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Optimizing maximum carboxylation rate for North America’s boreal forests 

in the Canadian Land Surface Scheme Including biogeochemical Cycles 

(CLASSIC) v.1.3 

Author Responses 

Dear Editors and Referees, 

Please find herein all referee comments (in blue) along with our corresponding replies (in 

black) and our modifications to the manuscript (italicized in black). 

Anonymous Referee #1 

(R1.C1) This study utilized a Bayesian algorithm to optimize Vcmax25 in the land surface 

model against eddy covariance observations at eight mature boreal forest stands in North 

America. The results showed that the Bayesian algorithm can optimize Vcmax25 and improve 

ET and GPP estimates. The topic is interesting, and the results look promising. However, I am 

not convinced that the manuscript is innovative enough to contribute to the development of 

physical models, and therefore, I cannot accept it for publication. 

Thank you for your time and efforts in reviewing our manuscript and providing constructive 

comments. We were pleased to read that you found the topic interesting and the results 

promising. In summary, we used a Bayesian optimization framework to optimize maximum 

carboxylation rate at 25 °C (Vcmax25) for representative plant functional types (PFTs) in North 

America’s boreal forests in the Canadian Land Surface Scheme Including biogeochemical 

Cycles (CLASSIC, version 1.3) with observed daily carbon dioxide (CO2) (i.e., gross primary 

productivity [GPP]) and water fluxes (i.e., evapotranspiration [ET]) obtained from eddy 

covariance measurements. To the best of our knowledge, this is a first study focusing on the 

Bayesian parameter optimization of Vcmax in boreal forest stands experiencing different climate 

and permafrost conditions with CLASSIC or other terrestrial biosphere models (TBMs) of 

similar complexity, e.g., CLM5 (Lawrence et al., 2019), LM4 (Dunne et al., 2020), and JULES3 

(Slevin et al., 2017). Given that Vcmax is one of the most important parameters in many TBMs 

(Rogers, 2014), our optimizations with CLASSIC are highly relevant to other TBMs of similar 
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complexity. Therefore, we believe that our work represents an important step in improving the 

parameterization of Vcmax in TBMs across the boreal biome in North America. 

The novelties of our study include refining Vcmax at the PFT level (compared to stand 

level as in previous studies, e.g., Ueyama et al., 2016) for boreal forests in North America using 

a Bayesian optimization framework. Considering the vast extent of the boreal biome in North 

America, adequately parameterizing Vcmax was identified as a key challenge hindering progress in 

TBM development (Rogers et al., 2021; Stinziano et al., 2019; Rogers, 2014; Fisher et al., 2018). 

Based on our previous work (Qu et al., 2023), CLASSIC showed limited model skill in 

reproducing observed daily GPP and ET using its default Vcmax25 parameterization for one tree 

PFT (i.e., “evergreen needleleaf tree” [ENT]) in boreal forest stands in North America. The 

simple assumption of a stand-level Vcmax25 constant in space and time might be a major 

contributor to the limited model skill. In addition to tree PFTs, boreal forest canopies often 

comprise various plant species and associated PFTs in their understory (e.g., shrubs and herbs) 

and ground cover (e.g., mosses and lichens), respectively. Thus, refining PFT-level Vcmax 

parameterizations to account for understory and ground cover PFTs is important for modeling 

boreal forest function including GPP and ET. This is especially true in boreal forest stands in the 

permafrost zone characterized by low tree stem densities (Heijmans et al., 2004; Ikawa et al., 

2015). Previous optimization studies conducted in boreal forest stands optimized stand-level 

Vcmax with multilayer canopies by assuming a single tree PFT, e.g., ENT (He et al., 2014; Mo et 

al., 2008; Ueyama et al., 2016). Our Bayesian optimizations with CLASSIC were performed for 

six PFTs, collectively representing eight boreal forest stands in North America.  

Our optimized PFT-level Vcmax25 estimates provide an improved understanding of how 

Vcmax25 for different tree, shrub and herb PFTs may vary spatially across the boreal biome in 

North America. For example, our “single-site” optimizations revealed large variation in Vcmax25 

for shrub and herb PFTs in forest stands. Additional analyses using a random forest regression 

approach showed that known predictors of GPP and ET including metrics of growing season 

timing (i.e., the start, end, and length of the growing season) and meteorological variables well 

explained the spatial variation in PFT-level Vcmax25 (e.g., the end of the growing season for shrub 

PFTs). In addition, we collated Vcmax25 estimates reported in the literature derived from in-situ 

leaf-level gas exchange measurements to support our analyses and discuss our findings.  
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In addition, GPP and ET simulated with CLASIC using the optimized PFT-level Vcmax25 

were compared with corresponding stand-level estimates derived from several gridded global 

data products that were produced using different observations (e.g., remote sensing data) and 

different process-based and statistical modeling approaches (Table 1 in the manuscript). The 

comparisons showed that CLASSIC GPP and ET were in better agreement with corresponding 

stand-level estimates when the optimized PFT-level Vcmax25 was used instead of the default 

Vcmax25 parameterization. 

So far, our optimized PFT-level Vcmax25 has been successfully applied in two TBM 

modeling studies with CLASSIC. The “all-sites” optimized Vcmax25 for ENT was used to improve 

model performance at a regional scale in Arctic-boreal regions (Curasi et al., 2023). In addition, 

the optimized PFT-level Vcmax25 is currently being used for developing a plant hydraulics 

parameterization in CLASSIC (Umair et al., 2023, in preparation). We believe that our study will 

inspire both TBM modeling and measurement communities to advance model development (e.g., 

GPP and ET simulations) and field measurements (e.g., photosynthetic capacity and Vcmax) in 

Arctic-boreal regions, respectively. Therefore, we believe that the topic of our manuscript is 

timely and warrants publication in Geoscientific Model Development. 

We have carefully revised our manuscript to better clarify our motivation and the results of our 

study. New text is indicated in italics. 

Section Abstract (Pages 1–2, Lines 19–38) 

“The maximum carboxylation rate (Vcmax) is an important parameter for the coupled simulations 

of gross primary production (GPP) and evapotranspiration (ET) in terrestrial biosphere models 

(TBMs) such as the Canadian Land Surface Scheme Including biogeochemical Cycles 

(CLASSIC). In-situ measurements of Vcmax show its spatio-temporal variation across the boreal 

biome in North America. However, Vcmax in TBMs is often prescribed as constant in time and 

space for plant functional types (PFTs). To reduce the uncertainty introduced by a spatially 

constant Vcmax, we used a Bayesian algorithm to optimize Vcmax25 (Vcmax at 25 °C) in CLASSIC 

against daily GPP and ET observations obtained from eddy covariance measurements made over 

eight mature boreal forest stands in North America for six representative PFTs (two trees, two 

shrubs, and two herbs). Simulated GPP and ET with CLASSIC using the optimized PFT-level 

Vcmax25 generally resulted in reduced root mean square deviation values compared with 
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corresponding stand-level estimates derived from several gridded global data products. The 

optimized PFT-level Vcmax25 compared reasonably well with reported estimates in the literature 

derived from in-situ leaf-level gas exchange measurements. However, we identified large spatial 

variation in the optimized PFT-level Vcmax25 in forest stands, especially for shrub and “sedge” 

PFTs. We found that several meteorological variables and metrics of growing season timing 

(e.g., end of the growing season for shrub PFTs) explained much of the spatial variation in the 

optimized PFT-level Vcmax25, providing a basis to improve Vcmax parameterization in TBMs at a 

regional scale across the boreal biome in North America.” 

Section 1 Introduction, Paragraphs 2–5 (Pages 2–4, Lines 52–102): 

“The “Farquhar” model and its variants are commonly used in TBMs including CLASSIC to 

simulate gross primary production (GPP), i.e., photosynthetic CO2 uptake, and 

evapotranspiration (ET) with coupled stomatal conductance–photosynthesis models (Farquhar et 

al., 1980; Leuning, 1995). The maximum carboxylation rate, Vcmax, is one of the most important 

parameters in the “Farquhar” model (Rogers, 2014). Adequately parameterizing Vcmax has been 

widely identified as a key challenge hindering TBM development across the boreal biome 

(Rogers et al., 2021; Stinziano et al., 2019; Rogers, 2014; Fisher et al., 2018). Part of this 

challenge is due to the high sensitivity of Vcmax to plant traits and environmental conditions (Ali 

et al., 2015; Smith et al., 2019). Foliar nutrients invested in photosynthetic proteins, particularly 

in the RuBisCO enzyme, determine Vcmax (Evans and Seemann, 1989). Through their influences 

on foliar nutrients, morphology, and nutrient use efficiency of photosynthesis (Musavi et al., 

2016; Maire et al., 2015; Dong et al., 2020), environmental variables, e.g., air temperature, solar 

radiation, and atmospheric humidity, have been found to exert strong controls on Vcmax (Ali et al., 

2015; Yan et al., 2023). The boreal biome is characterized by a short growing season, a low rate 

of soil mineralization, and thus limited soil nutrient availability, especially in the permafrost 

zone (Price et al., 2013). Plant phenology, closely associated with soil freeze-thaw and nutrient 

cycling processes (Rayment et al., 2002) and the seasonality of foliar ontogeny and chlorophyll 

content (Croft et al., 2017; Detto and Xu, 2020), may thus be important to Vcmax for boreal plant 

species. However, comprehensive syntheses of in-situ Vcmax measurements that consistently 

examine and quantify spatio-temporal variation in Vcmax are currently lacking for boreal plant 

species, leading to an incomplete understanding of Vcmax across the boreal biome (Rogers et al., 

2017).  
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In general, the Vcmax parameterization in TBMs is often oversimplified, assuming that 

Vcmax is constant in time and space for plant functional types (PFTs). Based on an evaluation 

against eddy covariance observations, CLASSIC with its default Vcmax25 (Vcmax at 25 °C) 

parameterization for one tree PFT (i.e., “evergreen needleleaf tree” [ENT]) showed limited 

model skill in reproducing observed daily GPP and ET in boreal forest stands in North America 

(Qu et al., 2023). The Vcmax25 parameterization of constant values in space for PFTs might be a 

major contributor to the limited model skill. In addition to trees, boreal forest canopies often 

have various plant species and associated PFTs in their understory (e.g., shrubs and herbs) and 

ground cover (e.g., mosses and lichens), respectively. The understory and ground cover PFTs 

constitute non-negligible contributions to stand-level CO2 and water fluxes in boreal forest 

stands (Gaumont-Guay et al., 2014). Thus, refining PFT-level Vcmax parameterizations to 

account for understory and ground cover PFTs is important for modeling boreal forest CO2 and 

water fluxes, especially in the permafrost zone where boreal forest stands are generally 

characterized by low tree stem densities (Heijmans et al., 2004; Ikawa et al., 2015). 

Eddy covariance measurements of CO2 and water fluxes provide valuable data for TBM 

refinement and development (Schwalm et al., 2010; Bonan et al., 2011). Optimizing Vcmax in 

TBMs using eddy covariance observations for boreal forest stands has been the focus of several 

previous studies (He et al., 2014; Mo et al., 2008; Ueyama et al., 2016). However, these 

optimizations were performed only on a single tree PFT, e.g., ENT by Ueyama et al. (2016), for 

boreal forest stands with multi-layer canopies and thus provided stand-level rather than PFT-

level estimates of Vcmax. In this study, we optimized Vcmax25 in CLASSIC using daily GPP and ET 

simulations and daily observations obtained from eddy covariance measurements made over 

eight black spruce (Picea mariana)-dominated, mature boreal forest stands (>70 years old) in 

North America. The optimizations were conducted at the PFT level for six representative PFTs 

(two trees, two shrubs, and two herbs) both in individual forest stands and across all forest 

stands. Simulated daily GPP and ET with CLASSIC using the optimized PFT-level Vcmax25 were 

compared with corresponding stand-level estimates derived from several gridded global data 

products. We compared the optimized PFT-level Vcmax25 with estimates derived from in-situ leaf-

level gas exchange measurements reported in the literature. The spatial variation in the optimized 

PFT-level Vcmax25 in forest stands was examined in relation to growing season timing and several 

meteorological variables using a random forest regression approach.” 
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(R1.C2) 1) Data assimilation methods have been widely employed in the optimization of 

Vcmax25 (He et al., 2019). Data assimilation methods can improve the estimation of vegetation 

photosynthesis by assimilating remote sensing SIF data at regional or global scales. Although the 

results of this manuscript are reliable, I do not believe that site-level optimization can be 

extrapolated to regional or global scales. The expansion from site-specific to regional scales is 

crucial for the development of physical models. 

Yes, we agree with the reviewer that extrapolating site-specific model parameters to regional or 

global scales is crucial for model development. Our study contributes to such efforts by using a 

model benchmarking dataset for boreal forest stands that are representative of major vegetation 

types (e.g., high and relatively low tree stem densities) and environmental gradients (e.g., climate 

and permafrost extent) across the boreal biome in North America (Qu et al., 2023). The resulting 

optimized PFT-level Vcmax25 was used in this study to examine relationships between Vcmax25 and 

a suite of known predictors using a random forest regression approach (Section 2.5 in the 

manuscript). Our findings will provide guidance for regional PFT-level Vcmax parameterizations 

across the boreal biome in North America. 

We have revised our text to better convey these points. 

Section 2.2, Paragraph 1 (Page 5, Lines 137–149): 

“Our optimizations used a model benchmarking dataset for boreal forests in North America 

(Fig.1 and Table S2) (Qu et al., 2023). The dataset integrates eddy covariance flux and 

supporting measurements (e.g., meteorology) made over eight mature boreal forest stands. The 

overstory of forest stands are dominated by black spruce with tree canopy coverage ranging from 

15 % to 90 %. Dominant understory vascular plants include dwarf shrubs, e.g., Labrador tea 

(Rhododendron groenlandicum), lingonberry (Vaccinium vitis-idaea), and blueberry (Vaccinium 

spp.), and sedges (e.g., Carex spp.). The forest stands are distributed across East-West and 

South-North gradients in climate and permafrost extent across the boreal biome in North 

America. The model benchmarking dataset includes harmonized data of soils, permafrost, and 

plants, and gap-filled meteorological variables essential for stand-level parameterizations and 

simulations in TBMs. The CO2 and water fluxes in the dataset were screened based on half-

hourly data quality flags to obtain high quality daily aggregates.” 

Section 3.4, Paragraph 1 (Page 16, Lines 356–361): 
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“In addition, our identified relationships between the optimized Vcmax25 for ENT and the selected 

predictors will provide guidance for regional PFT-level Vcmax parameterizations across the 

boreal biome (Ali et al., 2015; Alton, 2017; Verheijen et al., 2013; Bauerle et al., 2012). For 

example, incorporating a Vcmax25-TA or Vcmax25-SOS relationship could improve Vcmax25 

parametrization for ENT (Table 2) (Wullschleger et al., 2014; Verheijen et al., 2013).” 

In addition, our Bayesian optimizations on PFT-level Vcmax25 were designed to distinguish among 

contributions of different PFTs to stand-level GPP and ET in forest stands. We found that 

differences in the abundance of tree, shrub, and herb PFTs were important for explaining the 

spatial variation in Vcmax25 in forest stands, e.g., tree PFTs with low optimized Vcmax25 that were 

dominant in southern, permafrost-free forest stands compared with shrub and herb PFTs with 

relatively high Vcmax25 that were more abundant in northern forest stands in the permafrost zone. 

This finding aligns well with stand-level Vcmax25 estimates obtained from satellite chlorophyll 

fluorescence measurements across the boreal biome in North America by He et al. (2019) (please 

see their map in Fig. 2[a]). 

We have added a statement to clarify this point. 

Section 3.3, Paragraph 4 (Page 15, Lines 330–336): 

“Our results suggest that differences in the abundance of tree, shrub and herb PFTs could be 

important for explaining the spatial variation in the optimized Vcmax25 in forest stands. For 

example, ENT with low optimized Vcmax25 was dominant in southern, permafrost-free forest 

stands while shrub and herb PFTs with relatively high optimized Vcmax25 were more abundant in 

northern forest stands in the permafrost zone. This finding is consistent with stand-level Vcmax25 

estimates obtained from satellite-based chlorophyll fluorescence measurements over the boreal 

biome in North America (He et al., 2019).” 

(R1.C3) 2) The authors need to provide more details about the model, including meteorological 

data and auxiliary data. Additionally, what is the timescale of Vcmax25 optimization? Is it on a 

daily, monthly, or throughout the entire growing season? Which years' observational data were 

used for optimizing Vcmax25? And which years' observational data were used for the spin-up? 

The site name, vegetation type, and other key information should be listed in the manuscript. 
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Thank you for pointing out these missing details. The manuscript has been revised accordingly. 

Please see our detailed responses below.  

• The authors need to provide more details about the model, including meteorological data 

and auxiliary data.  

• The site name, vegetation type, and other key information should be listed in the 

manuscript. 

We have revised our statements in the Section 2.2 to explain the model benchmarking dataset 

used in this study (please see our responses to R1.C2). In addition, we have revised Table S2 

with additional details on site characteristics and the dataset. 

Supplementary materials, Table S2: 

Table S2. Boreal forest stands in this study. Vegetation type refers to AmeriFlux vegetation 

classifications: evergreen needleleaf forests (ENF). Climate is the 30-year climate normals of 

average annual air temperature and average annual total precipitation. CLASSIC plant 

functional types (PFTs) are “evergreen needleleaf tree” (ENT), “deciduous needleleaf tree” 

(DNT), “evergreen broadleaf shrub” (EBS), “deciduous broadleaf shrub” (DBS), “C3 grass” 

(C3G), and “sedge” (SDG). Soils are the permeable depth (PD), near-surface organic layer 

thickness (OLT), and soil texture including sand (S), clay (C), silt (Si), sandy loam (SL), silt loam 

(SiL), silty clay loam (SiCL), and silty clay (SiC). Permafrost is isolated (≤10 % in areal extent), 

sporadic (>10–50 %), discontinuous (>50–90 %), and continuous (>90 %). Forest stand names 

refer to AmeriFlux IDs: CA-Qfo (Quebec—Eastern Boreal, Mature Black Spruce), CA-Obs 

(Saskatchewan—Western Boreal, Mature Black Spruce [in the former BOREAS Southern Study 

Area]), CA-Man (Manitoba—Northern Old Black Spruce [in the former BOREAS Northern 

Study Area]), CA-SMC (Smith Creek), US-BZS (Bonanza Creek Black Spruce), US-Uaf 

(University of Alaska, Fairbanks), US-Prr (Poker Flat Research Range Black Spruce Forest), 

and CA-HPC (Havikpak Creek). Forest stands are in a latitudinal order from south (CA-Qfo) to 

north (CA-HPC) (Fig. 1).  
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Name 

(AmeriFl

ux ID) 

Vegetatio

n type 
Location Climate PFTs Soils Permafrost Period Reference 

CA-Qfo ENF 
49.69, -

74.34 

0.2 ℃, 

929 mm 

90 % ENT, 10 % 

DBS 

31 m PD, 30 

cm OLT, SL 
Absent 

2003–

2010 

Bergeron et 

al. (2007) 

CA-Obs ENF 
53.99, -

105.12 

1.1 ℃, 

474 mm 

90 % ENT, 10 % 

DNT 

32 m PD, 30 

cm OLT, 

SL/S 

Absent 
1997–

2010 

Krishnan et 

al. (2008) 

CA-Man ENF 
55.88, -

98.48 

-1.7 ℃, 

324 mm 

90 % ENT, 5 % 

EBS, 5 % DBS 

36 m PD, 40 

cm OLT, C 
Absent 

1994–

2008 

Dunn et al. 

(2007) 

CA-SMC ENF 
63.15, -

123.25 

-2.8 ℃, 

389 mm 

22 % ENT, 34 % 

EBS, 12 % DBS, 

15 % SDG 

46 m PD, 

130 cm OLT, 

SiC/SiCL 

Discontinuous 
2017–

2018 

Helbig et 

al. (2017) 

US-BZS ENF 
64.7, -

148.32 

-2.0 ℃, 

280 mm 

21 % ENT, 43 % 

EBS, 13 % DBS, 

23 % SDG 

16 m PD, 

100 cm OLT, 

Si 

Discontinuous 
2014–

2018 

Euskirchen 

et al. 

(2014) 

US-Uaf ENF 
64.87, -

147.86 

-3.9 ℃, 

367 mm 

20 % ENT, 45 % 

EBS, 10 % DBS, 

25 % SDG 

16 m PD, 60 

cm OLT, SiL 
Discontinuous 

2003–

2018 

Ueyama et 

al. (2014) 

US-Prr ENF 
65.12, -

147.49 

-2.9 ℃, 

391 mm 

20 % ENT, 14 % 

EBS, 13 % DBS, 

24 % SDG 

5 m PD, 40 

cm OLT, SiL 
Discontinuous 

2010–

2014 

Ikawa et al. 

(2015) 

CA-HPC ENF 
68.32, -

133.52 

-6.8 ℃, 

235 mm 

15 % ENT, 58 % 

EBS, 5 % DBS, 

4 % C3G 

7 m PD, 50 

cm OLT, SiC 
Continuous 

2016–

2018 

Martin et 

al. (2022) 

 

• Additionally, what is the timescale of Vcmax25 optimization? Is it on a daily, monthly, 

or throughout the entire growing season?  

Our optimizations were performed at the daily time scale using daily GPP and ET simulated with 

CLASSIC and daily observations of GPP and ET obtained from eddy covariance measurements. 

We have revised our statements to clarify this point. 

Section 2.3, Paragraph 1 (Page 6, Lines 161–165): 
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“To well constrain PFT-level Vcmax25 in CLASSIC, we defined cost function based on GPP and 

ET (Groenendijk et al., 2011a; Ueyama et al., 2016; He et al., 2014). Specifically, the cost 

function was the normalized root mean square error (RMSEn) of daily GPP (g C m-2 day-1) and 

ET (mm day-1) simulated with CLASSIC and corresponding daily observations obtained from 

eddy covariance measurements.” 

Also, e.g., Section 1, Paragraph 5 (Page 3, Lines 92–94): 

“In this study, we optimized Vcmax25 in CLASSIC using daily GPP and ET simulations and daily 

observations obtained from eddy covariance measurements made over eight black spruce (Picea 

mariana)-dominated, mature boreal forest stands (>70 years old) in North America.” 

and Section 3.1, Paragraph 1 (Page 9, Lines 233–234): 

“Model performance regarding daily GPP and ET improved in most forest stands (e.g., lower 

RMSD) using the “single-site” optimized PFT-level Vcmax25 (Fig. 3a and b).” 

• Which years' observational data were used for optimizing Vcmax25? And which years' 

observational data were used for the spin-up?  

We have revised Table S2 showing the temporal coverage of the observations in the model 

benchmarking dataset used for the optimizations. The model spin-up procedure was performed 

using the gap-filled meteorological observations in the dataset. We have revised a statement to 

clarify the spin-up procedure. 

Section 2.3, Paragraph 3 (Page 7, Lines 180–182): 

“For each iteration, a spin-up procedure in CLASSIC was first performed using the gap-filled 

meteorological observations in the dataset (Section 2.2) to equilibrate model, defined by the 

simulated total carbon pool varying less than 0.1 % compared to the last loop (Qu et al., 2023).” 

(R1.C4) 3) This study lacks independent validation. Eddy covariance observations of ET and 

GPP were used to optimize Vcmax25. Subsequently, the optimized Vcmax25 estimates of ET 

and GPP were further compared with eddy covariance observations. Although some global 

gridded products have been used to assess model simulation results, these gridded products 

exhibit uncertainty, and their observational footprints do not align with eddy covariance 

observations. 
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To ensure robust optimizations of PFT-level Vcmax25 with good model performance at different 

time scales (i.e., daily, seasonal, and interannual), our optimizations used all available daily GPP 

and ET observations obtained from eddy covariance measurements made over forest stands 

similar to previous studies (Santaren et al., 2007; Druel et al., 2017; Kuppel et al., 2012). We 

have added a schematic diagram to explain the Bayesian optimization framework used for the 

optimizations (please see our responses to R2.C2). We did not perform an independent 

evaluation on the optimizations using GPP and ET observations obtained from eddy covariance 

measurements. Through two statistical metrics (i.e., root mean square deviation and Pearson 

correlation coefficient) that are different from the cost function of the optimizations, we 

evaluated GPP and ET simulated with CLASSIC using the optimized PFT-level Vcmax25 against 

the observations of GPP and ET used for the optimizations. These comparisons provided first-

order insights into whether the optimizations actually improved the model performance 

regarding daily GPP and ET. 

We have revised our statements to clarify our points. In addition, please see our responses to 

R2.C7 for an additional evaluation of model performance using the optimized PFT-level Vcmax25 

at the daily time scale. 

Section 2.5, Paragraph 1 (Page 9, Lines 209–213): 

“To examine whether the optimizations improved model performance, we used the root mean 

square deviation (RMSD) and Pearson correlation coefficient (r) to evaluate the performance of 

simulated daily GPP and ET with CLASSIC using the optimized PFT-level Vcmax25 against the 

same observations also used for the optimizations (Kuppel et al., 2012).” 

Section 3.1, Paragraph 1 (Pages 9–10, Lines 233–244): 

“Model performance regarding daily GPP and ET improved in most forest stands (e.g., lower 

RMSD) using the “single-site” optimized PFT-level Vcmax25 (Fig. 3a and b). Exceptions include 

GPP at US-Uaf and ET at US-BZS and US-Prr as indicated by slightly increased RMSD. Model 

performance improvement using the “single-site” optimized PFT-level Vcmax25 was also found in 

the observed seasonality of daily GPP and ET in all forest stands (Fig. S3 and S4). Simulated 

daily GPP and ET using the “single-site” optimized PFT-level Vcmax25 were significantly 

correlated with observed daily GPP (r = 0.79 to 0.94) and ET (r = 0.81 to 0.92). In addition, 

enhanced correlations between daily GPP simulations using the “single-site” optimized PFT-
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level Vcmax25 and observations were found in most forest stands (Table S4). Similar 

improvements of model performance were achieved with the “all-sites” optimization.” 

In addition, we used independent data of corresponding stand-level GPP and ET estimates 

derived from several gridded global data products for comparisons with CLASSIC simulations 

using the optimized PFT-level Vcmax25. Similar model-data comparisons using gridded global data 

products were used in previous modeling studies at eddy covariance sites (Kuppel et al., 2014; 

Tramontana et al., 2016; Xiao et al., 2014; Ueyama et al., 2016; Groenendijk et al., 2011b; 

Friend et al., 2007). Please see our responses to R1.C1 for further clarification.  

(R1.C5) 4) In this study, the random forest method was employed to characterize the relative 

importance of various influencing factors on Vcmax25. The limited optimization of Vcmax25 

values in this study may lead to overfitting or underfitting issues in the machine learning method. 

This will impact the credibility of the relative importance results. 

He, L., Chen, J. M., Liu, J., Zheng, T., Wang, R., Joiner, J., Chou, S., Chen, B., Liu, Y., and Liu, 

R.: Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll 

fluorescence measurements, Remote Sens. Environ., 232, 111344, 

https://doi.org/10.1016/j.rse.2019.111344, 2019. 

Random forests average the output of a large number of randomized decision trees to improve 

the predictive accuracy and thus are less susceptible to overfitting due to the Law of Large 

Numbers (Breiman, 2001). In this study, we used 1000 decision trees in each random forest to 

reduce overfitting. To address this comment, we have removed “latitude” as a predictor to 

increase the robustness of random forest regressions because of the strong covariance of 

“latitude” with other predictors (e.g., air temperature and solar radiation) that may lead to 

overfitting. In addition, the burn-in period of the optimizations has also been removed to avoid 

PFT-level Vcmax25 estimates with relatively poor model performance of CLASSIC.  

In addition, we have added a bootstrapping procedure to quantify the uncertainty in the 

relationships between the optimized PFT-level Vcmax25 and the predictors resulting from 

uncertainty in the optimizations. Our revised results showed that R2, the coefficient of 

determination, for the random forest regressions ranged from 0.79 ± 0.04 to 0.89 ± 0.05 among 

the PFTs, suggesting well-fitted random forest regressions.  
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Accordingly, we have revised the manuscript sections describing methodology, results, and 

discussion, respectively. New text is indicated in italics. 

Section 2.3, Paragraph 3 (Page 7, Lines 185–190): 

“The optimizations included a burn-in period during which the optimized PFT-level Vcmax25 by 

TPE generally led to relatively poor CLASSIC performance (Fig. S1 and S2) (Gelbart et al., 

2014). In this study, we treated the first 200 iterations as the burn-in period after which the 

convergence of optimizations was generally reached in this study (Sahlin, 2011). The burn-in 

period was removed in estimating posterior distributions of the optimized PFT-level Vcmax25 

(Nimalan et al., 2012).” 

Section 2.5, Paragraph 1 (Page 9, Lines 213–230): 

“A random forest regression approach was used to examine relationships between the “single-

site” optimized PFT-level Vcmax25 and a suite of predictors including metrics of growing season 

timing and several meteorological variables. Specifically, meteorological variables included 

incoming shortwave radiation (SW), air temperature (TA), total precipitation (P), and vapor 

pressure deficit (VPD) (Ali et al., 2015; Yan et al., 2023). Metrics of growing season timing were 

the start (SOS), end (EOS), and length of the growing season (LOS), derived from observed daily 

GPP time series (Section 2.3). We calculated the multi-year averages of growing season timing 

(SOS [day of year], EOS [day of year], and LOS [days]), and the growing-season averages (SW 

[W m-2], TA [℃], and VPD [hPa]) and sums (P [mm]) of meteorological variables. Random 

forests average the result of a large number of randomized decision trees to improve predictive 

accuracy and thus are less susceptible to overfitting due to the Law of Large Numbers (Breiman, 

2001). In each random forest we employed 1000 decision trees to reduce overfitting using the 

scikit-learn Python package (Pedregosa et al., 2011). The relative importance of the predictors 

was estimated using the impurity-based feature importance (Strobl et al., 2007). Partial 

dependence plots were produced to illustrate relationships between the optimized PFT-level 

Vcmax25 and the predictors (Goldstein et al., 2015; Baltzer et al., 2021). Additionally, a 

bootstrapping approach was used to quantify uncertainty in the relative importance of the 

predictors and the partial dependence due to the uncertainty in the optimizations (Schratz et al., 

2019). Specifically, the optimized PFT-level Vcmax25 in each forest stand was randomly resampled 

for random forest regressions with replacement 5000 times.” 
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Section 3.3, Table 2: 

Table 2. Model accuracy of random forest regressions (coefficient of determination, R2) to predict 

plant functional type (PFT)-level Vcmax25 and relative importance of predictors (Section 2.5). The 

metrics of growing season timing are the start (SOS, day of year), end (EOS, day of year), and 

length of the growing season (LOS, days). Meteorological variables are incoming shortwave 

radiation (SW, W m-2), air temperature (TA, ℃), total precipitation (P, mm), and vapor pressure 

deficit (VPD, hPa). CLASSIC PFTs are “evergreen needleleaf tree” (ENT), “evergreen broadleaf 

shrub” (EBS), “deciduous broadleaf shrub” (DBS), and “sedge” (SDG). The standard deviation 

was estimated based on bootstrapping (Section 2.5). Partial dependence plots on predictors are 

shown in Fig. S5. 

PFT R2 SOS EOS LOS SW TA P VPD 

ENT 0.81 ± 0.04 0.31 ± 0.10 0.05 ± 0.04 0.08 ± 0.04 0.04 ± 0.08 0.34 ± 0.09 0.07 ± 0.04 0.12 ± 0.09 

EBS 0.79 ± 0.04 0.20 ± 0.07 0.38 ± 0.09 0.09 ± 0.04 0.09 ± 0.09 0.05 ± 0.05 0.07 ± 0.04 0.12 ± 0.06 

DBS 0.89 ± 0.05 0.15 ± 0.08 0.42 ± 0.10 0.12 ± 0.05 0.11 ± 0.08 0.05 ± 0.06 0.06 ± 0.03 0.09 ± 0.09 

SDG 0.85 ± 0.03 0.10 ± 0.05 0.12 ± 0.04 0.13 ± 0.04 0.33 ± 0.06 0.10 ± 0.04 0.11 ± 0.04 0.11 ± 0.04 

 

Supplementary materials, Figure S5: 
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Figure S5. Partial dependence plots of random forest regression analyses for the optimized 

Vcmax25 for CLASSIC plant functional types: “evergreen needleleaf tree” (a1–a7), “evergreen 

broadleaf shrub” (b1–b7), “deciduous broadleaf shrub” (c1–c7), and “sedge” (d1–d7). The 

metrics of growing season timing are the start (SOS, day of year), end (EOS, day of year), and 

length of the growing season (LOS, days). Meteorological variables are incoming shortwave 

radiation (SW, W m-2), air temperature (TA, ℃), total precipitation (P, mm), and vapor pressure 

deficit (VPD, hPa). The shaded area represents the bootstrapped standard deviation (Section 

2.5). 

Section 3.3, Paragraphs 1–3 (Pages 14–15, Lines 297–326): 
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“Random forest regressions suggested that the variation in the “single-site” optimized PFT-

level Vcmax25 in forest stands was well explained by the selected predictors (R2 = 0.79 to 0.89, 

Table 2). The metrics of growing season timing, particularly SOS and EOS, were found to be 

important in explaining the variation for shrub PFTs and ENT. Partial dependence plots further 

showed that shrub PFTs and ENT tended to have high optimized Vcmax25 in forest stands with an 

early SOS and/or late EOS (Fig. S5). A strong relationship between in-situ measured Vcmax and 

leaf nutrients (e.g., nitrogen) was widely found for various plant species over the globe (Kattge 

et al., 2009; Liang et al., 2020). In this study, the identified relationships between the optimized 

Vcmax25 and growing season timing could be related to boreal forest soil temperature and 

moisture regimes (Cai and Dang, 2002; Reich et al., 2018). For example, SOS was found to be 

controlled by the timing of soil thaw in spring (Ahmed et al., 2021), which is important for soil 

microbial activities and nutrient cycling across the boreal biome (Salmon et al., 2016; Jasinski 

et al., 2022). In addition, an early SOS and/or late EOS generally correspond to a longer LOS, 

thus enhancing nutrient availability for boreal plant species and promoting relatively high 

Vcmax25, e.g., for shrub PFTs at CA-Qfo and CA-Man (Fig. 4a). 

None of the selected meteorological variables could explain the variation in the 

optimized Vcmax25 for shrub PFTs in forest stands. In contrast, important influences of TA and SW 

on the optimized Vcmax25 were observed for ENT and SDG, respectively (Table 2). High TA may 

alleviate nutrient limitations on boreal plant species (Allison and Treseder, 2011), partially 

explaining the revealed positive influence of TA on the optimized Vcmax25 for ENT (Fig. S5). The 

influence of SW on the optimized Vcmax25 for SDG may be related to low-light environments for 

understory herbs in boreal forest stands (Tonteri et al., 2016). However, the uncertainty in the 

influence of SW for SDG may be relatively large due to the limited number of forest stands 

dominated by this PFT in this study (Fig. 4a).” 

Additionally, because of the removal of the burn-in period in the optimizations, we have revised 

our results and discussion in Sections 3.1 and 3.2 accordingly.  

Section 3.1, Figure 3: 



17 | Page 

 

 

Figure 3. Root mean square deviation (RMSD) of CLASSIC gross primary production (GPP) and 

evapotranspiration (ET) using the default and optimized plant functional type-level Vcmax25 

(“single-site” and “all-sites”) compared with observations obtained from eddy covariance 

measurements (a, b) and corresponding stand-level estimates (c, d). In panels (a) and (b), the same 

observations for the optimizations were used to examine whether the optimizations improved 

model performance regarding daily GPP and ET. The corresponding stand-level estimates were 

derived from gridded global data products of BESS (Li et al., 2021), MODIS-Z (Zhang et al., 

2017), MODIS-OD (Running and Zhao, 2021), GLASS (Liang et al., 2021), GOSIF (Li and Xiao, 

2019), and CLASS (Hobeichi et al., 2020) (Table 1).  Forest stand names refer to AmeriFlux IDs 

and forest stands are ordered by latitude from south (CA-Qfo) to north (CA-HPC) (Fig. 1).   

Section 3.2, Figure 4: 
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Figure 4. Plant functional type (PFT)-level Vcmax25 from (a) “single-site” and “all-sites” 

optimizations and (b) estimates derived from leaf-level gas exchange measurements reported in 

the literature (Table S3) compared with the default Vcmax25 values in CLASSIC. CLASSIC PFTs 

are “evergreen needleleaf tree” (ENT), “deciduous needleleaf tree” (DNT), “evergreen broadleaf 

shrub” (EBS), “deciduous broadleaf shrub” (DBS), “C3 grass” (C3G), and “sedge” (SDG). In 

panel (a), point sizes indicate the standard deviation (sd; μmol CO2 m-2 s-1) of the optimized PFT-

level Vcmax25 (Section 2.5). Forest stand names refer to AmeriFlux IDs and forest stands are 

ordered by latitude from south (CA-Qfo) to north (CA-HPC) (Fig. 1).    

Supplementary materials, Table S4: 

Table S4. CLASSIC model performance (average ± standard deviation) in root mean square 

deviation (RMSD) and Pearson correlation coefficient (r) using the default and optimized plant 

functional type (PFT)-level Vcmax25 (“single-site” and “all-sites”) compared with daily gross 

primary production (GPP) and evapotranspiration (ET) observations obtained from eddy 

covariance measurements made over forest stands. All Pearson correlation coefficients are 

statistically significant (α = 0.05). The units of RMSD are g C m-2 day-1 for GPP and mm day-1 

for ET. Forest stand names refer to AmeriFlux IDs and forest stands are in a latitudinal order 

from south (CA-Qfo) to north (CA-HPC) (Fig. 1 and Table S2). 

Flux 
Statistical 

metrics 

PFT-level 

Vcmax25 

CA-

Qfo 

CA-

Obs 

CA-

Man 

CA-

SMC 

US-

BZS 

US-

Uaf 
US-Prr 

CA-

HPC 

GPP RMSD 
“single-

site” 

1.75 ± 

1.13 

1.73 ± 

0.87 

1.42 ± 

0.51 

1.82 ± 

0.85 

2.17 ± 

1.54 

2.89 ± 

0.91 

0.90 ± 

0.30 

2.21 ± 

1.61 
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“all-

sites” 

2.0 ± 

1.3 

1.9 ± 

0.9 

1.6 ± 

0.7 

2.1 ± 

1.1 

2.3 ± 

1.1 

2.9 ± 

0.9 

1.1 ± 

0.4 

2.6 ± 

2.0 

default 3.52 2.40 2.00 3.10 2.77 2.74 1.17 4.40 

r 

“single-

site” 

0.89 ± 

0.01 

0.89 ± 

0.01 

0.89 ± 

0.04 

0.79 ± 

0.01 

0.94 ± 

0.0003 

0.81 ± 

0.03 

0.91 ± 

0.01 

0.91 ± 

0.01 

“all-

sites” 

0.89 ± 

0.01 

0.88 ± 

0.02 

0.89 ± 

0.03 

0.79 ± 

0.01 

0.93 ± 

0.01 

0.84 ± 

0.02 

0.90 ± 

0.01 

0.91 ± 

0.01 

default 0.87 0.86 0.82 0.79 0.93 0.83 0.89 0.90 

ET 

RMSD 

“single-

site” 

0.86 ± 

0.27 

0.76 ± 

0.13 

0.73 ± 

0.07 

0.63 ± 

0.04 

0.57 ± 

0.10 

0.54 ± 

0.05 

0.44 ± 

0.03 

0.68 ± 

0.89 

“all-

sites” 

0.95 ± 

0.29 

0.80 ± 

0.19 

0.75 ± 

0.08 

0.70 ± 

0.08 

0.53 ± 

0.08 

0.59 ± 

0.07 

0.46 ± 

0.03 

0.76 ± 

0.12 

default 1.42 1.12 0.85 0.69 0.51 0.57 0.43 0.94 

r 

“single-

site” 

0.83 ± 

0.01 

0.81 ± 

0.04 

0.84 ± 

0.01 

0.87 ± 

0.02 

0.92 ± 

0.01 

0.87 ± 

0.04 

0.92 ± 

0.01 

0.83 ± 

0.06 

“all-

sites” 

0.82 ± 

0.01 

0.85 ± 

0.02 

0.83 ± 

0.02 

0.88 ± 

0.03 

0.91 ± 

0.01 

0.86 ± 

0.03 

0.93 ± 

0.02 

0.84 ± 

0.07 

default 0.78 0.84 0.84 0.90 0.91 0.90 0.92 0.88 

 

 

Supplementary materials, Table S5: 

Table S5. Root mean square deviation (average ± standard deviation) averaged across all forest 

stands of CLASSIC simulations using the default and optimized plant functional type (PFT)-level 

Vcmax25 (“single-site” and “all-sites”) compared with the corresponding stand-level estimates of 

gross primary production (GPP) and evapotranspiration (ET). The corresponding stand-level 

estimates were derived from gridded global data products including BESS (Li et al., 2021), 

MODIS-Z (Zhang et al., 2017), MODIS-OD (Running and Zhao, 2021), GLASS (Liang et al., 

2021), GOSIF (Li and Xiao, 2019), and CLASS (Hobeichi et al., 2020) (Table 1). The units are g 

C m-2 day-1 for GPP and mm day-1 for ET. 
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Flux 
PFT-level 

Vcmax25  
BESS 

MODIS-

OD 
MODIS-Z GLASS GOSIF CLASS Average 

GPP 

“single-

site” 
1.29 1.09 1.27 1.06 1.18 / 1.18 

“all-sites” 1.17 1.08 1.00 1.27 0.94 / 1.09 

default 2.93 2.56 3.06 1.78 2.82 / 2.63 

ET 

“single-

site” 
0.90 0.56 / / / 0.54 0.67 

“all-sites” 0.92 0.58 / / / 0.57 0.69 

default 1.03 0.66 / / / 0.64 0.78 

 

Also, e.g., Section 3.1, Paragraph 2 (Page 10, Lines 249–252):  

“In contrast, a notable reduction in RMSDa of simulated ET using the “single-site” optimized 

PFT-level Vcmax25 was found in two permafrost-free forest stands, CA-Qfo and CA-Obs, where 

RMSDa was reduced by approximately 41 % in each forest stand (Fig. 3d).” 
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Anonymous Referee #2 

(R2.C1) Vcmax is an important parameter for TBMs. Simply setting Vcmax25 in TBMS induces 

the uncertainty of TBMs. In this paper, authors conducted a Bayesian algorithm to optimize 

Vcmax25 in CLASSIC against eddy covariance observations at eight mature boreal forest stands 

in North America for six representative PFTs and identified the spatial variability of Vcmax25. 

This paper try to explore the Vcmax change in boreal forests. However, l am major concerned 

about optimizing strategy used in this study. 

We thank you for your time and efforts in reviewing our manuscript and providing constructive 

comments that have helped to improve it. 

(R2.C2) 1. How to use TPE to optimize Vcmax25 was not explained in section 2.3. Vcmax was 

optimized in what time scale, yearly or daily? And in single-site optimization, for example, the 

observations were only the GPP and ET of the whole site. Does this result in ill-fitting problems 

when optimizing Vcmax for multiple PFTs simultaneously? 

Please see our detailed responses below; the manuscript has been revised accordingly.  

• How to use TPE to optimize Vcmax25 was not explained in section 2.3.  

To address this comment, we have added a schematic diagram and revised our statements to 

explain how the tree-structured Parzen estimator (TPE) was used in the optimizations. 

Section 2.3, Paragraph 3 (Page 7, Lines 176–179): 

“The TPE algorithm iteratively minimized the cost function based on the Bayes’ rule of 

conditional probability (Fig. 2) (Ellison, 2004; Bergstra et al., 2011). In each iteration, it 

optimized the expected improvement to predict a promising configuration of PFT-level Vcmax25 

(Text S1).” 

Section 2.3, Figure 2: 
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Figure 2. Bayesian optimization framework based on the tree-structured Parzen estimator (TPE) 

to optimize plant functional type (PFT)-level Vcmax25 in CLASSIC against observed daily gross 

primary production (GPP) and evapotranspiration (ET) obtained from eddy covariance 

measurements. 

Supplementary materials, Text S1: 

“The TPE optimization is performed based on the expected improvement (EI): 

,                                              (S1) 

defined by cost function 𝑓(𝑣) (i.e., the normalized root mean square error in Eq. 5) and its 

two probability densities 𝑙(𝑣) and 𝑔(𝑣). 𝑓(𝑣) is the set of 𝑓(𝑣𝑖) corresponding to a parameter 

configuration (𝑣𝑖, i.e., 𝑉𝑐𝑚𝑎𝑥 for plant functional types [PFTs]) optimized by the TPE algorithm. 

𝑙(𝑣) is the probability density of 𝑓(𝑣𝑖) when 𝑓(𝑣𝑖) < 𝑓 ′ and 𝑔(𝑣) is the density of the remaining 

𝑓(𝑣𝑖). 𝑓
′ is a quantile value 𝑞 so that 𝑝(𝑓(𝑣) <  𝑓 ′) = 𝑞 , set to 0.15 following Bergstra et al. 

(2015).” 

• Vcmax was optimized in what time scale, yearly or daily?  

Our optimizations were performed in the daily time scale. We have revised our statements to 

clarify this point. Please see our responses to R1.C3. 

• And in single-site optimization, for example, the observations were only the GPP and ET 

of the whole site. Does this result in ill-fitting problems when optimizing Vcmax for 

multiple PFTs simultaneously?  

Our “single-site” optimizations used all available daily GPP and ET observations as the 

constraints to ensure robust optimizations of PFT-level Vcmax25 with good model performance in 

𝐸𝐼(𝑣) =
𝑞𝑓 ′𝑙(𝑣) − 𝑙(𝑣) 𝑝(𝑓(𝑣))𝑑𝑓

𝑓 ′

−∞

𝑞𝑙(𝑣) + (1 − 𝑞)𝑔(𝑣)
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different time scales (i.e., daily, seasonal, and interannual). The constraints resulted in well-fitted 

TPE optimizations and well-constrained PFT-level Vcmax25 in forest stands (please see the 

optimized PFT-level Vcmax25 in Figure 4a in the response to R1.C5). To provide first-order 

insights into the performance improvement of CLASSIC in the optimizations, we evaluated GPP 

and ET simulated with CLASSIC using the optimized PFT-level Vcmax25 against the same 

observations used for the optimizations. Please see our responses to R1.C4 for further 

clarification. 

In addition, we have added a statement to clarify this point. 

Section 3.2, Paragraph 1 (Page 12, Lines 268–269): 

“The PFT-level Vcmax25 was well constrained in the “single-site” and “all-site” optimizations, 

supporting the good quality of the optimizations using multi-year daily GPP and ET 

observations as the constraints (Fig. 4a).” 

(R2.C3) 2. The study does not include a sensitivity analysis of the parameters. And through the 

Farquhar equation, the relationship between GPP and Vcmax is easier to understand. Why 

choose ET to optimize Vcmax needs more explanation in model structure. To my knowledge, ET 

is sensitive to the parameters that control stomatal conductance change. 

Our efforts in this study were aimed at refining a PFT-level Vcmax25 parameterization in 

CLASSIC for North America’s boreal forests using a Bayesian optimization framework. Please 

see our responses to R1.C1 for our motivation. 

In the “Farquhar” photosynthesis model implemented in CLASSIC, the PFT-level Vcmax25 

parametrization is of great importance in simulating ET by influencing the coupling between 

photosynthesis and canopy conductance. The optimizations using both GPP and ET observations 

were widely conducted in previous studies to optimize photosynthesis models (Groenendijk et 

al., 2011a; Groenendijk et al., 2011b; Santaren et al., 2007; Ueyama et al., 2016; He et al., 2014; 

Mo et al., 2008), including studies focusing on Vcmax optimization (Groenendijk et al., 2011b; 

Ueyama et al., 2016; He et al., 2014). Similarly, observed GPP and ET were used to jointly 

optimize PFT-level Vcmax25 in CLASSIC in this study.  

We have revised our statements to explain the CLASSIC model structure and the cost function 

used in the optimizations. 
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Section 2.1, Paragraph 1 (Page 4, Lines 105–111): 

“The CLASSIC model is the TBM in the Canadian suite of climate and Earth system models 

(Melton et al., 2020). Leaf-level photosynthesis is simulated using the “Farquhar” model 

commonly with a big-leaf parametrization (Melton and Arora, 2016; Arora, 2003; Farquhar et 

al., 1980). The simulated photosynthetic rate is jointly limited by the light, RuBisCO enzyme, and 

transport capacity. Vcmax is one of the key parameters to simulate limitations by the RuBisCO 

enzyme and transport capacity. The approach of Leuning (1995) is used for coupling 

photosynthesis and canopy conductance, and the latter is used to constrain water loss through 

transpiration.” 

Section 2.3, Paragraph 1 (Page 6, Lines 161–165): 

“To well constrain PFT-level Vcmax25 in CLASSIC, we defined cost function based on GPP and 

ET (Groenendijk et al., 2011a; Ueyama et al., 2016; He et al., 2014). Specifically, the cost 

function was the normalized root mean square error (RMSEn) of daily GPP (g C m-2 day-1) and 

ET (mm day-1) simulated with CLASSIC and corresponding daily observations obtained from 

eddy covariance measurements.” 

(R2.C4) 3. To avoid attributing all uncertainties of simulation results to Vcmax25, I suggest 

optimizing several key parameters of the carbon and water cycles together. 

Our aims were to refine a PFT-level Vcmax25 parameterization in CLASSIC, which might be a 

major contributor to the limited model skill in reproducing observed daily GPP and ET in boreal 

forest stands in North America based on our previous work (Qu et al., 2023). Please see our 

responses to R1.C1 for our motivation. Optimizing other PFT-level parameters is beyond the 

scope of this study. Due to equifinality in model parameters, adding more PFT-level parameters 

to the optimizations would greatly increase the risk of poorly constrained optimizations, thus 

increasing the uncertainty in the results and reducing the applicability of optimized site-specific 

parameters to regional and global scales (Tang and Zhuang, 2008). We had discussed several 

possible sources of uncertainty in our optimized PFT-level Vcmax25 associated with stand-level 

model representation of soils and plants and model parameterizations for photosynthesis and 

evapotranspiration in CLASSIC (please see section 3.5 in the manuscript).  
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In addition, our optimized PFT-level Vcmax25 has been successfully used by other TBM modeling 

studies to improve regional simulations and to advance model development in CLASSIC (please 

see our responses to R1.C1). 

Minor comments 

(R2.C5) 1. In section 2.2, a map of the distribution of the eight mature boreal forest stands is 

needed. 

We have added a map showing forest stand locations in this study. 

Section 2.2, Figure 1: 

 

Figure 1. Forest stand locations across the boreal biome in North America (Brandt, 2009). 

Forest stand names refer to AmeriFlux IDs: CA-Qfo (Quebec - Eastern Boreal, Mature Black 

Spruce), CA-Obs (Saskatchewan - Western Boreal, Mature Black Spruce [in the former BOREAS 

Southern Study Area]), CA-Man (Manitoba - Northern Old Black Spruce [in the former BOREAS 

Northern Study Area]), CA-SMC (Smith Creek), US-BZS (Bonanza Creek Black Spruce), US-Uaf 

(University of Alaska, Fairbanks), US-Prr (Poker Flat Research Range Black Spruce Forest), 

and CA-HPC (Havikpak Creek). CA-Obs, CA-Qfo and CA-Man are permafrost-free forest 

stands, while CA-SMC, US-BZS, US-Uaf, and US-Prr are distributed in the discontinuous 

permafrost zone and CA-HPC is distributed in the continuous permafrost zone (Table S2).  

(R2.C6) 2. How many site-years were used in optimization needs to be described in Table S2. 
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We have revised Table S2 to show the site-years used for the optimizations. Please see our 

responses to R1.C3. 

(R2.C7) 3. Generally, in site optimization, the details of simulated results against observations 

before and after optimization should be shown as a series of figures on a daily time scale. These 

figures are important for audiences to understand the improvement of model performance. 

Our model performance evaluation was in the daily time scale based on daily GPP and ET 

simulations with CLASSIC and daily observations obtained from eddy covariance 

measurements. Please see our responses to R1.C4 for our clarifications and revisions.  

To address this comment, we have added additional figures to show model performance in the 

daily time series against the same daily observations used for the optimizations. Accordingly, we 

have added our statements to analyze the additional figures. 

Section 3.1, Paragraph 1 (Pages 9–10, Lines 235–243): 

“Model performance improvement using the “single-site” optimized PFT-level Vcmax25 was also 

found in the observed seasonality of daily GPP and ET in all forest stands (Fig. S3 and S4). 

Simulated daily GPP and ET using the “single-site” optimized PFT-level Vcmax25 were 

significantly correlated with observed daily GPP (r = 0.79 to 0.94) and ET (r = 0.81 to 0.92). In 

addition, enhanced correlations between daily GPP simulations using the “single-site” 

optimized PFT-level Vcmax25 and observations were found in most forest stands (Table S4).” 

Supplementary materials, Figures S3 and S4: 
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Figure S3. CLASSIC daily gross primary production (GPP) using the default and optimized 

plant functional type-level Vcmax25 (“single-site” and “all-sites”) compared with observations 

obtained from eddy covariance measurements over forest stands (a–h). Daily GPP is smoothed 

over the year using the locally estimated scatterplot smoothing with the moving-window width of 

20 % of the data (Jacoby, 2000; Cleveland and Loader, 1996). For the “single-site” and “all-

sites” optimizations the daily averages of iterative model simulations are used. Forest stand 

names refer to AmeriFlux IDs and forest stands are in a latitudinal order from south (CA-Qfo 

[a]) to north (CA-HPC [h]) (Fig. 1 and Table S2). 

 

Figure S4. CLASSIC daily evapotranspiration (ET) using the default and optimized plant 

functional type-level Vcmax25 (“single-site” and “all-sites”) compared with observations obtained 

from eddy covariance measurements over forest stands (a–h). Daily ET is smoothed over the 

year using the locally estimated scatterplot smoothing with the moving-window width of 20 % of 

the data (Jacoby, 2000; Cleveland and Loader, 1996). For the “single-site” and “all-sites” 

optimizations the daily averages of iterative model simulations are used. Forest stand names 

refer to AmeriFlux IDs and forest stands are in a latitudinal order from south (CA-Qfo [a]) to 

north (CA-HPC [h]) (Fig. 1 and Table S2). 
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