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Dear authors, 

 

After the previous round with substantial revisions, reviewer #1 is satisfied however due to the 

strong disagreements between the two original two reviewers I asked another expert to have an 

additional look and he find that major revision are required. Please address these and I'll share 

the manuscript only with this new reviewer for a review. 

 

Kind regards, 

Niko 

 

Response: Thank you, Dr. Wanders and the first two reviewers for helping to improve 

our manuscript. We detail responses to the additional reviewer below. 

 

 

Reviewer 1: This is a revision of a previous submission which required additional work before 

publication. The authors have done a good job addressed the comments following the previous 

review. In particular, the model comparisons, figures and discussion/conclusions have been 

improved. Hence, I would recommend publication in HESS. 

 

 

Reviewer 2: 

Dear authors, 

 

Please find attached an annotated PDF with my comments. Briefly summarizing those: 

 

1. I would strongly recommend you clarify the novelty and/or relevance of the analysis you 

present. The main conclusion seems theoretically clear to me: land cover classifications can be 

inaccurate, and using inaccurate land cover classifications as model inputs leads to unhelpful 

model results. I don't think anyone will argue with this, but it is somewhat unclear to me what 

your analysis adds over what is already known about this problem.  

 

Response: Thank you, Dr. Knoben, for the thorough review and improvements to the 

clarity and impact of our manuscript. We have updated the manuscript to include more 

details about the novelty of our findings and technical workings of the models. We detail 

these in responses to your major comments below.  

 

In summary, hydrologic and water quality models, such as the one used in the 

manuscript, are traditionally developed using LULC classified during the growing season 

or annually. Previous work has largely focused on impacts of LULC changes on these 

models over longer (e.g., 10+ year) time spans. However, the recent availability of 

analysis-ready LULC at higher spatiotemporal resolution such as Dynamic World has 

made it more feasible for models to incorporate non-growing season LULC or LULC 

updates at shorter time spans (for instance, simulating the impacts of new settlements or 
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forest conversion on river dynamics and biogeochemical budgets). This makes 

evaluations of seasonal LULC classification impacts on models critical as we move into 

higher spatiotemporal resolution for study designs and interpretations of results. 

 

So far as we know, ours is the first study to evaluate the use of the seasonal Dynamic 

World data in a hydrologic and water quality modeling framework. Our study is novel in 

that we provide guidance for other modelers who are aiming to use the high 

spatiotemporal resolution LULC data, using SWAT or other models. We have now 

updated our introduction and discussion to add clarity for the novelties, and provided 

additional beneficial guidance following your ideas. Page and line numbers in our 

responses represent locations in the track changes manuscript. 

 

 

2. I believe the description of how HRUs are defined needs more work. This is important 

because the difference in LULC are propagated onto the different HRUs. Knowing more clearly 

which data fed into the HRUs, and how the size and location of the HRUs compares to the size 

and location of the LULC changes/uncertainties you identify is critical for correctly interpreting 

the results shown in this paper. 

 

Response: To aid with interpreting our results, we have now included additional 

descriptions for how precisely HRU LULC characteristics were distributed in each 

modeling case, including maps and charts to help visualize the sizes and locations of 

HRUs in the models (see below for Figures S4 and S5). We also expand on why HRU 

delineation is pertinent for our study, as it is a way by which seasonal variation in LULC 

estimates affects model responses. We describe results for where specific HRU 

characteristics are being impacted by the model’s LULC input, and use the additional 

HRU detail to further develop guidance for using high spatiotemporal frequency LULC 

data in hydrologic and water quality models. In particular, we discuss the different HRU 

delineation strategies such as aggregating by dominant LULC characteristics or 

maximizing HRU resolution, and how each could be affected by LULC seasonality, 

while also introducing your idea for separating stable from changing HRUs. Full 

descriptions for these actions are in the responses below. 

 

 

Kind regards, 

Wouter Knoben 

 

 

Responses to PDF comments: 

 

1 Introduction. SUMMARY:  



3 

I think the aspects that are covered int his introduction make sense, but what I think is lacking is 

an overview of the current understanding of this topic. What is already known about the use of 

long-term average LULC data vs seasonal LULC data in modelling contexts? 

 

It may make sense to also add on the topic of uncertainty in this literature overview, particularly 

because some products (e.g., MODIS: see quote below ) specifically recommend that users do 

not use the year-to-year variation in LULC maps due to issues with the classification algorithm. 

What does this imply for the use of LULC maps at shorter temporal time scales? 

 

-- 

"After stabilization, the classifications are condensed into the final set of six legends and 

associated QA information. Despite improving the stability to the product, we urge users not to 

use the product to 

determine post-classification land cover change. The amount of uncertainty in the land cover 

labels for any one year remains too high to distinguish real change from changes between classes 

that are spectrally indistinguishable at the coarse 500-m MODIS resolution" 

 

https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf 

 

Response: We have added further literature review to our introduction that includes an 

overview of temporal LULC inconsistencies and approaches to address them, as well as 

transitioning to how hydrologic and water quality models fit in. 

 

“Addressing temporal inconsistencies is important for accurately identifying LULC 

change (Sexton et al., 2013; Liu and Cai, 2012; Hermosilla et al., 2018) and various 

approaches have been developed that include incorporating time as a co-dependent in 

the classifier to remove illogical changes (Graesser et al., 2022), and probability-based 

statistics to separate noise from trends (Zhu et al., 2012; Zhu and Woodcock, 2014; 

Sulla-Menashe et al., 2019; Zhao et al., 2019). However, these approaches are typically 

not readily incorporated into watershed-scale hydrologic and water quality model 

frameworks, which take pre-classified LULC as model input (Li et al., 2019).” (page 2, 

lines 41-46 in the track changes manuscript) 

 

 

Page 2, lines 59-60. Note to self: impact of parameter differences on long-term projections could 

be relevant. 

 

 

2 Materials and Methods. SUMMARY:  

This section is mostly complete but various clarifications are needed. In particular the way in 

which HRUs are defined is critical to understanding the study (because the impact of seasonal 

LULC changes affects the dominant land cover on a per-HRU basis), and needs to be clarified. 
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Response: We have expanded our descriptions of model HRU assignments and also 

provided figures to visualize the approach. Further descriptions of how HRU LULC 

populations affect modeling results can be found in our response to comment “Page 6, 

lines 127-128.” below. 

 

“SWAT divides a watershed into spatial subbasins, which may be further divided into 

unique combinations of soils, landuse, and slopes called Hydrologic Response Units 

(HRUs). HRUs are pertinent to this work as their delineations are in part determined by 

LULC. HRUs are a thus a mechanism by which differences in LULC classification, 

including erroneous differences derived from seasonality in remote sensing data, can 

impact the model. Subbasins were delineated using the program QSWAT. In the 

development of the SWAT models, one spatial data layer for each of elevation, soils, and 

LULC was input to generate tables that represent base watershed conditions.” (page 6, 

lines 141-147) 

 

“The Rock Creek models for LULC change simulation (Case #2) had 13 subbasins, each 

assigned the dominant HRU, as has been done to more efficiently use computational 

resources (Myers et al., 2021b; Arabi et al., 2008). Gridded 4 km GridMET historic 

weather inputs were used as the Rock Creek watershed extends over 30 km from north to 

south (Abatzoglou, 2013). The Difficult Run SWAT models (Case #3) had 7 subbasins. 

Our Difficult Run Watershed SWAT models were constructed so that the maximum 

number of HRUs was incorporated (i.e., no minimum HRU area threshold), as has been 

done to compare independently calibrated model performance (Fuka et al., 2012), with 

weather data from National Oceanic and Atmospheric Administration (NOAA) station 

USW00093738 (Table S1). Further descriptions of model HRU numbers and proportions 

of watershed HRU areas with different LULC inputs can be found in Figures S4 and S5.” 

(page 6, lines 149-156) 
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Figure S4. Delineated hydrologic response units (HRUs) for the Rock Creek Watershed 

(Case #2; top two rows) and Difficult Run Watershed (Case #3; bottom two rows). Rows 

show the input LULC data for each watershed and the resulting HRUs, while columns 

differentiate Dynamic World 2016 (DW16) growing and non-growing seasons and 

NLCD 2016. HRU numbers for Rock Creek were 13 for each LULC input, as each 

subbasin was assigned the dominant combination of LULC, soils, and slopes. HRU 

numbers for Difficult Run (which used the maximum HRU number approach) were 43 

for Dynamic World 2016 growing season, 48 for Dynamic World 2016 non-growing 

season, and 111 for NLCD 2016 input. 
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Figure S5. a) Proportions of HRU area being populated with Dynamic World 2016 trees 

and built area classes for the Rock Creek and Difficult Run Watersheds, split between 

growing and non-growing season inputs, and b) Proportions of HRU area being 

populated with NLCD 2016 developed and forest classes. All other HRU LULC 

assignments combined made up 0-4% of each watershed for Dynamic World inputs, and 

2-7% of each watershed for NLCD inputs. For Rock Creek (dominant HRU approach), 

there was a difference in HRUs populated with Dynamic World 2016 trees class of 

21.8% between growing and non-growing seasons, while that difference was 12.8% for 

Difficult Run (maximum HRU approach). 

 

 

Page 3, lines 79-80. It's not (yet) clear to me why this sentence is relevant to the current 

manuscript. 

 

Response: We have reworded this sentence to be clearer. 
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“Median SC values over the entire time period were used as the indicator of 

anthropogenic impacts to each stream for comparisons between monitoring sites (Dow 

and Zampella, 2000).” (page 4, lines 91-93) 

 

 

Page 4, lines 85-87. I'm uncertain yet if this will matter, but this feels a little odd to me. I can 

envision a case where, due to seasonal changes in vegetation density, the dominant land class 

changes from vegetated to barren (or some sort of similar change). It's only a limitation of 

SWAT that this would represent such a sharp change in model configuration. Other models can 

have the ability to specify different HRUs for different land classes (e.g. SUMMA), or use 

internal tiling to account for LULC variations (e.g. VIC, MESH). 

 

Can the authors clarify if this investigation is specifically targeted at SWAT or if these findings 

are applicable to a wider array of models/scenarios? 

 

Note: upon reading further Fig. 3a shows exactly this situation. Some discussion is warranted. 

 

Response: In our discussion, we describe the applicability of this approach to different 

LULC differentiation approaches including tiling and HRUs (used by SWAT), albeit we 

had not yet introduced these concepts at this point. In short, the impacts of illogical 

LULC changes are pertinent to these different models and not limited to SWAT, since 

they become simulated as an actual LULC change, which would affect model outputs. 

We updated our text here so not to appear overly-targeted to SWAT early on. We also 

further discuss modeling HRU approaches in our response to the comment below 

beginning with “Page 9, lines 204-209.” 

 

“Thus, there was one composite image for each season (growing and non-growing) that 

represented the most common LULC class for each pixel over the time period of 

individual images, to input into the hydrologic and water quality models.” (page 4, lines 

98-100) 

 

“Illogical LULC classifications related to seasonal differences in remote sensing data 

could be pertinent to models beyond our cases of regressions and SWAT in the eastern 

United States, such as models for which accurate parameterization of LULC processes is 

essential for simulating the impacts of climate change (Glotfelty et al., 2021). For 

instance, potential seasonal variation in LULC estimates should considered during an 

LULC update in a modeling approach such as Hales et al. (2023), where a global 

hydrologic model GEOGloWS is bias corrected for extreme event forecasting in 

underdeveloped regions using a single instance of Dynamic World data. Our findings 

show that there is the potential for discrepancies at least for temperate watersheds in the 

eastern United States if the season of LULC update were not accounted for. These 

illogical LULC changes could also be pertinent for models that can use a mosaic 
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approach to represent spatial variability of LULC within coarser grid cells (e.g., CLM5; 

Lawrence et al., 2019). The mosaic approach assumes that land surface properties (e.g., 

water fluxes) are homogeneously related to the LULC type (Li et al., 2013; Qin et al., 

2023), in which case an illogical conversion of 12% area from forest to other types (our 

Case #3 example) could carry forward into the models, and potentially impact water and 

energy flux estimates or parameterizations similar to an actual LULC change. For 

instance, deforestation has previously been shown to alter heat and carbon fluxes and 

ecosystem productivity in CLM5 (Marufah et al., 2021; Luo et al., 2023). Variability 

within input data sub-grids has also been shown to influence model parameter 

optimization and performance simulating hydrology, making it an important aspect to 

account for (Samaniego et al., 2010).” (page 16, line 346 to page 17, line 361) 

 

 

Page 4, lines 100-101. This phrasing implies more performance measures were used. Please list 

these here or change the text accordingly. 

 

Response: We reworded to be clearer. 

 

“Performance measures R2 and root mean square error (RMSE; Willmott et al., 1985) 

were used to compare models from different seasons.” (page 4, lines 116-117) 

 

 

Page 4, line 101. I don't think this is an appropriate reference to RMSE 

 

Response: We changed the RMSE reference to Willmott et al., 1985. 

 

 

Figure 2. It would be helpful to list the models more specifically. E.g., "regression models", 

"SWAT", "SWAT" I believe 

 

Response: We made the improvement as suggested. 
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Figure 2: Conceptual diagram of the study. 

 

 

Figure 2. This figure seems ever so slightly blurry to me, and this is a bit worse in most of the 

following figures. I'd suggest exporting the figures at 300 dpi to avoid excessive blurring. 

 

Response: We have increased the resolution of the figures in the manuscript as suggested. 

For production we would upload vector (or in some cases very high dpi) images.  

 

 

Page 6, lines 126-127. Were these HRUs recreated with the growing/non-growing LULC maps? 

 

Response: Yes, switching the LULC layer resulted in recreating HRUs. We updated the 

text to include this detail. 

 

“We created a new SWAT LULC look-up table for QSWAT to read Dynamic World data 

and recreate HRUs.” (page 6, lines 148-149) 

 

 

Page 6, lines 127-128. I think this paper needs a dedicated table that shows how HRUs are 

defines for each of the test cases. This table should list inputs into the tool, as well as the 

resulting number of HRUs in each test case.  
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Figures showing for each study site how many HRUs were defined and what the defining 

characteristics of the individual HRUs are would be even better. 

 

Response: We have now added two figures that detail how HRUs are being populated 

with Dynamic World 2016 (growing vs. non-growing season) and NLCD 2016 LULC for 

each case (Figures S4 and S5; included in the response to comment “2 Materials and 

Methods. SUMMARY” above). Figure captions include exact HRU numbers for 

reference. Additionally, we now describe HRU workings in our results for each case. 

 

Case #2: “The differences observed between models using Dynamic World LULC were 

due to the 9% increase in built areas in non-growing season Dynamic World 2016 data, 

which have more impervious surfaces, a higher runoff curve number, and generate 

proportionally more water and nutrient runoff than the forested areas which were 

classified during the growing season. This could be particularly problematic when using 

computationally more efficient SWAT models that assign subbasin conditions based on 

the dominant HRU, as a change in dominant LULC type in a watershed could result in 

different subbasin conditions in the model greater than the proportional change in 

LULC. In this case, using non-growing season instead of growing season LULC input 

caused the model to switch two HRUs representing 21.9% of watershed area from being 

populated with Dynamic World trees LULC class to built LULC class (Figures S4 and 

S5). For perspective, the nutrient outputs for the SWAT model with Dynamic World 2016 

growing season LULC were similar to those simulated by the SWAT model with NLCD 

2016 LULC input using the same parameter adjustments (Figure 5c).” (page 13, lines 

286-295) 

 

Case #3: “At the HRU level, using growing vs. non-growing season Dynamic World 2016 

LULC in this case resulted in a 12.8% change in model HRU trees proportions, which is 

proportionate to the change in input trees estimates, as would be expected with the 

maximum HRU designation approach (Figures S4 and S5).” (page 14, lines 309-312) 

 

We also added discussion of the implications of different approaches to populate HRUs, 

in response to your comment beginning “Page 9, lines 204-209” below. In summary, 

recommending maximizing HRUs as much as possible and evaluating the new approach 

you introduced there. 

 

 

Page 6, lines 139-140. Is there some evidence to support that 2500 iterations is a sufficient 

number? Intuitively this feels low to me. 

 

Response: We followed a previous calibration using this approach in Nguyen et al. 

(2022), which used 1,000 iterations. Nguyen’s was based on the approach developed in 

Abbaspour et al., (2004), which recommended approximately 1,000 to 2,000 iterations. 
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We chose to use more iterations than these references since our model was 

computationally efficient. We added this additional support to the text. 

 

“The parameters optimized during the Latin hypercube approach, which had 2,500 

iterations (based on Nguyen et al., 2022 and Abbaspour et al., 2004), are shown in Table 

S3.” (page 6, lines 163-165) 

 

 

Page 6, line 141. Was the model run at a monthly time step too, or at a higher temporal 

resolution? 

 

Response: Yes, this case was at the monthly time step. We updated the text to be clearer 

here. 

 

“Calibration and evaluation data were complete monthly streamflow (n=108 months) 

and nitrogen (n=10 months) data from the USGS station 01648010 (concentrations 

converted to loads by multiplying by streamflow), split with the first half for calibration 

and the latter half for evaluation at the monthly time step.” (page 6, line 165 to page 7, 

line 167) 

 

 

Page 6, lines 149-151. Given this information, Latin-Hypercube-based calibration with only 

2500 iterations seems really low to me. Can the authors clarify this discrepancy in sampling 

numbers and why these numbers (2500 LHS iterations for calibration; 8500 samples for SA; 

3200 iterations for post-SA calibration) are appropriate for each case? 

 

Response: We explain the Latin hypercube samples two comments above. For the PAWN 

sensitivity analysis and AMALGAM calibration, we based our iterations after previous 

work, which used 6,000 samples for PAWN sensitivity analysis and 3,200 AMALGAM 

calibration iterations (Myers et al., 2021a). The number of PAWN sensitivity analysis 

iterations for this work is larger than Myers et al. (2021a) because we were able to fit the 

extra iterations of our model within computing restraints, while the number of calibration 

iterations was the same. In Myers et al. (2021a), a detailed exercise was performed to test 

for equifinality using these PAWN and AMALGAM iteration numbers, which identified 

that the variation in optimized water balances due to equifinality of parameters was 

relatively much smaller than that caused by choosing different calibration/validation time 

periods, supporting that the number of iterations was sufficient to find global optima in 

their cases. We have updated the text with these additional details. 

 

“Eight thousand SWAT model runs with growing season Dynamic World 2016 data were 

used for the sensitivity analysis, based on Myers et al. (2021a).” (page 7, lines 174-175) 
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“We then calibrated the Difficult Run Watershed SWAT models at the daily time step 

using the AMALGAM optimization algorithm (Vrugt and Robinson, 2007) with 3200 

iterations (based on Myers et al., 2021a)...” (page 7, lines 176-178) 

 

 

Table 1, CH_KII.rte. Is this a realistic change in parameter values? The documentation 

(https://swat.tamu.edu/media/69374/ch25_input_rte.pdf) seems to say this parameter represents 

near-stream soil conductivity. This conductivity going op by a factor 35 as a result of seasonal 

land cover change seems unrealistic to me. Can this be explained? 

 

Response: No, it is not an actual change in CH_KII, rather it is an outcome of using 

different seasons of LULC input in the models (what we aimed to test). As it would not 

be feasible to know real values of parameters such as CH_KII in the watersheds of this 

study (i.e., an intense field campaign), we inversely obtain them through calibration 

within reasonable parameter ranges. The calibration of CH_KII is commonly done using 

absolute values of mm/hr as we did, following this approach (e.g., Nguyen et al., 2022; 

Myers et al., 2021a).  

 

Our findings of different parameter optimizations depending on the season of LULC 

estimates inputted into the model demonstrate the impacts that illogical LULC changes 

can have on this process, leading to changes in the optimized parameter values such as 

these. We find this to be a major take-away and fitting with the purpose for our analyses. 

 

“For the independently calibrated models (Case #3), we assessed the performance of 

seasonally tuned models rather than the single model of the LULC change case, to 

provide fairer comparison of calibrated model performances since each model was 

optimized to its unique LULC situation.” (page 5, lines 124-126) 

 

We further describe the implications of this sensitivity of parameter optimizations to 

seasonal LULC data for the fine-tuning of hydrologic and water quality models. 

 

“It is critical to consider that the differences in parameter values create the potential for 

the models to respond differently to future changes in LULC or climate change due to 

variations in unmeasured water balance outputs (Myers et al., 2021a).” (page 16, lines 

331-333) 

 

“Environmental and geospatial researchers should be aware of this sensitivity when 

developing models and assessing changes in LULC as they relate to water quantity and 

quality, especially when considering the use of different seasons of available LULC data 

in a model.” (page 18, lines 404-406) 
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Table 1, SOL_BD.sol. According to the docs "The soil bulk density expresses the ratio of the 

mass of solid particles to the total volume of the soil" (). Is it realistic to see this change by 

almost 20% as a function of growing/non-growing seasons?  

 

I would be surprised if the soil properties change to this extent on a seasonal cycle. It seems 

more likely to me that the change in land-use type leads to a different set of soil properties, but 

this would be a consequence of SWAT only accepting the dominant land type - and not of a 

natural process that the model replicates. 

 

Response: Similar to our above response, this is not an actual change in soil bulk density, 

but rather a potential implication of using different seasons of LULC input in a 

hydrologic model. Our calibration approach allows the regional soil bulk density 

parameter to vary relatively by ±20% when optimizing hydrologic processes for 

streamflow simulation (in other words, we assume our input values could be off by 

±20%). We found that there can be different optimizations of soil bulk density within this 

window when a model is developed using an LULC layer from growing vs. non-growing 

season. Also, the model in this case was developed so that the maximum number of 

HRUs can be incorporated to compare model performance between the independent 

cases. This is pertinent because it provides guidance about the potential sensitivities of 

using LULC estimates from different seasons in hydrologic and water quality models. 

 

 

Table 1, SNOCOVMX.bsn. How can the snow depth for full vegetation cover be higher in the 

non-growing season than in the growing season? Wouldn't it make more sense to be the other 

way around, with lower vegetation height in the dormant season? 

 

More generally, this suggests the calibration approach deserves further attention. There may be: 

- equifinality in optimal parameter values (i.e., multiple different parameter sets give the same 

nominal performance scores). This may need to be accounted for through looking at multiple 

calibrated parameter sets. 

- compensation of any number of data or model errors through unrealistic parameter values. 

 

Response: Similar to the above two responses, we highlight that the models in this case 

are calibrated independently of one-another. Parameter values optimized for a model 

developed with the growing season LULC input could be different from those for a 

model developed with the non-growing season LULC input, as we witness with the 

different SNOCOVMX optimizations, that do not align with an actual change in the 

watershed. The finding you describe is one of the key takeaways of our work: different 

seasons of LULC input could lead to different optimizations of parameters, as has been 

previously found with actual LULC change, and we discuss that this has implications for 

using a model to simulate actual changes such as LULC or climate. 
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“The difference in forests of 12% of watershed area between growing and non-growing 

season Dynamic World 2016 data for Difficult Run is as large a difference as real 

changes in forests that have been found to cause these sensitivities in model parameters 

(Li et al., 2019), but was likely caused by classification variation rather than an actual 

cycle from trees to built area and back (Hermosilla et al., 2018).” (page 16, lines 328-

331) 

 

As mentioned above, this can have implications for simulating changes in the watershed 

that we want to ensure modelers are aware of.  

 

“When seasonal changes in LULC data occur, due to classification difficulties such as 

vegetation cycles (e.g., deciduous leaf cover in mixed-LULC areas), hydrologic and 

water quality models developed using growing season LULC inputs could behave 

differently from those using non-growing season LULC, with meaningful differences for 

environmental efforts such as pollutant load reduction targets.” (page 18, lines 399-402) 

 

We also added a description about the potential for equifinality in our work, based on 

previous studies that used large numbers of model ensembles and different parameter set 

initializations in the optimization algorithm. 

 

“Also, although we did not investigate equifinality using model ensembles for this case, 

we aimed to limit it by employing a calibration approach with multiple optimization 

algorithms (AMALGAM; Vrugt and Robinson, 2007) and calibrating only the most 

sensitive parameters. Previous work has found this approach to be robust to equifinality 

relative to other factors affecting parameter optimizations such as calibration/validation 

time period selection (Myers et al., 2021a) and model structures (Myers et al., 2021b), 

and our findings are in line with previous investigations of LULC input changes 

impacting SWAT model parameter optimizations (such as forest conversion causing 

runoff curve number adjustment to vary relatively by 21%; Li et al., 2019).” (page 16, 

lines 333-339) 

 

We hope this clarifies the purpose and implications of this case. We appreciate the 

thorough work of the reviewer to ensure our conclusions are reliable and make sense. 

 

 

3.1. Seasonal landcover comparisons. SUMMARY:  

I believe this subsection needs some dedicated text explaining the realism of the identified 

seasonal LULC changes. 

 

Response: We here discuss the realism of the seasonal LULC changes, noting that they 

are unlikely to be actual changes but rather illogical classification inconsistencies.  
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“Actual on-the-ground changes from built LULC to other types, or from other LULC 

types to trees (e.g., succession), are not likely to be occurring within the short (seasonal) 

time interval between our LULC composites (Cai et al., 2014).” (page 10, lines 231-233) 

 

“Potential causes for these differences include vegetation phenology (e.g., green up) 

affected by climate (Khodaee et al., 2022), or measurement artifacts such as atmospheric 

conditions (aerosol scattering, water vapor, and absorption of light) and reflectance 

(bidirectional reflectance and zenith angle) which can cause non-random errors in top-

of-atmosphere readings used for classifying LULC (Zhang et al., 2018; Kaufman, 1984; 

Rumora et al., 2020). Dynamic World used a calibrated surface reflectance product to 

train the classifier (Sentinel-2 Level-2A; L2A) but a top-of-atmosphere product (Sentinel-

2 Level 1C; L1C) to generate the dataset (Brown et al., 2022). Previous work in our 

study area has found strong inter-annual variations across spectral bands in remotely 

sensed imagery that were caused by uncorrected atmospheric conditions and could 

impact multi-year LULC classification (Sexton et al., 2013). These differences in 

atmospheric conditions and reflectance would not be corrected for in Dynamic World 

data and potentially contribute to differences in classification results over time.” (page 

10, lines 218-227) 

 

 

Figure 3. Is there some sort of physical evidence that supports these rather large seasonal 

changes in built-up and tree cover?  

 

If there isn't, that implies that the growing/non-growing LULC maps are not particularly 

accurate, and that turns this manuscript into more of an academic/hypothetical exercise (i.e., 

"what are the consequence if LULC were to change substantially on a seasonal basis") rather 

than something with immediate practical relevance. 

 

Response: No, there is not physical evidence, and we describe that the seasonal LULC 

changes between built area and trees identified in our investigation are illogical changes 

(see response above). We strongly believe these temporal inconsistencies are of practical 

relevance to modelers using high spatiotemporal resolution LULC classifications such as 

Dynamic World. As we demonstrate, models can simulate illogical LULC changes as a 

real change, impacting simulation results in ways that do not reflect actual LULC 

transitions. Thus, modelers should take care and understand the potential impacts of these 

changes when developing studies and interpreting results of the high spatiotemporal 

resolution LULC data. The relevance of our findings becomes even more immediate 

considering that hydrologic and water quality models are frequently used for decision-

making purposes with real-world implications, making these seasonal LULC changes 

essential to our aim to provide guidance to future modelers.  

 

For instance, recent work used one instance of Dynamic World land cover data to bias 

correct a global hydrologic model to be used for forecasting hydrologic extremes and 
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potential emergencies in underdeveloped countries (Hales et al., 2023). If that correction 

were used with a different instance of LULC data from a different season, our findings 

show that there could potentially be illogical LULC discrepancies for the temperate 

eastern United States watersheds. This is particularly important when models are being 

used for such meaningful societal purposes. 

 

Incorporating potentially illogical land cover changes into modeling inputs could have 

implications to HESS readers, particularly when it is not clear which seasonal changes 

are real and should have logical effects on model outputs, or which are merely illogical 

errors that should be corrected before influencing model outputs. 

 

We explain the nature of these LULC changes in our abstract and also our results and 

discussion (noted in the response above): 

 

“Non-growing season data resulted in LULC classifications that had more built area and 

less tree cover than growing season data due to seasonal impacts on classifications 

rather than actual LULC changes (e.g., quick construction or succession). In mixed-

LULC watersheds, seasonal LULC classification inconsistencies could lead to differences 

in model outputs depending on the LULC season used, such as differences in watershed 

nitrogen yields simulated by the Soil and Water Assessment Tool.” (page 1, lines 20-24) 

 

 

Page 9, lines 200-203. I think this is important in relation to my previous comment. If there are 

doubts about the accuracy of the classifications, the type of question being asked in this 

manuscript changes to a "what if" kind of investigation. Note that this is not necessarily worse 

than a "this happens in reality, here are the implications for modelling" kind of study, but this 

will need to be clarified in the framing of the work. 

 

Response: Our aim was to investigate how hydrologic and water quality models respond 

to growing season vs. non-growing season classified LULC, to inform future geospatial 

modeling efforts using high spatiotemporal resolution LULC data such as Dynamic 

World. We found that using a different season of LULC can potentially impact model 

outputs or parameterizations due to illogical LULC changes. As we describe above, these 

are situations that can be encountered by modelers using the data, and we provide 

guidelines for how to deal with the situations. To clarify the framing of our work, we 

updated our communication of objectives in the introduction to make it clearer that these 

illogical LULC changes could be encountered by modelers as well. 

 

“We used the Dynamic World LULC dataset to demonstrate how estimates of LULC can 

change between the growing and non-growing seasons (note that estimates of LULC 

could change due to real transitions or due to illogical classification inconsistencies 

described above).” (page 2, lines 64-67) 
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We also note this in our experiment design. 

 

“For the LULC change simulation (Case #2), we evaluated how a model calibrated to 

one LULC season could respond to LULC data from another season, such as when 

simulating impacts of a watershed LULC change, particularly with regards to sensitivity 

to potential illogical LULC transitions in the high temporal frequency data.” (page 4, line 

117 to page 5, line 119) 

 

 

Page 9, lines 204-209. It's not clear to me if this has been done in this paper, but one way to 

address this from a modelling angle would to ensure the HRUs are defined based on seasonal 

stability of dominant LULC: 

- HRU 1: classified as forest in both growing and non-growing season 

- HRU 2: classified as [something else] in both growing and non-growing season 

- HRU3: classified as forest in growing and [something else] in non-growing season.  

 

Such an approach would isolate the impact of the seasonal changes in LULC to the specific areas 

where there is in fact a change, and (presumably) show a reduced impact of this problem in 

modelling outcomes (because most of the model setup would -correctly- remain unaffected by 

the seasonal LULC change). 

 

If this is in fact what the authors did I would strongly suggest to clarify the HRU delineation 

procedure, because this was not clear to me. 

 

Response: This approach to delineating HRUs would be an interesting avenue for future 

research building on our work. We explored traditional approaches in this study 

(dominant subbasin HRU for Case #2, and maximum HRU resolution for Case #3). We 

appreciate the positive direction for brainstorming how to improve modeling procedures 

to account for the seasonal LULC classification inconsistencies, and think evaluation of 

this idea could be impactful to other modelers using the high spatiotemporal frequency 

data. Thus, we added a discussion of this topic and how it fits with our results. 

 

“When using seasonal LULC estimates in hydrologic and water quality models, we 

recommend differentiating HRUs as much as possible (like our maximum HRU resolution 

approach for Case #3) so that the potential for disproportionate impacts from LULC 

season is minimized. Aggregating HRUs by dominant characteristics over an area may 

lead to high variability in responses depending on areas where estimated LULC changes 

are substantial enough to switch dominant HRU LULC characteristics, which in our 

second case was two HRUs in the northern part of the watershed. However, future work 

could investigate approaches to differentiate HRUs that further limit or remove the 

impacts of seasonal variation in LULC estimates, such as separating areas with stable 

LULC across seasons from those with substantial LULC variability, to isolate the most 

affected parts of the watershed. Thus, HRUs that remain unaffected by seasonal changes 
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in LULC estimates would be preserved, while HRUs with potential for change due to 

illogical seasonal LULC transitions could be identified and treated separately. In this 

proposed approach, aggregating HRUs may be possible to resist disproportionate 

impacts of LULC seasonality while alleviating computational burdens of large HRU 

numbers. Evaluation of such an approach could help advance the hydrologic and water 

quality modeling community into higher spatiotemporal resolution LULC capabilities.” 

(page 17, lines 368-379)  

 

 

3.2 Case #1: Water quality regressions. SUMMARY: 

No real comments on this subsection. 

 

 

3.3 Case #2: Hydrologic and nitrogen yield models. SUMMARY: 

The text in this subsection seems factually correct to me, but I find it difficult to interpret and 

judge its relevance. This is mainly due to several things that are unclear to me about how the 

models were configured, and to what extent these findings are novel.  

 

I would strongly recommend that the authors further clarify their experimental design and add a 

section to their introduction that explains the current state of understanding within the SWAT 

community about this topic. 

 

Response: We have updated the introduction and discussion to further highlight existing 

understanding within the SWAT community, detailed in our responses to the comments 

beginning with “Page 11, lines 238-243” and “1 Introduction. SUMMARY.” Beyond 

these responses, we also add more details about SWAT sensitivities to our introduction 

here: 

 

“These models are known to be sensitive to actual LULC changes over longer (e.g., 10+ 

year) time spans, such as forests being converted to other LULC types (Li et al., 2019; 

Basu et al., 2022).” (page 2, lines 46-48) 

 

We also direct you to the comment beginning with “Page 6, lines 127-128” above, where 

we clarify our experimental design with regards to HRU population and provide 

additional updates to the text to help interpret results. 

 

 

Page 11, lines 229-231. Are these scores indicative of good performance? In other words, is this 

within expectations for SWAT in general and this watershed specifically? Some references to 

back this up would be good. 

 

Response: We now add references to put our evaluation results into perspective with 

other similar studies. 
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“As these values are similar to those of previous SWAT evaluations in urban watersheds 

that occurred at monthly time steps (Basu et al., 2022; Halefom et al., 2017) and other 

work with multiple calibration variables (e.g., Myers et al., 2021b), we concluded that 

the model developed with Dynamic World 2016 growing season data was reliably 

simulating real conditions at the monthly time step.” (page 11, line 255 to page 12, line 

259) 

 

 

Page 11, lines 231-233. It's unclear to me if the growing season LULC was used for the whole 

simulation (including the non-growing) season months or if the LULC changes halfway through 

the simulation. I suspect it's the former based on Table 3. Why is it theoretically sound to use 

dedicated growing season LULC for a year-round simulation, and vice versa? 

 

Response: The theoretical soundness of this is related to what our study investigates: 

traditionally, watershed modelers will use an LULC dataset classified primarily in the 

growing season to simulate hydrology and water quality year-round (e.g., NLCD in 

(Botero-Acosta et al., 2022; Avellaneda et al., 2020). The release of the analysis-ready 

global Dynamic World dataset has facilitated opportunities for modelers to use LULC 

classified at different times of the year, such as the non-growing season only, with high 

(10 m) spatial resolution. For instance, there could be opportunities to model LULC 

impacts to water quality representing high temporal resolution changes or near-current 

conditions. We aimed to evaluate the impacts of inputting different seasons of LULC data 

in models to inform the modeling community as we advance into these higher 

spatiotemporal resolution frameworks for watershed studies. In each case, the designated 

LULC input (growing or non-growing season) was used for the full simulation to 

evaluate differences over the same time period. Thus, we could compare models 

objectively with the simulation period (and other characteristics such as weather) 

controlled. We updated our text here to make this clearer. 

 

“When the calibrated parameter adjustments were transferred to the SWAT model 

developed with non-growing season LULC (as could be done when simulating an actual 

LULC change), streamflow performance decreased by approximately 0.30 NSE units and 

nitrogen yield PBIAS became -34.4% to -57.4%, implying overestimation of nitrogen. 

Note that both models were run over the same time period to compare performance.” 

(page 12, lines 259-262) 

 

 

Page 11, lines 238-243. This may be a (very) relevant finding for practical use, but it is not very 

clear to me to what extent this is already known. Theoretically at least I don't find it very 

surprising that a model calibrated for conditions X does not necessarily do well under 

substantially changed conditions Y. Can the authors add some discussion to highlight to what 

extent this finding is known or new within the SWAT community? 
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Response: We agree with the reviewer of the relevance and practicality of these findings. 

As suggested, we now expand our discussion here about how the novel findings fit into 

SWAT literature specifically. 

 

“This aligns with previous work that found impacts of actual LULC changes on 

hydrologic model performance, albeit at longer (e.g., 10+ year) time spans (Li et al., 

2019). Although hydrologic and water quality models such as SWAT are often developed 

using LULC classified primarily in the growing season (e.g., Botero-Acosta et al., 2022; 

Avellaneda et al., 2020), the availability of analysis-ready seasonal LULC data such as 

Dynamic World makes evaluations of LULC estimate sensitivity at shorter (i.e., seasonal) 

time spans pertinent.” (page 12, lines 270-274) 

 

For background, our primary goal here was to take a traditional calibration approach to 

growing season data and evaluate what would happen when non-growing season data is 

used, to provide guidance for using the high spatiotemporal frequency LULC data. We 

are not aware of any previous SWAT literature that investigates this. However, analysis-

ready data such as Dynamic World are at the forefront of non-growing season LULC data 

being built into modeling approaches, which we discuss with our future directions. We 

also introduce that hydrologic and water quality models such as SWAT are traditionally 

developed with LULC classified primarily during the growing season. 

 

“Studies relating hydrology and water quality to LULC often use an LULC dataset 

developed primarily from growing season data, such as the United States National 

Landcover Database (NLCD; Jin et al., 2019) or Cropland Data Layer (CDL; Boryan et 

al., 2011), and/or use an LULC dataset available at an annual time step (Sulla-Menashe 

and Friedl, 2018; Buchhorn et al., 2020; Gray et al., 2022).” (page 1, lines 31-34) 

 

“As models advance into higher spatiotemporal resolution following increasing 

computational resources and data availability (e.g., Hales et al., 2023), we encourage the 

modeling community to be cognizant of the potential impacts of illogical seasonal LULC 

change, such as we identified for mixed LULC areas of the eastern United States.” (page 

17, lines 361-364) 

 

We thus believe that these findings are novel and pertinent not only to SWAT literature, 

but also to the broader hydrologic and water quality modeling community. Particularly 

with regards to our evaluations of inputting Dynamic World into models, which could be 

done with other models beyond SWAT and regressions. We note that our preprint has 

been cited in two independent peer-reviewed studies advancing knowledge of LULC 

change impacts to freshwater systems, which may be examples of this interest (Dede et 

al., 2024; Giuliani, 2024). 
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Table 3, calibration. It would be good to clarify somehow in this table that this row and the one 

below refer to transferred parameter performance, and not a new calibration exercise. 

 

Response: We made the improvement as suggested and added the clarification to the 

caption. 

 

“Table 3: Model performance metrics for the calibrated Rock Creek hydrologic model 

(Case #2) for streamflow and nitrogen yield, based on Nash Sutcliffe Efficiency (NSE), 

mean absolute error (MAE), and percent bias (PBIAS, where <0 implies overestimation 

bias), at the monthly time step. In this case, model parameters were all calibrated to 

growing season Dynamic World 2016 data to investigate the impacts of simulating an 

LULC change using non-growing season data (e.g., the optimized parameter adjustments 

were kept the same).” (page 12, lines 276-279) 

 

 

3.4 Case #3: Independently calibrated hydrologic models. SUMMARY: 

I think this subsection needs some extra discussion about how good these simulations actually 

are, in spite of the scores reported, and what it means that the differences between the various 

simulations are much smaller than the differences between simulations and observations. 

 

Response: We have expanded on the discussion of model performance as suggested. 

Also, we note that similar to Basu et al. (2022), our objective was to examine differences 

due to LULC holding all other model data inputs the same between simulations. 

 

“These are in line with satisfactory performance from previous work, particularly 

considering the daily time step (Moriasi et al., 2007; Kalin et al., 2010; Basu et al., 

2022).” (page 13, lines 303-304) 

 

“Discrepancies such as underestimated low flows or peaks could reflect difficulties 

simulating hydrology in urban areas with complex stormwater pathways, as the Difficult 

Run Watershed was 58% developed area in the NLCD 2016 data. Also, differences 

between independently calibrated streamflows could be smaller than differences with 

observed data, which could be due to uncertainties in other non-LULC model inputs 

shared among the calibrations (Basu et al., 2022).” (page 14, lines 306-309) 

 

 

Page 12, lines 269-270. Two interesting features I noticed here are that: 

1. Both growing (red) and NLCD (yellow) show a serious underestimation bias for low 

discharges, but the non-growing simulations seem to do a little better at the low flows.  

2. Generally speaking, the simulated hydrographs in 6d really don't seem that good to me. The 

lows are underestimated, mediums overestimated (Mar-Apr 2016), peaks are underestimated or 

missed completely (Sep 2016). The differences between the different simulations seem much 

smaller than the model errors in general - what sort of conclusion should we draw from this? 
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Response: This builds on our response to the comment above. The main conclusion is 

that the independently calibrated models all simulated streamflow with comparable 

performance relative to one another, which was what we aimed to evaluate in our 

objectives.  

 

Since we were interested primarily in LULC change impacts, we standardized all other 

input data among the models (e.g., soils, weather, and topography) so that they can be 

more directly comparable. Thus, errors related to uncertainties in those other inputs could 

carry forward in similar ways for each model. Also, complex urban stormwater pathways 

and stormwater infrastructure varying between HRUs could have greater impacts to 

model responses compared with observed data, than to model responses relative to the 

other models. Using the daily time step, our models in this case undergo much more 

temporal scrutiny compared to studies that use longer (e.g., monthly) time steps in 

heavily urbanized watersheds such as Basu et al. (2022) and Halefom et al. (2017).  

 

Despite these modeling difficulties, we found that in these urban/mixed watersheds, the 

seasonal LULC classification differences between built area and trees can be most 

prevalent, which makes it important to compare relative model performance here. Thus, 

we believe our models are sufficient to demonstrate the impacts of the seasonal LULC 

classification differences because they behave similarly to other SWAT evaluations in 

heavily anthropogenically altered watersheds, align with our objectives, and can 

generally be considered sufficient based on performance statistics (Moriasi et al., 2007; 

Kalin et al., 2010). We also find it important we communicate these evaluations clearly, 

including the features you mention, which we incorporated into our response to the 

comment above. 

 

 

3.5 Future directions. SUMMARY: 

The main conclusion in this subsection seems to be that using seasonal LULC changes can be to 

some (a large?) extent consequences of misclassification, and that this impacts model 

simulations by providing the model with unrealistic inputs.  

 

I don't disagree with this but it's largely unclear to me what the novelty of these findings is. 

There is some documentation available that already claims the LULC changes on annual satellite 

products should be treated carefully due to classification issues (e.g. MODIS), and it should 

come as no surprise that giving a model incorrect inputs is going to lead to unhelpful outputs 

("garbage in, garbage out"). I would strongly recommend that the authors clarify the novelty or 

relevance of these findings fort the wider HESS audience. 

 

For what it's worth, in my experience a typical way of dealing with LULC classification 

uncertainty is to get multiple maps at different points in time, and either use or assess changes in 

the median or majority land cover identified on those maps.  This reduces the classification 
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uncertainty by generating multiple samples of the same area of interest, and looking for common 

patterns less affected by variability at specific points in time. 

 

Response: Evaluation of LULC products at high spatiotemporal resolution has been 

described as an important research need with vast societal implications (Radeloff et al., 

2024). Our study is one step toward achieving this goal, providing guidance to the 

modeling community for using data such as Dynamic World. In addition to our general 

contributions, as far as we know, we are the first study to evaluate the temporal 

consistency of Dynamic World and modeling implications. We also are not aware of 

other studies that have critically evaluated these data in a hydrologic and water quality 

modeling framework such as SWAT. Thus we state: 

 

“This high spatiotemporal resolution creates unprecedented opportunities for modelers 

to study the impacts of phenomena such as emerging settlements, agricultural dynamics, 

and forest conversion on outputs such as ecosystem dynamics and biogeochemical 

budgets (Brown et al., 2022). For environmental research to take advantage of these high 

temporal resolution data, we need to understand the impacts of potential seasonal 

variation in LULC estimates on geospatial models, which use LULC data to support 

water resources management across the globe (Fu et al., 2019; Guo et al., 2020; 

Murphy, 2020).” (page 2, lines 54-59) 

 

Evaluations such as we provide are critical for providing the modeling community with 

guidance for using sub-annual, high spatiotemporal resolution LULC data in their 

simulations. For instance, in heterogeneous areas where trees and built area are mixed, 

the seasonal consistency of data can be important for models of LULC change impacts to 

hydrology, even among LULC instances which might not appear unrealistic or incorrect 

on their own (Brown et al., 2022 demonstrated that individual images of Dynamic World 

LULC evaluate well against human-classified reference). Thus, we do not believe that 

our work is a case of “garbage in, garbage out”. Rather, it is a critical evaluation to 

inform the design of future work and interpretation of modeling results, particularly when 

models would be used in decision making with real-world implications for freshwater 

management. 

 

We have now provided more details on the novelties of our work to make our position 

within existing literature clearer, such as the additions noted in our responses to the above 

comments beginning with “1 Introduction. SUMMARY,” “Page 9, lines 204-209,” “3.3 

Case #2: Hydrologic and nitrogen yield models. SUMMARY,” and “Page 11, lines 238-

243.” 

 

Also, our design used the majority (mode) classification from combining individual 

instances of LULC over the growing vs. non-growing seasons, as recommended by 

Brown et al. (2022). 
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“We used Google Earth Engine (Gorelick et al., 2017) to generate a different Dynamic 

World LULC dataset for growing season (spring equinox to autumn equinox, 2016) and 

non-growing season (autumn equinox, 2015 to spring equinox, 2016) for the monitored 

watersheds by taking dominant LULC for each pixel over these time periods, following 

the suggested approach (Brown et al., 2022).” (page 4, lines 95-98)   

 

 

4 Conclusions. SUMMARY: 

The same comment I left at Section 3.5 applies here. I agree with the stated conclusions but it is 

unclear to me to what extent these are sufficiently novel and/or relevant to warrant publication in 

HESS. 

 

Listing examples where this issue actually occurs (i.e. studies using growing season LULC 

estimates in the way investigated in this manuscript) would at least partly address this relevance 

issue, though my question about novelty would remain. 

 

Response: We hope our explanations and additions to the text in the response above (as 

well as the additional locations mentioned there) will communicate better the novelties 

and relevance of the work. In summary, we provided references to other studies using 

LULC classified primarily in the growing season. We then expanded on our novelties 

evaluating how sub-annual LULC inconsistencies in high spatiotemporal resolution data 

can affect hydrologic and water quality models, and provided guidance for modelers 

using data such as these. Our work now provides additional insights on data selection for 

LULC change simulation, objective model performance comparisons, HRU development, 

and impacts on parameterizations for hydrologic and water quality modelers using high 

spatiotemporal frequency LULC data such as the Dynamic World product, beyond what 

can be found elsewhere on the topic. We illustrate these using cases of models ranging 

from simple to more complex. We expect these novelties will be most relevant when 

modelers are designing studies and interpreting results with real-world decision making 

implications for freshwater management. 

 

We again acknowledge you Dr. Knoben for your help reviewing and improving the 

quality of our manuscript, and are happy to answer any additional questions. 
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