
Reviewer 2: 

Review for manuscript entitled "Seasonal variation in landcover estimates reveals sensitivities 

and opportunities for environmental models" 

 

In this manuscript, the authors investigate the difference of classifying a land-use land cover 

(LULC) dataset during the growing vs. non-growing season. They use the Dynamic world 

dataset for this purpose and find differences in classification of 5 to 10% area in built and tree 

classes. In other words, there is 5 to 10% more(less) area classified as built(trees) in the non-

growing season compared to the growing season. Subsequently, they investigate the effect of this 

difference on water quantity and quality modelling. For water quality modelling, the authors use 

both a statistical approach and the hydrologic model SWAT. The latter is also used for water 

quantity modelling. The selected 37 basins are located in the Eastern US and SWAT is set up for 

two small scale basins. Overall, the authors find small differences when using the classification 

during the growing season and non-growing season. The largest difference is found when SWAT 

parameters calibrated on streamflow and nitrogen yield data using the growing season data are 

transferred to using the non-growing season data. However, a calibration of SWAT in another 

catchment shows that similar performance can be achieved using the growing season and non-

growing season data. This highlights that model parameters do compensate for differences in 

LULC maps in SWAT, an aspect that is not discussed in the manuscript. While the topic of 

LULC classification is very relevant because land cover information is a fundamental 

requirement for environmental models, the conclusions of this study are very limited and not of 

general nature because of two reasons. First, the limited spatial coverage only focusing on small 

basins in the Eastern US. Second, and more importantly, the choice of methods, i.e., using the 

SWAT model that only accounts for the dominant land cover class (l. 79) within a computational 

unit. Accounting for dominant land cover is not state-of-the-art. For example, state-of-the-art 

LSMs like the Community land model v5 use a mosaic approach to represent different land 

cover types and plant functional types within a grid cell (see also comment on CLM below). 

These models are also able to have transient land cover, which would account for the differences 

between growing and non-growing season. SWAT also does not account for relationships 

between model parameters and land cover. Within hydrologic modelling, regionalization 

methods have been developed that relate model parameters to land cover, which reduces the 

reduction in performance when transferring parameters from one land cover map to another 

(Samaniego et al. 2010). For these reasons, I do not find the results of this study are substantial 

enough to be interesting to a wider readership and recommend rejection. 

 

The comments below might help the authors to further improve their manuscript in the 

continuation of their work. 

 

Response: We thank the reviewer for the thorough evaluation and the constructive 

comments for which we are using to improve the manuscript. The feedback has certainly 

helped us clarify the context of our study, and we are grateful for the insights about how 

to make the work more of interest to wider readership. However, we respectfully disagree 



with the reviewer about their main conclusions for recommending rejection, each of 

which we address further below.  

 

 

Point #1: The reviewer stated above “This highlights that model parameters do 

compensate for differences in LULC maps in SWAT, an aspect that is not discussed in 

the manuscript.” In our third case, we found that calibrating parameters for each separate 

LULC instance could account for differences in model performance due to different 

LULC data (e.g., 12% more forest cover in growing season), but would lead to different 

optimized parameter values. We discuss that different parameterizations could cause the 

model to respond differently when a transient LULC or climate change is being 

simulated.  

 

“Within reason, using separate calibration for each season may compensate for these 

inconsistencies, but lead to different model parameter optimizations.” (page 1, lines 22-

23 of preprint) 

 

“It is critical to consider that the differences in parameter values create the potential for 

the models to respond differently to future changes in LULC or climate change due to 

variations in unmeasured water balance outputs (Myers et al., 2021a).” (page 13, lines 

273-275 of preprint) 

 

 

Point #2: The reviewer stated above “First, the limited spatial coverage only focusing on 

small basins in the Eastern US.” Although it is ideal to run water quality and quantity 

models across numerous watersheds across the globe, most studies performed modeling 

in one or multiple watersheds given limited time and resources. One example is the 

Samaniego et al. (2010) reference the reviewer mentioned above, which used one model 

on one watershed to introduce important concepts to the modeling community and has 

widely informed further studies. Frankly speaking, use of 37 watersheds is rare in 

watershed studies. But we agree with the reviewer that our study is not free of limitations, 

and discuss this limitation openly in our conclusion.  

 

“With a limited geographic scope (e.g., temperate watersheds) and small sample of 

models, our work does not intend to show definitively when, where, or in what model 

configurations these sensitivities would occur, but that they are a possibility that 

modelers should be aware of.” (page 14, lines 288-291 of preprint) 

 

Our work informs the modeling community that we should consider potential sensitivities 

using the high spatiotemporal resolution LULC data that can have illogical seasonal 

classification inconsistencies. For instance, recent work used one instance of Dynamic 

World land cover data to bias correct a global hydrologic model to be used for 

forecasting hydrologic extremes and potential emergencies in underdeveloped countries 



(Hales et al., 2023). If that correction were used with a different instance of LULC data 

from a different season, our findings show that there could potentially be illogical LULC 

discrepancies for the temperate eastern United States watersheds. This is particularly 

important when models are being used for such meaningful societal purposes.  

 

 

Point #3: The reviewer stated “Second, and more importantly, the choice of methods, i.e., 

using the SWAT model that only accounts for the dominant land cover class (l. 79) 

within a computational unit.” We explored two set-ups of the SWAT model subbasin 

aggregation in this study: the dominant land cover aggregate in Case #2, and the full 

Hydrologic Response Unit detail in Case #3. Both are approaches used in watershed 

modeling, the first for computational efficiency and simplicity, and the second for high 

attention to detail and higher complexity. Either way, the illogical land cover changes due 

to seasonal classification inconsistencies in mixed temperate urban-forested watersheds 

are still a meaningful consideration. Incorporating potentially illogical land cover 

changes into modeling inputs could have implications to HESS readers, particularly when 

it is not clear which seasonal changes are real and should have logical effects on model 

outputs, or which are merely illogical errors that should be corrected before influencing 

model outputs. We discuss this with our second and third cases: 

 

“The differences observed between models using Dynamic World LULC were due to the 

9% increase in built areas in non-growing season Dynamic World 2016 data, which have 

more impervious surfaces, a higher runoff curve number, and generate proportionally 

more water and nutrient runoff than the forested areas which were classified during the 

growing season. This could be particularly problematic when using computationally 

more efficient SWAT models that assign subbasin conditions based on the dominant 

HRU, as a change in dominant LULC type in a watershed could result in different 

subbasin conditions in the model greater than the proportional change in LULC.” (page 

11, lines 235-240 in preprint) 

 

“The difference in forests of 12% of watershed area between growing and non-growing 

season Dynamic World 2016 data for Difficult Run is as large a difference as real 

changes in forests that have been found to cause these sensitivities in model parameters 

(Li et al., 2019), but was likely caused by classification variation rather than an actual 

cycle from trees to built area and back (Hermosilla et al., 2018).” (page 13, lines 270-

273 of preprint) 

 

 

Point #4: Referring to CLM5, the reviewer stated above “These models are also able to 

have transient land cover, which would account for the differences between growing and 

non-growing season.” SWAT also simulates seasonal differences in land characteristics 

such as real crop and vegetation cycles. However, it is implausible that a large portion of 

the watersheds we studied had forest lands developed into built area for the non-growing 



season, then have the built area removed and reforested for the growing season. 

Considering the impacts of illogical classification inconsistencies in land cover inputs 

over seasonal time scales makes our findings relevant to wider readership. We explain 

this in our abstract and discussion: 

 

“Non-growing season LULC had more built area and less tree cover than growing 

season data due to seasonal impacts on classifications rather than actual LULC changes 

(e.g., quick construction or succession). In mixed-LULC watersheds, seasonal LULC 

classification inconsistencies could lead to differences in model outputs depending on the 

LULC season used, such as an increase in watershed nitrogen yields simulated by the 

Soil and Water Assessment Tool.” (page 1, lines 18-22 of preprint) 

 

“Actual on-the-ground changes from built LULC to other types, or from other LULC 

types to trees (e.g., succession), are not likely to be occurring within the short (seasonal) 

time interval between our LULC composites (Cai et al., 2014).” (page 9, lines 188-190 of 

preprint) 

 

 

Point #5: The reviewer stated above “SWAT also does not account for relationships 

between model parameters and land cover.” To the contrary, a large number of SWAT 

parameters are adjusted to account for different LULC at the subbasin and HRU scales. 

For example, the runoff curve number parameter (CN2) that was very sensitive in our 

study is calculated individually based on land cover inputs for each hydrologic response 

unit, and optimized using a relative (i.e., %) adjustment. We thank the reviewer for 

identifying this need for clarity, and updated our Table 1 footnote to make this clearer to 

readers. 

 

“† A ‘v’ indicates that the original parameter from QSWAT was replaced by the 

calibrated value globally, in the same unit. An ‘r’ indicates that the original parameter 

was modified relatively, multiplying it regionally by 1 + the calibrated value (e.g. a value 

of -0.2 reduces the original parameter by 20%).” (to be updated at page 7, lines 155-157 

of preprint) 

 

 

Point #6: The reviewer stated above “For these reasons, I do not find the results of this 

study are substantial enough to be interesting to a wider readership and recommend 

rejection.” In addition to the responses above, there are further reasons that we do believe 

that our results are substantial and interesting to a wider readership. First, evaluation of 

LULC products at high spatiotemporal resolution is an important research need with vast 

societal implications (Radeloff et al., 2024). Our study is one step toward achieving this 

goal, providing guidance to the modeling community for using high spatiotemporal 

resolution data such as Dynamic World. Second, we acknowledge that there are many 

hydrologic models being used by HESS readers and that we used SWAT in our 



experiments, but SWAT is a very common hydrologic model and is pertinent to the 

modeling community. We updated our text to make these points clearer to readers. 

 

“Evaluation of LULC products at high spatiotemporal resolution is an important 

research need with vast societal implications (Radeloff et al., 2024).” (to be added at 

page 2, line 48 of preprint) 

 

“SWAT is the most common water quality model globally (Fu et al., 2019) and has been 

used in over 6,000 peer-reviewed studies (https://www.card.iastate.edu/swat_articles/, 

accessed 7 January, 2024).” (to be added at page 5, line 110 of preprint) 

 

 

Major comments 

 

Overall, the results and discussion section is very short, only 120 lines! The authors should 

discuss how the differences in LULC classification that they find here would impact simulations 

using other methods than the ones used here (i.e., SWAT). To my understanding, the reduction in 

performance presented in this manuscript using SWAT provide an upper bound and different 

methods (i.e., CLM5 and methods outlined in Samaniego et al. 2010) would actually be less 

sensitive to the difference in LULC classification. 

 

Response: We thank the reviewer for this feedback to improve the discussion of our 

results in relation with other modeling approaches. We have now expanded on our results 

and discussion section to include more details about illogical land cover classifications 

that could affect other models (3.1) and future directions (3.5). Specific text for those 

sections is included in our response to Reviewer 1, aside from the paragraph below. 

Concluding that our results present an upper bound of different modeling approaches 

would be outside the scope of our experiment, so we suggest a future model 

intercomparison study. However, we expect that our findings would not be an upper 

bound because we used seasonal LULC composites, while models using individual 

instances of 5-day temporal resolution LULC would likely encounter more extreme 

variation in LULC estimates. 

 

“Illogical LULC changes between data from different seasons could be pertinent to 

models beyond our cases of regressions and SWAT in the eastern United States, such as 

models for which accurate parameterization of LULC processes is essential for 

simulating the impacts of climate change (Glotfelty et al., 2021). For instance, potential 

seasonal variation in LULC estimates should be a consideration were an updated LULC 

layer to be used for modeling approaches such as Hales et al. (2023), which bias 

corrected a global hydrologic model GEOGloWS for extreme event forecasting in 

underdeveloped regions using a single instance of Dynamic World data. Our findings 

show that there is the potential for discrepancies at least for temperate watersheds in the 

eastern United States if the season of LULC update were not accounted for. These 



illogical LULC changes could also be pertinent for models that can use a mosaic 

approach to represent spatial variability of LULC within coarser grid cells (e.g., CLM5; 

Lawrence et al., 2019). The mosaic approach assumes that land surface properties (e.g., 

water fluxes) are homogeneously related to the LULC type (Li et al., 2013; Qin et al., 

2023), in which case an illogical conversion of 12% area from forest to other types (our 

Case #3 example) could carry forward into the models, and potentially impact water and 

energy flux estimates or parameterizations similar to an actual LULC change. For 

instance, deforestation has previously been shown to alter heat and carbon fluxes and 

ecosystem productivity in CLM5 (Marufah et al., 2021; Luo et al., 2023). Variability 

within input data sub-grids has also been shown to influence model parameter 

optimization and performance simulating hydrology, making it an important aspect to 

account for (Samaniego et al., 2010). As models advance into higher spatiotemporal 

resolution following increasing computational resources and data availability (e.g., 

Hales et al., 2023), we encourage the modeling community to be cognizant of the 

potential impacts of illogical seasonal LULC change, such as we identified for mixed 

LULC areas of the eastern United States. The strength of the effect of the illogical 

seasonal LULC change on the model outputs and optimized parameters would depend on 

many factors including model processes and spatiotemporal extent. A model 

intercomparison study in this regard would likely be a meaningful contribution to the 

advancement of the field into higher spatiotemporal capabilities.” (to be added after page 

13, line 275 of preprint)  

 

 

Case \#2: Parameters transferred from growing to non-growing season lead to substantial drop in 

model performance, but how do parameters calibrated to non-growing season perform when 

using the growing season data? The authors should include this case in their analysis. 

 

Response: Our primary goal for the second case was to use a traditional calibration 

approach to growing season data and evaluate what would happen when non-growing 

season data is used. Although performing the reverse would be an interesting question, 

we have not done this analysis because we are not aware of any modeling approach 

designed for calibration to non-growing season data only. However, analysis-ready 

datasets such as Dynamic World can lead to non-growing season LULC data being built 

into modeling approaches (e.g., Hales et al., 2023), so this should absolutely be an avenue 

for future work building on our study. 

 

 

L. 242.: The reference to Clark et al. (2015) is misleading. State-of-the-art land-surface models 

like CLMv5 are able to account for transient land use and land cover change (see chapter 27 in 

CLM5.0 technical note, downloaded from 

https://www2.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf). The authors need to 

discuss how their findings here are relevant for land-surface models that are employing a mosaic 

approach to represent different land and plant functional types within a grid cell. 



 

Response: We thank the reviewer for this valuable feedback and improvement of the 

conceptualization of our study. We removed the mentioned sentence and combined 

discussion of the mosaic approach with our discussion of other modeling approaches, the 

text of which is provided above (the response to the first of the reviewer’s major 

comments, two comments up). To summarize, we expect that these findings are relevant 

because they are likely to be based on illogical classification inconsistencies rather than 

real differences in land cover within a grid cell. Thus, they are pertinent for having 

accurate and consistent land cover representation within the grid cells over time. 

Although models may incorporate transient land cover change to best represent 

vegetation and crop characteristics, they are nonetheless vulnerable to errors caused by 

illogical land cover change estimates, which our study found could comprise a large 

proportion of watershed area in the eastern United States using high spatiotemporal 

resolution Dynamic World data from different seasons.  

 

 

Table 4: The performance metrics are often higher in the validation than in the calibration period. 

Normally, it is expected that there is a substantial drop in model performance between 

calibration and validation period. The authors should explain this. 

 

Response: We respectfully disagree with the statement “Normally, it is expected that 

there is a substantial drop in model performance between calibration and validation 

period.” To our interpretations, a well-performing model should be able to simulate the 

validation period consistent with the calibration period. A drop in performance during the 

validation period could indicate that a model is being overfit to the calibration period. 

The consistent performance of our models during the validation period could imply that 

our parameterization approach for this case, calibrating only the most sensitive 

parameters and using multiple optimization algorithms (Vrugt and Robinson, 2007), 

helped reduce model overfitting to the calibration period.  

 

 

Minor comments: 

Section 2.5: Not all readers will be familiar with SWAT parameters listed in Table 1. It would be 

helpful to add a short description in the Appendix. 

 

Response: We made the improvement as suggested, adding a table of additional 

descriptions for SWAT parameters as Table S4 (see below). 

 

 

Table 3: The caption should mention that all results presented here are based on parameters 

calibrated with the growing season LULC (see l. 213f), even the results shown for the calibration 

period of the non-growing season. This could be misunderstood otherwise. 

 



Response: We made the improvement as suggested and thank the reviewer for the helpful 

suggestion. 

 

“Table 3: Model performance metrics for the calibrated Rock Creek hydrologic model 

(Case #2) for streamflow and nitrogen yield, based on Nash Sutcliffe Efficiency (NSE), 

mean absolute error (MAE), and percent bias (PBIAS, where <0 implies overestimation 

bias), at the monthly time step. In this case, model parameters were all calibrated to 

growing season Dynamic World 2016 data to investigate the impacts of simulating an 

LULC change using non-growing season data.” (to be updated at page 11, lines 226-228 

of preprint) 

 

 

Fig. 6: The visual quality of this Figure is low. In Figure 6a to 6c, the markers in the Scatter plots 

are overlapping and the underlying relationship between the simulated and observed discharge 

cannot be seen. Also the dpi resolution of the hydrographs is low leading to pixelization that 

does not allow to appreciate differences between different lines. I also suggest to use a black line 

instead of a yellow line and make the line widths slightly thicker. 

 

Response: We thank the reviewer for these comments to improve our figure. We have 

modified color palettes and point transparencies to make underlying relationships in 6a-

6c more visible. We also provide a higher (600) dpi resolution and modified line widths 

and types so that the observed and modeled discharge time series are more 

distinguishable. We also enlarged the figure. 

 



 
Figure 6: Daily discharge models for the Difficult Run Watershed displaying base-10 

log, so that daily baseflows and low flows are visible, comparing independently 

calibrated models with a) Dynamic World 2016 growing season LULC, b) Dynamic 

World 2016 non-growing season LULC, and c) NLCD 2016. Also d) Time series of 

Difficult Run modeled discharge. 
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Table S4. Further explanations of SWAT model parameters mentioned in Table 1 of the text for 

the Difficult Run Watershed. Readers are directed to Arnold et al. (2013) for additional 

documentation. 

Symbol Definition Description 

CH_KII.rte Channel hydraulic 

conductivity (mm/h) (v) 

Effective hydraulic 

conductivity for alluvium in the 

main channel of the reach, 

describing relationships with 

groundwater. 

ALPHA_BNK.rte Bank flow recession 

constant (v) 

Regulates bank flow to the 

reach using a recession 

constant. 

CN_F.mgt Runoff curve number (r) Representation of soil 

permeability, landscape 



characteristics, and antecedent 

moisture conditions. 

SNO50COV.bsn Fraction of 

SNOCOVMX for 50% 

cover (v) 

Fraction of complete snow 

cover which represents 50% 

snow cover in areal depletion 

curve. 

ESCO.hru Soil evaporation 

compensation coef. (v) 

Modification to soil evaporative 

demand at different depths. 

CH_NII.rte Manning's n value for 

main channel (v) 

Roughness coefficient for the 

main channel of the reach. 

SOL_BD.sol Soil moist bulk density 

(r) 

Ratio of oven dry soil mass to 

total volume near field capacity. 

SNOCOVMX.bsn Snow depth above 

which is 100% cover 

(mm) (v) 

Amount of snowpack needed 

for complete areal coverage. 

SFTMP.bsn Snowfall temperature 

threshold (°C) (v) 

Temperature threshold that 

distinguishes snowfall from 

rainfall during a precipitation 

event. 

SOL_AWC.sol Available Water 

Capacity (r) 

Plant available water capacity 

of the soil. 

 


