Reviewer 1:
Review — egusphere-2023-1171

Myers et al : Seasonal variation in landcover estimates reveals sensitivities and opportunities for
environmental models

The authors present results from a study exploring the impact of using temporally resolved land
cover data for water quality and hydrological model development. The manuscript reads
reasonably well but there are some structural issues that need to be addressed (see specific
comments below). My other concerns are relatively minor and are related to the presentation and
discussion of results. I believe this manuscript could represent a useful contribution to our
understanding of model uncertainty associated with seasonal landcover changes. While, the
manuscript, in current form is not suitable for publication, with relatively minor revisions this
study would be suitable and of broad interest to the readership of HESS.

Response: We thank the reviewer for the helpful and constructive feedback. We have
made improvements to address the structural and minor concerns below. Thank you for
taking the time to help us communicate our findings, which we agree are of broad interest
to HESS readership.

Specific comments:
Line 16: Qualify the potential implications on land cover characterization here.

Response: We expanded on this abstract sentence to incorporate the implications of
seasonal land cover characterization in models:

“Most readily available landuse/landcover (LULC) data are developed using growing
season remote sensing images often at annual time steps, but LULC characteristics can
have seasonal inconsistencies, which could impact geospatial models applied to another
season of data.” (page 1, lines 15-17 of revised manuscript)

Line 55: It seems like you need a research question/hypothesis linked to the spatiotemporal
variability in land cover quantification. Where certain types of catchments more likely to exhibit
large seasonal shifts in land cover quantification?

Response: We agree that having a hypothesis here related to the variability would make
communication of our structure more clear. We added the following text:



“We hypothesized that watersheds with mixed landcover types (e.g., a combination of
built and trees) would have the greatest variability in landcover classification between
growing and non-growing seasons due to heightened temporal inconsistencies, which
could carry over into sensitivities for watershed-scale geospatial models.” (page 2, lines
59-62)

Figure 3. The differences in landcover between seasons seem most pronounced for 2016. This is
interesting and isn’t explored in the manuscript. This is important as you are using 2016 (i.e.
national landcover database) as the reference and if this was a particularly anomalous year could
there be implications for your conclusions? Perhaps think about exploring the drivers of inter
annual variability here (e.g. climate drivers).

Response: We thank the reviewer for pointing out this implication that was in need of
further discussion to ensure the usability of our findings in different time periods. We
now relate the 2016 LULC differences to those of other years, in particular the next
instance of NLCD data available in 2019. We also now discuss potential causes of year-
to-year changes based on previous work, such as uncorrected differences in atmospheric
conditions or reflectance.

“The differences between seasons were not limited to a single year of data or watershed
and could be more or less pronounced depending on the watershed and time period. For
instance, our study watershed for the LULC change simulation (Case #2, Rock Creek)
showed a 9% increase in built LULC, and a 12% decrease in tree area, in non-growing
season relative to growing season Dynamic World data from 2016. Meanwhile, our study
watershed for the independently calibrated models (Case #3, Difficult Run) showed a
12% decrease in tree cover and a 10% increase in built areas in the non-growing season
compared to the growing season Dynamic World 2016. Over the entire time period of
available Dynamic World estimates for these watersheds, growing season LULC
estimates generally had more tree area, while non-growing season had more built area,
and 2016 had the most pronounced differences (Figure 3c-f). For 2019, when the next
instance of NLCD is available for comparisons, differences between non-growing and
growing season estimates would be less pronounced for the Rock Creek Watershed (+5%
built area and -8% trees), but approximately the same as 2016 for the Difficult Run
watershed (+10% built area and -11% trees). In some years such as 2017-2018 the
relationship could be reversed. Potential causes for these differences include vegetation
phenology (e.g., green up) affected by climate (Khodaee et al., 2022), or measurement
artifacts such as atmospheric conditions (aerosol scattering, water vapor, and absorption
of light) and reflectance (bidirectional reflectance and zenith angle) which can cause
non-random errors in top-of-atmosphere readings used for classifying LULC (Zhang et
al., 2018; Kaufman, 1984; Rumora et al., 2020). Dynamic World used a calibrated
surface reflectance product to train the classifier (Sentinel-2 Level-2A; L2A) but a top-of-
atmosphere product (Sentinel-2 Level 1C; L1C) to generate the dataset (Brown et al.,



2022). Previous work in our study area has found strong inter-annual variations across
spectral bands in remotely sensed imagery that were caused by uncorrected atmospheric
conditions and could impact multi-year LULC classification (Sexton et al., 2013). These
differences in atmospheric conditions and reflectance would not be corrected for in
Dynamic World data and potentially contribute to differences in classification results
over time.” (page 9, lines 184-203)

Table 2. I’'m not sure on the relevance of presenting the AIC score here? This is normally used
for model selection —wouldn’t the RMSE of the fitted values be a more useful indicator of
differences between the land cover quantification methods.

Response: We switched our AIC calculations to RMSE to better indicate model
performance with different LULC seasons. Our conclusions did not change but are now
better supported.

“The model for growing season built LULC vs. median SC had an R? of 0.69, while the
same model for non-growing season LULC had an R? of 0.70, and the RMSE's for both
models were within 3 RMSE units (150.16 and 148.08, respectively), which suggests
similar performance. For perspective, a model created with developed classes from
NLCD 2016 had a similar fit as both seasonal models (R? of 0.66 and RMSE of 155.91;
Table 2), supporting that Dynamic World could be relevant for identifying LULC
forcings affecting water quality particularly where regional products such as NLCD are
not available.” (page 9, line 213 to page 10, line 218)

Figure 4. Colour contrast makes it difficult to view the different lines/points. Perhaps consider
using a different palette with stronger contrasts? Also this looks like a quadratic relationship
rather than linear?

Response: We modified the color palette of Figure 4 to be more contrasting, as well as
changing the widths and types of lines. We also explored quadratic fits to the models
instead of linear and the impacts to R2 and RMSE. The quadratic models had a better fit
as the reviewer pointed out; thus, we updated the manuscript with the quadratic models.
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Figure 4: Modeled median specific conductance (SC) for 37 watersheds comparing
Dynamic World 2016 growing and non-growing season built and NLCD 2016 developed
LULC, with 95% confidence intervals as dashed lines.

Line 265: Move figure from supplementary material to support discussion of the implications for
model parameters. | think this is an important part of the manuscript and should be given more
prominence.

Response: We moved the figure to the manuscript to support the discussion as suggested
(now Figure 7).

Conclusion — avoid excessive referencing to other studies in the conclusion section.

Response: We removed references from our conclusions section and instead ensured they
were cited in the introduction and/or discussions. We believe the conclusion now reads
easier following the reviewer’s suggestion.

“When seasonal changes in LULC data occur, due to classification difficulties such as
vegetation cycles (e.g., deciduous leaf cover in mixed-LULC areas), hydrologic and
water quality models developed using growing season LULC inputs could behave
differently from those using non-growing season LULC, with meaningful differences for
environmental efforts such as pollutant load reduction targets. The cause in temperate
watersheds is primarily a sensitivity to changes from built to forest LULC proportions
that affect modeled runoff and nutrient yields, representing temporal classification



inconsistencies rather than actual succession or restoration. Environmental and
geospatial researchers should be aware of this sensitivity when developing models and
assessing changes in LULC as they relate to water quantity and quality, especially when
considering the use of different seasons of available Dynamic World LULC data in a
model. The seasonal variation in Dynamic World LULC data we identified is pertinent
for environmental models of future climates, biodiversity, habitat loss, land management,
ecology, and biogeochemistry that are dependent on precise assessments of LULC
change that could be affected by the seasonal classification variation.” (page 17, lines
340-350)

Lines 300 -315: Rather than a bullet point list | suggest you develop a more coherent narrative
focused on the implications of your findings and future research directions. This could go before
the conclusion section.

Response: We have now added a future research section (3.5) to the end of our discussion
and replaced the bullets with a one-sentence summary in our conclusion.

“The impacts of seasonal landcover inconsistencies on geospatial models could yield
several additional future research directions that build upon our findings. As our study
used watershed-scale water quality and quantity investigations, further work should
investigate how seasonal LULC classification inconsistencies could affect assessments of
habitat, biodiversity, land management, ecology, global hydrology, and future climate
based on LULC change (e.g., Yang et al., 2022; Di Vittorio et al., 2018; Hales et al.,
2023). It may be particularly useful to explore whether the high resolution, high
frequency LULC data could be used in LULC change models (e.g., Hood et al., 2021) to
improve the temporal precision of interpolations between discrete LULC images. Future
work could also investigate how seasonal LULC classification inconsistencies influence
models outside our temperate study area (e.g., mountainous, arid, tropical, high-latitude,
savannah, Mediterranean, continental) to gain a broader understanding of global
geospatial model impacts. The use of high-frequency monitoring data (Zhang et al.,
2023) could be explored to investigate the influence of high temporal resolution LULC on
water quality patterns, as well as whether a modification to environmental models such
as time varying parameters (Li et al., 2019) could account for the seasonal differences in
Dynamic World LULC classifications. Future research could also incorporate LULC
pixel probabilities from the Dynamic World dataset (Brown et al., 2022; Small and
Sousa, 2023) into geospatial models and investigate their utility for environmental fields.
Post-processing approaches for high temporal resolution LULC products to address
seasonal inconsistencies (Sexton et al., 2013; Liu and Cai, 2012; Hermosilla et al., 2018)
could aid in alleviating the impacts of seasonal inconsistencies causing model
sensitivities as well. Finally, future work could investigate which seasons of LULC data
are most accurate for different purposes, such as vegetation or impervious surface



classification, and how causes of year-to-year inconsistencies in seasonal LULC
estimates could affect models.” (page 16, lines 321-338)

“We discussed future research directions which could advance capabilities to use high
spatiotemporal resolution global LULC information such as Dynamic World for
geospatial models across disciplines.” (page 17, lines 352-354)
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Reviewer 2:
Review for manuscript entitled "Seasonal variation in landcover estimates reveals sensitivities
and opportunities for environmental models"

In this manuscript, the authors investigate the difference of classifying a land-use land cover
(LULC) dataset during the growing vs. non-growing season. They use the Dynamic world
dataset for this purpose and find differences in classification of 5 to 10% area in built and tree
classes. In other words, there is 5 to 10% more(less) area classified as built(trees) in the non-
growing season compared to the growing season. Subsequently, they investigate the effect of this
difference on water quantity and quality modelling. For water quality modelling, the authors use



both a statistical approach and the hydrologic model SWAT. The latter is also used for water
quantity modelling. The selected 37 basins are located in the Eastern US and SWAT is set up for
two small scale basins. Overall, the authors find small differences when using the classification
during the growing season and non-growing season. The largest difference is found when SWAT
parameters calibrated on streamflow and nitrogen yield data using the growing season data are
transferred to using the non-growing season data. However, a calibration of SWAT in another
catchment shows that similar performance can be achieved using the growing season and non-
growing season data. This highlights that model parameters do compensate for differences in
LULC maps in SWAT, an aspect that is not discussed in the manuscript. While the topic of
LULC classification is very relevant because land cover information is a fundamental
requirement for environmental models, the conclusions of this study are very limited and not of
general nature because of two reasons. First, the limited spatial coverage only focusing on small
basins in the Eastern US. Second, and more importantly, the choice of methods, i.e., using the
SWAT model that only accounts for the dominant land cover class (l. 79) within a computational
unit. Accounting for dominant land cover is not state-of-the-art. For example, state-of-the-art
LSMs like the Community land model v5 use a mosaic approach to represent different land
cover types and plant functional types within a grid cell (see also comment on CLM below).
These models are also able to have transient land cover, which would account for the differences
between growing and non-growing season. SWAT also does not account for relationships
between model parameters and land cover. Within hydrologic modelling, regionalization
methods have been developed that relate model parameters to land cover, which reduces the
reduction in performance when transferring parameters from one land cover map to another
(Samaniego et al. 2010). For these reasons, | do not find the results of this study are substantial
enough to be interesting to a wider readership and recommend rejection.

The comments below might help the authors to further improve their manuscript in the
continuation of their work.

Response: We thank the reviewer for the thorough evaluation and the constructive
comments for which we are using to improve the manuscript. The feedback has certainly
helped us clarify the context of our study, and we are grateful for the insights about how
to make the work more of interest to wider readership. However, we respectfully disagree
with the reviewer about their main conclusions for recommending rejection, each of
which we address further below.

Point #1: The reviewer stated above “This highlights that model parameters do
compensate for differences in LULC maps in SWAT, an aspect that is not discussed in
the manuscript.” In our third case, we found that calibrating parameters for each separate
LULC instance could account for differences in model performance due to different
LULC data (e.g., 12% more forest cover in growing season), but would lead to different
optimized parameter values. We discuss that different parameterizations could cause the



model to respond differently when a transient LULC or climate change is being
simulated.

“Within reason, using separate calibration for each season may compensate for these
inconsistencies, but lead to different model parameter optimizations.” (page 1, lines 23-
24 of revised manuscript)

“It is critical to consider that the differences in parameter values create the potential for
the models to respond differently to future changes in LULC or climate change due to
variations in unmeasured water balance outputs (Myers et al., 2021a).” (page 15, lines
291-293)

Point #2: The reviewer stated above “First, the limited spatial coverage only focusing on
small basins in the Eastern US.” Although it is ideal to run water quality and quantity
models across numerous watersheds across the globe, most studies performed modeling
in one or multiple watersheds given limited time and resources. One example is the
Samaniego et al. (2010) reference the reviewer mentioned above, which used one model
on one watershed to introduce important concepts to the modeling community and has
widely informed further studies. Frankly speaking, use of 37 watersheds is rare in
watershed studies. But we agree with the reviewer that our study is not free of limitations,
and discuss this limitation openly in our conclusion.

“With a limited geographic scope (e.g., temperate watersheds) and small sample of
models, our work does not intend to show definitively when, where, or in what model
configurations these sensitivities would occur, but that they are a possibility that
modelers should be aware of.” (page 17, lines 350-352)

Our work informs the modeling community that we should consider potential sensitivities
using the high spatiotemporal resolution LULC data that can have illogical seasonal
classification inconsistencies. For instance, recent work used one instance of Dynamic
World land cover data to bias correct a global hydrologic model to be used for
forecasting hydrologic extremes and potential emergencies in underdeveloped countries
(Hales et al., 2023). If that correction were used with a different instance of LULC data
from a different season, our findings show that there could potentially be illogical LULC
discrepancies for the temperate eastern United States watersheds. This is particularly
important when models are being used for such meaningful societal purposes.

Point #3: The reviewer stated “Second, and more importantly, the choice of methods, i.e.,
using the SWAT model that only accounts for the dominant land cover class (l. 79)
within a computational unit.” We explored two set-ups of the SWAT model subbasin
aggregation in this study: the dominant land cover aggregate in Case #2, and the full



Hydrologic Response Unit detail in Case #3. Both are approaches used in watershed
modeling, the first for computational efficiency and simplicity, and the second for high
attention to detail and higher complexity. Either way, the illogical land cover changes due
to seasonal classification inconsistencies in mixed temperate urban-forested watersheds
are still a meaningful consideration. Incorporating potentially illogical land cover
changes into modeling inputs could have implications to HESS readers, particularly when
it is not clear which seasonal changes are real and should have logical effects on model
outputs, or which are merely illogical errors that should be corrected before influencing
model outputs. We discuss this with our second and third cases:

“The differences observed between models using Dynamic World LULC were due to the
9% increase in built areas in non-growing season Dynamic World 2016 data, which have
more impervious surfaces, a higher runoff curve number, and generate proportionally
more water and nutrient runoff than the forested areas which were classified during the
growing season. This could be particularly problematic when using computationally
more efficient SWAT models that assign subbasin conditions based on the dominant
HRU, as a change in dominant LULC type in a watershed could result in different
subbasin conditions in the model greater than the proportional change in LULC.” (page
12, lines 256-261)

“The difference in forests of 12% of watershed area between growing and non-growing
season Dynamic World 2016 data for Difficult Run is as large a difference as real
changes in forests that have been found to cause these sensitivities in model parameters
(Li et al., 2019), but was likely caused by classification variation rather than an actual
cycle from trees to built area and back (Hermosilla et al., 2018).” (page 15, lines 288-
291)

Point #4: Referring to CLMS5, the reviewer stated above “These models are also able to
have transient land cover, which would account for the differences between growing and
non-growing season.” SWAT also simulates seasonal differences in land characteristics
such as real crop and vegetation cycles. However, it is implausible that a large portion of
the watersheds we studied had forest lands developed into built area for the non-growing
season, then have the built area removed and reforested for the growing season.
Considering the impacts of illogical classification inconsistencies in land cover inputs
over seasonal time scales makes our findings relevant to wider readership. We explain
this in our abstract and discussion:

“Non-growing season LULC had more built area and less tree cover than growing
season data due to seasonal impacts on classifications rather than actual LULC changes
(e.g., quick construction or succession). In mixed-LULC watersheds, seasonal LULC
classification inconsistencies could lead to differences in model outputs depending on the



LULC season used, such as an increase in watershed nitrogen yields simulated by the
Soil and Water Assessment Tool.” (page 1, lines 19-23)

“Actual on-the-ground changes from built LULC to other types, or from other LULC
types to trees (e.g., succession), are not likely to be occurring within the short (seasonal)
time interval between our LULC composites (Cai et al., 2014).” (page 9, lines 207-209)

Point #5: The reviewer stated above “SWAT also does not account for relationships
between model parameters and land cover.” To the contrary, a large number of SWAT
parameters are adjusted to account for different LULC at the subbasin and HRU scales.
For example, the runoff curve number parameter (CN2) that was very sensitive in our
study is calculated individually based on land cover inputs for each hydrologic response
unit, and optimized using a relative (i.e., %) adjustment. We thank the reviewer for
identifying this need for clarity, and updated our Table 1 footnote to make this clearer to
readers.

“t A v’ indicates that the original parameter from QSWAT was replaced by the
calibrated value globally, in the same unit. An r’ indicates that the original parameter
was modified relatively, multiplying it regionally by 1 + the calibrated value (e.g. a value
of -0.2 reduces the original parameter by 20%).” (page 7, lines 163-165)

Point #6: The reviewer stated above “For these reasons, I do not find the results of this
study are substantial enough to be interesting to a wider readership and recommend
rejection.” In addition to the responses above, there are further reasons that we do believe
that our results are substantial and interesting to a wider readership. First, evaluation of
LULC products at high spatiotemporal resolution is an important research need with vast
societal implications (Radeloff et al., 2024). Our study is one step toward achieving this
goal, providing guidance to the modeling community for using high spatiotemporal
resolution data such as Dynamic World. Second, we acknowledge that there are many
hydrologic models being used by HESS readers and that we used SWAT in our
experiments, but SWAT is a very common hydrologic model and is pertinent to the
modeling community. We updated our text to make these points clearer to readers.

“Evaluation of LULC products at high spatiotemporal resolution is an important
research need with vast societal implications (Radeloff et al., 2024).” (page 2, lines 49-
50)

“SWAT is the most common water quality model globally (Fu et al., 2019) and has been
used in over 6,000 peer-reviewed studies (https://www.card.iastate.edu/swat_articles/,
accessed 7 January, 2024).” (page 5, lines 115-116)



Major comments

Overall, the results and discussion section is very short, only 120 lines! The authors should
discuss how the differences in LULC classification that they find here would impact simulations
using other methods than the ones used here (i.e., SWAT). To my understanding, the reduction in
performance presented in this manuscript using SWAT provide an upper bound and different
methods (i.e., CLM5 and methods outlined in Samaniego et al. 2010) would actually be less
sensitive to the difference in LULC classification.

Response: We thank the reviewer for this feedback to improve the discussion of our
results in relation with other modeling approaches. We have now expanded on our results
and discussion section to include more details about illogical land cover classifications
that could affect other models (3.1) and future directions (3.5). Specific text for those
sections is included in our response to Reviewer 1, aside from the paragraph below.
Concluding that our results present an upper bound of different modeling approaches
would be outside the scope of our experiment, so we suggest a future model
intercomparison study. However, we expect that our findings would not be an upper
bound because we used seasonal LULC composites, while models using individual
instances of 5-day temporal resolution LULC would likely encounter more extreme
variation in LULC estimates.

“Illogical LULC changes between data from different seasons could be pertinent to
models beyond our cases of regressions and SWAT in the eastern United States, such as
models for which accurate parameterization of LULC processes is essential for
simulating the impacts of climate change (Glotfelty et al., 2021). For instance, potential
seasonal variation in LULC estimates should be a consideration were an updated LULC
layer to be used for modeling approaches such as Hales et al. (2023), which bias
corrected a global hydrologic model GEOGIoWS for extreme event forecasting in
underdeveloped regions using a single instance of Dynamic World data. Our findings
show that there is the potential for discrepancies at least for temperate watersheds in the
eastern United States if the season of LULC update were not accounted for. These
illogical LULC changes could also be pertinent for models that can use a mosaic
approach to represent spatial variability of LULC within coarser grid cells (e.g., CLM5;
Lawrence et al., 2019). The mosaic approach assumes that land surface properties (e.g.,
water fluxes) are homogeneously related to the LULC type (Li et al., 2013; Qin et al.,
2023), in which case an illogical conversion of 12% area from forest to other types (our
Case #3 example) could carry forward into the models, and potentially impact water and
energy flux estimates or parameterizations similar to an actual LULC change. For
instance, deforestation has previously been shown to alter heat and carbon fluxes and
ecosystem productivity in CLM5 (Marufah et al., 2021; Luo et al., 2023). Variability
within input data sub-grids has also been shown to influence model parameter
optimization and performance simulating hydrology, making it an important aspect to



account for (Samaniego et al., 2010). As models advance into higher spatiotemporal
resolution following increasing computational resources and data availability (e.g.,
Hales et al., 2023), we encourage the modeling community to be cognizant of the
potential impacts of illogical seasonal LULC change, such as we identified for mixed
LULC areas of the eastern United States. The strength of the effect of the illogical
seasonal LULC change on the model outputs and optimized parameters would depend on
many factors including model processes and spatiotemporal extent. A model
intercomparison study in this regard would likely be a meaningful contribution to the
advancement of the field into higher spatiotemporal capabilities. ” (page 15, line 300 to
page 16, line 320)

Case \#2: Parameters transferred from growing to non-growing season lead to substantial drop in
model performance, but how do parameters calibrated to non-growing season perform when
using the growing season data? The authors should include this case in their analysis.

Response: Our primary goal for the second case was to use a traditional calibration
approach to growing season data and evaluate what would happen when non-growing
season data is used. Although performing the reverse would be an interesting question,
we have not done this analysis because we are not aware of any modeling approach
designed for calibration to non-growing season data only. However, analysis-ready
datasets such as Dynamic World can lead to non-growing season LULC data being built
into modeling approaches (e.g., Hales et al., 2023), so this should absolutely be an avenue
for future work building on our study.

L. 242.: The reference to Clark et al. (2015) is misleading. State-of-the-art land-surface models
like CLMV5 are able to account for transient land use and land cover change (see chapter 27 in
CLMB5.0 technical note, downloaded from
https://www?2.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf). The authors need to
discuss how their findings here are relevant for land-surface models that are employing a mosaic
approach to represent different land and plant functional types within a grid cell.

Response: We thank the reviewer for this valuable feedback and improvement of the
conceptualization of our study. We removed the mentioned sentence and combined
discussion of the mosaic approach with our discussion of other modeling approaches, the
text of which is provided above (the response to the first of the reviewer’s major
comments, two comments up). To summarize, we expect that these findings are relevant
because they are likely to be based on illogical classification inconsistencies rather than
real differences in land cover within a grid cell. Thus, they are pertinent for having
accurate and consistent land cover representation within the grid cells over time.
Although models may incorporate transient land cover change to best represent
vegetation and crop characteristics, they are nonetheless vulnerable to errors caused by



illogical land cover change estimates, which our study found could comprise a large
proportion of watershed area in the eastern United States using high spatiotemporal
resolution Dynamic World data from different seasons.

Table 4: The performance metrics are often higher in the validation than in the calibration period.
Normally, it is expected that there is a substantial drop in model performance between
calibration and validation period. The authors should explain this.

Response: We respectfully disagree with the statement “Normally, it is expected that
there is a substantial drop in model performance between calibration and validation
period.” To our interpretations, a well-performing model should be able to simulate the
validation period consistent with the calibration period. A drop in performance during the
validation period could indicate that a model is being overfit to the calibration period.
The consistent performance of our models during the validation period could imply that
our parameterization approach for this case, calibrating only the most sensitive
parameters and using multiple optimization algorithms (Vrugt and Robinson, 2007),
helped reduce model overfitting to the calibration period.

Minor comments:
Section 2.5: Not all readers will be familiar with SWAT parameters listed in Table 1. It would be
helpful to add a short description in the Appendix.

Response: We made the improvement as suggested, adding a table of additional
descriptions for SWAT parameters as Table S4 (see below).

Table 3: The caption should mention that all results presented here are based on parameters
calibrated with the growing season LULC (see I. 213f), even the results shown for the calibration
period of the non-growing season. This could be misunderstood otherwise.

Response: We made the improvement as suggested and thank the reviewer for the helpful
suggestion.

“Table 3: Model performance metrics for the calibrated Rock Creek hydrologic model
(Case #2) for streamflow and nitrogen yield, based on Nash Sutcliffe Efficiency (NSE),
mean absolute error (MAE), and percent bias (PBIAS, where <0 implies overestimation
bias), at the monthly time step. In this case, model parameters were all calibrated to
growing season Dynamic World 2016 data to investigate the impacts of simulating an
LULC change using non-growing season data.” (page 11, lines 246-249)



Fig. 6: The visual quality of this Figure is low. In Figure 6a to 6c¢, the markers in the Scatter plots
are overlapping and the underlying relationship between the simulated and observed discharge
cannot be seen. Also the dpi resolution of the hydrographs is low leading to pixelization that
does not allow to appreciate differences between different lines. I also suggest to use a black line
instead of a yellow line and make the line widths slightly thicker.

Response: We thank the reviewer for these comments to improve our figure. We have
modified color palettes and point transparencies to make underlying relationships in 6a-
6¢ more visible. We also provide a higher (600) dpi resolution and modified line widths
and types so that the observed and modeled discharge time series are more
distinguishable. We also enlarged the figure.
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Figure 6: Daily discharge models for the Difficult Run Watershed displaying base-10
log, so that daily baseflows and low flows are visible, comparing independently



calibrated models with a) Dynamic World 2016 growing season LULC, b) Dynamic
World 2016 non-growing season LULC, and ¢) NLCD 2016. Also d) Time series of
Difficult Run modeled discharge.
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Table S4. Further explanations of SWAT model parameters mentioned in Table 1 of the text for
the Difficult Run Watershed. Readers are directed to Arnold et al. (2013) for additional
documentation.

Symbol Definition Description




CH_KIll.rte

ALPHA_BNK.rte

CN_F.mgt

SNOS50COV.bsn

ESCO.hru

CH_NIl.rte

SOL_BD.sol

SNOCOVMX.bsn

SFTMP.bsn

SOL_AWC sol

Channel hydraulic
conductivity (mm/h) (v)

Bank flow recession
constant (v)

Runoff curve number (r)

Fraction of
SNOCOVMX for 50%
cover (v)

Soil evaporation
compensation coef. (V)

Manning's n value for
main channel (v)

Soil moist bulk density
(r)

Snow depth above
which is 100% cover

(mm) (v)

Snowfall temperature
threshold (°C) (v)

Available Water
Capacity (r)

Effective hydraulic conductivity
for alluvium in the main
channel of the reach, describing
relationships with groundwater.

Regulates bank flow to the
reach using a recession
constant.

Representation of soil
permeability, landscape
characteristics, and antecedent
moisture conditions.

Fraction of complete snow
cover which represents 50%
snow cover in areal depletion
curve.

Modification to soil evaporative
demand at different depths.

Roughness coefficient for the
main channel of the reach.

Ratio of oven dry soil mass to
total volume near field capacity.

Amount of snowpack needed
for complete areal coverage.

Temperature threshold that
distinguishes snowfall from
rainfall during a precipitation
event.

Plant available water capacity
of the soil.




