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Abstract. Most readily available landuse/landcover (LULC) data are developed using growing season remote sensing images

often at annual time steps, but LULC characteristics can have seasonal inconsistencies, which could impact geospatial models

applied to another season of data. We used the Dynamic World near real-time global LULC dataset to compare how geospatial

environmental models of water quality and hydrology respond to growing vs. non-growing season LULC for temperate
watersheds of the eastern United States. Non-growing season LULC had more built area and less tree cover than growing
season data due to seasonal impacts on classifications rather than actual LULC changes (e.g., quick construction or succession).
In mixed-LULC watersheds, seasonal LULC classification inconsistencies could lead to differences in model outputs
depending on the LULC season used, such as an increase in watershed nitrogen yields simulated by the Soil and Water
Assessment Tool. Within reason, using separate calibration for each season may compensate for these inconsistencies, but lead
to different model parameter optimizations. Our findings provide guidelines on the use of near real-time and high temporal

resolution LULC in geospatial models.

1 Introduction

Environmental models incorporating landuse/landcover (LULC) data are common in many fields including
hydrology, biogeochemistry, ecology, and climate science, often with decision-making implications (Hu et al., 2021;
Baumgartner and Robinson, 2017; Naha et al., 2021; Li et al., 2021). Studies relating hydrology and water quality to LULC
often use an LULC dataset developed primarily from growing season data, such as the United States National Landcover
Database (NLCD; Jin et al., 2019) or Cropland Data Layer (CDL; Boryan et al., 2011), and/or use an LULC dataset available
at an annual time step (Sulla-Menashe and Friedl, 2018; Buchhorn et al., 2020; Gray et al., 2022). Characteristics of LULC
(e.g., canopy density and precipitation interception) vary seasonally, particularly in temperate regions where vegetation leaf

cover is reduced during the non-growing season compared to the growing season (van Beusekom et al., 2014). This has
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prompted popular hydrological models such as the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) to include
seasonal cycles for factors like leaf area and crops (Nkwasa et al., 2020; Frans et al., 2013). However, there can also be temporal
inconsistencies in LULC classifications due to variation in spectral signals that are often not accounted for, such as built LULC
being classified as other types within the course of a year, or other classes being classified as trees too quickly for natural
succession (Cai et al., 2014; Gémez et al., 2016).

Present day high temporal resolution LULC datasets, such as the global Dynamic World (Brown et al., 2022), can
facilitate the study of non-growing season and near real-time impacts of LULC classifications on environmental models,
including those of hydrology and water quality. Dynamic World, which has a 10 m spatial resolution at 5-day intervals from
Sentinel-2 satellites (2A and 2B), has comparable classification accuracy to other LULC datasets including the NLCD,
European Space Agency World Cover, and ESRI Land Cover data (Venter et al., 2022; Brown et al., 2022), and its 5-day
temporal resolution is much more frequent than the annual-or-longer frequency of other common LULC datasets. For
environmental research to take advantage of these high temporal resolution data, we need to understand the impacts of potential
seasonal variation in LULC estimates on geospatial models, which use LULC data to support water resources management
across the globe (Fu et al., 2019; Guo et al., 2020; Murphy, 2020). Evaluation of LULC products at high spatiotemporal

resolution is an important research need with vast societal implications (Radeloff et al., 2024).

Worldwide, investigations of LULC impacts to hydrology and water quality often employ regression-based models
(Fuetal., 2019; Dow and Zampella, 2000), SWAT models simulating LULC change (Ni et al., 2021; Tong et al., 2009), and/or
SWAT model configurations compared objectively to evaluate model performance (Fuka etal., 2012; Li et al., 2019). We used
the Dynamic World LULC dataset to demonstrate how estimates of LULC can change between the growing and non-growing
seasons. We then used a long-term United States National Park Service (NPS) water quality dataset for temperate watersheds
in the eastern United States, along with the above hydrologic and water quality models, to assess the use of seasonal LULC
data as an input for three modeling cases ranging from low to high complexity. We asked “How different are model outputs
(effect sizes) when using growing vs. non-growing season LULC inputs?” and “Are there differences in calibrated model

performance if growing vs. non-growing season LULC input is used?” We hypothesized that watersheds with mixed landcover

types (e.g., a combination of built and trees) would have the greatest variability in landcover classification between growing

and non-growing seasons due to heightened temporal inconsistencies, which could carry over into sensitivities for watershed-

scale geospatial models.

2 Materials and Methods

2.1 Study area and data
Our study area was 37 current (plus 18 historic) wadeable stream water quality sites monitored by the National Park
Service National Capital Region Network (NCRN), with sites in Maryland, Virginia, West Virginia, and Washington DC,

USA (Case #1; Figure 1). All sites are in the Chesapeake Bay watershed and were chosen to help inform natural resources



management (Norris et al., 2011). This includes the 167 km? Rock Creek Watershed of Rock Creek National Park (Case #2)
and the 150 km? Difficult Run Watershed of George Washington Memorial Parkway (Case #3), selected from the above

70 watersheds for having continuous calibration and evaluation data.
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Figure 1: Study area map showing active monitoring sites and all (active + historic) watersheds.

75 Specific conductance (SC) can be used as an indicator of the overall amount of anthropogenic impacts to stream water
quality in a watershed (Dow and Zampella, 2000). SC data from 2005-2018 for our study sites (Norris et al., 2011) were

downloaded from the Water Quality Portal (https://www.waterqualitydata.us/; accessed 9 October, 2022). Discrete samples

were taken every one to three months for each site following data quality controls and protocol (Norris et al., 2011), with an
average of 179+89 measurements per site. Median values over the entire time period were used to compare water quality

80 tendencies between monitoring sites (Dow and Zampella, 2000). Model calibration data are described in Sect. 2.5.
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2.2 Seasonal landcover comparisons

We used Google Earth Engine (Gorelick et al., 2017) to generate a different Dynamic World LULC dataset for
growing season (spring equinox to autumn equinox, 2016) and non-growing season (autumn equinox, 2015 to spring equinox,
2016) for the monitored watersheds by taking dominant LULC for each pixel over these time periods, following the suggested
approach (Brown et al., 2022). Thus, there was one composite image for each season (growing and non-growing) that
represented the most common LULC class for each pixel over the time period of individual images, as developing a SWAT
model requires the input of one LULC layer. Dynamic World’s built class aggregates both hard structures (e.g., buildings and
parking lots) and the surrounding vegetation, as is done in other common SWAT LULC inputs such as NLCD developed
classes (Brown et al., 2022; Jin et al., 2019). We chose the years 2015-2016 because that was the earliest available Dynamic
World data and nearest to the center of our 2005-2018 time period for water quality data, but repeated the process for every
year of available Dynamic World data (2016-2021) for the Rock Creek and Difficult Run Watersheds to verify there was a
seasonal cycle throughout years (see below). The timing of the data also aligned with the instance of NLCD data from 2016

for comparisons.

2.3 Experimental design

Different watersheds were tested in each case to demonstrate that the seasonal LULC estimate differences were not
limited to a single watershed (Figure 2). For our water quality regressions (Case #1), we developed quadraticlinear least-
squares regression models of median stream SC values over the entire 2005-2018 period for 37 currently monitored NCRN
sites explained by seasonal Dynamic World 2016 built LULC. The purpose for the water quality regressions case was to
evaluate how well Dynamic World data could identify an LULC forcing affecting water quality at the watershed scale,
following the common regression approach used in water quality investigations worldwide (Fu et al., 2019). Performance

measures including Akaike s Information-Criterion-{AIC;—root mean square error (RMSE; Moriasi et al., 2007)_ were used to
compare models from different seasons. For the LULC change simulation (Case #2), we developed and calibrated SWAT

hydrologic and nitrogen (nitrate-N + nitrite-N) yield models for the Rock Creek Watershed, then used them to simulate an
LULC change between growing and non-growing seasons. The purpose for the LULC change simulation case was to evaluate
how a model calibrated to one LULC season could respond to LULC data from another season, such as when simulating
impacts of a watershed LULC change, particularly with regards to sensitivity to potential illogical LULC transitions in the
high temporal frequency data. For the independently calibrated models (Case #3), we developed and calibrated SWAT
hydrologic models with growing and non-growing season Dynamic World 2016 inputs independently of one another for the
Difficult Run Watershed. The purpose for the independently calibrated models case was to assess the performance of
seasonally tuned models rather than the single model of the land cover change case, to provide fairer comparison of calibrated
model performances since each model was optimized to its unique LULC situation. For each case we repeated the analysis

with LULC from the commonly-used NLCD 2016 for comparison.
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Figure 2: Conceptual diagram of the study.

2.4 Soil and Water Assessment Tool

SWAT is the most common water quality model globally (Fu et al., 2019)_and has been used in over 6,000 peer-

reviewed studies (https://www.card.iastate.edu/swat _articles/, accessed 7 January, 2024). The SWAT models (rev. 681) used

in this study simulated streamflow using a water balance approach (Arnold et al., 1998, 2013), surface runoff using the runoff
curve number (NRCS, 1986), groundwater flow using a water balance for shallow aquifer storage (Arnold et al., 1998),
snowmelt based on snowpack temperature (Fontaine et al., 2002), and evapotranspiration using the Penman-Monteith method
(Monteith, 1965; Ritchie, 1972). Nitrogen yields were simulated based on estimates of runoff, crop use, lateral flow,
percolation, and concentrations in soil and water (Arnold et al., 1998). SWAT divides a watershed into spatial subbasins, which
may be further divided into unique combinations of soils, landuse, and slopes called Hydrologic Response Units (HRUs).
Subbasins were delineated using the program QSWAT. In the development of the SWAT models, one spatial data layer for
each of elevation, soils, and LULC (Table S1) was input to generate tables that represent base watershed conditions (Abbaspour
etal., 2019; Leeper et al., 2015; Lehner et al., 2006; Lindsay, 2022; Sugarbaker et al., 2014; USGS, 2022; USDA, 2022; Ries
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et al., 2017). We created a new SWAT LULC look-up table for QSWAT to read Dynamic World data (Table S2). The Rock
Creek models for LULC change simulation (Case #2) had 13 subbasins, each assigned the dominant HRU, as has been done
to more efficiently use computational resources (Myers et al., 2021b; Arabi et al., 2008). Gridded 4 km GridMET historic
weather inputs were used as the Rock Creek watershed extends over 30 km from north to south (Abatzoglou, 2013). The
Difficult Run SWAT maodels (Case #3) had 7 subbasins. Our Difficult Run Watershed SWAT models were constructed so that
the maximum number of HRUs was incorporated, as has been done to compare independently calibrated model performance
(Fukaetal., 2012), with weather data from National Oceanic and Atmospheric Administration (NOAA) station USW00093738
(Table S1). We chose the SWAT model for this study because it can be used to support water resource decision making in
mixed-LULC watersheds (Koltsida et al., 2023).

2.5 Sensitivity analysis and calibration

The Rock Creek models (Case #2) used parameters calibrated with a Latin hypercube approach (to generate a large
number of potential parameter sets; Abbaspour et al., 2004) to the SWAT model with growing season Dynamic World 2016
inputs, using R-SWAT software (Nguyen et al., 2022). R-SWAT is an open source, graphic interface, parallelizable, and user-
friendly tool to calibrate the SWAT model and analyze results (Nguyen et al., 2022). The parameters optimized during the
Latin hypercube approach, which had 2,500 iterations, are shown in Table S3. Calibration and evaluation data were complete
monthly streamflow (n=108 months) and nitrogen (n=10 months) data from the USGS station 01648010 (concentrations
converted to loads by multiplying by streamflow), split with the first half for calibration and the latter half for evaluation. The
years 2013-2021 were used in the simulations as these were the years the USGS station had been active for streamflow, and
there was a 3 year model warm-up period (2010-2012) to reduce the influence of initial states. The calibrated parameter set
was chosen as having the best performing Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) values for streamflow
and nitrogen yield out of the sample of parameter sets.

For Case #3, sensitivities of Difficult Run Watershed SWAT model performance to specific parameters were analyzed
using the density-based PAWN method in the Sensitivity Analysis for Everybody (SAFE) toolbox (Pianosi and Wagener,
2015; Pianosi et al., 2015; Zadeh et al., 2017). Eight thousand SWAT model runs with growing season Dynamic World 2016
data were used for the sensitivity analysis. We analyzed the sensitivity of 35 parameters and then chose the top 10 parameters
with sensitivities greater than the dummy parameter to use in the calibration (Table 1-and-Figure-S1). We then calibrated the
Difficult Run Watershed SWAT models at the daily time step using the AMALGAM optimization algorithm (Vrugt and
Robinson, 2007) with 3200 iterations and NSE as the objective function (the metric that the algorithm aims to maximize) and
observed daily streamflow from USGS station 01646000 (with the first half for calibration and latter half for validation; Figure
S12). In addition to NSE, metrics for Kling-Gupta Efficiency (KGE; Gupta et al., 2009) and refined Index of Agreement (dr;

Willmott et al., 2012) were calculated to confirm our interpretations, with higher values implying better model performance.
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Table 1: Parameters used in SWAT model streamflow calibration for Difficult Run Watershed (Case #3), for models input with growing
and non-growing season Dynamic World 2016 data, as well as the model with NLCD 2016 input._Further descriptions of these parameters
can be found in Table S4.

Symbol Definition f Lower Upper Calibrated Calibrated Calibrated
Limit  Limit Growing  Non-growing NLCD 2016
CH_KIl.rte Channel hydraulic 0.1 150 0.11 3.86 0.14
conductivity (mm/h) (v)
ALPHA BNK.rte Bank flow recession 0.01 1 0.14 0.27 1.00
constant (v)
CN_F.mgt Runoff curve number (r) -0.2 0.2 -0.17 -0.20 -0.08
SNO50COV.bsn  Fraction of SNOCOVMX  0.01 0.8 0.03 0.03 0.25
for 50% cover (V)
ESCO.hru Soil evaporation 0.01 1 0.01 0.03 0.35
compensation coef. (v)
CH_NIl.rte Manning's n value for 0.01 0.30 0.30 0.30 0.30
main channel (v)
SOL_BD.sol Soil moist bulk density (r) -0.2 0.2 -0.19 -0.01 0.00
SNOCOVMX.bsn  Snow depth above which 0 500 471 496 205
is 100% cover (mm) (v)
SFTMP.bsn Snowfall temperature 0 3 0.95 0.98 1.02
threshold (°C) (v)
SOL_AWC.sol Available Water Capacity ~ -0.25 0.25 -0.23 -0.25 -0.23
(r)

T A ‘v’ indicates that the original parameter from QSWAT was replaced by the calibrated value_globally, in the same unit. An
165 ‘r’ indicates that the original parameter was modified relatively, multiplying it regionally by 1 + the calibrated value (e.g. a
value of -0.2 reduces the original parameter by 20%).

3 Results and discussion
3.1 Seasonal landcover comparisons

The Dynamic World 2016 data classified a greater area of the 55 watersheds as trees during the growing season than

170 during the non-growing season, typically by 5-10% of watershed area (Figure 3a). During the non-growing season, some areas
classified as trees during the growing season were instead given built or shrubland LULC classes. Differences in seasonal
LULC classifications in Dynamic World data were strongest in mixed-LULC watersheds (i.e., watersheds with 15% to 85%

of the area classified as built LULC), and weaker in very low built or very high built percentage watersheds (R?=0.49, df=52,

7



F=24.82, p<0.001; Figure 3b). There was a relative mean absolute difference (RMAD) of 9.0% of watershed area between

175 NLCD 2016 developed (including open space, low, medium, and high intensity) and Dynamic World 2016 growing season

180

built data (5.9% using non-growing season built data) for the 37 currently monitored watersheds (Figure S32 and Table S54).
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Figure 3: All using Dynamic World 2016: a) Difference between growing and non-growing season LULC for 55 watersheds (classes of
water, flooded vegetation, barren, and snow/ice were approximately 1% of watershed area so omitted; boxplots show median, interquartile
range (IQR), and outliers outside 1.5 * IQR), b) Quadratic relationship between built area and the seasonal difference in built area for 55
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watersheds, with 95% confidence intervals as dashed lines, c¢) and d) Time series of built area estimates for the Rock Creek and Difficult
Run Watersheds, respectively, and e,f) same as above but for tree area.

The differences between seasons were not limited to a single year of data or watershed and could be more or less
pronounced depending on the watershed and time period. For instance, our study watershed for the LULC change simulation
(Case #2, Rock Creek) showed a 9% increase in built LULC, and a 12% decrease in tree area, in non-growing season relative
to growing season Dynamic World data from 2016. Meanwhile, our study watershed for the independently calibrated models
(Case #3, Difficult Run) showed a 12% decrease in tree cover and a 10% increase in built areas in the non-growing season
compared to the growing season Dynamic World 2016. Over the entire time period of available Dynamic World estimates for
these watersheds, growing season LULC estimates generally had more tree area, while non-growing season had more built

area, and 2016 had the most pronounced differences (Figure 3c-f). For 2019, when the next instance of NLCD is available for

comparisons, differences between non-growing and growing season estimates would be less pronounced for the Rock Creek

Watershed (+5% built area and -8% trees), but approximately the same as 2016 for the Difficult Run watershed (+10% built
area and -11% trees). However—n some years such as 2017-2018 {e-g+—2017-2018)-the relationship could be reversed;

differentyearsofseasonalLULCinenvironmentabmodels. Potential causes for these differences include vegetation phenology

(e.q., green up) affected by climate (Khodaee et al., 2022), or measurement artifacts such as atmospheric conditions (aerosol

scattering, water vapor, and absorption of light) and reflectance (bidirectional reflectance and zenith angle) which can cause

non-random errors in top-of-atmosphere readings used for classifying LULC (Zhang et al., 2018; Kaufman, 1984; Rumora et

al., 2020). Dynamic World used a calibrated surface reflectance product to train the classifier (Sentinel-2 Level-2A; L2A) but

a top-of-atmosphere product (Sentinel-2 Level 1C; L1C) to generate the dataset (Brown et al., 2022). Previous work in our

study area has found strong inter-annual variations across spectral bands in remotely sensed imagery that were caused by

uncorrected atmospheric conditions and could impact multi-year LULC classification (Sexton et al., 2013). These differences

in atmospheric conditions and reflectance would not be corrected for in Dynamic World data and -potentially contribute to

differences in classification results over time.

Changes in LULC estimates between seasons were often concentrated along forested edges of mixed-LULC areas
(Figure S34). In these deciduous areas, such as the edges of mixed residential/forested zones, leaf cover decreases during the
non-growing season, which could be exposing other types of LULC underneath, or making forest more difficult to distinguish
from surrounding built area for the classifications. Actual on-the-ground changes from built LULC to other types, or from
other LULC types to trees (e.g., succession), are not likely to be occurring within the short (seasonal) time interval between
our LULC composites (Cai et al., 2014).



3.2 Case #1: Water quality regressions

Median stream water specific conductance (SC) was positively correlated with 2016 Dynamic World built LULC

215 during both seasons (Figure 4; Table 2). This relationship is expected and confirms that urban development has a strong
positive effect on surface water salinization (Utz et al., 2022; Kaushal et al., 2005). The model for growing season built LULC

vs. median SC had an R? of 0.69-slepe-of-6-41, while the same model for non-growing season LULC had an R? of 0.70-slepe
of6.086, and the AIC s RMSE’s for both models were within L-AIC-urit3 RMSE units (150.16484 and 148.08483, respectively),
which suggests similar performance. For perspective, a model created with developed classes from NLCD 2016 had a similar

220 fit as both seasonal models (R? of 0.66-slepe-of-6-19 and AlC-of 486RMSE of 155.91; {Table 2)-with-a-similarfit-as-both
seasonal-medels(R*rangingfrom-0.65-0.68), supporting that Dynamic World could be relevant for identifying LULC forcings

affecting water quality particularly where regional products such as NLCD are not available.

Table 2: Regression models for specific conductance for the growing vs. non-growing seasons of Dynamic World 2016 built data and the
225 NLCD 2016 developed classes model (df=345). Cl: upper and lower 95% confidence intervals. Quadratic equation: ax? + bx + c.

LULC a b C R? F p-value Cl(a) Cl(b) RMSE

Dyn. World growing season -0.05 10.83 123.65 0.69 37.52 <0.001 -0.13-0.02 4.58-17.07 150.16
Dyn. World non-growing season -0.04 9.96 113.59 0.7 39.07 <0.001 -0.11-0.02 3.70-16.21 148.08

NLCD 2016 -0.05 11.03 49.04 .66 33.57 <0.001 -0.13-0.08 3.30-18.76 155.91

o

10



230

235

240

245

600 800
I |

400
|

Specific conductance (USicm)

(] :
S i ¢ Dyn. World 2016 growing
e < Dyn. World 2016 non-gro.
2o NLCD 2016
e | I —— | I | |
0 20 40 60 80

Built or developed landuse (%)

Figure 4: Modeled median specific conductance (SC) for 37 watersheds comparing Dynamic World 2016 growing and non-growing season
built and NLCD 2016 developed LULC, with 95% confidence intervals as dashed lines.

3.3 Case #2: Hydrologic and nitrogen yield models

Our Rock Creek Watershed SWAT model for streamflow and nitrogen yield, developed and calibrated using Dynamic
World 2016 growing season data, performed with a streamflow calibration NSE of 0.56 (validation NSE of 0.65), nitrogen
yield calibration NSE of 0.45 (validation NSE of 0.80), and nitrogen yield calibration percent bias (PBIAS, where <0 implies
overestimation bias; Gupta et al., 1999) of 14.6% (validation PBIAS of 1.6%) (Table 3). Therefore, we concluded that the
model developed with Dynamic World 2016 growing season data was reliably simulating real conditions at the monthly time
step (Figure 5a,b; red circles). When the calibrated parameter adjustments were transferred to the SWAT model developed
with non-growing season LULC (as could be done when simulating an actual LULC change), streamflow performance
decreased by approximately 0.30 NSE units and nitrogen yield PBIAS became -34.4% to -57.4%, implying overestimation of
nitrogen (Table 3; Figure 5a,b; blue circles). Also, the model simulated 50% greater nitrogen yield over the entire 2013-2021
time period when non-growing season Dynamic World 2016 data was used as the LULC input, rather than growing season
LULC (Figure 5c¢). These discrepancies between model outputs are not negligible. In relative terms, this difference is greater
than the current pollutant load reduction target for Chesapeake Bay of 17% total nitrogen load (Maryland Department of
Environment, 2019). Therefore, we advise to take the potential seasonal variability of Dynamic World LULC estimates into

consideration if used to design water quality improvement efforts, particularly when decision making is involved, or an LULC

11



change is being simulated. A model could be fit to one season of LULC, but have bias if transferred to a different time period

of LULC estimates due to temporal inconsistencies.

250 Table 3: Model performance metrics for the calibrated Rock Creek hydrologic model (Case #2) for streamflow and nitrogen yield, based on
Nash Sutcliffe Efficiency (NSE), mean absolute error (MAE), and percent bias (PBIAS, where <0 implies overestimation bias), at the
monthly time step._In this case, model parameters were all calibrated to growing season Dynamic World 2016 data to investigate the impacts
of simulating an LUL C change using non-growing season data.

SWAT LULC input Period Streamflow N yield N yield N yield
NSE NSE MAE (kg) PBIAS
Dyn. World 2016 growing  Calibration 0.65 0.45 713 14.6%
season
Dyn. World 2016 growing  Validation 0.56 0.80 909 1.6%
season
Dyn. World 2016 non- Calibration 0.35 -0.53 1177 -34.4%
growing season
Dyn. World 2016 non- Validation 0.21 -2.00 3205 -57.4%
growing season
NLCD 2016 Calibration 0.71 -1.14 1694 -7.8%
NLCD 2016 Validation 0.85 -0.33 2364 22.1%
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Figure 5: a) Observed vs. simulated monthly discharge for the Rock Creek Watershed comparing Dynamic World 2016 growing and non-
growing season built and NLCD 2016 developed LULC, b) Same for monthly nitrogen (N) yields for Rock Creek, and c) Modeled average
annual nitrogen yields for Rock Creek.
260 The differences observed between models using Dynamic World LULC were due to the 9% increase in built areas in

non-growing season Dynamic World 2016 data, which have more impervious surfaces, a higher runoff curve number, and

generate proportionally more water and nutrient runoff than the forested areas which were classified during the growing season.
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This could be particularly problematic when using computationally more efficient SWAT models that assign subbasin

conditions based on the dominant HRU, as a change in dominant LULC type in a watershed could result in different subbasin

conditions in the model greater than the proportional change in LULC.

between-cells{Clark—et-al-2015).For perspective, the nutrient outputs for the SWAT model with Dynamic World 2016
growing season LULC were similar to those simulated by the SWAT model with NLCD 2016 LULC input using the same

parameter adjustments (Figure 5c).

3.4 Case #3: Independently calibrated hydrologic models

The individually calibrated SWAT models using growing season vs. non-growing season Dynamic World 2016
LULC input for the Difficult Run Watershed had comparable performance when simulating streamflow, despite the differences
in LULC inputs (10% increase in built areas and 12% decrease in tree cover for the non-growing season LULC input). NSE
performance metrics at the daily time step were between 0.52 and 0.54 for each model with Dynamic World LULC over the
calibration and validation time periods, Khng-Gupta—Efficiency(KGE) was between 0.61 and 0.75, and refined-tndex—-of
Agreement-{d,; (which by not squaring errors provides a better measure of low flow performance) only ranged between 0.68
and 0.70 (Table 4; scatterplots in log scale to show daily baseflows and time series are presented in Figure 6a-d). For
perspective, the SWAT model calibrated with NLCD 2016 LULC had an NSE of 0.48 for the calibration period and 0.47 over
the validation period (Table 4).

Table 4: Comparison of streamflow performance for calibrated SWAT models developed independently with Dynamic World 2016 growing
season LULC input, Dynamic World 2016 non-growing season LULC input, and NLCD 20186, at the daily time step for the Difficult Run
Watershed (Case #3). Performance indices are R?, NSE, Kling-Gupta Efficiency (KGE), and refined Index of Agreement (dr).

SWAT landuse input Period R? NSE KGE dr
Growing season Calibration 0.54 0.53 0.61 0.69
Non-growing season Calibration 0.54 0.54 0.65 0.70
NLCD 2016 Calibration 0.49 0.48 0.56 0.69
Growing season Validation 0.56 0.53 0.73 0.68
Non-growing season Validation 0.57 0.52 0.75 0.68
NLCD 2016 Validation 0.53 0.47 0.69 0.68
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comparing independently calibrated models with a) Dynamic World 2016 growing season LULC, b) Dynamic World 2016 non-growing
season LULC, and ¢) NLCD 2016. Also d) Time series of Difficult Run modeled discharge.

The most sensitive parameters for the Difficult Run Watershed case were channel hydraulic conductivity (CH_KII),
bank flow recession coefficient (ALPHA_BNK), and runoff curve number (CN_F) (Figure-SiFigure 7). Among these and
other sensitive parameters, there were differences in optimized values depending upon the SWAT LULC input (Table 1). For

example, the CN_F adjustment optimized to -0.17 for growing season Dynamic World 2016, -0.20 for non-growing season
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295

300

305

310

315

Dynamic World 2016, and -0.08 for NLCD 2016 inputs, suggesting that the optimization adjusted runoff processes to
compensate for the different proportions of LULC. The difference in forests of 12% of watershed area between growing and
non-growing season Dynamic World 2016 data for Difficult Run (Table S54) is as large a difference as real changes in forests
that have been found to cause these sensitivities in model parameters (Li et al., 2019), but was likely caused by classification
variation rather than an actual cycle from trees to built area and back (Hermosilla et al., 2018). It is critical to consider that the
differences in parameter values create the potential for the models to respond differently to future changes in LULC or climate

change due to variations in unmeasured water balance outputs (Myers et al., 2021a).
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Figure 7. PAWN sensitivity analysis results ranking the SWAT parameters from most to least sensitive, using 8,000 samples (N) and
conditioning intervals (n) of 10. The red line is the “dummy” parameter and bars are 95% confidence intervals. KS: Kolmogorov-Smirnov
statistic. Higher median KS indicates higher sensitivity of SWAT model streamflow output to the parameter.

3.5 Future directions

Illogical LULC changes between data from different seasons could be pertinent to models beyond our cases of

regressions and SWAT in the eastern United States, such as models for which accurate parameterization of LULC processes

is essential for simulating the impacts of climate change (Glotfelty et al., 2021). For instance, potential seasonal variation in

LULC estimates should be a consideration were an updated LULC layer to be used for modelling approaches such as Hales et

al. (2023), which bias corrected a global hydrologic model GEOGIoWS for extreme event forecasting in underdeveloped

regions using a single instance of Dynamic World data. Our findings show that there is the potential for discrepancies at least

for temperate watersheds in the eastern United States if the season of LULC update were not accounted for. These illogical

LULC changes could also be pertinent for models that can use a mosaic approach to represent spatial variability of LULC

within coarser grid cells (e.g., CLM5; Lawrence et al., 2019). The mosaic approach assumes that land surface properties (e.q.,
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water fluxes) are homogeneously related to the LULC type (Li et al., 2013; Qin et al., 2023), in which case an illogical

conversion of 12% area from forest to other types (our Case #3 example) could carry forward into the models, and potentially

impact water and energy flux estimates or parameterizations similar to an actual LULC change. For instance, deforestation has

previously been shown to alter heat and carbon fluxes and ecosystem productivity in CLM5 (Marufah et al., 2021; Luo et al.,

2023). Variability within input data sub-grids has also been shown to influence model parameter optimization and performance

simulating hydrology, making it an important aspect to account for (Samaniego et al., 2010). As models advance into higher

spatiotemporal resolution following increasing computational resources and data availability (e.g., Hales et al., 2023), we

encourage the modeling community to be cognizant of the potential impacts of illogical seasonal LULC change, such as we

identified for mixed LULC areas of the eastern United States. The strength of the effect of the illogical seasonal LULC change

on the model outputs and optimized parameters would depend on many factors including model processes and spatiotemporal

extent. A model intercomparison study in this regard would likely be a meaningful contribution to the advancement of the field

into higher spatiotemporal capabilities.

The impacts of seasonal landcover inconsistencies on geospatial models could yield several additional future research

directions that build upon our findings. As our study used watershed-scale water quality and quantity investigations, further

work should investigate how seasonal LULC classification inconsistencies could affect assessments of habitat, biodiversity,

land management, ecology, global hydrology, and future climate based on LULC change (e.g., Yang et al., 2022; Di Vittorio

et al., 2018; Hales et al., 2023). 1t may be particularly useful to explore whether the high resolution, high frequency LULC

data could be used in LULC change models (e.g., Hood et al., 2021) to improve the temporal precision of interpolations

between discrete LULC images. Future work could also investigate how seasonal LULC classification inconsistencies

influence models outside our temperate study area (e.g., mountainous, arid, tropical, high-latitude, savannah, Mediterranean,

continental) to gain a broader understanding of global geospatial model impacts. The use of high-frequency monitoring data

(Zhang et al., 2023) could be explored to investigate the influence of high temporal resolution LULC on water quality patterns,

as well as whether a modification to environmental models such as time varying parameters (Li et al., 2019) could account for

the seasonal differences in Dynamic World LULC classifications. Future research could also incorporate LULC pixel

probabilities from the Dynamic World dataset (Brown et al., 2022; Small and Sousa, 2023)_into geospatial models and

investigate their utility for environmental fields. Post-processing approaches for high temporal resolution LULC products to

address seasonal inconsistencies (Sexton et al., 2013; Liu and Cai, 2012; Hermosilla et al., 2018) could aid in alleviating the

impacts of seasonal inconsistencies causing model sensitivities as well. Finally, future work could investigate which seasons

of LULC data are most accurate for different purposes, such as vegetation or impervious surface classification, and how causes

of year-to-year inconsistencies in seasonal LULC estimates could affect models.
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4 Conclusions

When seasonal changes in LULC data occur, due to classification difficulties such as vegetation cycles (e.g.,

deciduous leaf cover in mixed-LULC areas), hydrologic and water quality models developed using growing season LULC

| inputs could behave differently from those using non-growing season LULC (Figure#Figure 8), with meaningful differences
350 for environmental efforts such as pollutant load reduction targets. The cause in temperate watersheds is primarily a sensitivity
to changes from built to forest LULC proportions that affect modeled runoff and nutrient yields, representing temporal
classification inconsistencies rather than actual succession or restoration—{(Cai—et—al;—2014-—Hermosita—et-al,—2018).
Environmental and geospatial researchers should be aware of this sensitivity when developing models and assessing changes

in LULC as they relate to water quantity and quality, especially when considering the use of different seasons of available

355 Dynamic World LULC data in a model. The seasonal variation in Dynamic World LULC data we identified is pertinent for
environmental models of future climates, biodiversity, habitat loss, land management, ecology, and biogeochemistry that are
dependent on precise assessments of LULC change that could be affected by the seasonal classification variation-{Hu-et-al;

. With a limited geographic scope (e.g.,
temperate watersheds) and small sample of models, our work does not intend to show definitively when, where, or in what

360 model configurations these sensitivities would occur, but that they are a possibility that modelers should be aware of —and

..We discussed future research directions which could advance capabilities to use high

spatiotemporal resolution global LULC information such as Dynamic World for geospatial models across disciplines.

Hydrologic and Water Quality Models

e

GROWING SEASON NON GROWING SEASON
landcover input landcover input
(conventional) (experiment)

-

Estimated more y Estimated less

tree cover, less tree cover, more
built area built area
Simulated e;s\\—\_\-\—\ Simulated more
runoff and runoff and
pollution \ b ) / pollution

& o

Aligned outputs by calibrating models
for each landcover season separately

365 Figure 8: Conceptual diagram of the conclusions of the study in temperate watersheds of the eastern United States.
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Code and data availability

Data from this study, including the LULC images, water quality data, and model outputs from each case, are available
from Mendeley Data at https://doi.org/10.17632/bbb9xbpv22.3 (Myers et al., 2022). Codes from this study, including Google

Earth Engine scripts and those to reproduce figures and analyses, are available on GitHub at

https://qgithub.com/Danmyers901/Calibration/tree/master/Landcover.

Supplementary information

Supplementary material for this article is available online for Figures S1-S34 and Tables S1-S54.
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