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Abstract. Most readily available landuse/landcover (LULC) data are developed using growing season remote sensing images 15 

often at annual time steps, but seasonal changes in remote sensing data can lead to inconsistencies in LULC classificationbut 

LULC characteristics can have seasonal inconsistencies, which could impact geospatial models applied to another season of 

databased on LULC. We used the Dynamic World near real-time global LULC dataset to compare how geospatial 

environmental models of water quality and hydrology respond to LULC estimated from growing vs. non-growing season 

dataLULC for temperate watersheds of the eastern United States. Non-growing season data resulted in LULC classifications 20 

that had more built area and less tree cover than growing season data due to seasonal impacts on classifications rather than 

actual LULC changes (e.g., quick construction or succession). In mixed-LULC watersheds, seasonal LULC classification 

inconsistencies could lead to differences in model outputs depending on the LULC season used, such as an increasedifferences 

in watershed nitrogen yields simulated by the Soil and Water Assessment Tool. Within reason, using separate calibration for 

each season may compensate for these inconsistencies, but lead to different model parameter optimizations. Our findings 25 

provide guidelines on the use of near real-time and high temporal resolution LULC in geospatial models. 

 

1 Introduction 

Environmental models incorporating landuse/landcover (LULC) data are common in many fields including 

hydrology, biogeochemistry, ecology, and climate science, often with decision-making implications (Hu et al., 2021; 30 

Baumgartner and Robinson, 2017; Naha et al., 2021; Li et al., 2021). Studies relating hydrology and water quality to LULC 

often use an LULC dataset developed primarily from growing season data, such as the United States National Landcover 

Database (NLCD; Jin et al., 2019) or Cropland Data Layer (CDL; Boryan et al., 2011), and/or use an LULC dataset available 

at an annual time step (Sulla-Menashe and Friedl, 2018; Buchhorn et al., 2020; Gray et al., 2022). Characteristics of LULC 

(e.g., canopy density and precipitation interception) vary seasonally, particularly in temperate regions where vegetation leaf 35 
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cover is reduced during the non-growing season compared to the growing season (van Beusekom et al., 2014). This has 

prompted popular hydrological models such as the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) to include 

seasonal cycles for factors like leaf area and crops (Nkwasa et al., 2020; Frans et al., 2013). However, there can also be temporal 

inconsistencies in LULC classifications due to variation in spectral signals that are often not accounted for, such as built LULC 

being classified as other types within the course of a year, or other classes being classified as trees too quickly for natural 40 

succession (Cai et al., 2014; Gómez et al., 2016). Addressing temporal inconsistencies is important for accurately identifying 

LULC change (Sexton et al., 2013; Liu and Cai, 2012; Hermosilla et al., 2018), and various approaches have been developed 

that include incorporating time as a co-dependent in the classifier to remove illogical changes (Graesser et al., 2022), and 

probability-based statistics to separate noise from trends (Zhu et al., 2012; Zhu and Woodcock, 2014; Sulla-Menashe et al., 

2019; Zhao et al., 2019). However, these approaches are typically not readily incorporated into watershed-scale hydrologic 45 

and water quality model frameworks, which take pre-classified LULC as model input (Li et al., 2019). These models are known 

to be sensitive to actual LULC changes over longer (e.g., 10+ year) time spans, such as forests being converted to other LULC 

types (Li et al., 2019; Basu et al., 2022). 

Present day high temporal resolution LULC datasets, such as the global Dynamic World (Brown et al., 2022), can 

facilitate the study of non-growing season and near real-time impacts of LULC classifications on environmental models, 50 

including those of hydrology and water quality. Dynamic World, which has a 10 m spatial resolution at 5-day intervals from 

Sentinel-2 satellites (2A and 2B), has comparable classification accuracy to other LULC datasets including the NLCD, 

European Space Agency World Cover, and ESRI Land Cover data (Venter et al., 2022; Brown et al., 2022), and its 5-day 

temporal resolution is much more frequent than the annual-or-longer frequency of other common LULC datasets. This high 

spatiotemporal resolution creates unprecedented opportunities for modelers to study the impacts of phenomena such as 55 

emerging settlements, agricultural dynamics, and forest conversion on outputs such as ecosystem dynamics and 

biogeochemical budgets (Brown et al., 2022). For environmental research to take advantage of these high temporal resolution 

data, we need to understand the impacts of potential seasonal variation in LULC estimates on geospatial models, which use 

LULC data to support water resources management across the globe (Fu et al., 2019; Guo et al., 2020; Murphy, 2020). 

Evaluation of LULC products at high spatiotemporal resolution is an important research need with vast societal implications 60 

(Radeloff et al., 2024).  

Worldwide, investigations of LULC impacts to hydrology and water quality often employ regression-based models 

(Fu et al., 2019; Dow and Zampella, 2000), SWAT models simulating LULC change (Ni et al., 2021; Tong et al., 2009), and/or 

SWAT model configurations compared objectively to evaluate model performance (Fuka et al., 2012; Li et al., 2019). We used 

the Dynamic World LULC dataset to demonstrate how estimates of LULC can change between the growing and non-growing 65 

seasons (note that estimates of LULC could change due to real transitions or due to illogical classification inconsistencies 

described above). We then used a long-term United States National Park Service (NPS) water quality dataset for temperate 

watersheds in the eastern United States, along with the above hydrologic and water quality models, to assess the use of 

seasonally-based LULC classificationsdata as an input for three modeling cases ranging from low to high complexity. We 
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asked “How different are model outputs (effect sizes) when using growing vs. non-growing season LULC inputs?” and “Are 70 

there differences in calibrated model performance if growing vs. non-growing season LULC input is used?” We hypothesized 

that watersheds with mixed landcover types (e.g., a combination of built and trees) would have the greatest variability in 

landcover classification between growing and non-growing seasons due to heightened temporal inconsistencies, which could 

carry over into sensitivities for watershed-scale geospatial models. 

2 Materials and Methods 75 

2.1 Study area and data 

Our study area was 37 current (plus 18 historic) wadeable stream water quality sites monitored by the National Park 

Service National Capital Region Network (NCRN), with sites in Maryland, Virginia, West Virginia, and Washington DC, 

USA (Case #1; Figure 1). All sites are in the Chesapeake Bay watershed and were chosen to help inform natural resources 

management (Norris et al., 2011). This includes the 167 km2 Rock Creek Watershed of Rock Creek National Park (Case #2) 80 

and the 150 km2 Difficult Run Watershed of George Washington Memorial Parkway (Case #3), selected from the above 

watersheds for having continuous calibration and evaluation data.  

 

 

Figure 1: Study area map showing active monitoring sites and all (active + historic) watersheds. 85 
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Specific conductance (SC) can be used as an indicator of the overall amount of anthropogenic impacts to stream water 

quality in a watershed (Dow and Zampella, 2000). SC data from 2005-2018 for our study sites (Norris et al., 2011) were 

downloaded from the Water Quality Portal (https://www.waterqualitydata.us/; accessed 9 October, 2022). Discrete samples 

were taken every one to three months for each site following data quality controls and protocol (Norris et al., 2011), with an 90 

average of 179±89 measurements per site. Median SC values over the entire time period were used as the indicator of 

anthropogenic impacts to each stream for comparisonsto compare water quality tendencies between monitoring sites (Dow 

and Zampella, 2000). Model calibration data are described in Sect. 2.5. 

2.2 Seasonal landcover comparisons 

We used Google Earth Engine (Gorelick et al., 2017) to generate a different Dynamic World LULC dataset for 95 

growing season (spring equinox to autumn equinox, 2016) and non-growing season (autumn equinox, 2015 to spring equinox, 

2016) for the monitored watersheds by taking dominant LULC for each pixel over these time periods, following the suggested 

approach (Brown et al., 2022). Thus, there was one composite image for each season (growing and non-growing) that 

represented the most common LULC class for each pixel over the time period of individual images, as developing a SWAT 

model requires the input of one LULC layerto input into the hydrologic and water quality models. Dynamic World’s built class 100 

aggregates both hard structures (e.g., buildings and parking lots) and the surrounding vegetation, as is done in other common 

SWAT LULC inputs such as NLCD developed classes (Brown et al., 2022; Jin et al., 2019). We chose the years 2015-2016 

because that was the earliest available Dynamic World data and nearest to the center of our 2005-2018 time period for water 

quality data, but repeated the process for every year of available Dynamic World data (2016-2021) for the Rock Creek and 

Difficult Run Watersheds to verify there was a seasonal cycle throughout years (see below). The timing of the data also aligned 105 

with the instance of NLCD data from 2016 for comparisons.  

2.3 Experimental design 

Different watersheds were tested in each case to demonstrate that the seasonal LULC estimate differences were not 

limited to a single watershed (Figure 2). For our water quality regressions (Case #1), we evaluated how well LULC 

classifications based on Dynamic World data from a single season could identify an LULC forcing affecting water quality at 110 

the watershed scale, following the common regression approach used in water quality investigations worldwide (Fu et al., 

2019). We developed quadratic least-squares regression models of median stream SC values over the entire 2005-2018 period 

for 37 currently monitored NCRN sites explained by seasonal Dynamic World 2016 built LULC. The purpose for the water 

quality regressions case was to evaluate how well Dynamic World data could identify an LULC forcing affecting water quality 

at the watershed scale, following the common regression approach used in water quality investigations worldwide (Fu et al., 115 

2019). Performance measures including R2 and root mean square error (RMSE; Willmott et al., 1985) were used to compare 

models from different seasons. For the LULC change simulation (Case #2), we evaluated how a model calibrated to one LULC 

https://www.waterqualitydata.us/
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season could respond to LULC data from another season, such as when simulating impacts of a watershed LULC change, 

particularly with regards to sensitivity to potential illogical LULC transitions in the high temporal frequency data. Here, we 

developed and calibrated SWAT hydrologic and nitrogen (nitrate-N + nitrite-N) yield models for the Rock Creek Watershed, 120 

then used them to simulate an LULC change  change in LULC classification between growing and non-growing seasons. The 

purpose for the LULC change simulation case was to evaluate how a model calibrated to one LULC season could respond to 

LULC data from another season, such as when simulating impacts of a watershed LULC change, particularly with regards to 

sensitivity to potential illogical LULC transitions in the high temporal frequency data. For the independently calibrated models 

(Case #3), we assessed the performance of seasonally tuned models rather than the single model of the LULC change case, to 125 

provide fairer comparison of calibrated model performances since each model was optimized to its unique LULC situation. 

Here, we developed and calibrated SWAT hydrologic models with growing and non-growing season Dynamic World 2016 

inputs independently of one another for the Difficult Run Watershed. The purpose for the independently calibrated models 

case was to assess the performance of seasonally tuned models rather than the single model of the land cover change case, to 

provide fairer comparison of calibrated model performances since each model was optimized to its unique LULC situation. 130 

For each case we repeated the analysis with LULC from the commonly-used NLCD 2016 for comparison.  

 

Figure 2: Conceptual diagram of the study. 
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2.4 Soil and Water Assessment Tool  

SWAT is the most common water quality model globally (Fu et al., 2019) and has been used in over 6,000 peer-135 

reviewed studies (https://www.card.iastate.edu/swat_articles/, accessed 7 January, 2024). The SWAT models (rev. 681) used 

in this study simulated streamflow using a water balance approach (Arnold et al., 1998, 2013), surface runoff using the runoff 

curve number (NRCS, 1986), groundwater flow using a water balance for shallow aquifer storage (Arnold et al., 1998), 

snowmelt based on snowpack temperature (Fontaine et al., 2002), and evapotranspiration using the Penman-Monteith method 

(Monteith, 1965; Ritchie, 1972). Nitrogen yields were simulated based on estimates of runoff, crop use, lateral flow, 140 

percolation, and concentrations in soil and water (Arnold et al., 1998). SWAT divides a watershed into spatial subbasins, which 

may be further divided into unique combinations of soils, landuse, and slopes called Hydrologic Response Units (HRUs). 

HRUs are pertinent to this work as their delineations are in part determined by LULC. HRUs are a thus a mechanism by which 

differences in LULC classification, including erroneous differences derived from seasonality in remote sensing data, can 

impact the model. Subbasins were delineated using the program QSWAT. In the development of the SWAT models, one 145 

spatial data layer for each of elevation, soils, and LULC (Table S1) was input to generate tables that represent base watershed 

conditions (Abbaspour et al., 2019; Leeper et al., 2015; Lehner et al., 2006; Lindsay, 2022; Sugarbaker et al., 2014; USGS, 

2022; USDA, 2022; Ries et al., 2017). We created a new SWAT LULC look-up table for QSWAT to read Dynamic World 

data and recreate HRUs (Table S2). The Rock Creek models for LULC change simulation (Case #2) had 13 subbasins, each 

assigned the dominant HRU, as has been done to more efficiently use computational resources (Myers et al., 2021b; Arabi et 150 

al., 2008). Gridded 4 km GridMET historic weather inputs were used as the Rock Creek watershed extends over 30 km from 

north to south (Abatzoglou, 2013). The Difficult Run SWAT models (Case #3) had 7 subbasins. Our Difficult Run Watershed 

SWAT models were constructed so that the maximum number of HRUs was incorporated (i.e., no minimum HRU area 

threshold), as has been done to compare independently calibrated model performance (Fuka et al., 2012), with weather data 

from National Oceanic and Atmospheric Administration (NOAA) station USW00093738 (Table S1). Further descriptions of 155 

model HRU numbers and proportions of watershed HRU areas with different LULC inputs can be found in Figures S4 and S5. 

We chose the SWAT model for this study because it can be used to support water resource decision making in mixed-LULC 

watersheds (Koltsida et al., 2023). 

2.5 Sensitivity analysis and calibration 

The Rock Creek models (Case #2) used parameters calibrated with a Latin hypercube approach (to generate a large 160 

number of parameter sets; Abbaspour et al., 2004) to the SWAT model with growing season Dynamic World 2016 inputs, 

using R-SWAT software (Nguyen et al., 2022). R-SWAT is an open source, graphic interface, parallelizable, and user-friendly 

tool to calibrate the SWAT model and analyze results (Nguyen et al., 2022). The parameters optimized during the Latin 

hypercube approach, which had 2,500 iterations (based on Nguyen et al., 2022 and Abbaspour et al., 2004), are shown in Table 

S3. Calibration and evaluation data were complete monthly streamflow (n=108 months) and nitrogen (n=10 months) data from 165 

https://www.card.iastate.edu/swat_articles/


7 

 

the USGS station 01648010 (concentrations converted to loads by multiplying by streamflow), split with the first half for 

calibration and the latter half for evaluation at the monthly time step. The years 2013-2021 were used in the simulations as 

these were the years the USGS station had been active for streamflow, and there was a 3 year model warm-up period (2010-

2012) to reduce the influence of initial states. The calibrated parameter set was chosen as having the best performing Nash-

Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) values for streamflow and nitrogen yield out of the sample of parameter 170 

sets. 

For Case #3, sensitivities of Difficult Run Watershed SWAT model performance to specific parameters were analyzed 

using the density-based PAWN method in the Sensitivity Analysis for Everybody (SAFE) toolbox (Pianosi and Wagener, 

2015; Pianosi et al., 2015; Zadeh et al., 2017). Eight thousand SWAT model runs with growing season Dynamic World 2016 

data were used for the sensitivity analysis, based on Myers et al. (2021a). We analyzed the sensitivity of 35 parameters and 175 

then chose the top 10 parameters with sensitivities greater than the dummy parameter to use in the calibration (Table 1). We 

then calibrated the Difficult Run Watershed SWAT models at the daily time step using the AMALGAM optimization algorithm 

(Vrugt and Robinson, 2007) with 3200 iterations (based on Myers et al., 2021a) and NSE as the objective function (the metric 

that the algorithm aims to maximize) and observed daily streamflow from USGS station 01646000 (with the first half for 

calibration and latter half for validation; Figure S1). In addition to NSE, metrics for Kling-Gupta Efficiency (KGE; Gupta et 180 

al., 2009) and refined Index of Agreement (dr; Willmott et al., 2012) were calculated to confirm our interpretations, with higher 

values implying better model performance.  

 

Table 1: Parameters used in SWAT model streamflow calibration for Difficult Run Watershed (Case #3), for models input with growing 

and non-growing season Dynamic World 2016 data, as well as the model with NLCD 2016 input. Further descriptions of these parameters 185 
can be found in Table S4. 

Symbol Definition † Lower 

Limit 

Upper 

Limit 

Calibrated 

Growing 

Calibrated 

Non-growing 

Calibrated 

NLCD 2016 

CH_KII.rte Channel hydraulic 

conductivity (mm/h) (v) 

0.1 150 0.11 3.86 0.14 

ALPHA_BNK.rte Bank flow recession 

constant (v) 

0.01 1 0.14 0.27 1.00 

CN_F.mgt Runoff curve number (r) -0.2 0.2 -0.17 -0.20 -0.08 

SNO50COV.bsn Fraction of SNOCOVMX 

for 50% cover (v) 

0.01 0.8 0.03 0.03 0.25 

ESCO.hru Soil evaporation 

compensation coef. (v) 

0.01 1 0.01 0.03 0.35 

CH_NII.rte Manning's n value for 

main channel (v) 

0.01 0.30 0.30 0.30 0.30 

SOL_BD.sol Soil moist bulk density (r) -0.2 0.2 -0.19 -0.01 0.00 
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SNOCOVMX.bsn Snow depth above which 

is 100% cover (mm) (v) 

0 500 471 496 205 

SFTMP.bsn Snowfall temperature 

threshold (°C) (v) 

0 3 0.95 0.98 1.02 

SOL_AWC.sol Available Water Capacity 

(r) 

-0.25 0.25 -0.23 -0.25 -0.23 

† A ‘v’ indicates that the original parameter from QSWAT was replaced by the calibrated value globally, in the same unit. An 

‘r’ indicates that the original parameter was modified relatively, multiplying it regionally by 1 + the calibrated value (e.g. a 

value of -0.2 reduces the original parameter by 20%). 

3 Results and discussion 190 

3.1 Seasonal landcover comparisons 

The Dynamic World 2016 data classified a greater area of the 55 watersheds as trees during the growing season than 

during the non-growing season, typically by 5-10% of watershed area (Figure 3a). During the non-growing season, some areas 

classified as trees during the growing season were instead given built or shrubland LULC classes. Differences in seasonal 

LULC classifications in Dynamic World data were strongest in mixed-LULC watersheds (i.e., watersheds with 15% to 85% 195 

of the area classified as built LULC), and weaker in very low built or very high built percentage watersheds (R2=0.49, df=52, 

F=24.82, p<0.001; Figure 3b). There was a relative mean absolute difference (RMAD) of 9.0% of watershed area between 

NLCD 2016 developed (including open space, low, medium, and high intensity) and Dynamic World 2016 growing season 

built data (5.9% using non-growing season built data) for the 37 currently monitored watersheds (Figure S2 and Table S5). 

 200 
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Figure 3: All using Dynamic World 2016: a) Difference between growing and non-growing season LULC for 55 watersheds (classes of 

water, flooded vegetation, barren, and snow/ice were approximately 1% of watershed area so omitted; boxplots show median, interquartile 

range (IQR), and outliers outside 1.5 * IQR), b) Quadratic relationship between built area and the seasonal difference in built area for 55 

watersheds, with 95% confidence intervals as dashed lines, c) and d) Time series of built area estimates for the Rock Creek and Difficult 205 
Run Watersheds, respectively, and e,f) same as above but for tree area.  

 

The differences between seasons were not limited to a single year of data or watershed and could be more or less 

pronounced depending on the watershed and time period. For instance, our study watershed for the LULC change simulation 

(Case #2, Rock Creek) showed a 9% increase in built LULC, and a 12% decrease in tree area, in non-growing season relative 210 
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to growing season Dynamic World data from 2016. Meanwhile, our study watershed for the independently calibrated models 

(Case #3, Difficult Run) showed a 12% decrease in tree cover and a 10% increase in built areas in the non-growing season 

compared to the growing season Dynamic World 2016. Over the entire time period of available Dynamic World estimates for 

these watersheds, growing season LULC estimates generally had more tree area, while non-growing season had more built 

area, and 2016 had the most pronounced differences (Figure 3c-f). For 2019, when the next instance of NLCD is available for 215 

comparisons, differences between non-growing and growing season estimates would be less pronounced for the Rock Creek 

Watershed (+5% built area and -8% trees), but approximately the same as 2016 for the Difficult Run watershed (+10% built 

area and -11% trees). In some years such as 2017-2018 the relationship could be reversed. Potential causes for these differences 

include vegetation phenology (e.g., green up) affected by climate (Khodaee et al., 2022), or measurement artifacts such as 

atmospheric conditions (aerosol scattering, water vapor, and absorption of light) and reflectance (bidirectional reflectance and 220 

zenith angle) which can cause non-random errors in top-of-atmosphere readings used for classifying LULC (Zhang et al., 

2018; Kaufman, 1984; Rumora et al., 2020). Dynamic World used a calibrated surface reflectance product to train the classifier 

(Sentinel-2 Level-2A; L2A) but a top-of-atmosphere product (Sentinel-2 Level 1C; L1C) to generate the dataset (Brown et al., 

2022). Previous work in our study area has found strong inter-annual variations across spectral bands in remotely sensed 

imagery that were caused by uncorrected atmospheric conditions and could impact multi-year LULC classification (Sexton et 225 

al., 2013). These differences in atmospheric conditions and reflectance would not be corrected for in Dynamic World data and 

potentially contribute to differences in classification results over time. 

Changes in LULC estimates between seasons were often concentrated along forested edges of mixed-LULC areas 

(Figure S3). In these deciduous areas, such as the edges of mixed residential/forested zones, leaf cover decreases during the 

non-growing season, which could be exposing other types of LULC underneath, or making forest more difficult to distinguish 230 

from surrounding built area for the classifications. Actual on-the-ground changes from built LULC to other types, or from 

other LULC types to trees (e.g., succession), are not likely to be occurring within the short (seasonal) time interval between 

our LULC composites (Cai et al., 2014). 

3.2 Case #1: Water quality regressions 

Median stream water specific conductance (SC) was positively correlated with 2016 Dynamic World built LULC 235 

during both seasons (Figure 4; Table 2). This relationship is expected and confirms that urban development has a strong 

positive effect on surface water salinization (Utz et al., 2022; Kaushal et al., 2005). The model for growing season built LULC 

vs. median SC had an R2 of 0.69, while the same model for non-growing season LULC had an R2 of 0.70, and the RMSE’s for 

both models were within 3 RMSE units (150.16 and 148.08, respectively), which suggests similar performance. For 

perspective, a model created with developed classes from NLCD 2016 had a similar fit as both seasonal models (R2 of 0.66 240 

and RMSE of 155.91; Table 2), supporting that Dynamic World could be relevant for identifying LULC forcings affecting 

water quality particularly where regional products such as NLCD are not available. 
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Table 2: Regression models for specific conductance for the growing vs. non-growing seasons of Dynamic World 2016 built data and the 

NLCD 2016 developed classes model (df=34). CI: upper and lower 95% confidence intervals. Quadratic equation: ax2 + bx + c. 245 

LULC a b c R2 F p-value CI (a) CI (b) RMSE 

Dyn. World growing season -0.05 10.83 123.65 0.69 37.52 <0.001 -0.13-0.02 4.58-17.07 150.16 

Dyn. World non-growing season -0.04 9.96 113.59 0.70 39.07 <0.001 -0.11-0.02 3.70-16.21 148.08 

NLCD 2016 -0.05 11.03 49.04 0.66 33.57 <0.001 -0.13-0.03 3.30-18.76 155.91 

 

 

  

Figure 4: Modeled median specific conductance (SC) for 37 watersheds comparing Dynamic World 2016 growing and non-growing season 

built and NLCD 2016 developed LULC, with 95% confidence intervals as dashed lines. 250 

3.3 Case #2: Hydrologic and nitrogen yield models  

Our Rock Creek Watershed SWAT model for streamflow and nitrogen yield, developed and calibrated using Dynamic 

World 2016 growing season data, performed with a streamflow calibration NSE of 0.56 (validation NSE of 0.65), nitrogen 

yield calibration NSE of 0.45 (validation NSE of 0.80), and nitrogen yield calibration percent bias (PBIAS, where <0 implies 

overestimation bias; Gupta et al., 1999) of 14.6% (validation PBIAS of 1.6%) (Table 3). As these values are similar to those 255 

of previous SWAT evaluations in urban watersheds that occurred at monthly time steps (Basu et al., 2022; Halefom et al., 

2017) and other work with multiple calibration variables (e.g., Myers et al., 2021b)Therefore, we concluded that the model 

developed with Dynamic World 2016 growing season data was reliably simulating real conditions at the monthly time step 
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(Figure 5a,b; red circles). When the calibrated parameter adjustments were transferred to the SWAT model developed with 

non-growing season LULC (as could be done when simulating an actual LULC change), streamflow performance decreased 260 

by approximately 0.30 NSE units and nitrogen yield PBIAS became -34.4% to -57.4%, implying overestimation of nitrogen 

(Table 3; Figure 5a,b; blue circles). Note that both models were run over the same time period to compare performance. Also, 

the model simulated 50% greater nitrogen yield over the entire 2013-2021 time period when non-growing season Dynamic 

World 2016 data was used as the LULC input, rather than growing season LULC (Figure 5c). These discrepancies between 

model outputs are not negligible. In relative terms, this difference is greater than the current pollutant load reduction target for 265 

Chesapeake Bay of 17% total nitrogen load (Maryland Department of Environment, 2019). Therefore, we advise to take the 

potential seasonal variability of Dynamic World LULC estimates into consideration if used to design water quality 

improvement efforts, particularly when decision making is involved, or an LULC change is being simulated. A model could 

be fit to one season of LULC, but have bias if transferred to a different seasontime period of LULC estimates due to temporal 

inconsistencies. This aligns with previous work that found impacts of actual LULC changes on hydrologic model performance, 270 

albeit at longer (e.g., 10+ year) time spans (Li et al., 2019). Although hydrologic and water quality models such as SWAT are 

often developed using LULC classified primarily in the growing season (e.g., Botero-Acosta et al., 2022; Avellaneda et al., 

2020), the availability of analysis-ready seasonal LULC data such as Dynamic World makes evaluations of LULC estimate 

sensitivity at shorter (i.e., seasonal) time spans pertinent. 

 275 

Table 3: Model performance metrics for the calibrated Rock Creek hydrologic model (Case #2) for streamflow and nitrogen yield, based on 

Nash Sutcliffe Efficiency (NSE), mean absolute error (MAE), and percent bias (PBIAS, where <0 implies overestimation bias), at the 

monthly time step. In this case, model parameters were all calibrated to growing season Dynamic World 2016 data to investigate the impacts 

of simulating an LULC change using non-growing season data (e.g., the optimized parameter adjustments were kept the same). 

SWAT LULC input Period Streamflow 

NSE 

N yield 

NSE 

N yield 

MAE (kg) 

N yield 

PBIAS 

Dyn. World 2016 growing 

season 

Calibration 0.65 0.45 713 14.6% 

Dyn. World 2016 growing 

season 

Validation 0.56 0.80 909 1.6% 

Dyn. World 2016 non-

growing season 

Calibration 0.35 -0.53 1177 -34.4% 

Dyn. World 2016 non-

growing season 

Validation 0.21 -2.00 3205 -57.4% 

NLCD 2016 Calibration 0.71 -1.14 1694 -7.8% 

NLCD 2016 Validation 0.85 -0.33 2364 22.1% 

 280 
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Figure 5: a) Observed vs. simulated monthly discharge for the Rock Creek Watershed comparing Dynamic World 2016 growing and non-

growing season built and NLCD 2016 developed LULC, b) Same for monthly nitrogen (N) yields for Rock Creek, and c) Modeled average 

annual nitrogen yields for Rock Creek. 

 285 

The differences observed between models using Dynamic World LULC were due to the 9% increase in built areas in 

non-growing season Dynamic World 2016 data, which have more impervious surfaces, a higher runoff curve number, and 

generate proportionally more water and nutrient runoff than the forested areas which were classified during the growing season. 

This could be particularly problematic when using computationally more efficient SWAT models that assign subbasin 

conditions based on the dominant HRU, as a change in dominant LULC type in a watershed could result in different subbasin 290 

conditions in the model greater than the proportional change in LULC. In this case, using non-growing season instead of 

growing season LULC input caused the model to switch two HRUs representing 21.9% of watershed area from being populated 

with Dynamic World trees LULC class to built LULC class (Figures S4 and S5). For perspective, the nutrient outputs for the 

SWAT model with Dynamic World 2016 growing season LULC were similar to those simulated by the SWAT model with 

NLCD 2016 LULC input using the same parameter adjustments (Figure 5c).  295 

3.4 Case #3: Independently calibrated hydrologic models 

The individually calibrated SWAT models using growing season vs. non-growing season Dynamic World 2016 

LULC input for the Difficult Run Watershed had comparable performance when simulating streamflow, despite the differences 

in LULC inputs (10% increase in built areas and 12% decrease in tree cover for the non-growing season LULC input). NSE 

performance metrics at the daily time step were between 0.52 and 0.54 for each model with Dynamic World LULC over the 300 

calibration and validation time periods, KGE was between 0.61 and 0.75, and dr (which by not squaring errors provides a better 

measure of low flow performance) only ranged between 0.68 and 0.70 (Table 4; scatterplots in log scale to show daily 

baseflows and time series are presented in Figure 6a-d). These are in line with satisfactory performance from previous work, 

particularly considering the daily time step (Moriasi et al., 2007; Kalin et al., 2010; Basu et al., 2022). For perspective, the 
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SWAT model calibrated with NLCD 2016 LULC had an NSE of 0.48 for the calibration period and 0.47 over the validation 305 

period (Table 4). Discrepancies such as underestimated low flows or peaks could reflect difficulties simulating hydrology in 

urban areas with complex stormwater pathways, as the Difficult Run Watershed was 58% developed area in the NLCD 2016 

data. Also, differences between independently calibrated streamflows could be smaller than differences with observed data, 

which could be due to uncertainties in other non-LULC model inputs shared among the calibrations (Basu et al., 2022). At the 

HRU level, using growing vs. non-growing season Dynamic World 2016 LULC in this case resulted in a 12.8% change in 310 

model HRU trees proportions, which is proportionate to the change in input trees estimates, as would be expected with the 

maximum HRU designation approach (Figures S4 and S5).  

 

Table 4: Comparison of streamflow performance for calibrated SWAT models developed independently with Dynamic World 2016 growing 

season LULC input, Dynamic World 2016 non-growing season LULC input, and NLCD 2016, at the daily time step for the Difficult Run 315 
Watershed (Case #3). Performance indices are R2, NSE, Kling-Gupta Efficiency (KGE), and refined Index of Agreement (dr). 

SWAT landuse input Period R2 NSE KGE dr 

Growing season Calibration 0.54 0.53 0.61 0.69 

Non-growing season Calibration 0.54 0.54 0.65 0.70 

NLCD 2016 Calibration 0.49 0.48 0.56 0.69 

Growing season Validation 0.56 0.53 0.73 0.68 

Non-growing season Validation 0.57 0.52 0.75 0.68 

NLCD 2016 Validation 0.53 0.47 0.69 0.68 
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Figure 6: Daily discharge models for the Difficult Run Watershed displaying base-10 log, so that daily baseflows and low flows are visible, 

comparing independently calibrated models with a) Dynamic World 2016 growing season LULC, b) Dynamic World 2016 non-growing 320 
season LULC, and c) NLCD 2016. Also d) Time series of Difficult Run modeled discharge. 

 

The most sensitive parameters for the Difficult Run Watershed case were channel hydraulic conductivity (CH_KII), 

bank flow recession coefficient (ALPHA_BNK), and runoff curve number (CN_F) (Figure 7). Among these and other sensitive 

parameters, there were differences in optimized values depending upon the SWAT LULC input (Table 1). For example, the 325 

CN_F adjustment optimized to -0.17 for growing season Dynamic World 2016, -0.20 for non-growing season Dynamic World 
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2016, and -0.08 for NLCD 2016 inputs, suggesting that the optimization adjusted runoff processes to compensate for the 

different proportions of LULC. The difference in forests of 12% of watershed area between growing and non-growing season 

Dynamic World 2016 data for Difficult Run (Table S5) is as large a difference as real changes in forests that have been found 

to cause these sensitivities in model parameters (Li et al., 2019), but was likely caused by classification variation rather than 330 

an actual cycle from trees to built area and back (Hermosilla et al., 2018). It is critical to consider that the differences in 

parameter values create the potential for the models to respond differently to future changes in LULC or climate change due 

to variations in unmeasured water balance outputs (Myers et al., 2021a). Also, although we did not investigate equifinality 

using model ensembles for this case, we aimed to limit it by employing a calibration approach with multiple optimization 

algorithms (AMALGAM; Vrugt and Robinson, 2007) and calibrating only the most sensitive parameters. Previous work has 335 

found this approach to be robust to equifinality relative to other factors affecting parameter optimizations such as 

calibration/validation time period selection (Myers et al., 2021a) and model structures (Myers et al., 2021b), and our findings 

are in line with previous investigations of LULC input changes impacting SWAT model parameter optimizations (such as 

forest conversion causing runoff curve number adjustment to vary relatively by 21%; Li et al., 2019). 

 340 

 

Figure 7. PAWN sensitivity analysis results ranking the SWAT parameters from most to least sensitive, using 8,000 samples (N) and 

conditioning intervals (n) of 10. The red line is the “dummy” parameter and bars are 95% confidence intervals. KS: Kolmogorov-Smirnov 

statistic. Higher median KS indicates higher sensitivity of SWAT model streamflow output to the parameter. 

3.5 Future directions 345 

Illogical LULC changes betweenclassifications related to seasonal differences in remote sensing data from different 

seasons could be pertinent to models beyond our cases of regressions and SWAT in the eastern United States, such as models 

for which accurate parameterization of LULC processes is essential for simulating the impacts of climate change (Glotfelty et 

al., 2021). For instance, potential seasonal variation in LULC estimates should be a considerationconsidered during an LULC 

update inwere an updated LULC layer  to be used for a modelling approaches such as Hales et al. (2023), whereich bias 350 

corrected a global hydrologic model GEOGloWS is bias corrected for extreme event forecasting in underdeveloped regions 
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using a single instance of Dynamic World data. Our findings show that there is the potential for discrepancies at least for 

temperate watersheds in the eastern United States if the season of LULC update were not accounted for. These illogical LULC 

changes could also be pertinent for models that can use a mosaic approach to represent spatial variability of LULC within 

coarser grid cells (e.g., CLM5; Lawrence et al., 2019). The mosaic approach assumes that land surface properties (e.g., water 355 

fluxes) are homogeneously related to the LULC type (Li et al., 2013; Qin et al., 2023), in which case an illogical conversion 

of 12% area from forest to other types (our Case #3 example) could carry forward into the models, and potentially impact 

water and energy flux estimates or parameterizations similar to an actual LULC change. For instance, deforestation has 

previously been shown to alter heat and carbon fluxes and ecosystem productivity in CLM5 (Marufah et al., 2021; Luo et al., 

2023). Variability within input data sub-grids has also been shown to influence model parameter optimization and performance 360 

simulating hydrology, making it an important aspect to account for (Samaniego et al., 2010). As models advance into higher 

spatiotemporal resolution following increasing computational resources and data availability (e.g., Hales et al., 2023), we 

encourage the modeling community to be cognizant of the potential impacts of illogical seasonal LULC change, such as we 

identified for mixed LULC areas of the eastern United States. The strength of the effect of the illogical seasonal LULC change 

on the model outputs and optimized parameters would depend on many factors including model processes and spatiotemporal 365 

extent. A model intercomparison study in this regard would likely be a meaningful contribution to the advancement of the field 

into higher spatiotemporal capabilities. 

When using seasonal LULC estimates in hydrologic and water quality models, we recommend differentiating HRUs 

as much as possible (like our maximum HRU resolution approach for Case #3) so that the potential for disproportionate impacts 

from LULC season is minimized. Aggregating HRUs by dominant characteristics over an area may lead to high variability in 370 

responses depending on areas where estimated LULC changes are substantial enough to switch dominant HRU LULC 

characteristics, which in our second case was two HRUs in the northern part of the watershed. However, future work could 

investigate approaches to differentiate HRUs that further limit or remove the impacts of seasonal variation in LULC estimates, 

such as separating areas with stable LULC across seasons from those with substantial LULC variability, to isolate the most 

affected parts of the watershed. Thus, HRUs that remain unaffected by seasonal changes in LULC estimates would be 375 

preserved, while HRUs with potential for change due to illogical seasonal LULC transitions could be identified and treated 

separately. In this proposed approach, aggregating HRUs may be possible to resist disproportionate impacts of LULC 

seasonality while alleviating computational burdens of large HRU numbers. Evaluation of such an approach could help 

advance the hydrologic and water quality modeling community into higher spatiotemporal resolution LULC capabilities. 

The impacts of seasonal landcover inconsistencies on geospatial models could yield several additional future research 380 

directions that build upon our findings. As our study used watershed-scale water quality and quantity investigations, further 

work should investigate how seasonal LULC classification inconsistencies could affect assessments of habitat, biodiversity, 

land management, ecology, global hydrology, and future climate based on LULC change (Yang et al., 2022; Di Vittorio et al., 

2018; Hales et al., 2023; Hood et al., 2021). It may be particularly useful to explore whether the high resolution, high frequency 

LULC data could be used in LULC change models (e.g.,Hood et al., 2021) to improve the temporal precision of interpolations 385 
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between discrete LULC images. Future work could also investigate how seasonal LULC classification inconsistencies 

influence models outside our temperate study area (e.g., mountainous, arid, tropical, high-latitude, savannah, Mediterranean, 

continental) to gain a broader understanding of global geospatial model impacts. The use of high-frequency monitoring data 

(Zhang et al., 2023) could be explored to investigate the influence of high temporal resolution LULC on water quality patterns, 

as well as whether a modification to environmental models such as time varying parameters (Li et al., 2019) could account for 390 

the seasonal differences in Dynamic World LULC classifications. Future research could also incorporate LULC pixel 

probabilities from the Dynamic World dataset (Brown et al., 2022; Small and Sousa, 2023) into geospatial models and 

investigate their utility for environmental fields. Post-processing approaches for high temporal resolution LULC products to 

address seasonal inconsistencies (Sexton et al., 2013; Liu and Cai, 2012; Hermosilla et al., 2018; Zhao et al., 2019) could aid 

in alleviating the impacts of seasonal inconsistencies causing that cause model sensitivities as well. Finally, future work could 395 

investigate which seasons of LULC data are most accurate for different purposes, such as vegetation or impervious surface 

classification, and how causes of year-to-year inconsistencies in seasonal LULC estimates could affect models. 

4 Conclusions 

When seasonal changes in LULC data occur, due to classification difficulties such as vegetation cycles (e.g., 

deciduous leaf cover in mixed-LULC areas), hydrologic and water quality models developed using growing season LULC 400 

inputs could behave differently from those using non-growing season LULC (Figure 8), with meaningful differences for 

environmental efforts such as pollutant load reduction targets. The cause in temperate watersheds is primarily a sensitivity to 

changes from built to forest LULC proportions that affect modeled runoff and nutrient yields, representing temporal 

classification inconsistencies rather than actual succession or restoration. Environmental and geospatial researchers should be 

aware of this sensitivity when developing models and assessing changes in LULC as they relate to water quantity and quality, 405 

especially when considering the use of different seasons of available Dynamic World LULC data in a model. The seasonal 

variation in Dynamic World LULC data we identified is pertinent for environmental models of future climates, biodiversity, 

habitat loss, land management, ecology, and biogeochemistry that are dependent on precise assessments of LULC change that 

could be affected by the seasonal classification variation. With a limited geographic scope (e.g., temperate watersheds) and 

small sample of models, our work does not intend to show definitively when, where, or in what model configurations these 410 

sensitivities would occur, but that they are a possibility that modelers should be aware of. We discussed future research 

directions which could advance capabilities to use high spatiotemporal resolution global LULC information such as Dynamic 

World for geospatial models across disciplines. 
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 415 

Figure 8: Conceptual diagram of the conclusions of the study in temperate watersheds of the eastern United States. 
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