Autoregressive Model to Parametrise Temperature Variability

Guy Munhoven

20th September 2021

Abstract

A series of autoregressive models is used to analyse sea-surface temperature time series in order to derive a simple parametrisation of temperature variability in a climate model.

Introduction

1 Data

- Origin: https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/ .OISST/.version2/.AVHRR/.anom/lat/%2819S%29%2816S%29RANGEEDGES/ T/%281%20Jan%201982%29%2831%20Dec%202015%29RANGEEDGES/lon/%28148E% 29%28154E%29RANGEEDGES/data.nc
- time: 1982-01-01 to 2015-12-31 (12418 days)
- lat: -18.875 to -16.125 (12 latitudes at 0.25° resolution)
- lon: 148.125 to 153.875 (24 longitudes at 0.25° resolution)

2 Procedure

We fit a sequence of AR(p) models to the time series extracted from the dataset at each lon-lat grid point, with $p = 1, \ldots, 6$ in order to determine the optimum order:

$$y_t = c + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \epsilon_t$$

where c is a constant, ϕ_1, \ldots, ϕ_p are the p parameters of the model and ϵ_t is white noise (with zero mean and standard deviation σ_{ϵ}).

The time series are first filtered using a Fast Fourier Transform (FFT) method with a high-pass triangular frequency filter in order to get rid of the seasonal cycle and any possible long-term trends. The cut-off frequency is set to 1.25 cycles/year. Since the total number of data points in each time series involves a comparatively large prime factor ($12418 = 2 \cdot 7 \cdot 887$), 130 points were dropped to reduce the time series length to $12288 = 2^{12} \cdot 3$, which allows for more efficient usage of the FFT algorithm.

3 Results

Each data series has a zero mean and therefore c = 0 for each model. We therefore fit an AR(p) model

$$y_t = \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \sigma_\epsilon v_t$$

where v_t is white noise with a standard deviation of 1. We fit such a model at each lon-lat point in the domain. Below, we report the averages of the parameter values ϕ_1, \ldots, ϕ_p and of the required σ_{ϵ} , together with the standard deviations of their distributions.

$3.1 \quad AR(1)$

$$y_t = \phi_1 y_{t-1} + \sigma_{\epsilon} v_t$$

 $\phi_1 = 0.8964 \pm 0.0060$
 $\sigma_{\epsilon} = 0.2758 \pm 0.0094$

 $3.2 \quad AR(2)$

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \sigma_\epsilon v_t$$

$$\phi_1 = 1.0873 \pm 0.0097$$

 $\phi_2 = -0.21230 \pm 0.0069$
 $\sigma_\epsilon = 0.2694 \pm 0.0091$

3.3 AR(3)

 $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \phi_3 y_{t-3} + \sigma_\epsilon \upsilon_t$ $\phi_1 = 1.115 \pm 0.010$ $\phi_2 = -0.354 \pm 0.015$ $\phi_3 = 0.130 \pm 0.011$ $\sigma_\epsilon = 0.2671 \pm 0.0089$

3.4 AR(4)

 $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \phi_3 y_{t-3} + \phi_4 y_{t-4} + \sigma_\epsilon v_t$

3.5 AR(5)

 $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \phi_3 y_{t-3} + \phi_4 y_{t-4} + \phi_5 y_{t-5} + \sigma_\epsilon v_t$

3.6 AR(6)

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \phi_3 y_{t-3} + \phi_4 y_{t-4} + \phi_5 y_{t-5} + \phi_6 y_{t-6} + \sigma_\epsilon v_t$$

ϕ_1	=	1.110	\pm	0.011
ϕ_2	=	-0.348	\pm	0.015
ϕ_3	=	0.109	\pm	0.015
ϕ_4	=	0.001	\pm	0.012
ϕ_5	=	-0.003	\pm	0.012
ϕ_6	=	0.0300	\pm	0.0098
σ_{ϵ}	=	0.2668	\pm	0.0088

4 Discussion

The differences between the performances of the models of subsequent orders are generally small: σ_{ϵ} , which is also the root mean square error of the model reduces by 2.2% from AR(1) to AR(2), by another 0.88% from AR(2) to AR(3), and by only 0.03% from AR(3) to AR(4).

Accordingly, there is little to no justification in calling upon a more complex model than AR(3).

Tests using a normally distributed random series with zero mean and unit variance for v_t indicate that the temperature distributions in the time series and in the generated AR(p) model series are very similar for $p = 1, \ldots, 6$. As a consequence, even the AR(1) model might be sufficient.