NOAA method is also applied to three CTE datasets: 1) 198 

observations from 230 sites selected in the CTE dataset (hereafter these sites are named as CTE network, Fig. 1) which comes 199 

from the ObsPack data product (Kenneth N., 2022), namely CTE_obs (semi-NOAA); 2) CTE model output at the sites 200 

(sampled at the same location, altitude and time), namely CTE_output (semi-NOAA); and 3) model output for full global grids 201 

(averaged over the first three levels, 0 to 0.35 km Alt.), namely CTE_global (semi-NOAA). We calculated the global means 202 

and its GATM by area-weighted averaging the zonal means over each latitudinal band (30°), as same asfollowing the same CO2 203 

averaging methodmethod as described in Tsutsumi et al. (2009). A bootstrap method is used to estimate the uncertainties of 204 

global CO2 mean and its GATM, which is an almost identical uncertainty analysis as presented by Conway et al. (1994) who 205 

constructed 100 bootstrap networks for the NOAA analysis. We construct 200 bootstrap networks, which is consistent with 206 

the WDCGG analysis in Tsutsumi et al., (2009). For each bootstrap network, we randomly draw the same number of sites (as 207 

the actual network, (e.g. 139 sites for GAW network) with replacement (or restitution) from the actual network, which means 208 

some sites are missing whereas others will be represented twice or more often. We calculate global mean CO2 mole fraction 209 

and its GATM for each network, and then calculate the statistics (i.e. mean and 68% confidence interval, CI) on the 200 networks. 210 

All uncertainties in this paper are reported as ± 68% CI. 211 

Table 1. Description of the three observation networks and their analysis methods. 212 Formatted: Font color: Auto
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Terminology Description  

NOAA network NOAA network comprises MBL sites only (43 sites).  

GAW network 
The selected GAW global network (139 sites) includes both MBL sites and 

some continental sites. 

CTE network 

The CTE network serves as the global network for the CTE model 

evaluations (230 sites), comprises MBL sites and a more extensive inclusion 

of continental sites. 

GAW (GFIT) GAW network observations analysed using the GFIT method 

GAW (WDCGG) 
GAW network observations analysed using the WDCGG method without 

extrapolation 

GAW (WDCGG+) 
GAW network observations analysed using the WDCGG method with 

extrapolation 

CTE_obs (GFIT) 
CTE network observations analysed using the GFIT method. The 

observations come from the ObsPack data product (Schuldt et al., 2022) 

CTE_output (GFIT) 
CTE model output at the 230 sites (sampled at the same location, altitude and 

time) analyzed using the GFIT method 

CTE_global (GFIT) 
CTE model output for full global grids (averaged over the first three levels, 

0 to 0.35 km Alt.) analysed using the GFIT method 

MLO (GFIT) Mauna Loa (MLO) observations analysed using the GFIT method 

SPO (GFIT) South Pole (SPO) observations analysed using the GFIT method 

 213 
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3.1 Globally averaged surface CO2 mole fraction and its GATM 214 
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 216 

Figure 4. Comparison of globally and locally averaged CO2 mole fraction (a) and its GATM (b) from 1980 to 2020. Panel 217 

(a) shows the global monthly CO2 mole fraction from 139 GAW sites (estimated from observations only), 43 NOAA 218 

MBL sites and those from 230 sites used in CTE (either from observations or model output). The two local CO2 mole 219 

fractions are from Mauna Loa (MLO, cyan line) and South Pole (SPO, magenta line) stations, analysed using the GFIT 220 

method. The red and blue lines show the CO2 derived from GAW (GFIT) and GAW (WDCGG), respectively. The 221 

green and orange lines show the CO2 derived from CTE_obs (GFIT) and CTE_output (GFIT), respectively. The right 222 

y-axis shows their difference from NOAA CO2 mole fraction, and the dashed lines show the mean of the difference over 223 

the available period. Panel (b) compares the corresponding global and local CO2 growth rate, the legend refers to panel 224 

(a). The shadow area shows the uncertainty as 68% confidence interval obtained by the bootstrap analysis.Comparison 225 

of globally averaged CO2 mole fraction (a) and its GATM (b) from 1980 to 2020. Panel (a) shows the global monthly CO2 226 

mole fraction from 139 GAW sites (estimated from observations only) and those from 230 sites used in CTE (either 227 

from observations or model output) differs from NOAA estimates based on 43 MBL sites. Red and blue lines show the 228 

CO2 derived from the GAW observations using semi-NOAA and WDCGG method without extrapolation, respectively. 229 

Green and orange lines show the CO2 derived from observations and model output at the 230 sites assimilated by CTE 230 

using semi-NOAA method, respectively. The dash lines show the mean over the available period. Panel (b) compares 231 

the global CO2 growth rate derived from GAW observations using semi-NOAA (red line) and WDCGG method without 232 

extrapolation (blue line), CTE observations (green line) and model output (orange line) using semi-NOAA method, and 233 

the NOAA analysis (black line). The shadow area shows the uncertainty as 68% confidence interval obtained by the 234 

bootstrap analysis. 235 

Fig. 4 presents a monthly comparison of globally and locally averaged CO2 mole fractions and their GATM from 1980 to 2020. 236 

The statistical metrics assessing the agreement of these monthly comparisons are available in Fig. 5 (for 2001-2020) and Fig. 237 

S1 (for 1980-2020). The statistical metrics for the annual comparisons can be found in Fig. S2 (for 2001-2020) and Fig. S3 238 

(for 1980-2020). They exhibit a similar pattern to the monthly comparisons (i.e. Fig.5 and Fig. S1). 239 

GGlobally  averaged monthly surface CO2 mole fractions, derived from the GAW network (GAW (semi-NOAAGFIT) or 240 

GAW (WDCGG)), areis significantly (p<0.05) higher by 0.329 329-or 0.33536 ppm during 1980-2020 (Fig. S1a) and 0.370-241 

0.390 ppm during 2001-2020 (Fig. 5a)  significantly (p<0.05) higher thanwhen compared to the NOAA analysis during 1980-242 
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2020 (red or blue line in Fig. 4a, Table S1a-bFig. 4a), ). Tthis result finding alignsis consistent with Tsutsumi et al., (2009), 243 

who reportedfound a 0.3500 ppm higher global average in the GAW network during 1983-2006. The higher estimate from the 244 

GAW network can be explained byattributed to the inclusion of more diverse sites, encompassing not only NOAA’s MBL 245 

sites, but also more additional continental sites (Fig. 1).  246 

Both global CO2 and its GATM derived from the GAW (semi-NOAAGFIT) and GAW (WDCGG) are nearly overlapping (the 247 

red and blue lines) in Fig. 4aa and 4bb (as can also be seen by comparing Fig. S1 and S2). The statistical metrics (Table S1aFig. 248 

5 and S1) show indicate a high agreement (ME<0.020 ppm, r=0.999, RMSE<=0.053 145 ppm, r>0.999 ME=0.007 ppm for 249 

the CO2 mole fraction; ME<0.005 ppm, r=0.991, RMSE<=0.108081 ppm yr-1, ME=0.005r>0.982  ppm yr-1 for the GATM) 250 

between these two methods, which confirms that the semi-NOAAGFIT method agrees well with WDCGG method without 251 

extrapolation. The WDCGG method with extrapolation (i.e. GAW (WDCGG+)), where which involves extrapolating the long-252 

term trend of each station is extrapolated to match the period of the most long-running station period and adding ited to theits 253 

average seasonal variation to synchronize data period of all stations (Tsutsumi et al., 2009), produces ~0.096 ppm significantly 254 

(p<0.05) higher values than the global monthly surface CO2 mole fraction derived from the GAW (WDCGG) during the 255 

common period 1984-2020 (see Table S2S1), ). However,while the extrapolation has a minimaltiny effect (RMSE=0.062 076 256 

ppm yr-1, ME=-0.011 ppm yr-1, Table S2S1) on the CO2 growth rate.  257 

Global Globally averaged monthly surface CO2 derived from CTE_obs (semi-NOAAGFIT) and CTE_output (semi-258 

NOAAGFIT) are 0.422 422 ppm (1980-2020, Fig. S1) (1980-2020) and 0.656 668 ppm (2001-2020, Fig. 5) (2001-2020) 259 

significantly (p<0.05) higher compared to the NOAA analysis analysis, respectively (green and orange lines in Fig. 4aa). 260 

Comparing the global mean of CTE_obs (semi-NOAAGFIT) with CTE_output (semi-NOAAGFIT) during the common period 261 

of 2001-2020, we find observe a low bias (0.069 ppm in CTE_output, Table S1d-e and Table SFig 5a3), which 262 

suggestsindicates that the CTE model results can reasonably reproduce the global mean CO2 levels reasonably well. The global 263 

annual CO2 mole fraction from CTE_obs (semi-NOAAGFIT), CTE_output (semi-NOAAGFIT) and CTE_global (semi-264 

NOAAGFIT) is 0.368367 (2001-2020), 0.299 (2001-2020) and 0.186 (2001-2020) ppm significantly (p<0.05) higher than the 265 

result of the GAW (semi-NOAAGFIT), respectively (Fig 5aTable S1d-f). The higher global mean from CTE_obs (semi-266 

NOAAGFIT) and CTE_output (semi-NOAAGFIT) is mainly duecan be attributed to the presence of more sites in the Northern 267 

Hemisphere within the CTE network compared to the GAW network. The lower bias observed between GAW (semi-268 

NOAAGFIT) and CTE_global (semi-NOAAGFIT) indicates suggests that the GAW network provides a good representation 269 

of the low-level atmosphere (i.e. 0 to 0.35 km altitude) at global scale (Table S1f), or the CTE model has a good performs 270 

wellance in the low-level atmosphere. 271 

A common approach to estimate global surface CO2 mole fraction is by using one or two representative sites, such as Mauna 272 

Loa (MLO) and South Pole (SPO). The globally averaged monthly surface CO2 mole fractions, derived from the GAW, CTE, 273 

and NOAA networks, are significantly (p<0.05) lower by 0.46-0.88 ppm during 1980-2020 (Fig. S1a) and 0.45-1.19 during 274 

2001-2020 (Fig. 5a) than the local CO2 estimates solely based on MLO measurements. Conversely, these global monthly CO2 275 

mole fractions are significantly (p<0.05) higher by 1.91-2.24 ppm during 1980-2020 (Fig. S1a) and 2.21-2.94 during 2001-276 

2020 (Fig. 5a) when compared to local measurements at SPO site. Furthermore, the global seasonal cycle leads the local cycle 277 

at MLO by approximately one month (estimated by averaging the time difference between the peaks of their seasonal cycles) . 278 

In contrast, the local cycle at SPO is not evident and is opposite to the global seasonal cycle (Fig. 4a).  279 
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 280 

Figure 5. Pair-wise statistical metrics assess the agreement of monthly global and local CO2 mole fraction (ppm) and 281 

its GATM (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the period 2001-2020. Panel 282 

(a) presents the Mean Error (ME) quantifying the difference for each pair, focusing on CO2 mole fraction, while panel 283 

(b) does the same for GATM. The significance levels of paired t-test for ME are indicated as follows: * p<0.1, ** p<0.05, 284 

*** p<0.01. Panel (c) and (d) present the Root Mean Squared Error (RMSE) for CO2 mole fraction and GATM, 285 

respectively. Panel (e) and (f) present the Pearson Correlation Coefficient (r) for CO2 mole fraction and GATM, 286 

respectively.   287 
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 288 

Figure 56. Trend analysis of the global CO2 growth rate from 1980 to 2020. Panel (a) shows the trends of CO2 growth 289 

rate for the GAW network (red line), the CTE network (green line) and the NOAA network (black line) during the 290 

whole period 1980-2020, the CO2 growth rate is derived from GAW (semi-NOAAGFIT), CTE_obs (semi-NOAAGFIT) 291 

and NOAA analysis (Fig. 4bb). Panel (b) shows the trend of CO2 growth rate for each month during 1980-2020, 292 

calculated as the derivative of the growth rate. The grey bands mark the period of three strong El Niño events, i.e 1987-293 

1988, 1997-1998 and 2014-2016. 294 

Despite differences in the global averaged surface CO2 mole fractions derived from different networks and analysis methods, 295 

the GATM derived from GAW network, CTE network and its model output, and NOAA network agree wellexhibits strong 296 

agreement during 1980-2020 (ME<0.031 ppm yr-1, RMSE<0.217 ppm yr-1, r>0.948, Fig. 4b and S1). The differences in the 297 

GATM remain below 0.023 ppm yr-1 during 2001-2020, with low or no significance level (Fig. 5b) , especially when comparing 298 

the annual GATM (Fig. S2b).(r>0.903, RMSE<0.192 ppm yr-1, MAE<0.158 ppm yr-1, ME<0.025 ppm yr-1, Table S1) during 299 

the common period (Fig. 4b). Furthermore, over the long-term period of 40 years, the estimated local growth rate at MLO 300 

(ME<0.046 ppm yr-1 higher, RMSE<0.272 ppm yr-1, r>0.915) and SPO (ME<0.049 ppm yr-1 lower, RMSE<0.305 ppm yr-1, 301 

r>0.888) behaves similarly to the GATM derived from GAW, CTE and NOAA network (Fig. 4b and S1). However, noticeable 302 

monthly differences between the local and global growth rates, deviating up to approximately 0.8 ppm yr-1, and time shifts are 303 

observed (Fig. 4b).  304 

The trend analysis reveals that with development of continental sites, the slope of the trend of annual global CO2 mole fraction 305 

changes from NOAA network (1.832 ± 0.029 ppm yr-1) to CTE network (1.859 ± 0.029 ppm yr-1) during 1980-2020 (Fig. S4). 306 

However, The trend analysis shows that the GATM increased steadily at a rate of (0.030 ± 0.002 ppm per year each year) from 307 

1980 to 2020 (Fig. 5a6a), based on the observations from the three networks (i.e. GAW, CTE and NOAA).  This implies that 308 

over long-term period (here 40 years), the networks with and without continental sites show exhibits the same trend of the 309 

GATM and has little effect on the transient change in the rate of CO2 increase in the atmosphere. Hence, the role of CO2 advective 310 
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transport and mixing plays a negligible role in estimating the long-term change of the GATM appears negligible. However, there 311 

is a cleara notable difference emerges in the short-term (here one month) change of the GATM between the networks with and 312 

without continental sites (Fig. 5b6b). The El Niño events are  known tooften diminishes net global C uptake (due to factors 313 

such ase.g. droughts, floods and fires) and while increasinges global CO2 growth rate (Sarmiento et al., 2010). During three 314 

strong El Niño events, which are marked as grey bands in Fig. 6b, The the GATM derived from the GAW and CTE network 315 

(red and blue green lines) begins to increases approximately 1-2 months (Table S2) earlier before the El Niño events before 316 

the three strong El Niño events (marked as blue circles in Fig. 5b6b) and reaches itsthe peak  approximately 1-2 months (Table 317 

S2) earlier during the El Niño events (marked as orange circles in Fig. 5b6b), compared to the GATM derived from the NOAA 318 

network (black line). This indicates suggests that continental sites can help aid in the early detection of the change of GATM 319 

changes resulting from changes inwhich is caused by biogenic emission or uptake changes. The CTE network (green line) 320 

even detects the change even one month earlier than the GAW network (red line) e.g. for the three El Niño 1997-1998 events 321 

(Fig. 5b6b, Table S2)., This earlier detectionwhich is attributeddue to the inclusion of even more continental sites included in 322 

the CTE network (Fig. 1), although the more continental sites also induce the larger greater variability.  323 

Table 1 2 shows presents the global annual CO2 mole fraction and its GATM derived from GAW (semi-NOAAGFIT), together 324 

along with the uncertainty estimates dusing by the bootstrap method. The global average surface CO2 mole fraction has 325 

increased from 339.17±0.38 ppm in 1980 to 413.06±0.16 ppm in 2020 (Table 1, Fig. S1). Notably, tThe uncertainty is greater 326 

before 1990, is larger than after 1990, primarily due to the limited number of fewer measurement stations worldwide during 327 

that periodover the globe before 1990. The average GATM for the two decades before 2000 is about approximately 1.54±0.08 328 

ppm yr-1., Hhowever, in the following two decades, it has experienced  increasess, reaching to 1.91±0.05 ppm yr-1 during 329 

(2000-2009) and further rising to 2.41±0.06 ppm yr-1 during (2010-2019) (Table 2, Table 1, Fig. S51).  330 

Table 12. Annual global averaged CO2 mole fraction (Mean, ppm) and its GATM (ppm yr-1) derived from GAW 331 

observations using semi-NOAAGFIT method. U(Mean) and U(GATM) respectively indicate the uncertainty of Mean and 332 

its GATM as 68% confidence interval. The annual value is averaged over the monthly values of the year.  333 

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 

Mean 339.17 340.16 341.03 342.59 344.46 345.69 347.08 348.99 351.45 353.15 

U(Mean) 0.38 0.24 0.19 0.24 0.26 0.22 0.14 0.15 0.12 0.15 

GATM 1.65 1.07 0.88 2.02 1.32 1.38 1.55 2.38 2.08 1.23 

U(GATM) 0.12 0.10 0.15 0.13 0.08 0.11 0.14 0.08 0.09 0.06 

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 

Mean 354.22 355.64 356.37 357.09 358.51 360.52 362.27 363.40 366.14 368.10 

U(Mean) 0.10 0.11 0.10 0.10 0.11 0.12 0.12 0.10 0.10 0.10 

GATM 1.41 1.03 0.65 1.22 1.72 2.06 1.16 1.82 2.89 1.34 

U(GATM) 0.08 0.06 0.05 0.05 0.05 0.08 0.07 0.05 0.05 0.05 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Mean 369.30 370.77 372.92 375.45 377.22 379.28 381.38 383.20 385.26 386.78 

U(Mean) 0.12 0.11 0.10 0.10 0.10 0.10 0.09 0.10 0.10 0.11 

GATM 1.58 1.58 2.33 2.17 1.66 2.42 1.75 2.20 1.71 1.68 

U(GATM) 0.05 0.06 0.06 0.04 0.04 0.03 0.05 0.04 0.05 0.04 

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Mean 389.01 390.97 393.14 396.00 397.79 400.12 403.47 405.70 407.93 410.57 

U(Mean) 0.12 0.12 0.14 0.11 0.10 0.10 0.11 0.09 0.10 0.13 

GATM 2.32 1.73 2.74 2.30 1.91 2.98 2.95 2.04 2.50 2.61 
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U(GATM) 0.05 0.06 0.09 0.05 0.04 0.05 0.06 0.06 0.07 0.05 

Year 2020          

Mean 413.06          

U(Mean) 0.16          

GATM 2.60          

U(GATM) 0.16          

3.2 Vertical profile of global CO2 mole fraction 334 

 335 

Figure 67. Global vertical profile of CO2 mole fraction derived from CTE model output. Panel (a) shows presents the 336 

vertical profile in 2020. Panel (b) presentshows the difference of the vertical profile between 2001 and 2020. Panel (c) 337 

presentshows the annual mean vertical profile from 2001 to 2020, the dots mark CTE vertical level heights and lines 338 

are the linear interpolation between the heights.  339 

The CTE model simulates CO2 mole fraction over aon global 3D grids, which allowsenabling us to view visualize the modelled 340 

vertical CO2 profile. In the lower atmosphere, highest CO2 mole fraction areis found in the Northern mid-latitude region (dark 341 

red between 30 oN and 40 oN, Fig. 6a7a), ). This area experienceswhere more anthropogenic emissions take place, which are 342 
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subsequently transported towards both northern and southern latitudes. The latitudinal and interhemispheric gradient of 343 

atmospheric CO2 , as shownfound in Fig. 6a7a, is influenced not only determined by differences in the latitudinal and 344 

interhemispheric differences in fossil fuel emissions and seasonal exchanges with terrestrial biota (Denning et al., 1995), but 345 

is also by due to atmospheric transport (Patra et al., 2011). With As increasing altitude increases, the gradient between the 346 

Northern and Southern hemisphere becomes small and levels out at higher altitudes (e.g. >50 km). When comparing the vertical 347 

profile change between 2001 and 2020 (Fig. 6b 7b and 6c7c), we observe that the CO2 mole fraction increases slowlyer inat 348 

the higher atmosphere (>25 km altitude) than compared tothe increase at the lower atmosphere (<25 km altitude). Fig. 6c 7c 349 

shows that the vertical gradient (difference between 50 km and 0.05 km) changes from ~approximately 5 ppm infor 2001 to 350 

around ~13 ppm infor 2020. The high vertical gradient in 2020 reflects the accumulation of CO2 in the lower atmosphere, 351 

which is caused byresulting from continuous CO2 emissions from the surface during 2001-2020 and slow vertical transport. 352 

The low vertical gradient in 2001 is partly due to lower surface emissions.    353 

Pressure-weighted average CO2 mole fraction in the lower atmosphere (0 to 0.35 km altitude) and the entire atmosphere are 354 

calculated from CTE output. The annual absolute change in CO2 mole fraction, computed as the difference between annual 355 

means, is more pronounced in the lower atmosphere (orange bars in Fig. S6a) than in the entire atmosphere (blue bars in Fig. 356 

S6a). The reason is that the entire atmosphere has a larger air volume than the lower atmosphere, and changes in the surface 357 

CO2 sinks and sources are diluted due to atmospheric horizontal and vertical transport. The CO2 annual absolute change derived 358 

from GAW (GFIT), GAW (WDCGG) and NOAA (represented by red, purple and brown bars in Fig S6a) shows small positive 359 

or negative differences from the CTE_output (GFIT) and CTE_global (GFIT) across different years. However, over the long 360 

term (e.g. on a decadal scale, 2001-2010 and 2011-2020), the CTE model-derived changes in lower and entire atmospheric 361 

CO2 shows good agreement (<0.09 ppm yr-1) with the surface observation-based estimate, especially for lower atmospheric 362 

CO2 (<0.07 ppm yr-1). In Fig. S6b, the interannual variability (IAV) of CO2 mole fraction derived from CTE model follows a 363 

similar temporal pattern as the observation-based IAV derived from the GAW and NOAA network, especially the IAV of the 364 

low-level atmosphere (orange bars) exhibits strong agreement with the observation-based IAV (r>0.971, RMSE<0.178 ppm).   365 
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3.3 Relationship between the surface CO2 mole fraction and atmospheric CO2 mass 366 

367 

 368 

Figure 78. Relationship between the monthly surface CO2 mole fraction and atmospheric CO2 mass. The atmospheric 369 

CO2 mass calculated from the 3D CTE output. In panel (a), the monthly surface CO2 derived from the CTE_output 370 

(semi-NOAAGFIT), GAW (semi-NOAAGFIT) and NOAA analysis, presented as blue, red and green dots, respectively. 371 

Panel (b) compares the corresponding interannual variability (IAV) of the atmospheric CO2 mass and the surface CO2. 372 

The IAV is calculated as the anomaly departure from a quadratic trend.  373 

The aAtmospheric CO2 mass, calculated from the CTE output as a function of air mass and CO2 concentration (Text S3), has 374 

increased from 789.46 PgC in 2001 to 877.88 PgC in 2020 (Fig. S3aS7a). The spatial distribution of the atmospheric CO2 mass 375 

can be seenis presented in Fig. S3b S7b and Fig. S3cS7c. Monthly global surface CO2 mole fraction derived from CTE_output 376 

(GFIT) CTE output (red dots, Fig. 7a) at the 230 sites used in CTE with the semi-NOAA method (CTE_output (semi-NOAA)) 377 

and GAW (GFIT)GAW observations, represented as  (red and blue dots in, Fig. 7a8a,) at 139 GAW sites with the semi-NOAA 378 

method (GAW (semi-NOAA)) hasexhibit a similar linear relationship with the monthly atmospheric CO2 total mass, both 379 

(showing the same slope of 2.08±0.01 PgC ppm-1) as the monthly atmospheric CO2 total mass derived from the CTE output. 380 

Similarly, The NOAA CO2 (green dots, Fig. 7a8a) also demonstratesshows a similar comparable linear relationship (haswith 381 

a slope of 2.09±0.01 PgC ppm-1). Notably, tThe slope or conversion factor in Fig. 7a 8a is slightly lower than the factor 2.12 382 

PgC ppm-1 used in Ballantyne et al. (2012) for the period 1980-2010. The This minorsmall difference in the conversion factor 383 

is expected, considering considering the different model and data used.  384 



19 

 

We further compare the interannual variability (IAV), calculated as the anomaly departure from a quadratic trend,) of the 385 

atmospheric CO2 mass and the surface CO2 (Fig. 7b8b), ). Tthe coefficient of the linear relationship is very closeclosely 386 

approaches to ~1.0, which indicatinges the temporal changes in atmospheric CO2 mass aligngrees with the temporal changes 387 

in surface CO2 mole fraction. The CO2 IAV based on the NOAA network exhibits a slightly closer relationship (r=0.938) with 388 

the CTE atmospheric CO2 mass estimates The NOAA network tracks atmospheric CO2 change slightly better (r=0.938) than 389 

the GAW (r=0.861) and CTE (r=0.812) networks, . This finding is consistent withgiven the long atmospheric residencet time 390 

and well-mixed nature of atmospheric CO2. in the NOAA network. Overall, the relationship found in Fig. 7 8 implies that the 391 

current surface CO2 network can effectively serve as anbe a good indicator of the CO2 mass changes in throughout the whole 392 

entire atmosphere through a linear relationship.  393 

3.4 Annual absolute change and interannual variability of global CO2 mole fraction 394 

 395 

Figure 8. Annual absolute change and interannual variability of global CO2 mole fraction derived from different data 396 

(CTE model, GAW observation and NOAA observation) and analysis methods (semi-NOAA method, WDCGG method 397 

and NOAA method) for 2000-2020. Panel (a) shows the annual absolute change which is the difference between annal 398 

mean. Averages over 2001-2010 and 2011-2020 are also shown. Panel (b) shows the IAV which is calculated as the 399 

anomaly departure from a quadratic trend. 400 

Pressure-weighted average CO2 in the lower atmosphere and whole atmosphere is derived from CTE output. The annual 401 

absolute change (calculated as the difference between annual mean) of CO2 in the lower atmosphere (0 to 0.35 km altitude, 402 

orange bars in Fig. 8a) is more sensitive to surface sink and source than the change in the whole atmosphere (blue bars). The  403 

reason is that the whole atmosphere has a larger air volume than the lower atmosphere, and the change of the surface CO2 is 404 
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diluted due to horizontal and vertical transport. The CO2 change derived from the observations of the GAW network (red bars 405 

for semi-NOAA method, purple bars for WDCGG method) and the NOAA network (brown bars), shows a small positive or 406 

negative difference from the CTE results over the different years. However, over the long term (e.g. decadal scale, 2001-2010 407 

and 2011-2020), the CTE model derived change of lower and whole atmospheric CO2 shows good agreement (<0.09 ppm yr-408 

1) with the surface observation-based estimate, especially for the lower atmospheric CO2 (<0.07 ppm yr-1). Fig. 8b shows the 409 

IVA derived from CTE (blue, orange and green bars) follows a similar temporal pattern as the observation-based IVA derived 410 

from the GAW and NOAA network (red, purple and brown bars), especially the IVA of the low-level atmosphere (orange 411 

bars) show good agreement with the observation-based IVA (r>0.971, RMSE<0.178 ppm).   412 

4 Discussion 413 

During Over the past few decades, observational networks have been extended (e.g.beyond from the NOAA MBL network) 414 

to include the more continental sites,s such as in the(e.g. GAW network and CTE networks, (Fig. 1). These expansions aim in 415 

order to better monitor global CO2 concentrations and quantify CO2 sources and sinks. Although While the continental 416 

observations encompassinclude contributions from both substantialbig sources of anthropogenic emissions and big 417 

sources/sinks from terrestrial vegetation off/during the growing seasonand soil, these continental observations show 418 

consistently yield an overall higher global surface CO2 mole fraction in the overall global CO2 analysis, which indicatinges 419 

that they are influenced by a bigger net source. We find that the global mean derived from the GAW network is consistently 420 

on average 0.329 (semi-NOAAGFIT method) or 0.336 335 (WDCGG method) ppm consistently higher than that derived from 421 

the NOAA network during 1980-2020, . Ssimilarly, Tsutsumi et al. (2009) reported a roughly ~0.350 ppm higher mole fraction 422 

in the GAW network was found in Tsutsumi et al. (2009) for years 1983-2006. Notably, tThe CTE network even leads to an 423 

even higher global mean (0.422 ppm during 1980-2020), which is likely due to more observational sites locate in the Northern 424 

Hemisphere, where the highest anthropogenic emissions take placeoccur. This also explains the large fluctuation of CO2 425 

concentrations observed during the winters and summers during 2001-2020 (green and orange lines, Fig. 4aa). In the future, 426 

with the we expect that addition ofing new observation sites, (particularlyspecially in the Northern Hemisphere,) into the 427 

existingcurrent observational network (e.g. GAW network), we would expect that this would lead to higher global surface CO2 428 

levels and a greaterlarger amplitude inof the global CO2 seasonal cycle in the global CO2 analysis.  429 

Although Friedlingstein et al. (2022) reported a 5.4% drop (~0.52 PgC) in fossil fuel CO2 emissions in 2020 (due to restrictions 430 

on e.g. transport, industry, power etc during the COVID-19 pandemic), the increase in annual CO2 from 2019 to 2020 431 

(2.60±0.16 ppm yr-1) remains at a similar level as from 2018 to 2019 (2.61±0.05 ppm yr-1). In principle, an equivalent drop of 432 

roughly 0.25 ppm yr-1 (according to the conversion factor 2.08 PgC ppm-1 in Fig. 7a8a) or roughly 0.13 ppm yr-1 (according to 433 

the annual absolute change, red bars in Fig. S68a) in the growth rate should be visible for period 2019-2020 due to the declined 434 

CO2 emissions. However, such a short-term human activity induced change of in the CO2 growth rate may be hidden by the 435 

natural variability. The bootstrap analysis is used in this study (also in Conway et al., (1994) and Tsutsumi et al., (2009)) to 436 

estimate the uncertainty of the CO2 temporal mean and its growth rate and to assess how sensitive the global value is to the 437 

distribution of sampling sites. The relatively large uncertainty (±0.16 ppm yr-1) at the end of 2020 compared to previous years 438 

(Table 12) is likely due to an end-effect associated with the curve fitting and filter procedure. The end-effect is a tendency for 439 

the growth rate to turn converge toward the mean value at the end of the record (Conway et al., 1994)., Ttherefore, Conway et 440 

al. (1994) suggested that the last 6 months of the growth rate curves for the last 6 months should be viewed with caution. 441 

Reducing the end-effect requires further study, such as using machine learning or bias-correction methods to extrapolate the 442 

smoothed trend for a short period (e.g. one year) before and after. This extrapolated portion is used exclusively for calculating 443 

local mole fraction and growth rate, while it is not included in the global or zonal average, as it could introduce additional 444 

uncertainty. 445 
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Extrapolation beyond the measurement period extends knowledge gained from a limited period of measurements. During a 446 

limited measurement period, we can define the average seasonality, long-term trend, and short-term variation at a measurement 447 

site. The long-term trend of an individual site can be extrapolated by various methods, such as referring to the latitude reference 448 

time series (Masarie and Tans, 1995) or calculating the mean long-term trend over sites within a certain latitudinal zone (e.g. 449 

30°) (Tsutsumi et al., 2009). This extrapolated trend is then combined with the average seasonality to produce estimates beyond 450 

the measurement period. However, the extrapolation process relies on the assumption that the relationship of an individual si te 451 

to the latitude reference remains invariant in time, while in reality the relationship between nearby sites is continuously 452 

changing (Masarie and Tans, 1995). In addition, the short-term variation is often ignored or estimated from nearby sites, 453 

introducing extra uncertainty into the extrapolation process. In this study, we find that the WDCGG method with extrapolation 454 

(GAW (WDCGG+)) results in a global surface CO2 mole fraction approximately 0.096 ppm higher than the WDCGG method 455 

without extrapolation (GAW (WDCGG)) using the same GAW observations, although the extrapolation has a minor effect on 456 

the growth rate (Table S1). Therefore, we chose not to use extrapolation beyond the measurement period in our analysis. As 457 

the number of long-term measurements increases, the need for such extrapolation becomes less necessary. 458 

Our analysis shows that basing the CO2 growth rate on GAW surface observations does not introduce a large bias (with anon 459 

average agreement within 0.015 016 ppm yr-1) compared to a full atmospheric analysis (Fig. 4bb and 58, Table S1e-f). This 460 

full atmosphere CO2 was provided by the CTE model, in which the global annual mean CO2 is significantly overestimated 461 

compared to GAW observations (e.g. 0.299 ppm higher in CTE_output (GFITsemi-NOA), or 0.186 ppm higher in the 462 

CTE_global (semi-NOAAGFIT) during 2001-2020). The overestimate derived from the CTE_output (semi-NOAAGFIT), i.e. 463 

CTE outputs at the CTE 230 sites, is mainly due to more sites in the Northern Hemisphere in the CTE network than in the 464 

GAW network. The lower overestimate derived from the CTE_global (semi-NOAAGFIT) , i.e. CTE outputs at full global 465 

grids at the low-level atmosphere, implies that the biases in CTE outputs are not uniform spatially and attempt tend to balance 466 

out. We estimate the CTE bias by comparing the observations and CTE outputs at the same sites, which results in a 0.069 ppm 467 

low bias derived from the CTE outputs in calculating the global surface CO2 mole fraction.  468 

The local growth rate at MLO and SPO generally behaves similarly to the global growth rate derived from the GAW, CTE, 469 

and NOAA networks (Fig. 4b and S1). However, the local CO2 mole fraction and its seasonal cycle noticeably differ from 470 

global estimates derived from different observational networks. In this regard, the utilization of individual sites for the 471 

evaluation of the global average mole fraction and its growth rate is not precise and can only be used for illustration rather 472 

than as a substitute for the proper global average calculation. The local observation sites, often situated away from significant 473 

local sources and sinks, such as MLO, provide long-term and high-quality data, serving as reference data for global CO2 mole 474 

fraction. However, a single observation site cannot capture the CO2 spatial variability, transport, and mixing. To overcome 475 

these limitations, global CO2 trends and variations are best assessed by integrating data from multiple sources and locations. 476 

Different observational networks (i.e. NOAA network, GAW network and CTE network) are analysed in this study, which 477 

revealingshows a differences in calculated global surface CO2 mole fractions equivalent to the current atmospheric growth rate 478 

over a three-month period. This implies suggests that the station selection, especially if and how many continental observations 479 

are used, has some influence on but not a particularly strong influence on the derived global surface CO2 levels, but it is not 480 

particularly strong. Nowadays, more and morean increasing number of continental observations are established in order to 481 

monitor biogenic sources and sinks, and providing further provide insight into the climate change and the associated ecosystem 482 

processes (Ciais et al., 2005, Ramonet et al., 2020). Such continental observations carry more variability in measurements than 483 

the marine observations, which needs requiressome caution when includingused them in the mix of stations used tofor 484 

determineing global surface CO2 mole fraction. OHowever, our study shows demonstrates that continental sites can help early 485 

detect the changes inof CO2 growth rate caused by biogenic emission change, such as those resulting from(e.g. caused by El 486 

Niño events). BesidesFurthermore, the current observational networks (with and without continental sites) and CTE model 487 

show a good agreement within 0.025 ppm yr-1 on the global CO2 growth rate, with low or no significant differences within 488 

Formatted: Font: (Default) Times New Roman, 10 pt, (Asian)
Chinese (Simplified, Mainland China)

Formatted: (Asian) Chinese (Simplified, Mainland China)



22 

 

0.023 ppm yr-1  over long-term periodduring 2001-2020 and 0.031 ppm yr-1 during 1980-2020. This implies that the current 489 

observation networks (e.g. as shown in Fig. 1, represent for multiple various ecosystems, multiple sinks, and sources, and 490 

different latitudes) have a similar good capacity to capture changes in the global surface CO2 changes,, aalthough there is the 491 

spatial and temporal variability of in the CO2 growth rate (e.g. Conway et al. 1994).  492 

We also notice that the uncertainty in global CO2 growth rate is approximately 0.07 ppm yr-1, as derived from GAW (semi-493 

NOAAGFIT) and averaged over 1980-2020 (Table 12). In order t To reduce the uncertainty to 0.02 ppm yr-1 (equivalent to 494 

1% of the global CO2 growth rate)o reduce this uncertainty, we recommendin principle it would theoretically requires  adding 495 

more stations to the current observation network. We conducted an experiment (Fig. S4) whichthat demonstrates howthat the 496 

uncertainty of the global CO2 growth rate exponentially increases as the number of land observation sites decreasedis reduced 497 

(Fig. S8). According to our experiment, To reduce the uncertainty to 0.02 ppm yr-1 (equivalent to 1% of the global CO2 growth 498 

rate), to achieve the goal of reducing the uncertainty to 0.02 ppm yr-1, our experiment indicates that 332 land observation sites 499 

are required required (Fig. S4S8). However, the required number of sites also depends on their measurement accuracy, 500 

consistency, and geographical distribution (i.e. CO2 footprint coverage of observation network, and the importance of the 501 

network design was addressed by Storm et al. (2022)), measurement accuracy, and consistency.  502 

 503 

Extrapolation beyond the measurement period extends knowledge gained from a limited period of measurements. During a 504 

limited period of measurement, we can define the average seasonality, long-term trend, and short-term variation at a 505 

measurement site. The long-term trend of individual site is extrapolated, for example by referring to the latitude reference time 506 

series (Masarie and Tans, 1995) or the mean long-term trend over sites within a certain (e.g. 30°) latitudinal zone (Tsutsumi 507 

et al., 2009), and then combining the extrapolated trend with average seasonality to produce the estimate beyond measurement 508 

period. The extrapolation requires the assumption that the relationship of an individual site to the latitude reference is invariant 509 

in time, however, the relationship between nearby sites is continuously changing (Masarie and Tans, 1995). Besides, the short-510 

term variation is ignored or estimated from nearby sites, which introduces extra uncertainty from extrapolation. In this study, 511 

we find that the WDCGG method with extrapolation (GAW (WDCGG+)) results in ~0.096 ppm higher in the global surface 512 

CO2 mole fraction than the WDCGG method without extrapolation (GAW (WDCGG)) using the same GAW observations, 513 

although the extrapolation has a tiny effect on the growth rate (Table S2). Therefore, extrapolation beyond the measurement 514 

period is not used in our analysis. With the increasing number of long-term measurements, this extrapolation becomes less and 515 

less necessary. 516 

5 Conclusions 517 

The WMO GAW Global Atmosphere Watch CO2 network documents the gradual global accumulation of CO2 in the 518 

atmosphere due to human activities., Iandt has been used to assess the large-scale and long-term environmental consequence 519 

of fossil CO2 emission and land use changes. The high-quality observations conducted by the WMO GAW network include 520 

not only background stations (most of NOAA MBL stations) but also continental stations. This comprehensive network enables 521 

proper global average calculation. Furthermore, the WMO has initiated a new program, Global Greenhouse Gas Watch 522 

(GGGW), with the aim of establishing a reference network. This network will be built on the high-quality observations already 523 

performed under the WMO GAW program that follows consistent good practices and standards. Although the current 524 

monitoring networks have limitations in terms of geographical coverage, data consistency, and long-term measurements, they 525 

are well-equipped and have the capacity to effectively represent global surface CO2 mole fraction and its growth rate and 526 

trends in atmospheric CO2 mass changes. The three different analysis methods yield very similar global CO2 increases from 527 

2001 to 2020, which gives confidence in using any one of them in climate change studies. Although the current CO2 network 528 

is sparse due to operational costs and logistical constraints, it has a good capacity to represent global surface CO2 mole fraction 529 
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and its growth rate and trends in atmospheric CO2 mass changes. The three different analysis methods yield very similar global 530 

CO2 increase from 2001 to 2020, which gives confidence to use either one of them in climate change study. The cContinuous 531 

monitoring the of atmospheric CO2, basing based on the current GAW network together with reliable global data integration 532 

methods, provides essential information. This includes understanding trends in atmospheric CO2 concentration, assessing the 533 

impacts of past policies, identifying high-emission areas, informing climate models, forecasting future scenarios, and raising 534 

public awareness. Pfor policymakers can rely on this information to support their efforts in mitigating the global warming.  535 

Although the current CO2 network is sparse due to operational costs and logistical constraints, it has a good capacity to 536 

represent global surface CO2 mole fraction and its growth rate and trends in atmospheric CO2 mass changes.  537 

 538 

6 Data and Code Availability 539 

All data and code necessary to calculate the global mean surface CO2 mole fraction and Atmospheric CO2 mass is freely 540 

available from ICOS Carbon Portal [https://doi.org/10.18160/Q788-9081]. The file list of results and code can be found in 541 

Text S4. 542 
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Supporting Information 734 

Text S1. The WDCGG global analysis method 735 

The WDCGG method consists of seven separate steps. The full documentation can be found in Tsutsumi et al. (2009). 736 
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Step 1: Station selection based on traceability to the WMO standard scale  737 

In order to avoid the potential biases that can be introduced by using different concentration scales, WDCGG only uses data 738 

from stations that report results traceable to the most recent CO2 scale from the GAW Central Calibration Laboratories (CCL) 739 

assigned for that parameter. The current scale is the WMO standard scale WMO-CO2-X2019. 740 

Step 2: Integration of parallel data from the same station  741 

The WDCGG method uses continuous (hourly averaged) observations as these better represent the average concentrations 742 

compared to the flask-air samples taking during daytime once per two weeks. For remote stations where both flask and 743 

continuous data exist, NOAA found offsets between continuous and flask based monthly averages of 0.16-0.35 ppm (Tans et 744 

al., 1990)(Tans et al., 1990), in less remote areas this difference can be expected to be larger. For selected stations flask data 745 

are used for gap filling when continuous data is lacking.  746 

Step 3: Selection of stations suitable for global analysis  747 

All of station data are normalized against the South Pole and averaged for the whole observation period. The normalized and 748 

averaged data points are plotted against latitude, and a curve is fitted by using a nearest-neighbour local-quadratic regression. 749 

The stations with normalized data locate outside the 3 standard deviations of the latitudinal fitted curve are excluded from the 750 

selection. This selection procedure is repeated until all stations in the selection locating within the 3 standard deviations of the 751 

latitudinal fitted curve. This procedure results in 139 stations remaining, which have a reasonable latitudinal scatter range 752 

(Figure Fig. 1). 753 

Step 4: Abstraction of a station’s average seasonal variation expressed by the Fourier harmonics 754 

The average seasonal variation is obtained from the longest continuous segment of data by using three Fourier harmonics. 755 

Here is loop procedure where the following processes a-d are repeated until neither the long-term trend nor the average seasonal 756 

variation changes: a). de-trend original data, b). apply the harmonics to obtain seasonality, c). de-seasonality from original data 757 

to obtain long-term trend, d) smooth the long-term trend by using low-pass filter (a cut-off frequency of 0.48 cycle / year). 758 

After reaching this condition the average seasonal variation is determined and subtracted from the full data which leaves us 759 

with deseasonalized data that still can contain gaps. 760 

Step 5: Interpolation of data gaps  761 

The gaps of the deseasonalized data are filled by linear interpolation. Subsequently, the CO2 time series without gaps is the 762 

sum of the interpolated trend and the average seasonality.   763 

Step 6: Extrapolation for synchronization of data period  764 

Extrapolate the long-term trend to the synchronization period and then add the average seasonal variation to obtain the 765 

synchronized data. This is an optional step that is excluded in this analysis. 766 

Step 7: Calculation of the zonal and global mean mole fractions, trends, and growth rates. 767 

Global and hemispheric means, trends and growth rates are calculated by area-weighted averaging the zonal means over each 768 

latitudinal band (30°). The growth rate is determined by taking the first derivative of the long-term trend. 769 
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Text S2. The CTE station network 770 

290 stations are evaluated in the CTE inversion, the observations come from the ObsPack data product (Schuldt et al.Kenneth 771 

N., 2022). The measurement methods at the stations include surface-based, shipboard-based, tower-based and aircraft-based. 772 

In this study, we only focus on data derived from the first three measurement types (i.e. aircraft-based measurements are 773 

excluded), and in total 230 out of 290 stations are selected (Figure Fig. 1). For the stations that have both surface-based and 774 

tower-based measurements, we used the tower-based measurements for analysis. For the stations that have tower-based 775 

measurements, we selected the highest measurement. 776 

Text S3. Calculation of atmospheric CO2 mass 777 

CTE simulates 3D CO2 mole fraction with 25 levels in the vertical direction. The CO2 mass at each level of the atmosphere 778 

can be calculated as a function of air mass and CO2 concentration by weight.    779 

𝑚𝐶𝑂2
= 𝐶𝑤𝐶𝑂2

∗  𝑚𝑎𝑖𝑟                                                                                                                                                                        (1) 780 

where 𝑚𝐶𝑂2
 is the mass of the CO2, kg. 𝐶𝑤𝐶𝑂2

 is the CO2 concentration by weight, w %. 𝑚𝑎𝑖𝑟  is the mass of the air, kg. CO2 781 

concentration by weight is obtained by the formula below: 782 

𝐶𝑤𝐶𝑂2
= 𝐶𝑣𝐶𝑂2

∗  
𝑀𝐶𝑂2

𝑀𝑎𝑖𝑟

                                                                                                                                                                    (2)  783 

where 𝐶𝑣𝐶𝑂2
 is the mole fraction of CO2 in air, mol / mol. According to the ideal gas assumption, equal volume of gases at 784 

same temperature and pressure contains equal number of moles regardless of chemical nature of gases, i.e. the CO2 785 

concentration by mole equals the CO2 concentration by volume. 𝑀𝐶𝑂2
 is the CO2 molar mass (44.009 g/mol). 𝑀𝑎𝑖𝑟  is the 786 

average molar mass of dry air (28.9647 g / mol). 787 

Pressure is the force applied perpendicular to the surface of an object, therefore, air pressure can be expressed by:  788 

𝑝𝑎𝑖𝑟 =  
𝐹𝑎𝑖𝑟

𝑆
                                                                                                                                                                                         (3) 789 

where 𝑝𝑎𝑖𝑟  is the pressure of air, Pa or N / m2. In this case, 𝑝𝑎𝑖𝑟  is the difference of air pressure between adjacent level 790 

boundaries, e.g. air pressure at level 1 is 𝑝1 − 𝑝2. 𝐹𝑎𝑖𝑟  is the magnitude of the normal force of air or gravity of air, N or kg m 791 

/ s². The gravity of air at each level can be estimated by: 792 

𝐹𝑎𝑖𝑟 =  𝑚𝑎𝑖𝑟 ∗ 𝑔                                                                                                                                                                                (4) 793 

where 𝑔 is the gravitational field strength, about 9.81 m / s2 or N / kg. 794 

𝑆 is the area of the surface, m2. Here 𝑆 is the area of grid cell at each level, increasing with geopotential height (gph). It is 795 

calculated as a function of latitude and longitude on earth's surface, radius of the earth (𝑅), and 𝑔𝑝ℎ.   796 

𝑆 = 2 ∗ 𝜋 ∗ (𝑅 + 𝑔𝑝ℎ)2 ∗ |sin(𝑙𝑎𝑡1) − sin(𝑙𝑎𝑡2)| ∗
|𝑙𝑜𝑛1 − 𝑙𝑜𝑛2|

360
                                                                                  (5) 797 

Where, 𝑙𝑎𝑡1, 𝑙𝑎𝑡2, 𝑙𝑜𝑛1and 𝑙𝑜𝑛2 are the boundary of grid cell. 𝑅 = 6378.1370 km, here we use the equatorial radius which is 798 

the distance from earth’s center to the equator. 799 

Hence the mass of the air in Eq. 1 can be estimated by: 800 

𝑚𝑎𝑖𝑟 =  
𝑝𝑎𝑖𝑟 ∗ 𝑆

𝑔
                                                                                                                                                                                 (6) 801 

Text S4. File list 802 

All code necessary to calculate the global mean surface CO2 mole fraction and Atmospheric CO2 mass is freely available on 803 

ICOS Carbon Portal as a zipped archive (GAW_code.zip) [https://doi.org/10.18160/Q788-9081], when unzipped, the code 804 

include: 805 

https://en.wikipedia.org/wiki/Normal_force
https://doi.org/10.18160/Q788-9081
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• fit_filter_seminoaagfit.ipynb 806 

Apply the semi-NOAAGFIT method to GAW observations (139 stations), CTE observations (230 stations), CTE 807 

model output at stations (230 stations) and CTE model output (full global) 808 

• cal_zonal_global_co2_gaw_seminoaagfit.ipynb 809 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using output from 810 

GAW(semi-NOAAGFIT) 811 

• cal_zonal_global_co2_gaw_wdcgg.ipynb 812 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using output from 813 

GAW(WDCGG) 814 

• cal_zonal_global_co2_ctracker_obs.ipynb 815 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using output from 816 

CTE_obs(semi-NOAAGFIT) 817 

• cal_zonal_global_co2_ctracker_model_sample.ipynb 818 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using output from 819 

CTE_output(semi-NOAAGFIT) 820 

• cal_zonal_global_co2_ctracker_model_global.ipynb 821 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using output from 822 

CTE_global(semi-NOAAGFIT) 823 

• cal_co2mass_co2ppm_cte_global.ipynb 824 

Calculate global co2 mole fraction and global atmospheric co2 mass, using the 3D co2 output from CTE model 825 

• compare_co2_co2rate.ipynb 826 

Statistically compare the co2 mole fraction and its growth rate among different data sources and analysis methods 827 

• plot_results.ipynb 828 

The script is used to analyze and plot the results in the paper. 829 

In order to run the jupyter booknotebooks, it needs to download the data (GAW_data.zip) [https://doi.org/10.18160/Q788-830 

9081] and change the data path in jupyter notebooks to where the data is unzipped. 831 

The key results with CSV format are accessible on ICOS Carbon Portal as a zipped archive (GAW_results.zip) 832 

[https://doi.org/10.18160/Q788-9081], when unzipped, the data include: 833 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 1980-2020 derived from the GAW 834 

observations by using the semi-NOAAGFIT method, i.e. GAW (semi-NOAAGFIT). 835 

Global mean: 836 

df_co2_annual_global_NH_SH_gaw_GFITseminoaa.csv 837 

df_co2_monthly_global_NH_SH_gaw_GFITseminoaa.csv 838 

df_co2rate_annual_global_NH_SH_gaw_GFITseminoaa.csv 839 

df_co2rate_monthly_global_NH_SH_gaw_GFITseminoaa.csv 840 

Their uncertainty basing on bootstrap method:  841 

bootstats_co2_annual_global_gaw_GFITseminoaa.csv 842 

bootstats_co2_monthly_global_gaw_GFITseminoaa.csv 843 

bootstats_co2rate_annual_global_gaw_GFITseminoaa.csv 844 

bootstats_co2rate_monthly_global_gaw_GFITseminoaa.csv 845 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 1980-2020 derived from the GAW 846 

observations by using the WDCGG method without extrapolation, i.e. GAW (WDCGG). 847 

Global mean: 848 

https://doi.org/10.18160/Q788-9081
https://doi.org/10.18160/Q788-9081
https://doi.org/10.18160/Q788-9081
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df_co2_annual_global_NH_SH_gaw_wdcgg.csv 849 

df_co2_monthly_global_NH_SH_gaw_wdcgg.csv 850 

df_co2rate_annual_global_NH_SH_gaw_wdcgg.csv 851 

df_co2rate_monthly_global_NH_SH_gaw_wdcgg.csv 852 

Their uncertainty basing on bootstrap method:  853 

bootstats_co2_annual_global_gaw_wdcgg.csv 854 

bootstats_co2_monthly_global_gaw_wdcgg.csv 855 

bootstats_co2rate_annual_global_gaw_wdcgg.csv 856 

bootstats_co2rate_monthly_global_gaw_wdcgg.csv 857 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 1980-2020 derived from the observations 858 

at the CTE 230 stations by using semi-NOAAGFIT method, i.e. CTE_obs (semi-NOAAGFIT). 859 

Global mean: 860 

co2obs_co2_annual_global_NH_SH_ct2021_obs.csv 861 

co2obs_co2_monthly_global_NH_SH_ct2021_obs.csv 862 

co2obs_co2rate_annual_global_NH_SH_ct2021_obs.csv 863 

co2obs_co2rate_monthly_global_NH_SH_ct2021_obs.csv 864 

Their uncertainty basing on bootstrap method:  865 

bootstats_co2_annual_global_cal_ct2021_obs.csv 866 

bootstats_co2_monthly_global_cal_ct2021_obs.csv 867 

bootstats_co2rate_annual_global_cal_ct2021_obs.csv 868 

bootstats_co2rate_monthly_global_cal_ct2021_obs.csv 869 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 2001-2020 derived from the CTE model 870 

output sampling at the CTE 230 stations by using semi-NOAAGFIT method, i.e. CTE_output (semi-NOAAGFIT). 871 

Global mean: 872 

co2model_co2_annual_global_NH_SH_ct2021_modelsample.csv 873 

co2model_co2_monthly_global_NH_SH_ct2021_modelsample.csv 874 

co2model_co2rate_annual_global_NH_SH_ct2021_modelsample.csv 875 

co2model_co2rate_monthly_global_NH_SH_ct2021_modelsample.csv 876 

Their uncertainty basing on bootstrap method:  877 

bootstats_co2_annual_global_cal_ct2021_modelsample.csv 878 

bootstats_co2_monthly_global_cal_ct2021_modelsample.csv 879 

bootstats_co2rate_annual_global_cal_ct2021_modelsample.csv 880 

bootstats_co2rate_monthly_global_cal_ct2021_modelsample.csv 881 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 2001-2020 derived from the CTE model 882 

output covers full global (averaged over the first three levels, 0 to 0.35 km Alt.) by using semi-NOAAGFIT method, 883 

i.e. CTE_global (semi-NOAAGFIT) 884 

co2_annual_global_cte2021(level1-3)_GFITseminoaa.csv 885 

co2_monthly_global_cte2021(level1-3)_GFITseminoaa.csv 886 

co2rate_annual_global_cte2021(level1-3)_GFITseminoaa.csv 887 

co2rate_monthly_global_cte2021(level1-3)_GFITseminoaa.csv 888 

• Global monthly and annual surface CO2 mole fraction for 2001-2020 derived from the CTE model output covers full 889 

global with different heights (i.e. level1-3 and level1-25). 890 

cte2021(lv1-3)_co2_2000_2020_annual.csv 891 
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cte2021(lv1-3)_co2_2000_2020_monthly.csv 892 

cte2021(lv1-25)_co2_2000_2020_annual.csv 893 

cte2021(lv1-25)_co2_2000_2020_monthly.csv 894 

• Global monthly and annual atmospheric CO2 mass (up to ~200 km) for 2000-2020 derived from the CTE model 895 

output by using the method described in Text S3. 896 

cte2021_co2mass_2000_2020_monthly.csv 897 

cte2021_co2mass_2000_2020_annual.csv 898 

 899 

 900 

 901 
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 903 

Figure S1. Pair-wise statistical metrics assess the agreement of monthly global and local CO2 mole fraction (ppm) and 904 

its GATM (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the period 1980-2020. Panel 905 

(a) presents the Mean Error (ME) quantifying the difference for each pair, focusing on CO2 mole fraction, while panel 906 

(b) does the same for GATM. The significance levels of paired t-test for ME are indicated as follows: * p<0.1, ** p<0.05, 907 

*** p<0.01. Panel (c) and (d) present the Root Mean Squared Error (RMSE) for CO2 mole fraction and GATM, 908 

respectively. Panel (e) and (f) present the Pearson Correlation Coefficient (r) for CO2 mole fraction and GATM, 909 

respectively. 910 

Figure S1. Globally averaged CO2 mole fraction (a) and its GATM (b) from 1980 to 2021. In panel (a), the red line shows 911 

the mean CO2 mole fraction, black lines show the mean CO2 mole fraction over 10 years, the grey area shows the 912 

uncertainty derived from the 200 bootstrap networks. Similarly, panel (b) shows the GATM instead of the mole fraction. 913 

The CO2 and its GATM results are derived from the GAW observations from 139 stations by using semi-NOAA method. 914 
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 916 

Figure S2. Pair-wise statistical metrics assess the agreement of annual global and local CO2 mole fraction (ppm) and 917 

its GATM (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the period 2001-2020. Panel 918 

(a) presents the Mean Error (ME) quantifying the difference for each pair, focusing on CO2 mole fraction, while panel 919 

(b) does the same for GATM. The significance levels of paired t-test for ME are indicated as follows: * p<0.1, ** p<0.05, 920 

*** p<0.01. Panel (c) and (d) present the Root Mean Squared Error (RMSE) for CO2 mole fraction and GATM, 921 

respectively. Panel (e) and (f) present the Pearson Correlation Coefficient (r) for CO2 mole fraction and GATM, 922 

respectively. 923 

 924 

 925 

 926 
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 927 

Figure S3. Pair-wise statistical metrics assess the agreement of annual global and local CO2 mole fraction (ppm) and 928 

its GATM (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the period 1980-2020. Panel 929 

(a) presents the Mean Error (ME) quantifying the difference for each pair, focusing on CO2 mole fraction, while panel 930 

(b) does the same for GATM. The significance levels of paired t-test for ME are indicated as follows: * p<0.1, ** p<0.05, 931 

*** p<0.01. Panel (c) and (d) present the Root Mean Squared Error (RMSE) for CO2 mole fraction and GATM, 932 

respectively. Panel (e) and (f) present the Pearson Correlation Coefficient (r) for CO2 mole fraction and GATM, 933 

respectively. 934 

 935 
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 936 

Figure S4. shows the trends of global CO2 mole fraction for the GAW network (red line), the CTE network (green line) 937 

and the NOAA network (black line) during the whole period 1980-2020. The cycles show the annual CO2 mole fraction, 938 

respectively. 939 

 940 

 941 
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Figure S15. Globally averaged CO2 mole fraction (a) and its GATM (b) from 1980 to 20210. In panel (a), the red line 942 

shows the mean CO2 mole fraction, black lines show the mean CO2 mole fraction over 10 years, the grey area shows 943 

the uncertainty derived from the 200 bootstrap networks. Similarly, panel (b) shows the GATM instead of the mole 944 

fraction. The CO2 and its GATM results are derived from the GAW observations from 139 stations by using semi-945 

NOAAGFIT method. 946 

 947 

 948 

Figure 8S6. Annual absolute change and interannual variability of global CO2 mole fraction derived from different 949 

data (CTE model, GAW observation and NOAA observation) and analysis methods (GFIT method, WDCGG method 950 

and NOAA method) for 2000-2020. Panel (a) shows the annual absolute change which is the difference between annal 951 

mean. Averages over 2001-2010 and 2011-2020 are also shown. Panel (b) shows the IAV which is calculated as the 952 

anomaly departure from a quadratic trend. 953 

 954 

Figure S2. Globally averaged CO2 mole fraction (a) and its GATM (b) from 1980 to 2021. In panel (a), black lines show 955 

the mean CO2 mole fraction over 10 years, the grey lines show the 200 bootstrap networks, the red line shows the mean 956 

of the 200 bootstrap networks. Similarly, panel (b) shows the GATM results instead of CO2 mole fraction. This result is 957 

derived from the GAW observations from 139 stations by using WDCGG method. 958 
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 959 

Figure S3S7. Atmospheric CO2 mass derived from CTE output. Panel (a) shows the global monthly CO2 mass in 960 

atmosphere (from surface up to 200 km altitude). Panel (b) shows the zonal (5°) average of monthly CO2 mass. Panel 961 

(c) shows accumulated CO2 mass with altitudes from 2001 to 2020, the dots mark CTE vertical level altitudes and lines 962 

are the linear interpolation between the altitudes.       963 

 964 
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 965 

Figure 8. Annual absolute change and interannual variability of global CO2 mole fraction derived from different data 966 

(CTE model, GAW observation and NOAA observation) and analysis methods (semi-NOAA method, WDCGG method 967 

and NOAA method) for 2000-2020. Panel (a) shows the annual absolute change which is the difference between annal 968 

mean. Averages over 2001-2010 and 2011-2020 are also shown. Panel (b) shows the IAV which is calculated as the 969 

anomaly departure from a quadratic trend. 970 

 971 

 972 

Figure S4S8. The relationship between the uncertainty of the global CO2 growth rate and the number of observation 973 

sites. The relationship is estimated using CTE_global (all global grids excluding ocean grids) with different resolutions 974 

(1x1, 2x2, 3x3, 4x4, 5x5, and 10x10 degrees) to estimate the uncertainty of the global CO2 growth rate. The bootstrap 975 

method mentioned in the main text is used to estimate the uncertainty, and the results are represented as blue dots. The 976 



41 

 

red dashed line shows the linear interpolation between the experimental results, while the black line shows an 977 

exponential curve fitting.  978 

 979 

 980 

 981 

Figure S9. presents the smoothed trend of CO2 growth rate for each month during 1980-2020. The trends (depicted in 982 

Figure 6b) are smoothed by using a Gaussian filter (with sigma=1.96). The dots represent the local extrema, which aid 983 

in identifying the start of CO2 growth rate increase/decrease. 984 

 985 

 986 

 987 

 988 

 a. GAW (WDCGG), 1980-2020 b. NOAA, 1980-2020 

 Annual Monthly Annual Monthly 

Statistic CO2 GATM CO2 GATM CO2 GATM CO2 GATM 

r 0.999 0.991 0.999 0.987 0.999 0.980 0.999 0.970 

RMSE 0.053 0.081 0.145 0.108 0.352 0.121 0.519 0.162 

MAE 0.043 0.070 0.114 0.086 0.329 0.094 0.449 0.129 

ME 0.007 0.005 0.007 0.005 -0.329*** -0.025 -0.329*** -0.025*** 

 c. CTE_obs (semi-NOAA), 1980-2020 d. CTE_obs (semi-NOAA), 2001-2020 

r 0.999 0.984 0.999 0.981 0.999 0.963 0.999 0.961 

RMSE 0.324 0.104 0.420 0.125 0.401 0.115 0.487 0.136 

MAE 0.275 0.081 0.340 0.100 0.370 0.086 0.398 0.107 

ME 0.093* -0.020 0.093*** -0.020*** 0.368*** -0.007 0.368*** -0.007 

 e. CTE_output (semi-NOAA), 2001-2020 f. CTE_global (semi-NOAA), 2001-2020 

r 0.999 0.917 0.999 0.904 0.999 0.903 0.999 0.896 

RMSE 0.395 0.174 0.476 0.214 0.261 0.192 0.347 0.230 

MAE 0.348 0.131 0.389 0.174 0.220 0.158 0.279 0.195 
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ME 0.299*** -0.015 0.299*** -0.015 0.186*** -0.012 0.186*** -0.012 

Note paired t-test significant level for ME: * p<0.1, ** p<0.05, *** p<0.01 989 

Table S1. Statistic metrics assessing the agreement of the global CO2 mole fraction (ppm) and its GATM (ppm yr-1) from 990 

GAW observations (139 sties) using the semi-NOAA method (GAW (semi-NOAA)) with, a. GAW (WDCGG), GAW 991 

observations using the WDCGG method without extrapolation (1980-2020), b. NOAA analysis for observations from 992 

the NOAA 43 sites (1980-2020), c. CTE_obs (semi-NOAA), CTE observations (230 sites) using the semi-NOAA method 993 

(1980-2020), d. CTE observations (230 sites) using the semi-NOAA method (2001-2020), e. CTE_output(semi-NOAA), 994 

CTE output at the 230 sites using the semi-NOAA method (2001-2020), f. CTE_global (semi-NOAA), CTE full global 995 

grids (averaged over the first three levels, 0 to 0.35 km Alt.) using the semi-NOAA method (2001-2020). The statistical 996 

metrics include: Pearson Correlation Coefficient (r), which ranges from -1 to 1, Root Mean Squared Error (RMSE), 997 

Mean Absolute Error (MAE), and Mean Error (ME). The negative sign on ME means that the GAW (semi-NOAA) 998 

has higher values, vice versa. 999 

 1000 

 1001 

 1002 

 1003 

 GAW (WDCGG+) vs GAW (WDCGG), 1984-2020 

 Annual Monthly 

Statistic CO2 GATM CO2 GATM 

r 0.999 0.994 0.999 0.992 

RMSE 0.130 0.062 0.180 0.076 

MAE 0.115 0.037 0.151 0.042 

ME 0.096*** -0.011 0.096*** -0.011*** 

Note paired t-test significancet level for ME: * p<0.1, ** p<0.05, *** p<0.01 1004 

Table S2S1. Statistic metrics assessing the agreement of the global CO2 mole fraction (CO2, ppm) and its GATM (ppm 1005 

yr-1) from GAW (WDCGG) and GAW (WDCGG+) during common period 1984-2020. GAW (WDCGG) is GAW 1006 

observations (139 sites) analysed by using the WDCGG method without extrapolation. GAW (WDCGG+) is GAW 1007 

observations (139 sites) analysed by using the WDCGG method with extrapolation. The statistical metrics include: 1008 

Pearson Correlation Coefficient (r), which ranges from -1 to 1, Root Mean Squared Error (RMSE), Mean Absolute 1009 

Error (MAE), and Mean Error (ME). The negative values in ME means the GAW (WDCGG) has higher values, vice 1010 

versa. 1011 

 1012 

 CTE output (semi-NOAA) vs CTE obs (semi-NOAA), 2001-2020 

 Annual Monthly 

Statistic CO2 GATM CO2 GATM 

r 0.999 0.896 0.999 0.881 

RMSE 0.192 0.191 0.270 0.235 

MAE 0.153 0.143 0.212 0.195 

ME -0.069 -0.008 -0.069*** -0.008 

Note paired t-test significant level for ME: * p<0.1, ** p<0.05, *** p<0.01 1013 

Table S3. Statistic metrics assessing the agreement of the global CO2 mole fraction (CO2, ppm) and its GATM (ppm yr-1014 
1) from CTE_output (semi-NOAA) and CTE_obs (semi-NOAA) during common period 2001-2020. CTE_obs (semi-1015 

NOAA) is CTE observations (230 sites) analysed by using the semi-NOAA method. CTE_output (semi-NOAA) is CTE 1016 

output at the 230 sites analysed by using the semi-NOAA method. The statistical metrics include: Pearson Correlation 1017 

Coefficient (r), which ranges from -1 to 1, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean 1018 

Error (ME). The negative values in ME means the CTE_obs (semi-NOAA) has higher values, vice versa. 1019 

 1020 

 1021 

 El Niño 1987-1988 

 Trough (GATM starts increasing) Peak (GATM starts decreasing) 

Date  Decimal year  Days of year Decimal year  Days of year 

CTE 1985.791635 289 1987.041665 15 
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GAW 1985.874965 319 1986.958295 350 

NOAA 1985.874965 319 1987.124995 46 

 El Niño 1997-1998 

CTE 1996.208325 76 1997.624975 228 

GAW 1996.291655 106 1997.624975 228 

NOAA 1996.374985 137 1997.708305 259 

 El Niño 2014-2016 

CTE 2013.458315 167 2015.208325 76 

GAW 2013.374985 137 2015.374985 137 

NOAA 2013.541645 198 2015.374985 137 

Table S2. displays the estimates of CO2 growth rate increase/decrease for the three strong El Niño events (i.e 1987-1988, 1997-1998 1022 
and 2014-2016). These estimates are calculated from the smoothed trend of CO2 growth rate based on CTE, GAW and NOAA 1023 

networks (Fig. S9). 1024 
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