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Abstract. For users of hydrological models, the suitability of models can be dependent upon
::::::
depend

::
on

:
how well their sim-

ulated outputs align with observed discharge. This study emphasizes the crucial role of factoring in discharge observation

uncertainty when assessing the performance of hydrological models. We introduce an ad-hoc approach, implemented through

the eWaterCycle platform, to evaluate the significance of differences in model performance while considering the uncertainty

associated with discharge observations. The analysis of the results encompasses 299 catchments from the CAMELS-GB large-5

sample catchment dataset, addressing 3 distinct use cases that are of practical importance
:::::::
practical

:::
use

:::::
cases

:
for model users.

These use cases involve assessing the impact of additional calibration on model performance using discharge observations,

conducting conventional model comparisons, and examining how the variations in discharge simulations resulting from model

structural differences compare with the uncertainties inherent in discharge observations.

Our results, based
:::::
Based on the 5th to 95th percentile range of observed flow,

::
our

::::::
results

:
highlight the substantial influence10

of discharge observation uncertainty on the interpretation of
:::::::::
interpreting

:
model performance differences. Specifically, when

comparing model performance before and after additional calibration, we find that in 98 out of 299 instances, the simulation

differences fall within the bounds of discharge observation uncertainty. This underscores the inadequacy of neglecting dis-

charge observation uncertainty during calibration and subsequent evaluation processes. Furthermore, in the model comparison

use case, we identify numerous instances where observation uncertainty masks discernible differences in model performance,15

underscoring the necessity of accounting for this uncertainty in model selection procedures. While our assessment of model

structural uncertainty generally indicates that structural differences often exceed observation uncertainty estimates, few excep-

tions do exist. The comparison of individual conceptual hydrological models indicates that there are
:::::::
suggests

:
no clear trends

between model complexity and subsequent model simulations falling within the uncertainty bounds of discharge observations.

Based on these findings, we advocate for the integration of
:::::::::
integrating discharge observation uncertainty into the calibration20

process and also into the reporting of hydrological model performance
:
, as has been done in this study. This integration ensures

more accurate, robust, and insightful assessments of model performance, thereby improving the reliability and applicability of

hydrological modeling outcomes for model users.
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1 Introduction25

Many fields in geoscience rely on uncertain data to accurately estimate state
::::
states

:
and fluxes that support decision-making.

Uncertain data in hydrology
::::::::
hydrology

::::
data encompasses multiple sourcesthat include

:
,
::::::::
including direct measurements, proxy-

based measurements, interpolation techniques, scaling processes, and data management practices (McMillan et al. (2018). A

large
::::::
amount

::
of literature has been devoted on

::
to

:
discussing the effect of data quality limitations on hydrological modelling

::::::::
modeling (e.g. Yew Gan et al. (1997); Kirchner (2006); Beven et al. (2011); Kauffeldt et al. (2013); Huang and Bardossy30

(2020); Beven et al. (2011); Beven and Smith (2015); Beven (2016); Beven and Lane (2022); Beven et al. (2022)). Data

uncertainty can be distinguished into input data uncertainty (e.g.
:
,
:
Kavetski et al. (2006a, b)) and evaluation data uncertainty

(e.g
:::
e.g., McMillan et al. (2010).

Input data , primarily comprises meteorological variables such as precipitation and temperature. Other input data sources

include static data, such as soil and topographic properties that are used to estimate model parameters. The inherent uncertain-35

ties in input datasets influence the model’s simulation of states and fluxes (e.g. Balin et al. (2010); Bárdossy and Das (2008);

Bárdossy et al. (2022); Bárdossy and Anwar (2023); McMillan et al. (2011); Beven (2021)). The uncertainty propagation

from input to model output is also closely influenced by the model structure (Butts et al., 2004; Liu and Gupta, 2007; Zhou

et al., 2022; Montanari and Di Baldassarre, 2013). The effects of uncertainty propagation have therefore been a focal point in

literature, e.g.
:
, Beven (2006); Montanari and Toth (2007); Gupta and Govindaraju (2019).40

Evaluation data uncertainty, the focus of this study, plays a pivotal role in determining the
::::::::::
hydrological

:::::::
models’

:
poten-

tial accuracy and robustnessof hydrological models. This is the case for model calibration, a processes
::::::
process that involves

fine-tuning model parameters to ensure that the model accurately and consistently reflects the observed historical behaviour

:::::::
behavior

:
of the hydrologic system. Typically,

:
this is based on discharge. When a model aims to replicate discharge values

without including discharge observation uncertainty, the results are constrained to match a precise but potentially not accurate45

::::::::
inaccurate

:
representation of the hydrological response (Vrugt et al., 2005). As a consequence

:::::::::::
Consequently, accurately calibrat-

ing the model becomes more challenging due to the demand of incorporating evaluation data uncertainty into the calibration

process to minimize bias in model parameters (McMillan et al., 2010).

Multiple studies have demonstrated the importance of accounting for uncertainties in discharge observations. These mainly

focus on hydrological model calibration (e.g.,
:
Beven and Binley (1992); Beven and Freer (2001); Beven and Smith (2015);50

McMillan et al. (2018); Beven and Lane (2019); Westerberg et al. (2020, 2022); McMillan et al. (2010); Coxon et al. (2015); Liu

et al. (2009); Blazkova and Beven (2009)). In these studies multiple methodologies are used to quantify uncertainty estimates

of discharge observations that are subsequently used for model calibration (overview in McMillan et al. (2012)).

Combined, all uncertainty sources (input data, evaluation data, model structure, model parameters, initial conditions) add to a

concept in hydrological modelling
:::::::
modeling

:
commonly referred to as the equifinality concept (Beven and Freer (2001); Beven55

(2006); Montanari and Grossi (2008); Clark et al. (2008); Beven et al. (2011)). This concept is characterised
:::
The

:::::::
concept
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:
is
::::::::::::

characterized by the circumstance of various model configurations yielding similar behavioural
::::::::
behavioral

:
or acceptable

results. Therefore, the recommendation is to account for all uncertainty sources simultaneously. An example of a method that

includes all uncertainty sources during the parameter estimation process is the General Likelihood Uncertainty Estimation

(GLUE; Beven and Freer (2001)) method. In practice, such methodologies
:::::::
methods

:
are not always applied by model users

:
,60

although the difficulty of implementation can be dispelled (Pappenberger and Beven (2006)).

Hydrological model evaluation by model users is often solely based on discharge observations. The inherent uncertainties

in this single source of observational data might obscure the model’s ability to simulate actual discharge. Therefore, omitting

data uncertainty during model evaluation negatively affects the interpretation of relative model simulation differences, as these

might fall within the uncertainty bounds of the observations.65

Another challenging aspect of hydrological modelling is the
:::::::
modeling

::
is
:::
the

:::::::::::
hydrological

:::::::
system’s large spatial and temporal

variabilityof the hydrological system. Capturing the .
::::
The large variety in landscape and hydrological heterogeneity ,

:::
can

:::
be

:::::::
captured

:
when evaluating or comparing hydrological models , can be achieved through the use of so called

::::
using

::::::::
so-called

large-sample catchment hydrology datasets. These large-sample catchment datasets contain hydro-meteorological time series,

catchment boundaries,
:

and catchment attributes for a large number
:::
set of catchments. The dataset is complemented with70

discharge observations at the catchment outlets and meteorological forcing datasets that include precipitationand temperature
:
,

::::::::::
temperature,

::::
and

::::::::
reference

::::::::::
evaporation. The large-sample catchment datasets are collected using a consistent methodology

across all catchments.

Recent large-sample datasets follow the structure introduced by (Addor et al., 2017) in the form of the CAMELS(-US)

dataset. More recently, Coxon et al. (2020) released the CAMELS-GB, that
::::
which

:
includes estimates of quantified discharge75

observation uncertainty. This dataset describes 671 catchments in Great Britainof which .
:

503 gauging stations
:::::::::
catchments

:::::::
(gauging

::::::::
stations) are complemented with quantified discharge observation uncertainty estimates (Coxon et al. (2015)). A

recent effort by Kratzert et al. (2022) combined all available national CAMELS datasets in the overarching CARAVAN dataset

for global consistency and boosting accessibility through data access via Google Earth Engine.

The accessibility of
:::::
access

::
to

:
large-sample catchment data triggered a wealth of researchas discussed in the overview by80

Addor et al. (2020), including use as a test-bed for hydrological model evaluation and model comparison studies (e.g.
:::
has

::::::::
prompted

:
a
:::::::::
substantial

:::::
body

::
of

::::::::
research,

::
as

:::::::
detailed

::
in

::::::::::::::::
Addor et al. (2020)

:
.
::::
This

:::::::
includes

::::::::::
applications

::
in
:::::::::::

hydrological
::::::
model

:::::
testing

::::
and

::::::::::
comparative

:::::::
analysis

:::::
(e.g., Mizukami et al. (2017); Rakovec et al. (2019); Lane et al. (2019); Feng et al. (2022)).

The
:::
One

::
of

:::
the

:
benefits of these datasets are that large-samples

::
is

:::
that

:::::
large

:::::::
samples

:
of catchments allow for the evaluation

of the robustness of model performance (Andréassian et al. (2006); Gupta et al. (2014)). Identifying this robustness provides85

model users with valuable information on the presence or absence of consistency in the model results.

In this study , we assess
::::
This

:::::
study

:::::::
assesses

:
the effect of omitting discharge observation uncertainty while interpreting

model performance differences. Specifically, we focus on how this uncertainty influences model selection from the perspective

of model users. Thereby, we
:::
We highlight the importance of incorporating discharge observation uncertainty during model

calibration and model evaluation efforts. To achieve this, we developed a generic method that is applicable for
::::::::
applicable

::
to
:
any90

geoscience field where model results are compared to uncertain observations. This method determines, based on the 5th to 95th
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percentile range of flow, if model simulation differences are significant in the context of discharge observation uncertainties.

In this study, we highlight 3 use cases based on 8 hydrological models that encompass model refinement efforts, conventional

model comparisons, and the influence of model structure uncertainty in light of discharge observation uncertainty. Furthermore,

we assess the spatial consistency of model performance results using a large-sample catchment datasetand we assess ,
::::
and

:::
we95

:::::::
evaluate the temporal consistency of model performance metrics by sub-sampling the observation and simulation pairs as

demonstrated by Clark et al. (2021). By doing so, more informed conclusions can be drawn on model performance based on

individual catchments or large-samples
:
or

:::::
large

:::::::
samples of catchments.

2 Methodology

A generic tooling is designed for assessing model simulations while considering the uncertainties inherent in evaluation data.100

First, the 3 use cases are presented, this .
:::::
This is followed by the input data description, evaluation data description, and the

discharge observation uncertainty estimates used to conduct the analyses. Next, we describe the employed hydrological models

and model runs
:::::::
employed

:
for calibration and evaluation. The methodology concludes with the

::
an explanation of the uncertainty

based
::::::::::::::
uncertainty-based

:
analyses.

In Figure 1, a graphical workflow is presented that provides an overview of the presented in the methodology. Figure 1a105

shows a typical model run with inputs and outputs, Figure 1b shows a conventional comparison of objective functions based

on discharge observations and simulations, and Figure 1c describes the uncertainty analysis introduced in this study.

2.1 Use cases

We devised 3 use cases based on 8 hydrological models that exemplify how users of models, whom
::::
who themselves are not the

model developers, can interpret differences between model simulations in the context of discharge observation data uncertainty.110

The use cases are:

1. Model refinement in practice: This use case concerns additional model refinement by fine tuning
:::::::::
fine-tuning an effective

model parameter based on discharge observation post initial
::::::::
post-initial

:
calibration. It highlights the value of relative

gains in model performance when not considering discharge observation uncertainty in the calibration process.

2. Model comparison for model selection: Here, two distributed hydrological models are compared against the backdrop115

of uncertainties in discharge observations. This analysis aims to pinpoint scenarios where the disparities between model

results are within the margin of error of the discharge observations.

3. Model selection under model structural uncertainty: This use case involves contrasting the uncertainty inherent in the

model’s structure, as seen across various hydrological models, with the uncertainty in discharge observations.

An additional analysis is performed that quantifies uncertainty in the model performance objective functions due to temporal120

sampling of the discharge simulation and observation pairs. This temporal sampling uncertainty is detailed in Section 2.5.3.
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Figure 1. Graphical workflow of model experiments and analyses, with in green the model experiment inputs
::

are
:::::
shown, in red the models,

and in grey the analysis components. (a) the model runs of two models with inputs and outputs that result in simulation time series. (b) the

conventional model comparison that compares objective functions based on simulation and observation time series. (c) the workflow of the

proposed analysis that compares relative model simulation differences to discharge observation uncertainty estimates.

2.2 Data

2.2.1 Case study and catchment selection procedure

The CAMELS-GB large-sample catchment dataset (Coxon et al., 2020; Coxon, 2020) serves as the case study area of the

use cases and contains data (hydro-meteorological time series, catchment boundaries and catchment attributes) describing125

671 catchments located across Great Britain. The underlying data used to create CAMELS-GB are publicly available andare

therefore
:
,
::::::::
therefore,

:
suitable for evaluating hydrological models as the dataset can be easily extendedin the future. A unique

feature of the dataset is the availability of quantified discharge observation uncertainty estimates for the flow percentiles of 503

catchments (see Coxon et al. (2015)).

The use cases in this study employ hydrological models with a daily time step. This can cause temporal discretization errors130

in small catchments due to peak precipitation and peak discharge occurring at the same time step. Therefore, these catchments
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are excluded through a selection procedure. This procedure calculates the cross-correlation between observed discharge and

precipitation for a range of lag times. Catchments that predominantly show less than 1 day of lag between observed discharge

and precipitation are excluded. Of the 503 catchments with uncertainty estimates, 299 catchments are selected as the case

study.135

2.2.2 Meteorological forcing and pre-processing

In this studyWe ,
:::
we

:
use the same meteorological forcing that was used to create the CAMELS-GB meteorological time series

and climate indices as input to the hydrological models. This input consists of gridded 1km
:
1
:::
km2 daily meteorological datasets.

The meteorological variables used in this study are precipitation (CEH-GEAR; Keller et al. (2015); Tanguy (2021)), reference

evaporation (CHESS-PE; Robinson (2020a)), and temperature (CHESSmet; Robinson (2020b)). The distributed hydrologi-140

cal models use gridded inputs,
:
and the conceptual hydrological models aggregated

::::::::
aggregate

:
time series of meteorological

variables that are readily available in the CAMELS-GB dataset.

2.2.3 Discharge observations and quantified uncertainty estimates

The discharge observations in the CAMELS-GB dataset were obtained from the UK National River Flow Archive and are daily

values in cubic meters per second (m3*s-1). As is common with large-sample catchment datasets
:
, several catchments contain145

missing flow data in the time series. These missing values are not taken into account in the analyses of this study
:::::::::
considered

::
in

:::
this

::::::
study’s

:::::::
analyses.

A unique aspect of the CAMELS-GB dataset is the inclusion of quantified discharge observation uncertainty estimates cre-

ated by Coxon et al. (2015). The uncertainty is quantified by utilizing
::::
using a large dataset of quality assessed

:::::::::::::
quality-assessed

rating curves and stage-discharge measurements. In an iterative process, the
:::
The

:
mean and variance at each stage point is150

calculated and subsequently fitted
:::
are

::::::::
calculated

::::
and

:::::
fitted

::
in

:::
an

:::::::
iterative

::::::
process

:
using a LOWESS regression method that

defines the rating curve and discharge uncertainty. By combining
:::::::::
Combining the LOWESS curves and variance in a Gaussian

Mixture model based on a random draw from the measurement error distribution
::::
gives an estimate of streamflow uncertaintyis

made,
::::::::
discharge

::::::::::
uncertainty;

:
see Coxon et al. (2015) for more information.

2.3 Hydrological models155

A mixture of distributed physically process-based and lumped conceptual hydrological models is selected for the use cases,

thereby showcasing the versatility of the analysis. The model refinement and model comparison use cases employ two phys-

ically process-based hydrological models: wflow_sbm (van Verseveld et al. (2022)) and PCR-GLOBWB (Sutanudjaja et al.

(2018); Hoch et al. (2023)). The rationale behind selecting these models lies in their differing approaches to conceptualiz-

ing hydrological processes and their respective optimization routines. Despite these differences, both models are suitable for160

comparison to a certain degree. This comparability stems from their shared classification as distributed hydrological models,

similar complexity, parameterization, and applicability at a spatial resolution of 1 km2.
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For the model structure use case, 6 conceptual hydrological models are sourced from the Modular Assessment of Rainfall–Runoff

:::::::::::::
Rainfall-Runoff Models Toolbox (MARRMoT: Knoben et al. (2019); Trotter et al. (2022)). These specific models are selected

to encompass a wide array of model structures. The selection is based on the number of model stores, the quantity of parame-165

ters, and differing process representations.

2.3.1 Distributed hydrological models

The wflow_sbm physically-based distributed hydrological model (van Verseveld et al. (2022)) originated from the Topog_SBM

model concept (Vertessy and Elsenbeer (1999)). This concept was developed for small-scale hydrologic simulations. The

wflow_sbm model deviates from Topog_SBM by the addition of capillary rise, evapotranspiration and interception losses170

(Gash model; Gash (1979)), a root water uptake reduction function (Feddes and Zaradny (1978)), glacier and snow processes,

and D8 river routing that uses the kinematic wave approximation in this study. The parameters (40 in total) are derived from

open-source datasets and use pedo-transfer functions to estimate soil properties (see hydroMT software package (Eilander and

Boisgontier (2022)).

The 1 km2 model version was aggregated from the finest available data scale (90 m). The hydraulic parameters related to the175

river network are upscaled using the method presented in Eilander et al. (2021). The parameter upscaling of the wflow_sbm

model is based on the work by Imhoff et al. (2020) that uses point-scale (pedo)transfer-function. This method
:::::::::::::::
transfer-functions.

::::
This is similar to the multiscale

:::::::::
multi-scale

:
parameter regionalization method (Samaniego et al. (2010)). Parameters are aggre-

gated from the original data resolution with upscaling operators determined by a constant mean and standard deviation across

various scales. Fluxes and states are checked for consistency during this process. See van van Verseveld et al. (2022) for further180

information.

The PCR-GLOBWB physically-based distributed hydrological model was initially developed for global hydrology and

water resources assessments (Sutanudjaja et al. (2018)). The PCR-GLOBWB model calculates the water storage in two soil

layers, one groundwater layer, and the exchange between the top layer and the atmosphere. The model accounts for water use

determined by water demand. We employ the 1 km2 version that is introduced in (Hoch et al. (2023). The model configuration185

in this study applies the accumulated travel time approximation for river routing.

2.3.2 Conceptual hydrological models

MARRMoT is a flexible modelling
:::::::
modeling

:
framework that houses an array of conceptual hydrological models Knoben et al.

(2019); Trotter et al. (2022). It is particularly valued in research for assessing model structure uncertainty, as highlighted in

Knoben et al. (2020). One of the key advantages of MARRMoT is that the conceptual models share a uniform numerical190

implementation. To achieve this, alterations were made to the original model codes. These alterations ensure a consistent basis

for model structure comparisons, allowing for a precise evaluation of differences in hydrological simulations due to varying

model structures. In this study, the
:::
The

:
hydrological models IHACRES, GR4J, VIC, XINANJIANG, HBV-96, and SMAR

are selected
::
in

:::
this

:::::
study. Table 1 provides an overview of

::::::::
overviews the number of stores, number of parameters, and key

references.195
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Table 1. Overview of the 6 selected conceptual hydrological models showing the model name, number of stores, number of parameters, and

key references (adapted from Knoben et al. (2020)).

Original Model Number of Stores Number of Parameters Key References

IHACRES 1 7 Ye et al. (1997); Croke and Jakeman (2004)

GR4J 2 4 Perrin et al. (2003); Santos et al. (2018)

VIC 3 10 Liang et al. (1994)

XINANJIANG 4 12 Jayawardena and Zhou (2000)

HBV-96 5 15 Lindström et al. (1997)

SMAR 6 8 Tan and O’Connor (1996)

2.4 Model runs

The model runs that form the basis of the 3 use cases are performed as intended by the model developers. Meaning,
:::
This

::::::
means

:::
that

:
this study employs calibration and or optimization methodologies as recommended by the model developers for model

users. The calibrated parameters for the distributed hydrological models were obtained from the model developers. In the case

of the
::::::::
Regarding

:::
the

:
conceptual hydrological models

:
, we follow the model run configuration of Knoben et al. (2020).200

2.4.1 PCR-GLOBWB model runs

The PCR-GLOBWB model does not require additional regional parameter optimization after deriving the parameter set, as

this is typically not conducted by the model developers. However, this does not imply that the model would not benefit from

additional optimization. The model does require a spin-up period at the start of the model run. The model is spun-up 30 years

back-to-back using a single water year climatology that is based on the average values of each calendar-day
:::::::
calendar

::::
day205

between 1-10-2000 and 30-09-2007. The following water year,
:
2008, is discarded from analyses to avoid overfitting at the start

of the evaluation period,
:
and the model is evaluated for the water years 2009 – 2015.

2.4.2 Default and optimized wflow_sbm model runs

The wflow_sbm model is spun-up using the water year 2000 and
:
is
:
additionally calibrated using discharge observations for the

water years 2001-2007. Additional calibration is perfomered
::::::::
performed

:
by optimizing a single parameter using the Kling-Gupta210

Efficiency Non-Parametric (KGE-NP) objective function (Pool et al. (2018)) based on discharge observations and simulations

differences at the catchment outlet. This results in a single optimized parameter set per catchment. Imhoff et al. (2020) identified

the horizontal conductivity fraction parameter (KsatHorFrac) as effective for single parameter value optimization. KsatHorFrac

is an amplification factor of the vertical saturated conductivity that controls the lateral flow in the subsurface.

After calibration, the water year 2008 is discarded from analyses
:
, and the model is evaluated for the water years 2009 - 2015.215

For more information on the effects of calibration, the reader is referred to Aerts et al. (2022), Section 3.1 and Figure 3. The
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default wflow_sbm model run sets the KsatHorFrac parameter value to the default value of 100. The calibration results of the

wflow_sbm model are presented in Appendix A1.

2.4.3 Conceptual hydrological model runs

Similar to the other model runs, the conceptual hydrological model runs are spun-up using the water year 2000 and calibrated220

using the water years 2001-2007. The calibration method uses the Coviariance
:::::::::
Covariance

:
Matrix Adaptation Evolution Strat-

egy (CMA-ES; Hansen et al. (2003); Hansen (2006); Hansen and Ostermeier (2001)). This method optimizes a single-objective

function to find global parameter optimums based on non-separable data problems. A demonstration of the sensitivity of the

calibration parameters is shown in Knoben et al. (2020). Following calibration based on the KGE-NP objective function, the

water year 2008 is discardedand the
:
.
::::
The models are evaluated based on the water years 2009-2015 using the same KGE-NP225

objective function.

2.4.4 eWaterCycle

This study is conducted using the eWaterCycle platform (Hut et al., 2022). eWaterCycle is a community driven platform for

the running of
:::::::::::::::
community-driven

:::::::
platform

:::
for

:::::::
running

:
hydrological model experiments. All components that are required to

run hydrological models are FAIR by design (Wilkinson et al., 2018). This is achieved by versioning models and datasets and230

creating workflows that are reproducible
::::::::::
reproducible

:::::::::
workflows. Therefore, the platform is suitable for conducting model

performance experiments. The model simulations were conducted on the Dutch supercomputer Snellius to ensure faster model

run time. We created example notebooks that use the eWatercycle
::::::::::
eWaterCycle

:
platform on cloud computing infrastructure:

https://doi.org/10.5281/zenodo.7956488.

2.5 Analyses235

2.5.1 Model evaluation

The hydrological model runs (calibration and evaluation) are evaluated using the Kling-Gupta efficiency non-parametric (KGE-

NP, Pool et al. (2018)) objective function. This efficiency metric deviates from the more commonly used Kling-Gupta efficiency

(KGE, Gupta et al. (2009)) by calculating the Spearman rank correlation and the normalized-flow-duration curve instead of

the Pearson correlation and variability bias. Values range from -∞ to 1 (perfect score). In addition to the KGE-NP metric, we240

consider the Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe (1970)) to demonstrate the sensitivity of the results towards

the selection of objective function. We include the KGE-NP, KGE, modified KGE (Kling et al. (2012)), and the NSE objective

functions in the data repository for completeness and future reference.

2.5.2 Discharge observation uncertainty

The ad hoc discharge observation uncertainty based
::::::::::::::
uncertainty-based analysis of model performance differences consists of 3245

parts. The first part divides the observation and simulation pairs into 3 flow categories similar to Coxon et al. (2015), namely

9



:
: low flow, average flow, and high flow conditions. The low flow category is based on the observed discharge values at the

catchment outlet between the 5th and 25th percentile range, average flow on the 25th to 75th percentile range, and high flow

on the 75th to 95th percentile range. Not all percentiles are included for the low and high flow categories due to limited data

availability on quantified discharge observation uncertainty.250

In the second part, illustrated in Figure 1c, the absolute difference between
::::::::
calibrated model simulations is calculated for each

flow category and each catchment. This is exemplified in the form of
:
as

:
a hydrograph in Figure 2a. The discharge observation

uncertainty estimates of the CAMELS-GB dataset are processed by averaging the upper and lower bounds of uncertainty

estimates per flow percentile (5, 25, 75, 95). This results in the orange and red dashed lines in Figure 2b. We then take the

percentage of discharge observations basd
:::::
based on the average uncertainty estimates to convert the uncertainty percentages to255

discharge observation uncertainty time series in m3*s-1 (green line).

The third part applies a dependent t-test using the time series in Figure 2c with a 0.05 significance level to determine if the

observation uncertainty time series is greater than the model simulation difference time series.

This method is subject to certain limitations, particularly regarding the use of the
:::::
using

:::
the discharge observation uncertainty

estimates. Due to
:::
the absence of data

:
, the upper and lower 5th percentiles of flow could not be included,

:
while these data points260

can be most important for users to determine
::
the

:
fit-for-purpose of a model. In addition, it is preferred to use

:::::
using the rating

curve uncertainty rather than the uncertainty bounds of flow percentiles
:
is
::::::::
preferred. We accept these limitations as we promote

the use of existing dataset
::::::
datasets

:
to ensure community participation into

::
in implementing the suggested evaluation procedure

in other studies.

2.5.3 Temporal sampling uncertainty265

Another aspect of model performance evaluations that might misinform model users is the sensitivity of objective functions

to the temporal sampling of time series. Temporal sampling uncertainty determines if the error distribution of simulation and

observation pairs is heavily skewed. A few data pairs might have a disproportionate effect on the calculated objective functions

that are used to determine model performance. The inclusion or exclusion of these data points due to the selection of the

calibration and evaluation period , hence alters the consistency of model performance over time.270

To quantify the temporal sampling uncertainty of the KGE-NP objective function, we applied the methodology of Clark

et al. (2021). This method sub-samples the simulation and observation time series through bootstrapping and (Efron, 1979) and

jacknife-after-bootstrap
::::::::::::::::::::
jackknife-after-bootstrap

:
(Efron and Tibshirani, 1986) methods. The change in objective function due

to the shuffling of the sub-samples allows for the calculation of the
:::::::::
calculating

:::
the

:
standard error and its tolerance interval. The

tolerance intervals corresponding to each model instance are averaged and referred to as
::
the

:
temporal sampling uncertainty.275

We extended the GUMBOOT software package Clark et al. (2021) by adding the KGE-NP metric for this study.
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Figure 2. Example hydrographs of the discharge observation uncertainty analysis method. (a) calculation of the absolute difference (blue)

between model simulations (red and orange). (b) calculation of streamflow observation uncertainty in m3*s-1 (green). Dashed lines indicating

upper and lower bounds
::
are expressed as percentages of observation uncertainty that are averaged and multiplied with the observations

(black). (c) resulting time series, with, in blue, the absolute difference between model simulations and, in green, the averaged discharge

observation uncertainty in m3*s-1.

3 Results

In this section
:
, we first present an overview of the discharge-based model performance results for each of the 3 use cases. Next,

we detail the spatial distributions of the maximum model performance difference. This is succeeded by the presentation of

::::::::
presenting

:
uncertainty estimates for discharge observations , categorized by flow. Subsequently

::::
Next, the discharge observation280

uncertainty based analyses of
:::::::::::::::
uncertainty-based relative model performance is

:::::::
analyses

:::
are presented. The section ends with

the temporal sampling uncertainty analysis results.

Appendix A.1 contains the calibration results of the wflow_sbm model
:
,
:
and Appendix A.2 the Nash-Sutcliffe efficiency

(NSE) based model performance results of all considered models.
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Figure 3. Cumulative distribution function (CDF) plots of the Kling-Gupta Efficiency non-parametric (KGE-NP) objective function, derived

from discharge estimates and observations at 299 catchment outlets. (a) shows the CDF for the model refinement use case, optimizing the

wflow_sbm hydrological model with a single parameter. (b) shows the CDF for the model comparison use case, comparing the optimized

wflow_sbm and PCR-GLOBWB hydrological models. (c) demonstrates the CDF for the model structure use case, showcasing results from

6 conceptual hydrological models.

3.1 Discharge based
::::::::::::::
Discharge-based

:
model performance285

Model performance is assessed using discharge observation and simulations at 299 catchment outlets. The results are shown in

Figure 3 as Cumulative Distribution Functions (CDFs) of the KGE-NP objective function. These results offer insight into the

model’s accuracy in simulating observed discharge.

The CDF of the model refinement use case in Figure 3a establishes that optimizing a single effective parameter leads to an

improvement for
::::::::
improves approximately 65% of the catchments

::::::::
catchment

::::::::::
simulations. The improvements remain modest

:
,290

as indicated by the median value of 0.64 KGE-NP for the default wflow_sbm model and 0.74 KGE-NP for the optimized

wflow_sbm model. Larger model performance differences are found for the model comparison use case in Figure 3b. Here,

the optimized wflow_sbm model performs better in 75% of the catchments than the PCR-GLOBWB model. Both models

demonstrate poor results for approximately 25% of the evaluated catchments (<0.40 KGE-NP).

The results of the model structure use case
::::::
results are based on 6 conceptual hydrological models that only deviate in model295

structure (Figure 3c). From the
:::
The

:
spread in model results it is evident

:::::
shows that the VIC model lags behind in performance

compared to the other models. The IHACRES and SMAR models yield very similar results despite large structural differences.

The XINANJIANG and HBV-96 models not only produce comparable outcomes but also
:::
and

:
share a more similar model

structure. The GR4J model consistently outperforms the other models. The total model structure uncertainty, as expressed

by the difference between the worst and best performing
:::::::::::::
best-performing model’s CDF

:
, is substantial, while the differences300

between models can be subtle. Median KGE-NP values for the models are as follows: VIC at 0.65, IHACRES at 0.80, SMAR

at 0.82, XINANJIANG at 0.84, HBV-96 at 0.85, and GR4J at 0.88 KGE-NP.
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Figure 4. Spatial distribution of the absolute Kling-Gupta Efficiency non-parametric (KGE-NP) objective function difference between the

worst and best model’s performance per catchment and use case. (a) shows the model refinement use case
::
is based on the default and

optimized wflow_sbm hydrological models. (b) shows the model comparison results
:::
are based on the optimized wflow_sbm and PCR-

GLOBWB hydrological models. (c) shows the model structure use case results
::
are

:
based on the worst and best model performances of the 6

conceptual hydrological models.

Next, we consider the spatial distribution of the results, presented
::
as

:::::
shown

:
in Figure 4, based on

:::::
which

::::::
depicts

:
the maximum

KGE-NP difference between the models of
::
for

:
each use case. Improvements

:::::
Figure

:::
4a

::::::::
indicates

::::::::::::
improvements after model

refinementare indicated by the ,
:::::

with positive KGE-NP difference values in Figure 4a. These values are mainly present in the305

Northern and Southern
::::::
various parts of Great Britain. No clear spatial patterns are visible for the model comparison use case

in Figure 4b, demonstrating high spatial variability in performance when comparing
::::::::
However,

::::
there

:::
are

:::
no

:::::::::
discernible

::::::
spatial

:::::
trends

::
in

::::
these

:::::::::::::
improvements.

::::::
Figure

::
4b

::::::::
compares

:
the wflow_sbm and PCR-GLOBWB distributed hydrological models. More

spatially consistent differences are found ,
::::::::
revealing

::::
high

::::::
spatial

:::::::::
variability

::::
with

:::
no

::::::::
consistent

::::::::
patterns.

::::::::
Similarly,

::::::
Figure

:::
4c

::::::::
highlights

::::::::::
differences for the model structure use casein Figure 4c. Here, ,

::::::
where

:
the largest differences are present in the310

Northern and Southern parts of Great Britain
::::
again

::::::::
observed

::
in

:::::::
various

::::::
regions

:::::::
without

:
a
:::::
clear

:::::
spatial

::::::
trend.

:::::
While

:::
the

::::::
spatial

:::::::::
distribution

::
is

::::::::
provided

::
for

::::::::::::
completeness,

:::
no

:::::::::
significant

:::::
spatial

::::::
trends

:::
are

::::::
evident

::::
from

:::
the

::::
data.
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Figure 5. Discharge observation uncertainty estimates of 299 catchment outlets based on the work of Coxon et al. (2015) expressed as

uncertainty percentages per flow category. (a) shows the low flow category uncertainty estimates
::
are

:
based on the 5th to 25th flow percentiles.

(b) presents the 25th to 75th percentile average flow category. (c) shows the high flow discharge observation uncertainty estimates of the 75th

to 95th flow percentiles
:::
are

:::::
shown.

3.2 Discharge observation uncertainty estimates

The discharge observation uncertainty estimates consider the 5th to 95th percentile range of flow. These estimates are cate-

gorized into 3 flow conditions and are presented in Figure 5. In the box plot for
::
the

:
low flow category, we observe a wide315

interquartile range, shown by the spread of the box. This indicates a higher variability in discharge observation uncertainty

percentages. The median value, represented by the line within the box, is at the 20% uncertainty mark. The presence of many

:::::
Many outliers above the box indicate occasional large deviations from the median value. For

:::
The

:::::
range

::
of

::::::
values

::
for

:
the average

flow category , the range of values is narrower than for the low flow category
:
, with a median value of 15%. The lowest median

value is found for the high flow category at 12%. It is important to mention that the uncertainty is expected to be considerably320

higher if the underlying data would contain
:::::::
contains the upper 5th percentiles of flow for this category.

3.3 Use Cases

The discharge simulation difference time series of two models is expressed in cubic meters per second and compared to
:::
the

discharge observation uncertainty time series in cubic meters per second. This is done by using a t-test to determine if the

simulation differences are larger than the discharge observation uncertainty estimates. The instances where this is the case are325

reported in Table 2 for the 3 use cases.
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Table 2. Overview of the number of instances per flow category were
:::::
where discharge observation uncertainty exceeds the simulation

differences based on 299 catchments. Results are based on dependent t-test’s
::::
t-tests with a significance level of 0.05.

Use Case Models Flow Category
Discharge Obs. Uncertainty

>

Model Sim. Difference

Total Instances

Model Refinement
wflow_sbm Default

& Optimized
Low 98 299

Average 98

High 115

Model Comparison
wflow_sbm Optimized

& PCR-GLOBWB
Low 5 299

Average 4

High 3

Model Structure
6 Conceptual Hydrological

Models
Low 1 299

Average 0

High 0

3.3.1 Model refinement

The model refinement use case results in Table 2 show that approximately one third
:::::::
one-third

:
of the considered catchments con-

tain instances of simulation differences between the wflow_sbm default and wflow_sbm optimized models that are statistically

smaller than the discharge observation uncertainty estimates. This demonstrates the importance of incorporating (discharge)330

observation uncertainty when performing model refinement, especially when based on a large-sample catchment dataset. This

consideration should be part of the calibration and subsequent evaluation process. In addition, the results indicate that when

discharge observation uncertainty is not considered, it is difficult to draw conclusions on
:::::::
conclude whether the model performs

better after refinement
:::::
when

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

::
is

:::
not

:::::::::
considered. Overall, the results affirm the importance of

incorporating discharge observation uncertainty in the optimization routine of
::
the

:
wflow_sbm model.335

3.3.2 Model comparison

For the model comparison use case (Table 2), there is a lower frequency of instances where discharge observation uncer-

tainty surpasses differences in discharge simulations. The comparison between the optimized wflow_sbm model and the PCR-

GLOBWB model reveals that
::::::::
simulation

::::::::::
differences

::::::
exceed

::::::::
discharge

:::::::::
uncertainty

::::::::
estimates

:
in 5 catchments for low flow, 4 for

average flow, and 3 for high flow categories, simulation differences exceed discharge uncertainty estimates. These findings sug-340

gest that the interpretation of model performance is not significantly affected by the ad-hoc addition of discharge observation

uncertainty. However, catchments demonstrating the impact of observation uncertainty warrant carefull
::::::
careful examination.
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3.3.3 Model structure

The analysis of model structure uncertainty in the context of discharge observation uncertainty reveals that only a single

instance of the low flow category contains discharge observation uncertainty that exceed
::::::
exceeds

:
the simulation difference be-345

tween all 6 conceptual hydrological models (Table 2). This establishes that based on the selected models
:
, the model structure

uncertainty, expressed as the difference in discharge simulations, is larger than the
:::
this

:::::::
dataset’s

:
discharge observation uncer-

tainty estimatesfor this dataset. However, the investigation into the differences between the individual models yields several

insights based on the results in Figure 6.

The VIC model results, characterized by its relatively lower performance, contain only a few instances where discharge ob-350

servation uncertainty exceeds simulation differences, making it identifiable as the lesser performing
::::::::::::::
lesser-performing model.

In contrast, the IHACRES and SMAR models exhibit a high level of simulation agreement, demonstrated by a large number

of instances in Figure 6c. This ,
:
is despite significant differences in their complexity and structural design. Namely, IHACRES

is a single store hydrological model
:::::::::
single-store

:::::::::::
hydrological

::::::
model, and SMAR is a 6 store hydrological model that accounts

for soil moisture in a separate store. This alignment of simulation results between models with varying complexities highlights355

the nuanced influence of structural differences on simulation outcomes. The HBV-96 and XINANJIANG models that most

closely resemble each other based on the number of stores, process descriptions, and parameters contain
:
a
:
low number of

instance
:::::::
instances, allowing the identification of the better performing

::::::::::::::
better-performing

:
model.

Next, we examine the results across the individual flow categories. The low flow category (Figure 6a) and the average flow

category (Figure 6b) show similar trends, though with a lower number of instances for the average flow category with a lower360

number of instances for the average flow category. The high flow category (Figure 6c) is characterized by a more frequent

occurrence of discharge observation uncertainty surpassing simulation differences. This is especially evident between the

IHACRES and SMAR models. The variability in structural design and parameterization among different hydrological models

leads to notable differences in their outputs, underscoring
::::::
output

:::::::::
differences.

::::
This

:::::::::::
underscores the importance of selecting the

appropriate model by including discharge observation uncertainty in the calibration and evaluation process.365

3.4 Temporal sampling uncertainty

The temporal sampling uncertainty of the KGE-NP objective function is defined as the tolerance interval of the standard error

of the objective function due to
::
the

:
sub-sampling of the simulation and observation pairs. This analysis provides insights into

the
::::::::::
hydrological

::::::
model

::::::::::::
performances’

:
temporal reliability and interpretabilityof hydrological model performances. Analysis

of results from the 6 conceptual hydrological models, as shown in Figure 7b, reveals a pattern consistent with the model370

performance depicted in Figure 3c. Specifically
::::::::
Precisely, the VIC model displays the highest KGE-NP uncertainty across all

catchments, indicating its variability and the challenges in using this model
:
’s
:
current setup for accurate predictions in different

hydrological contexts.

The IHACRES and SMAR models , along with
:::
and

:::
the

:
GR4J, XINANJIANG, and HBV-96 , show similar levels of

KGE-uncertainty
:::::
model

::::::
groups

:::::
show

::::::
similar

:::::::::::::
KGE-NP-based

::::::::
temporal

::::::::
sampling

::::::::::
uncertainty

:::::
levels. This consistency across375
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Figure 6. Heat map of the 6 conceptual hydrological models showing for each model combination the number of instances (n=299) that

discharge observation uncertainty exceeds simulation differences. (a) number of instances for the low flow category, with in white low values

and
:::::
shown in red

::::
white

:::
and

:
high values

::
in

:::
red. (b) number of instances for the average flow category. (c) number of instances for the high

flow category.

models with varying complexities suggests that KGE-NP uncertainty is influenced not only by the model design but also by

hydrological conditions and data quality. Uncertainty values range widely, from about 0.1 KGE-NP to over 0.6, indicating

significant variability in
::
the

:
temporal robustness of results (Figure 7b).
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Figure 7. (a) Temporal objective function sampling uncertainty based on 6 conceptual hydrological models expressed as the average toler-

ance interval of the standard error due to sub-sampling. With on
::
On the horizontal axis,

:
the sorted values per catchment

:
, and on the vertical

axis,
:
the KGE-NP objective function uncertainty. (b) Heat map of the 6 conceptual hydrological models showing for each model combina-

tion the number of instances (n=299) that the average objective function uncertainty exceeds the objective functions differences of model

combinations. With
:::
Low

:::::
values in white low values and in red high values indicating

:
in

:::
red

::::::
indicate the number of instances.

When comparing the average KGE-NP objective function uncertainty with the KGE-NP differences between individual

models, it becomes clear that uncertainty often overshadows the differences between models. This is particularly the case380

in comparisons between GR4J - HBV-96, XINANJIANG - HBV-96, and SMAR - IHACRES. These findings imply that the

inherent uncertainty in the objective functions may limit the ability to distinguish between model performances, complicating

efforts to identify the most fit-for-purpose model based on this metric alone. This underscores the need for a more nuanced

approach to model evaluation that considers not only objective function metricsbut also
:
, other contextual factors, and additional

performance measures, ensuring more robust and reliable model selection processes.385

4 Discussion

We introduced an ad hoc method that highlights
::::::::::
highlighting the importance of including discharge observation uncertainty

when evaluating hydrological models. Discharge observation uncertainty is frequently overlooked by model users, leading

to potential misinterpretations of relative model performance. Our findings emphasize the significant impact of discharge

observation uncertainty on model performance interpretation.390

We acknowledge that observation uncertainty is not the only source of uncertainty as there are uncertainties in model inputs,

model structure, parameter sets, and initial or boundary conditions (e.g.,
:
Renard et al. (2010); Dobler et al. (2012); Hattermann

et al. (2018); Moges et al. (2021)). Therefore the proposed generic tooling does not replace a full
:::::::
complete

:
uncertainty analysis

of modelling
:::::::
modeling

:
chains that also accounts for the impact of input uncertainties (Beven and Freer (2001); Pappenberger
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and Beven (2006); Beven (2006)). It rather
:::::::
Instead,

:
it
:

assists model users with
:
in
:

interpreting relative model performance395

and highlights the importance of conducting a full
::::::::
complete uncertainty analysis. Our study therefore only constitutes just

::::::::
Therefore,

::::
our

:::::
study

::::
only

:::::::::
constitutes a fraction of a broader challenge , in which input uncertainty plays a substantial roleas

has been
:
,
::
as

:
demonstrated in Bárdossy and Anwar (2023).

4.1 Performance interpretation under discharge observation uncertainty

Our analysis demonstrates that regionally optimizing the wflow_sbm hydrological model often results in only marginal im-400

provements in model performance (Figure 3a). Although any improvement is beneficial, the findings suggest that discerning

the superior model variant becomes challenging without factoring in the uncertainty of discharge observations during the

calibrationprocess
::::::::
calibration. This is evident in 98 instances for

:
of

:
low and average categories of flow and in 118 instances

::::
cases

:
of the high flow category (Table 2). The number of instances is expected to further increase

:::::::
increase

::::::
further

:
when in-

cluding flows of the lower and upper 5th percentiles of flow are included. The adoption of
::::::::
Adopting

:
an ad hoc measure, as405

introduced in this study, provides a practical though
:::
but limited method for improving the interpretability of relative model

results. Therefore, we recommend the integration of discharge observation uncertainty into both the model calibration and

evaluation procedures, aligning with the consensus in
:::
the literature.

When comparing different hydrological models, we find that the uncertainty of discharge observations slightly masks the

differences in relative model performance as shown by the 3 to 5 instances per flow category in Figure 3b and Table 2. Similarly410

to the model comparison use case, the model structure use case indicates that structural uncertainties overshadow the effects

of discharge observation uncertainty. However, the comparison of individual models in Figure 6 shows many instances of

discharge observation uncertainty exceeding model performance differences. For instance, the IHACRES and SMAR models,

:::::::
example,

:
despite their structural differences,

:::
the

:::::::::
IHACRES

:::
and

::::::
SMAR

:::::::
models demonstrate a high level of simulation agree-

ment (Figure 3c) and subsequent difficulty in discerning model performance differences in light of discharge observation415

uncertainty. In contrast, the VIC and XINANJIANG models, which have similar structures, display for
::::::
exhibit two-thirds of

the catchment simulation differences within the uncertainty bounds of the discharge observations. This underlines the complex

interplay of
:::::::
between

:
model structures and subsequent performance, especially when contrasted with discharge observation

uncertainty
::
the

::::::::::
uncertainty

::
of

::::::::
discharge

::::::::::
observation.

4.2 Temporal robustness of model performance420

Model performance can be heavily influenced by a few data points in the time series on which model performance is based

(Clark et al. (2021)). This can results
::::
result

:
in biased model performance interpretations depending on the selected time period

for calibration and evaluation. When models are sensitive to certain data points
::::::
specific

::::
data

::::::
points,

:
this can be due to a lack

of adequate process descriptions in
:::::::::
inadequate

:::::::
process

::::::::::
descriptions

:::
for

:
the considered models. In addition, this might also

indicate the presence of disinformative events and model invalidation sites where the runoff coefficient exceeds a value of 1425

(Beven and Smith (2015); Beven (2023); Beven and Lane (2022); Beven et al. (2022)) or the presence of atypical data (e.g.

Thébault et al. (2023)).
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Models ought to demonstrate adequate performance across the entire time seriesand this ,
::::::
which should be accurately repre-

sented in the performance outcomes. The assessment of temporal sampling uncertainty does not imply that this is should not be

the case, it rather points towards in
:
;
:
it
::::::
instead

::::::
points

::::::
towards

:
the model simulation and observation pairs that are worth investi-430

gating. These instances can serve as indicators that suggest areas where models may require further scrutiny and improvements.

Knowing the temporal sampling uncertainty is relevant for model users as it provides information on the consistency of the

model performance over timethat
:
,
:::::
which

:
is necessary to determine the fit-for-purpose of a model. Therefore, it is recom-

mended to include alternative estimators better suited for skewed performance data in the reporting of model performance

(e.g.,
:
Lamontagne et al. (2020); Shabestanipour et al. (2023); Towler et al. (2023)).435

4.3 Practical implications for model users

The method introduced in this study is purposely designed to be as generic and straightforward as possible to increase the

potential for adoption in future studies. It can be applied to any hydrological state or flux where observation time series include

uncertainty estimates. In addition, we recommend for the routine reporting of evaluation data uncertainties as well as
:::
and the

temporal sampling uncertainty of objective functions. This would not only yield a clearer understanding of the relevance of440

differences between model outcomes but also
:::
and

:
aid in identifying samples that require cautious interpretation. This report-

ing, however, does not replace model benchmarks that include full
::::::::
complete uncertainty analyses (e.g.Lane et al. (2019)),

:
,

::::::::::::::
Lane et al. (2019)

:
) but enhances the interpretability of model performance in its absence.

For model users, this approach offers a pragmatic way to understand the implications of uncertainty in their model se-

lection processes. While our method facilitates a clearer understanding of where and how uncertainties affect relative model445

performance differences, it should be viewed as a complementary step rather than a replacement for a thorough uncertainty

analysis.

4.4 Limitations
::
&

:::::::
Outlook

The study presented faces several practical limitations. First, the exclusion of the
:::::::
excluding

:::
the

:
lower and upper 5th percentiles

of flow from the analysis introduces a constraint on the uncertainty assessment, overlooking critical flow conditions that are450

often of significant interest in hydrological studies. This exclusion limits the ability to fully understand model performance

under a complete range of hydrological conditions. Second, the reliance on uncertainty bounds rather than direct uncertainty

estimates from rating curves, due to their absence in the CAMELS-GB dataset, poses another limitation. By using
:::::
Using broad

uncertainty bounds instead of precise estimates derived from rating curves, the analysis may not capture the true variability

and uncertainty inherent in the discharge observations.
::::::::::
Additionally,

:::::::::
displaying

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::
as

:::::::
relative455

:::::
values

::
in

:::
the

:::::
form

::
of

::::::::::
uncertainty

::::::::::
percentages

::
in

:::::
Figure

::
5
:::::
might

::::::
imply

:::
that

:::
the

:::::::::
categories

:::
are

:::::::
affected

::
at

:::
the

:::::
same

:::
rate

:::
by

:::
the

::::
same

:::::::
physical

:::::::::::
phenomena.

:::
For

::::::::
instance,

:::
the

::::::
largest

:::::::
changes

::
to

:::
the

:::::
rating

::::::
curve

::
for

:::::
high

:::::
flows

:::
are

::::::
caused

::
by

:::::::
changes

:::
in

:::
the

::::
river

:::::
width,

:::::
while

::::
low

::::
flow

::
is

:::::
most

:::::::
sensitive

::
to

:::::::::::::
sedimentation.

:::::::::
Therefore,

::::
small

::::::::
changes

::
in

::::
flow

::::::
volume

::::::
might

::::
have

:
a
::::::

larger

:::::
effect

::
on

:::
low

:::::
flow

::::::::
conditions

::::
than

::::
high

::::
flow

::::::::::
conditions.

:::::::::
Expressing

:::
the

::::::
values

::
as

:::::::
absolute

::::::
values,

::
as

:::::
used

::
in

:::
the

:::::::::::
methodology

::
of

:::
this

:::::
study,

::
is

:::
not

:::::::
feasible

:::
due

::
to

:::::
large

:::::::::
differences

::
in

::::
flow

:::::::
volumes

:::::::
between

::::::::::
catchments,

::
a

:::::::
common

:::::::
problem

:::
for

:::::::::::
large-sample460
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::::::::
catchment

:::::::
studies. Last, the study ’s focuses solely on evaluating model performance primarily through discharge simulations,

without delving into the reasons behind good or poor model performance,
:
as this is outside of the scope of the study

:::
the

::::::
study’s

:::::
scope.

:::::::
Looking

:::::::
forward,

:::::::::
addressing

::::::::
discharge

:::::::::
uncertainty

:::
on

:
a
:::::
global

:::::
scale

:
is
::
of

:::::::::
paramount

::::::::::
importance.

::::::::
Accurate

:::::
global

::::::::::
assessments

::
of

::::::::
discharge

:::::::::
uncertainty

:::
are

::::::
critical

:::
for

:::::::::
informing

:::::
water

:::::::::::
management

::::::::
strategies,

::::::
policy

::::::::
decisions,

::::
and

::::::
climate

::::::
impact

:::::::
studies.465

::::::::::::
Understanding

:::
and

:::::::::
mitigating

::::
these

:::::::::::
uncertainties

:::
can

:::::::
develop

::::
more

::::::
reliable

:::::::::::
hydrological

::::::
models

:::
and

:::::::
enhance

:::::::
resource

:::::::::::
management

:::::::::
worldwide.

::::::::
Although

::::
this

:::::
study

::::
only

:::::::
provides

::
a

:::::::
glimpse

::
of

::::
what

::::
this

:::::
might

::::::
imply,

:
it
:::::::::
highlights

:::
the

::::::::
necessity

:::
for

::::
such

::::::
global

::::::::::
assessments

::
by

:::::::::::
incorporating

:::::::::
discharge

:::::::::
observation

::::
and

:::::::
temporal

::::::::
sampling

:::::::::::
uncertainties

::::
into

::::::::::
hydrological

::::::::::
evaluations.

:

5 Conclusions

This study assesses the importance of including discharge observation uncertainty and temporal sampling uncertainty of ob-470

jective functions in hydrological model performance evaluations based on a large-sample catchment dataset. This is done by

statistical testing that determines if the difference in discharge simulations between two hydrological models is larger or smaller

than the discharge observation uncertainty estimates. To support this analysis flow
::::
Flow categories are created between the 5th

and 95th percentile range of observed flow
:
to

:::::::
support

:::
this

::::::::
analysis, and 3 use cases are devised.

In the model refinement use casea substantial ,
:
100 out of 299 catchment instances showed discharge simulation differences475

between the default and optimized wflow_sbm models that were within the uncertainty bounds of discharge observations. This

emphasizes the need for integrating discharge observation uncertainty in
:::
into

:
the calibration process for model refinement.

As a result,
:

it is difficult to discern if the optimization of the model leads to improved simulations of actual discharge. For

the model comparison use case, we found that depending on the model combinations,
:

a large fraction of catchments showed

discharge observation uncertainty exceeding simulation differences. Thereby suggesting
::::
This

:::::::
suggests

:
careful consideration480

of this uncertainty in model performance evaluations. The model structure uncertainty use case that is based on 6 conceptual

hydrological models indicated only a few instances of discharge observation uncertainty exceeding simulation differences.

Indicating that model structure uncertainty, expressed as discharge simulation differences, often exceeds discharge observation

uncertainty. Comparison
:
A

::::::::::
comparison

:
of the six individual hydrological models showed no clear relation between model

complexity and model performance.485

Our study underscores the necessity of integrating discharge observation uncertainty and temporal sampling uncertainty

into hydrological model evaluations to ensure accurate, reliable, and meaningful assessments of model performance. Imple-

menting our proposed methodology in reporting practices is expected to improve the robustness of hydrological model result

interpretation, aiding in more informed model selection and refinement decisions by model users.

::::::::::
Furthermore,

:::::::::
addressing

::::::::::
uncertainty

::
on

::
a

:::::
global

:::::
scale

:
is
::
of

:::::::::
paramount

::::::::::
importance.

::::::::
Accurate

:::::
global

:::::::::::
assessments

::
of

::::::::
discharge490

:::::::::
uncertainty

:::
are

::::::
critical

:::
for

::::::::
informing

:::::
water

::::::::::
management

:::::::::
strategies,

:::::
policy

:::::::::
decisions,

:::
and

::::::
climate

::::::
impact

:::::::
studies.

::::::::::::
Understanding

:::
and

:::::::::
mitigating

::::
these

:::::::::::
uncertainties

:::
can

::::
lead

::
to
:::::
more

:::::::
reliable

::::::::::
hydrological

:::::::
models

:::
and

:::::
better

:::::::
resource

:::::::::::
management

::::::::::
worldwide.
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::::
This

::::
study

::::::::
provides

:
a
::::::::::
foundation

::
for

:::::
such

:::::
global

::::::::::
assessments

:::
by

::::::::::::
demonstrating

:::
the

::::::::
necessity

::
of

:::::::::::
incorporating

:::::
both

::::::::
discharge

:::::::::
observation

::::
and

:::::::
temporal

::::::::
sampling

:::::::::::
uncertainties

:::
into

:::::::::::
hydrological

::::::::::
evaluations.
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Figure A1. (A) Spatial distribution of the best performing KsatHorFrac calibration parameter of the wflow_sbm model based on additional

calibration on streamflow
:::::::
discharge observations. (B) Spatial distribution of the KGE-NP objective function based on the calibration period

of the wflow_sbm model.

Figure B1. Cumulative distribution function (CDF) plots of the Nash-Sutcliffe Efficiency (NSE) objective function, derived from discharge

estimates and observations at 299 catchment outlets. (a) shows the CDF for the model refinement use case, optimizing the wflow_sbm

hydrological model with a single parameter. (b) shows the CDF for the model comparison use case, comparing the optimized wflow_sbm

and PCR-GLOBWB hydrological models. (c) demonstrates the CDF for the model structure use case, showcasing results from six conceptual

hydrological models.

30


