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Abstract. The comparison of models in geosciences involves refining a single model or comparing various model structures.

However, such model comparison studies are invalid without considering the uncertainty estimates of observations in evaluating

relative model performance . The accuracy of model skill metrics is also affected by temporal sampling uncertainty, which

causes outliers to have a disproportional effect on the skill score. In hydrology,
::
For

:::::
users

::
of

:::::::::::
hydrological

::::::
models,

:::
the

:::::::::
suitability

::
of

::::::
models

::::
can

::
be

:::::::::
dependent

:::::
upon

::::
how

::::
well

:::::
their

::::::::
simulated

:::::::
outputs

::::
align

:::::
with

::::::::
observed

::::::::
discharge.

:::::
This

:::::
study

::::::::::
emphasizes5

::
the

:::::::
crucial

:::
role

:::
of

::::::::
factoring

::
in

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

:::::
when

::::::::
assessing

::::
the

::::::::::
performance

:::
of

:::::::::::
hydrological

:::::::
models.

:::
We

::::::::
introduce

::
an

::::::
ad-hoc

::::::::
approach,

:::::::::::
implemented

:::::::
through

:::
the

:::::::::::
eWaterCycle

::::::::
platform,

::
to

:::::::
evaluate

:::
the

::::::::::
significance

::
of

::::::::::
differences

::
in

:::::
model

:::::::::::
performance

:::::
while

::::::::::
considering

:::
the

::::::::::
uncertainty

:::::::::
associated

::::
with

::::::::
discharge

::::::::::::
observations.

:::
The

:::::::
analysis

:::
of

:::
the

::::::
results

::::::::::
encompasses

::::
299

::::::::::
catchments

::::
from

:::
the

::::::::::::
CAMELS-GB

:
large-sample hydrology datasets that contain collection of catchments

with hydro-meteorological timeseries, catchment boundaries and catchment attributes provide an excellent test-bed for model10

evaluation and comparison studies. In this study we use a large-sample dataset to highlight the importance of including these

two sources of uncertainty.
::::::::
catchment

:::::::
dataset,

:::::::::
addressing

:
3
:::::::
distinct

:::
use

:::::
cases

:::
that

:::
are

::
of

::::::::
practical

:::::::::
importance

:::
for

::::::
model

:::::
users.

:::::
These

:::
use

:::::
cases

:::::::
involve

::::::::
assessing

:::
the

::::::
impact

::
of

:::::::::
additional

:::::::::
calibration

:::
on

:::::
model

:::::::::::
performance

:::::
using

::::::::
discharge

::::::::::::
observations,

:::::::::
conducting

:::::::::::
conventional

:::::
model

:::::::::::
comparisons,

::::
and

::::::::
examining

::::
how

:::
the

:::::::::
variations

::
in

::::::::
discharge

:::::::::
simulations

::::::::
resulting

::::
from

::::::
model

::::::::
structural

:::::::::
differences

:::::::
compare

::::
with

:::
the

:::::::::::
uncertainties

:::::::
inherent

::
in

::::::::
discharge

:::::::::::
observations.

:
15

Two model experiments are set up using 396 catchments of the CAMELS-GB hydrology dataset. The intra-model experiment

evaluates the streamflow estimates of the wflow_sbm hydrological model with and without additional calibrationand the

inter-model experiment compares the results of the PCR-GLOBWB and wflow_sbm models. The temporal sampling uncertainty

, the result of outliers in the squared error probability distribution between simulations and observations, is found to be

substantial throughout the case studyarea. High sampling uncertainty indicates that the objective function values used to20

evaluate model performance are heavily influenced by only a few data points
:::
Our

::::::
results,

:::::
based

:::
on

:::
the

:::
5th

::
to

::::
95th

:::::::::
percentile

::::
range

:::
of

:::::::
observed

:::::
flow,

::::::::
highlight

:::
the

:::::::::
substantial

:::::::
influence

:::
of

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

:::
on

:::
the

:::::::::::
interpretation

::
of

::::::
model

::::::::::
performance

::::::::::
differences.

:::::::::::
Specifically,

:::::
when

:::::::::
comparing

::::::
model

:::::::::::
performance

:::::
before

::::
and

::::
after

:::::::::
additional

::::::::::
calibration,

:::
we

::::
find

1



:::
that

::
in

:::
98

:::
out

::
of

::::
299

:::::::::
instances,

:::
the

:::::::::
simulation

:::::::::
differences

::::
fall

:::::
within

:::
the

:::::::
bounds

::
of

:::::::::
discharge

:::::::::
observation

:::::::::::
uncertainty.

::::
This

::::::::::
underscores

:::
the

::::::::::
inadequacy

::
of

:::::::::
neglecting

:::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::::::
during

:::::::::
calibration

::::
and

::::::::::
subsequent

:::::::::
evaluation25

::::::::
processes.

:::::::::::
Furthermore,

:::
in

:::
the

::::::
model

::::::::::
comparison

:::
use

:::::
case,

:::
we

:::::::
identify

::::::::
numerous

::::::::
instances

::::::
where

::::::::::
observation

::::::::::
uncertainty

:::::
masks

:::::::::
discernible

::::::::::
differences

::
in

::::::
model

:::::::::::
performance,

:::::::::::
underscoring

:::
the

::::::::
necessity

::
of

::::::::::
accounting

:::
for

:::
this

::::::::::
uncertainty

::
in

::::::
model

:::::::
selection

::::::::::
procedures.

:::::
While

:::
our

::::::::::
assessment

::
of

:::::
model

::::::::
structural

::::::::::
uncertainty

::::::::
generally

:::::::
indicates

::::
that

::::::::
structural

:::::::::
differences

:::::
often

::::::
exceed

::::::::::
observation

:::::::::
uncertainty

:::::::::
estimates,

::::
few

:::::::::
exceptions

:::
do

:::::
exist.

::::
The

::::::::::
comparison

:::
of

::::::::
individual

::::::::::
conceptual

:::::::::::
hydrological

::::::
models

:::::::
indicates

::::
that

::::
there

:::
are

:::
no

::::
clear

:::::
trends

::::::::
between

:::::
model

::::::::::
complexity

:::
and

:::::::::
subsequent

::::::
model

::::::::::
simulations

:::::
falling

::::::
within

:::
the30

:::::::::
uncertainty

::::::
bounds

::
of

:::::::::
discharge

::::::::::
observations. This is the case for 53 catchment simulations of the inter-model experiment and

half of the simulations (210) of the intra-model experiments as indicated by larger sampling uncertaintythan the difference in

the KGE-NP objective function. This highlights the importance of reporting and determining the cause of sampling uncertainty

before drawing conclusions on large-sample hydrology based model performance. The same conclusion is drawn for the

streamflow observation uncertainty analysis. One third of the catchments simulations (123)of the intra-model experiment35

showed smaller streamflow simulation differences than streamflow observation uncertainties, compared to only 4 catchment

simulations of the inter-model experiment due to smaller differences between streamflow simulations. The results of this study

demonstrate that it is crucial for benchmark efforts based on large-samples of catchments to include streamflow observation

uncertainty and objective function sampling uncertainty to obtain more robust results.

:::::
Based

:::
on

::::
these

::::::::
findings,

:::
we

::::::::
advocate

:::
for

:::
the

:::::::::
integration

::
of

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::::
into

:::
the

:::::::::
calibration

:::::::
process40

:::
and

::::
also

:::
into

:::
the

::::::::
reporting

:::
of

::::::::::
hydrological

::::::
model

:::::::::::
performance

::
as

:::
has

:::::
been

::::
done

::
in

::::
this

:::::
study.

::::
This

:::::::::
integration

:::::::
ensures

:::::
more

:::::::
accurate,

::::::
robust,

::::
and

:::::::::
insightful

::::::::::
assessments

:::
of

:::::
model

::::::::::::
performance,

:::::::
thereby

:::::::::
improving

:::
the

:::::::::
reliability

:::
and

:::::::::::
applicability

:::
of

::::::::::
hydrological

::::::::
modeling

::::::::
outcomes

:::
for

::::::
model

:::::
users.

Copyright statement. TEXT

1 Introduction45

Many fields in geoscience rely on uncertain data to accurately estimate states and fluxes that support
:::::
Many

::::
fields

::
in
::::::::::
geoscience

:::
rely

:::
on

::::::::
uncertain

:::
data

:::
to

::::::::
accurately

:::::::
estimate

:::::
state

:::
and

:::::
fluxes

::::
that

::::::
support

:
decision-making. One

:
.
::::::::
Uncertain

::::
data

::
in

:::::::::
hydrology

::::::::::
encompasses

::::::::
multiple

::::::
sources

::::
that

::::::
include

:::::
direct

::::::::::::
measurements,

:::::::::::
proxy-based

::::::::::::
measurements,

:::::::::::
interpolation

::::::::::
techniques,

::::::
scaling

::::::::
processes,

::::
and

:::
data

:::::::::::
management

::::::::
practices

:::::::::::::::::::
(McMillan et al. (2018).

::
A
:::::
large

:::::::
literature

::::
has

::::
been

:::::::
devoted

::
on

:::::::::
discussing

:::
the

:::::
effect

::
of

:::
data

::::::
quality

:::::::::
limitations

:::
on

::::::::::
hydrological

:::::::::
modelling

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Yew Gan et al. (1997); Kirchner (2006); Beven et al. (2011); Kauffeldt et al. (2013); Huang and Bardossy (2020); Beven et al. (2011); Beven and Smith (2015); Beven (2016); Beven and Lane (2022); Beven et al. (2022)50

:
).
::::
Data

::::::::::
uncertainty

:::
can

::
be

:::::::::::
distinguished

::::
into

::::
input

::::
data

:::::::::
uncertainty

::::
(e.g.

:::::::::::::::::::::
Kavetski et al. (2006a, b))

::::
and

::::::::
evaluation

::::
data

:::::::::
uncertainty

:::
(e.g

:::::::::::::::::::
McMillan et al. (2010).

:

::::
Input

:::::
data,

::::::::
primarily

:::::::::
comprises

::::::::::::
meteorological

::::::::
variables

:::::
such

::
as

:::::::::::
precipitation

:::
and

:::::::::::
temperature.

:::::
Other

:::::
input

::::
data

:::::::
sources

::::::
include

::::
static

:::::
data,

::::
such

::
as

:::
soil

:::
and

::::::::::
topographic

:::::::::
properties

:::
that

:::
are

::::
used

::
to

:::::::
estimate

:::::
model

::::::::::
parameters.

:::
The

:::::::
inherent

:::::::::::
uncertainties

2



::
in

::::
input

:::::::
datasets

:::::::
influence

:::
the

:::::::
model’s

:::::::::
simulation

::
of

:::::
states

:::
and

:::::
fluxes

::::
(e.g.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Balin et al. (2010); Bárdossy and Das (2008); Bárdossy et al. (2022); Bárdossy and Anwar (2023); McMillan et al. (2011); Beven (2021)55

:
).
::::
The

:::::::::
uncertainty

::::::::::
propagation

::::
from

:::::
input

::
to

:::::
model

::::::
output

:
is
::::
also

::::::
closely

:::::::::
influenced

::
by

:::
the

:::::
model

::::::::
structure

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Butts et al., 2004; Liu and Gupta, 2007; Zhou et al., 2022; Montanari and Di Baldassarre, 2013)

:
.
:::
The

::::::
effects

::
of

:::::::::
uncertainty

::::::::::
propagation

::::
have

::::::::
therefore

::::
been

:
a
::::
focal

:::::
point

::
in

::::::::
literature,

:::
e.g.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Beven (2006); Montanari and Toth (2007); Gupta and Govindaraju (2019)

:
.

:::::::::
Evaluation

:::
data

::::::::::
uncertainty,

:::
the

:::::
focus

::
of

::::
this

:::::
study,

::::
plays

::
a
::::::
pivotal

:::
role

::
in
:::::::::::
determining

::
the

::::::::
potential

:::::::
accuracy

::::
and

:::::::::
robustness

::
of

::::::::::
hydrological

:::::::
models.

::::
This

::
is

:::
the

:::
case

:::
for

::::::
model

:::::::::
calibration,

::
a

::::::::
processes

:::
that

:::::::
involves

:::::::::
fine-tuning

::::::
model

:::::::::
parameters

::
to

::::::
ensure60

:::
that

:::
the

::::::
model

::::::::
accurately

::::
and

::::::::::
consistently

::::::
reflects

::::
the

:::::::
observed

::::::::
historical

:::::::::
behaviour

::
of

:::
the

:::::::::
hydrologic

:::::::
system.

::::::::
Typically

::::
this

:
is
:::::
based

:::
on

::::::::
discharge.

:::::
When

::
a

:::::
model

::::
aims

::
to

:::::::
replicate

::::::::
discharge

::::::
values

::::::
without

::::::::
including

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty,

:::
the

:::::
results

:::
are

::::::::::
constrained

::
to

:::::
match

:
a
::::::
precise

:::
but

:::::::::
potentially

:::
not

:::::::
accurate

::::::::::::
representation

::
of

:::
the

::::::::::
hydrological

:::::::
response

::::::::::::::::
(Vrugt et al., 2005)

:
.
::
As

::
a

:::::::::::
consequence,

::::::::
accurately

:::::::::
calibrating

:::
the

::::::
model

:::::::
becomes

:::::
more

::::::::::
challenging

:::
due

::
to

:::
the

:::::::
demand

::
of

:::::::::::
incorporating

:::::::::
evaluation

:::
data

::::::::::
uncertainty

:::
into

:::
the

:::::::::
calibration

:::::::
process

::
to

::::::::
minimize

::::
bias

::
in

:::::
model

::::::::::
parameters

:::::::::::::::::::
(McMillan et al., 2010).

:
65

:::::::
Multiple

::::::
studies

::::
have

:::::::::::
demonstrated

:::
the

::::::::::
importance

::
of

:::::::::
accounting

:::
for

:::::::::::
uncertainties

::
in

::::::::
discharge

:::::::::::
observations.

::::::
These

::::::
mainly

::::
focus

:::
on

::::::::::
hydrological

::::::
model

:::::::::
calibration

:::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Beven and Binley (1992); Beven and Freer (2001); Beven and Smith (2015); McMillan et al. (2018); Beven and Lane (2019); Westerberg et al. (2020, 2022); McMillan et al. (2010); Coxon et al. (2015); Liu et al. (2009); Blazkova and Beven (2009)

:
).
::
In

:::::
these

::::::
studies

:::::::
multiple

::::::::::::
methodologies

:::
are

::::
used

::
to

:::::::
quantify

:::::::::
uncertainty

::::::::
estimates

::
of

::::::::
discharge

::::::::::
observations

::::
that

:::
are

::::::::::
subsequently

::::
used

::
for

::::::
model

:::::::::
calibration

:::::::::
(overview

::
in

::::::::::::::::::
McMillan et al. (2012)

:
).
:

:::::::::
Combined,

::
all

::::::::::
uncertainty

::::::
sources

:::::
(input

::::
data,

:::::::::
evaluation

::::
data,

::::::
model

::::::::
structure,

:::::
model

::::::::::
parameters,

:::::
initial

:::::::::
conditions)

:::
add

::
to
::
a70

::::::
concept

::
in

:::::::::::
hydrological

::::::::
modelling

:::::::::
commonly

:::::::
referred

::
to

::
as

:::
the

:::::::::
equifinality

:::::::
concept

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Beven and Freer (2001); Beven (2006); Montanari and Grossi (2008); Clark et al. (2008); Beven et al. (2011)

:
).
::::
This

:::::::
concept

::
is

:::::::::::
characterised

::
by

:::
the

:::::::::::
circumstance

::
of

::::::
various

::::::
model

::::::::::::
configurations

:::::::
yielding

::::::
similar

::::::::::
behavioural

::
or

:::::::::
acceptable

::::::
results.

:::::::::
Therefore,

:::
the

::::::::::::::
recommendation

:
is
:::
to

::::::
account

:::
for

:::
all

:::::::::
uncertainty

:::::::
sources

:::::::::::::
simultaneously.

:::
An

:::::::
example

::
of

::
a

::::::
method

::::
that

:::::::
includes

::
all

::::::::::
uncertainty

:::::::
sources

::::::
during

:::
the

:::::::::
parameter

:::::::::
estimation

::::::
process

::
is
::::

the
:::::::
General

:::::::::
Likelihood

::::::::::
Uncertainty

::::::::::
Estimation

:::::::
(GLUE;

:::::::::::::::::::
Beven and Freer (2001)

:
)
:::::::
method.

::
In

:::::::
practice,

::::
such

::::::::::::
methodologies

:::
are

:::
not

::::::
always

:::::::
applied

::
by

::::::
model

::::
users

::::::::
although

:::
the75

:::::::
difficulty

::
of

::::::::::::::
implementation

:::
can

::
be

::::::::
dispelled

:::::::::::::::::::::::::::
(Pappenberger and Beven (2006)

:
).

:::::::::::
Hydrological

:::::
model

:::::::::
evaluation

:::
by

:::::
model

:::::
users

::
is

:::::
often

:::::
solely

:::::
based

:::
on

::::::::
discharge

:::::::::::
observations.

::::
The

:::::::
inherent

:::::::::::
uncertainties

::
in

:::
this

:::::
single

::::::
source

::
of

::::::::::::
observational

:::
data

::::::
might

::::::
obscure

:::
the

:::::::
model’s

::::::
ability

::
to

:::::::
simulate

::::::
actual

::::::::
discharge.

:::::::::
Therefore,

::::::::
omitting

:::
data

::::::::::
uncertainty

::::::
during

:::::
model

:::::::::
evaluation

:::::::::
negatively

:::::
affects

:::
the

::::::::::::
interpretation

::
of

::::::
relative

::::::
model

:::::::::
simulation

:::::::::
differences

::
as

:::::
these

:::::
might

:::
fall

:::::
within

:::
the

::::::::::
uncertainty

::::::
bounds

::
of

:::
the

:::::::::::
observations.

:
80

:::::::
Another challenging aspect of hydrological modelling in particular is the large spatial and temporal landscape and hydrological

heterogeneity (e.g. Gao et al. , 2018). Capturing this
::::::::
variability

::
of

:::
the

:::::::::::
hydrological

::::::
system.

:::::::::
Capturing

:::
the large variety in land-

scape and hydrological heterogeneity,
:
when evaluating or comparing hydrological models

:
, can be achieved through the use of

so called large-sample catchment hydrology datasets.

These large-sample
::::::::
catchment datasets contain hydro-meteorological timeseries

::::
time

:::::
series, catchment boundaries and catch-85

ment attributes for a large number of catchments. They are complemented with streamflow
:::
The

::::::
dataset

::
is
:::::::::::::
complemented

::::
with

::::::::
discharge observations at the catchment outlet

:::::
outlets

:
and meteorological forcing data such as

:::::::
datasets

:::
that

:::::::
include precipita-

tion and temperature.
::::
The

::::::::::
large-sample

:::::::::
catchment

:::::::
datasets

:::
are

:::::::
collected

:::::
using

:
a
:::::::::
consistent

:::::::::::
methodology

:::::
across

:::
all

::::::::::
catchments.

3



Recent large-sample datasets follow the structure introduced by Addor et al. (2017)
::::::::::::::::
(Addor et al., 2017) in the form of the90

CAMELS(-US) dataset.
::::
More

::::::::
recently,

::::::::::::::::
Coxon et al. (2020)

:::::::
released

:::
the

:::::::::::::
CAMELS-GB,

:::
that

::::::::
includes

::::::::
estimates

::
of

:::::::::
quantified

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty.

::::
This

::::::
dataset

::::::::
describes

::::
671

:::::::::
catchments

::
in

:::::
Great

:::::::
Britain

::
of

:::::
which

::::
503

:::::::
gauging

:::::::
stations

:::
are

::::::::::::
complemented

::::
with

::::::::
quantified

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

::::::::
estimates

:::::::::::::::::
(Coxon et al. (2015)

:
). A recent effort by Kratzert et al. (2022)

:::::::::::::::::
Kratzert et al. (2022) combined all available national CAMELS datasets in the overarching CARAVAN dataset for global con-

sistency and boosting accessibility through data access via Google Earth Engine.95

The accessibility of large-sample
:::::::::
catchment data triggered a wealth of research as discussed in the overview by Addor et al. (2020)

, including
::::::::::::::::
Addor et al. (2020),

::::::::
including

::::
use as a test-bed for hydrological model evaluation and model comparison studies

(e.g. Mizukami et al. (2017); Rakovec et al. (2019); Lane et al. (2019); Feng et al. (2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Mizukami et al. (2017); Rakovec et al. (2019); Lane et al. (2019); Feng et al. (2022)

). The benefits of using large-sample
::::
these datasets are that by including large samples of catchments , the robustness of model

results is tested (Andréassian et al., 2006; Gupta et al., 2014). In addition, large-sample datasets allow for model evaluation and100

analyses across catchments to identify correlations between catchment attributes and model performance (e.g. Donnelly et al. (2016); Konapala et al. (2020); Massmann (2020); David et al. (2022)

); thereby not only answering if a model is good but also why (Kirchner, 2006).

However, the relevance of the results of model evaluation and comparison studies is unclear when (streamflow)observation

uncertainty is not included in large sample datasets, as is usually the case. As a result the adequacy of hydrological models

might be misconstrued. Therefore, a large literature has been devoted on discussing the effect of data quality limitations on105

hydrological modelling (e.g. Yew Gan et al. (1997); Kirchner (2006); Beven et al. (2011); Kauffeldt et al. (2013); Huang and Bardossy (2020)

).

Multiple studies pointed out the importance of accounting for uncertainties in streamflow observations while conducting

hydrological model calibration or evaluation (e.g. McMillan et al. (2010); Coxon et al. (2015); Westerberg et al. (2020)). These

studies developed and applied methodologies to determine quantified uncertainty estimates of streamflow observations (overview110

in McMillan et al. (2012)). Recently Coxon et al. (2020) released the first large-sample dataset that includes quantified streamflow

observation uncertainty estimates: CAMELS-GB which describes 671 catchments in Great Britain of which 503 gauging

stations contain quantified observed streamflow uncertainty information (Coxon et al., 2015)
:::::::::::
large-samples

:::
of

:::::::::
catchments

:::::
allow

::
for

::::
the

:::::::::
evaluation

::
of

:::
the

:::::::::
robustness

:::
of

::::::
model

:::::::::::
performance

:::::::::::::::::::::::::::::::::::::
(Andréassian et al. (2006); Gupta et al. (2014)

:
).

:::::::::
Identifying

::::
this

::::::::
robustness

::::::::
provides

:::::
model

:::::
users

::::
with

:::::::
valuable

::::::::::
information

:::
on

:::
the

:::::::
presence

::
or

:::::::
absence

::
of

::::::::::
consistency

::
in

:::
the

::::::
model

::::::
results.115

In this studywe investigate the importance of accounting for streamflow observation uncertainty when conducting model

evaluation and comparison studies. This is done by using a workflow that assesses the validity of the differences between model

simulations in light of observational uncertainty . The generic layout of the workflow allow for assessments that go beyond

streamflow in hydrological modelling and is therefore
:
,
:::
we

:::::
assess

:::
the

::::::
effect

::
of

::::::::
omitting

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::::
while

::::::::::
interpreting

::::::
model

:::::::::::
performance

::::::::::
differences.

::::::::::
Specifically,

:::
we

:::::
focus

:::
on

::::
how

:::
this

::::::::::
uncertainty

::::::::
influences

::::::
model

::::::::
selection120

::::
from

:::
the

:::::::::
perspective

:::
of

:::::
model

:::::
users.

::::::::
Thereby,

:::
we

:::::::
highlight

:::
the

::::::::::
importance

::
of

:::::::::::
incorporating

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

:::::
during

::::::
model

:::::::::
calibration

:::
and

::::::
model

:::::::::
evaluation

::::::
efforts.

:::
To

::::::
achieve

::::
this,

:::
we

:::::::::
developed

:
a
:::::::

generic
::::::
method

::::
that

::
is

:
applicable for

any field of geoscience
:::::::::
geoscience

::::
field

:
where model results are compared against observationswith known uncertainty. We

extend the analyses by considering the effect temporal sampling of the simulation and observation time series has on the
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objective functions used to determine model skill. The temporal sampling uncertainty of the time series, hereafter referred125

to as objective function sampling uncertainty, is the results of outliers in the squared error probability distribution between

simulations and observations. Clark et al. (2021) identified this as another source of uncertainty that might lead to the wrong

conclusions based on objective functions that capture streamflow performance as a few data points can heavily influence the

results (Clark et al., 2021).

Two model experiments are performed in this study using the CAMELS-GB dataset as the case study. The intra-model130

evaluation experiment includes the model simulations of distributed hydrological model wflow_sbm (van Verseveld et al., 2022)

with and without additional calibration. The inter-model comparison includes the distributed hydrological model PCR-GLOBWB

(Sutanudjaja et al., 2018) and the additionally calibrated wflow_sbm model. The selection of these two hydrological models

is based on the differences in conceptualizations of hydrological processes and calibration routines while being comparable

to a certain degree as both are distributed hydrological models that are applicable at fine spatial scale (1km2)
::
to

::::::::
uncertain135

::::::::::
observations.

With this study, we outline an analysis procedure that assesses the different sources of uncertainties in the intra-/inter-model

benchmarking experiments. Benchmarks are valuable for model evaluation to support interpretation of model performance in

other studies (Seibert, 2001; Schaefli and Gupta, 2007; Pappenberger et al., 2015; Seibert et al., 2018). The inclusion of observation

and sampling uncertainty in the benchmark procedure not only provides a better indication of the relevance of the differences140

between benchmark results, but also helps detecting benchmark samples that should be treated with care or may need to

be excluded from the benchmark. The analysesis implemented using the eWaterCycle platform (Hut et al., 2022) to ensure

reproducible model benchmark results. In doing so, the workflow of this study is generally applicable for other studies that

want to account for streamflow observation uncertainty and sampling uncertainty. The workflow can be adopted for use in other

fields in geoscience that aim to use uncertainty estimates when comparing or evaluating models
:::
This

:::::::
method

::::::::::
determines,

:::::
based145

::
on

:::
the

:::
5th

::
to

::::
95th

::::::::
percentile

:::::
range

::
of

::::
flow,

::
if

:::::
model

:::::::::
simulation

:::::::::
differences

:::
are

:::::::::
significant

::
in

:::
the

::::::
context

::
of

::::::::
discharge

::::::::::
observation

:::::::::::
uncertainties.

::
In

:::
this

:::::
study,

:::
we

::::::::
highlight

:
3
::::
use

::::
cases

:::::
based

:::
on

:
8
:::::::::::
hydrological

::::::
models

::::
that

:::::::::
encompass

::::::
model

:::::::::
refinement

::::::
efforts,

::::::::::
conventional

::::::
model

:::::::::::
comparisons,

:::
and

:::
the

::::::::
influence

::
of

:::::
model

::::::::
structure

:::::::::
uncertainty

::
in

::::
light

::
of

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty.

::::::::::
Furthermore,

::::
we

:::::
assess

::::
the

::::::
spatial

::::::::::
consistency

::
of

::::::
model

:::::::::::
performance

::::::
results

:::::
using

::
a

:::::::::::
large-sample

:::::::::
catchment

::::::
dataset

::::
and

::
we

::::::
assess

:::
the

::::::::
temporal

::::::::::
consistency

::
of

::::::
model

::::::::::
performance

:::::::
metrics

:::
by

:::::::::::
sub-sampling

:::
the

::::::::::
observation

::::
and

:::::::::
simulation

::::
pairs

:::
as150

:::::::::::
demonstrated

::
by

::::::::::::::::
Clark et al. (2021).

:::
By

:::::
doing

:::
so,

:::::
more

::::::::
informed

::::::::::
conclusions

:::
can

:::
be

:::::
drawn

:::
on

:::::
model

:::::::::::
performance

:::::
based

:::
on

::::::::
individual

::::::::::
catchments

::
or

:::::::::::
large-samples

::
of

::::::::::
catchments.

2 Methodology

The graphical workflow in Figure 1
:
A
:::::::

generic
:::::::

tooling
::
is

::::::::
designed

:::
for

::::::::
assessing

::::::
model

::::::::::
simulations

:::::
while

::::::::::
considering

::::
the

::::::::::
uncertainties

:::::::
inherent

:::
in

:::::::::
evaluation

::::
data.

:::::
First,

:::
the

::
3

:::
use

:::::
cases

:::
are

:::::::::
presented,

:::
this

::
is
::::::::

followed
:::
by

:::
the

:::::
input

::::
data

::::::::::
description,155

::::::::
evaluation

::::
data

:::::::::::
description,

:::
and

::::
the

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

:::::::::
estimates

::::
used

:::
to

:::::::
conduct

:::
the

::::::::
analyses.

::::::
Next,

:::
we
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Figure 1. Graphical workflow of model experiments and analyses. In
:
,
:::
with

::
in
:

green the model experiment inputs, in red the models,
:::
and

in grey the analyses
::::::
analysis components. Part A describes

::
(a)

:
the model run, part B

:::
runs

::
of

:::
two

::::::
models

:::
with

:::::
inputs

:::
and

::::::
outputs

:::
that

:::::
result

:
in
:::::::::

simulation
:::
time

:::::
series.

:::
(b)

:
the classic

:::::::::
conventional

:
model comparison that compares objective functions ,

::::
based

::
on

::::::::
simulation

:
and part

C
::::::::
observation

::::
time

:::::
series.

:::
(c) the workflow for

::
of the

::::::
proposed

:::::::
analysis

:::
that

::::::::
compares

::::::
relative

:::::
model

::::::::
simulation

::::::::
differences

::
to
::::::::
discharge

::::::::
observation

:
uncertainty assessment

:::::::
estimates.

:::::::
describe

:::
the

::::::::
employed

:::::::::::
hydrological

::::::
models

::::
and

:::::
model

::::
runs

:::
for

:::::::::
calibration

::::
and

:::::::::
evaluation.

::::
The

:::::::::::
methodology

:::::::::
concludes

::::
with

::
the

::::::::::
explanation

::
of

:::
the

::::::::::
uncertainty

:::::
based

::::::::
analyses.

::
In

:::::
Figure

:::
1,

:
a
::::::::
graphical

::::::::
workflow

::
is

::::::::
presented

::::
that provides an overview of the components of the model experiments and

analyses described
::::::::
presented in the methodology. Figure 1a describes

:::::
shows

:
a typical model run with inputs and outputs, Figure160

1b describes a classical
:::::
shows

:
a
:::::::::::
conventional

:
comparison of objective functions based on (streamflow)

:::::::
discharge

:
observations

and simulations, and Figure 1c describes the additional uncertainty analyses
:::::::::
uncertainty

:::::::
analysis

:
introduced in this study.

2.1 Model Experiment Inputs
:::
Use

:::::
cases

2.1.1 CAMELS-GB dataset
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The
::
We

:::::::
devised

:
3
:::
use

:::::
cases

:::::
based

::
on

::
8
:::::::::::
hydrological

::::::
models

:::
that

:::::::::
exemplify

::::
how

::::
users

::
of

:::::::
models,

::::::
whom

:::::::::
themselves

:::
are

:::
not

:::
the165

:::::
model

:::::::::
developers,

::::
can

:::::::
interpret

:::::::::
differences

:::::::
between

::::::
model

:::::::::
simulations

::
in

:::
the

::::::
context

::
of

::::::::
discharge

::::::::::
observation

::::
data

::::::::::
uncertainty.

:::
The

:::
use

:::::
cases

:::
are:

:

1.
:::::
Model

:::::::::
refinement

:::
in

:::::::
practice:

:::::
This

:::
use

::::
case

::::::::
concerns

:::::::::
additional

:::::
model

::::::::::
refinement

::
by

::::
fine

::::::
tuning

::
an

::::::::
effective

::::::
model

::::::::
parameter

:::::
based

:::
on

:::::::::
discharge

::::::::::
observation

::::
post

:::::
initial

::::::::::
calibration.

::
It
:::::::::
highlights

:::
the

:::::
value

:::
of

:::::::
relative

:::::
gains

::
in

::::::
model

::::::::::
performance

:::::
when

:::
not

::::::::::
considering

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

::
in

:::
the

:::::::::
calibration

:::::::
process.

:
170

2.
:::::
Model

::::::::::
comparison

:::
for

::::::
model

::::::::
selection:

:::::
Here,

::::
two

:::::::::
distributed

::::::::::
hydrological

:::::::
models

:::
are

::::::::
compared

:::::::
against

:::
the

::::::::
backdrop

::
of

::::::::::
uncertainties

::
in
:::::::::
discharge

:::::::::::
observations.

::::
This

:::::::
analysis

::::
aims

::
to

:::::::
pinpoint

::::::::
scenarios

:::::
where

:::
the

:::::::::
disparities

:::::::
between

::::::
model

:::::
results

:::
are

::::::
within

:::
the

::::::
margin

::
of

::::
error

:::
of

:::
the

::::::::
discharge

:::::::::::
observations.

3.
:::::
Model

::::::::
selection

:::::
under

::::::
model

::::::::
structural

::::::::::
uncertainty:

::::
This

::::
use

::::
case

:::::::
involves

::::::::::
contrasting

:::
the

:::::::::
uncertainty

:::::::
inherent

:::
in

:::
the

::::::
model’s

::::::::
structure,

::
as
:::::
seen

:::::
across

::::::
various

:::::::::::
hydrological

:::::::
models,

::::
with

:::
the

:::::::::
uncertainty

::
in

::::::::
discharge

::::::::::::
observations.175

::
An

:::::::::
additional

:::::::
analysis

::
is

::::::::
performed

::::
that

::::::::
quantifies

:::::::::
uncertainty

::
in
:::
the

::::::
model

::::::::::
performance

::::::::
objective

::::::::
functions

:::
due

::
to

::::::::
temporal

:::::::
sampling

::
of
:::

the
:::::::::
discharge

:::::::::
simulation

:::
and

::::::::::
observation

:::::
pairs.

::::
This

:::::::
temporal

::::::::
sampling

::::::::::
uncertainty

:
is
:::::::
detailed

::
in

:::::::
Section

:::::
2.5.3.

2.2
::::

Data

2.2.1
::::
Case

:::::
study

::::
and

:::::::::
catchment

::::::::
selection

:::::::::
procedure

:::
The

:
CAMELS-GB

::::::::::
large-sample

:::::::::
catchment

:
dataset (Coxon et al., 2020; Coxon, 2020) serves as the case study area of the180

model experiment
:::
use

:::::
cases and contains data (hydro-meteorological timeseries

::::
time

:::::
series, catchment boundaries and catch-

ment attributes) describing 671 catchments located across Great Britain. The underlying data used to create CAMELS-GB

are publicly available and are therefore suitable for evaluating and benchmarking hydrological models as the dataset can be

easily extended in the future. A unique feature of the dataset is the availability of quantified streamflow
::::::::
discharge observation

uncertainty estimates for the flow percentiles of 503 catchments (see Coxon et al. (2015)). In this study we evaluated 396 of185

these 503 catchments

:::
The

:::
use

:::::
cases

::
in

:::
this

:::::
study

:::::::
employ

::::::::::
hydrological

::::::
models

::::
with

::
a
::::
daily

::::
time

:::::
step.

::::
This

:::
can

:::::
cause

:::::::
temporal

::::::::::::
discretization

:::::
errors

::
in

::::
small

::::::::::
catchments

:::
due

::
to

:::::
peak

::::::::::
precipitation

::::
and

::::
peak

::::::::
discharge

::::::::
occurring

::
at

:::
the

:::::
same

::::
time

::::
step.

:::::::::
Therefore,

::::
these

::::::::::
catchments

::
are

::::::::
excluded

:::::::
through

::
a

:::::::
selection

:::::::::
procedure.

:::::
This

::::::::
procedure

:::::::::
calculates

:::
the

::::::::::::::
cross-correlation

:::::::
between

::::::::
observed

::::::::
discharge

::::
and

::::::::::
precipitation

:::
for

:
a
:::::
range

:::
of

::
lag

::::::
times.

::::::::::
Catchments

:::
that

::::::::::::
predominantly

:::::
show

::::
less

::::
than

:
1
::::
day

::
of

:::
lag

:::::::
between

::::::::
observed

::::::::
discharge190

:::
and

:::::::::::
precipitation

:::
are

::::::::
excluded.

:::
Of

:::
the

:::
503

::::::::::
catchments

::::
with

:::::::::
uncertainty

::::::::
estimates, as these contained a complete range of the

percentiles of quantified observation uncertainty estimatesrequired for the analyses in Section 2.4.3
:::
299

:::::::::
catchments

:::
are

:::::::
selected

::
as

:::
the

::::
case

::::
study.

2.2.2 Meteorological Forcing
::::::
forcing

:
and Pre-Processing

:::::::::::::
pre-processing

7



For consistency we
::
In

::::
this

::::
study

::::
We use the same meteorological forcing that was used to create the CAMELS-GB meteo-195

rological timeseries
::::
time

:::::
series

:
and climate indices as input to the hydrological models. This input consists of gridded 1km2

spatial- and daily temporal resolution 2
:::::

daily
:
meteorological datasets. The meteorological variables used in this study are

precipitation (CEH-GEAR; Keller et al. (2015); Tanguy (2021)), reference evaporation (CHESS-PE; Robinson (2020a)), and

temperature (CHESSmet; Robinson (2020b)). Scripting used for pre-processing of the data is
:::
The

:::::::::
distributed

:::::::::::
hydrological

::::::
models

:::
use

:::::::
gridded

:::::
inputs

:::
and

:::
the

::::::::::
conceptual

::::::::::
hydrological

::::::
models

::::::::::
aggregated

::::
time

:::::
series

::
of

:::::::::::::
meteorological

:::::::
variables

::::
that

:::
are200

::::::
readily available in the GitHub repository complementing this study: paste link + DOI

:::::::::::
CAMELS-GB

::::::
dataset.

2.2.3 Streamflow Observations
:::::::::
Discharge

:::::::::::
observations and Quantified Uncertainty Estimates

::::::::
quantified

:::::::::::
uncertainty

::::::::
estimates

The streamflow
::::::::
discharge observations in the CAMELS-GB dataset were obtained from the UK National River Flow Archive

and are daily values in cubic meters per second
:::::::
(m3*s-1). As is common with large-sample

::::::::
catchment

:
datasets several catch-205

ments have
::::::
contain

:
missing flow data in the time series. These missing values are not taken into account in the analyses of this

study.

A unique aspect of the CAMELS-GB dataset is the inclusion of quantified streamflow
::::::::
discharge

:
observation uncertainty

estimates created by Coxon et al. (2015).
:::::::::::::::
Coxon et al. (2015)

:
. The uncertainty is quantified by utilizing a large dataset of quality

assessed rating curves and stage-discharge measurements. In an iterative process, the mean and variance at each stage point is210

calculated and subsequently fitted using a LOWESS regression method that defines the rating curve and streamflow
::::::::
discharge

uncertainty. By combining the LOWESS curves and variance in a Gaussian Mixture model based on a random draw from the

measurement error distribution an estimate of streamflow uncertainty is made, see Coxon et al. (2015)
::::::::::::::::
Coxon et al. (2015) for

more information.

2.3 Hydrological Models
::::::
models215

The model selection is in part based on legacy and availability of data (Addor and Melsen (2019)) as well as based on the

relevance of the model runs for use in other studies. Below we briefly describe the models . For detailed descriptions the

reader is referred to van Verseveld et al. (2022) (wflow_sbm)and Sutanudjaja et al. (2018) (
:
A

:::::::
mixture

::
of

:::::::::
distributed

:::::::::
physically

:::::::::::
process-based

::::
and

::::::
lumped

:::::::::
conceptual

:::::::::::
hydrological

::::::
models

::
is
:::::::
selected

:::
for

:::
the

:::
use

::::::
cases,

::::::
thereby

::::::::::
showcasing

:::
the

:::::::::
versatility

::
of

::
the

::::::::
analysis.

:::
The

::::::
model

:::::::::
refinement

:::
and

:::::
model

::::::::::
comparison

:::
use

:::::
cases

::::::
employ

:::
two

:::::::::
physically

::::::::::::
process-based

::::::::::
hydrological

:::::::
models:220

:::::::::
wflow_sbm

:::::::::::::::::::::::
(van Verseveld et al. (2022)

:
)
:::
and

:
PCR-GLOBWB )

::::::::::::::::::::::::::::::::::::
(Sutanudjaja et al. (2018); Hoch et al. (2023)

:
).
::::
The

::::::::
rationale

:::::
behind

::::::::
selecting

:::::
these

::::::
models

:::
lies

::
in
:::::
their

:::::::
differing

::::::::::
approaches

::
to

:::::::::::::
conceptualizing

::::::::::
hydrological

:::::::::
processes

:::
and

::::
their

:::::::::
respective

::::::::::
optimization

:::::::
routines.

:::::::
Despite

::::
these

::::::::::
differences,

::::
both

::::::
models

:::
are

:::::::
suitable

::
for

::::::::::
comparison

::
to

:
a
::::::
certain

::::::
degree.

::::
This

::::::::::::
comparability

:::::
stems

::::
from

::::
their

:::::
shared

:::::::::::
classification

::
as

:::::::::
distributed

:::::::::::
hydrological

::::::
models,

::::::
similar

::::::::::
complexity,

::::::::::::::
parameterization,

::::
and

::::::::::
applicability

:
at
::
a
::::::
spatial

::::::::
resolution

::
of

::
1

:::
km.225

:::
For

:::
the

:::::
model

:::::::
structure

:::
use

:::::
case,

:
6
:::::::::
conceptual

:::::::::::
hydrological

::::::
models

:::
are

::::::
sourced

::::
from

:::
the

::::::::
Modular

:::::::::
Assessment

::
of

::::::::::::::
Rainfall–Runoff

::::::
Models

:::::::
Toolbox

::::::::::::
(MARRMoT:

::::::::::::::::::::::::::::::::::
Knoben et al. (2019); Trotter et al. (2022)

:
).

:::::
These

:::::::
specific

::::::
models

:::
are

:::::::
selected

::
to

:::::::::
encompass

::
a
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::::
wide

::::
array

:::
of

:::::
model

:::::::::
structures.

:::
The

::::::::
selection

::
is

:::::
based

::
on

:::
the

:::::::
number

::
of

:::::
model

::::::
stores,

:::
the

:::::::
quantity

::
of

::::::::::
parameters,

:::
and

::::::::
differing

::::::
process

:::::::::::::
representations.

:

2.3.1 wflow_sbm
:::::::::
Distributed

:::::::::::
hydrological

:::::::
models230

The wflow_sbm physically based
::::::::::::::
physically-based

:
distributed hydrological model (van Verseveld et al., 2022) is based on

::::::::::::::::::::::
(van Verseveld et al. (2022)

:
)
::::::::
originated

::::
from

:
the Topog_SBM model concept (Vertessy and Elsenbeer, 1999)

:::::::::::::::::::::::::
(Vertessy and Elsenbeer (1999)

:
). This concept was developed for small-scale hydrologic simulations. The wflow_sbm model deviates from Topog_SBM by

the addition of capillary rise, evapotranspiration and interception losses (Gash model; Gash (1979)
::::::::::
Gash (1979)), a root water

uptake reduction function (Feddes and Zaradny, 1978)
::::::::::::::::::::::
(Feddes and Zaradny (1978)

:
), glacier and snow processes, and D8 river235

routing that uses the kinematic wave approximation . The parameter sets
::
in

:::
this

::::::
study.

::::
The

:::::::::
parameters

:::
(40

:::
in

::::
total)

:
are de-

rived from open-source datasets and use pedo-transfer functions to estimate soil properties (see hydroMT software package

(Eilander and Boisgontier, 2022). We use the
::::::::::::::::::::::::::
(Eilander and Boisgontier (2022)

:
).
:

:::
The

:
1 km2 model version that

:

2
::::::
model

::::::
version

:
was aggregated from the finest available data scale (90 m).

::::
The

::::::::
hydraulic

:::::::::
parameters

::::::
related

::
to
::::

the
::::
river

::::::::
network

:::
are

::::::::
upscaled

:::::
using

:::
the

:::::::
method

::::::::
presented

:::
in

:::::::::::::::::
Eilander et al. (2021)

:
.
::::
The

:::::::::
parameter240

::::::::
upscaling

::
of

:::
the

::::::::::
wflow_sbm

:::::
model

::
is
:::::
based

:::
on

:::
the

::::
work

:::
by

:::::::::::::::::
Imhoff et al. (2020)

:::
that

::::
uses

:::::::::
point-scale

::::::::::::::::::::
(pedo)transfer-function.

::::
This

::::::
method

::
is

::::::
similar

::
to

::
the

:::::::::
multiscale

::::::::
parameter

:::::::::::::
regionalization

::::::
method

::::::::::::::::::::
(Samaniego et al. (2010)

::
).

:::::::::
Parameters

:::
are

:::::::::
aggregated

::::
from

:::
the

:::::::
original

::::
data

:::::::::
resolution

:::::
with

::::::::
upscaling

::::::::
operators

::::::::::
determined

:::
by

::
a
:::::::
constant

:::::
mean

::::
and

::::::::
standard

::::::::
deviation

::::::
across

::::::
various

::::::
scales.

:::::
Fluxes

::::
and

::::
states

:::
are

:::::::
checked

:::
for

::::::::::
consistency

:::::
during

::::
this

:::::::
process.

:::
See

:::
van

:::::::::::::::::::::::
van Verseveld et al. (2022)

::
for

::::::
further

::::::::::
information.245

2.3.2 PCR-GLOBWB

The PCR-GLOBWB physically based
::::::::::::::
physically-based distributed hydrological model was initially developed for global hy-

drology and water resources assessments (Sutanudjaja et al., 2018)
:::::::::::::::::::::
(Sutanudjaja et al. (2018)). The PCR-GLOBWB model cal-

culates the water storage in two soil layers, one groundwater layer, and the exchange between the top layer and the atmosphere.

The model accounts for water use and return flow determined by water demand. We use
::::::
employ the 1 km2 version that is250

introduced in (?)
::::::::::::::::
(Hoch et al. (2023). The model configuration in this study applies the accumulated travel time approximation

for river routing.

2.4 Model Experiments

We study the importance of accounting for streamflow observation uncertainty and objective function sampling uncertainty

using two model experiments. The first model experiment is an inter-model comparison of the streamflow estimates of the255

additionally calibrated wflow_sbm and the PCR-GLOBWB hydrological and will test if the differnces in model formulations

are siginficant in light of observation uncertainty. The second experiment is an intra-model evaluation based on the differences
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Table 1.
::::::::
Overview

:
of
:::
the

:
6
:::::::
selected

::::::::
conceptual

:::::::::
hydrological

::::::
models

:::::::
showing

::
the

:::::
model

:::::
name,

::::::
number

::
of

:::::
stores,

::::::
number

::
of

:::::::::
parameters,

:::
and

:::
key

:::::::
references

:::::::
(adapted

::::
from

:::::::::::::::
Knoben et al. (2020)

:
).

:::::::
Original

:::::
Model Number of Stores Number of Parameters

:::
Key

:::::::::
References

::::::::
IHACRES

:
1
:

7
: ::::::::::::::::::::::::::::::::

Ye et al. (1997); Croke and Jakeman (2004)

::::
GR4J

:
2
:

4
: :::::::::::::::::::::::::::::

Perrin et al. (2003); Santos et al. (2018)

:::
VIC

: :
3
: :

10
: ::::::::::::::

Liang et al. (1994)

:::::::::::
XINANJIANG

: :
4
: :

12
: ::::::::::::::::::::::

Jayawardena and Zhou (2000)

::::::
HBV-96

:
5
: :

15
: :::::::::::::::::

Lindström et al. (1997)

:::::
SMAR

: :
6
:

8
: :::::::::::::::::::

Tan and O’Connor (1996)

in estimated streamflow of the additional calibration and no-additional calibration of the wflow_sbm model . Hereafter respectively,

calibrated and default wflow_sbm.

2.3.1
::::::::::
Conceptual

:::::::::::
hydrological

::::::
models260

::::::::::
MARRMoT

::
is

:
a
::::::
flexible

:::::::::
modelling

:::::::::
framework

:::
that

::::::
houses

::
an

:::::
array

::
of

:::::::::
conceptual

::::::::::
hydrological

::::::
models

::::::::::::::::::::::::::::::::::
Knoben et al. (2019); Trotter et al. (2022)

:
.
:
It
::
is
::::::::::
particularly

::::::
valued

::
in

:::::::
research

:::
for

::::::::
assessing

::::::
model

:::::::
structure

::::::::::
uncertainty,

::
as

::::::::::
highlighted

::
in

:::::::::::::::::
Knoben et al. (2020)

:
.
::::
One

::
of

::
the

::::
key

:::::::::
advantages

:::
of

::::::::::
MARRMoT

::
is

:::
that

:::
the

::::::::::
conceptual

::::::
models

:::::
share

:
a
:::::::
uniform

:::::::::
numerical

::::::::::::::
implementation.

::
To

:::::::
achieve

::::
this,

::::::::
alterations

:::::
were

::::
made

::
to
:::
the

:::::::
original

::::::
model

:::::
codes.

:::::
These

:::::::::
alterations

::::::
ensure

:
a
:::::::::
consistent

::::
basis

:::
for

:::::
model

::::::::
structure

:::::::::::
comparisons,

:::::::
allowing

:::
for

:
a
::::::
precise

:::::::::
evaluation

::
of

::::::::::
differences

::
in

:::::::::::
hydrological

:::::::::
simulations

::::
due

::
to

::::::
varying

::::::
model

:::::::::
structures.

::
In

:::
this

::::::
study,

:::
the265

::::::::::
hydrological

::::::
models

::::::::::
IHACRES,

:::::
GR4J,

:::::
VIC,

:::::::::::::
XINANJIANG,

::::::::
HBV-96,

:::
and

::::::
SMAR

:::
are

::::::::
selected.

:::::
Table

:
1
:::::::
provides

:::
an

::::::::
overview

::
of

:::
the

::::::
number

::
of

::::::
stores,

:::::::
number

::
of

::::::::::
parameters,

:::
and

:::
key

::::::::::
references.

2.3.2 PCR-GLOBWB Model Run

Both the wflow_sbm and PCR-GLOBWB hydrological models are setup such as they are typically used in other studies.

Therefore, the270

2.4
:::::

Model
::::
runs

:::
The

::::::
model

::::
runs

::::
that

::::
form

::::
the

::::
basis

:::
of

:::
the

::
3

:::
use

:::::
cases

:::
are

:::::::::
performed

:::
as

:::::::
intended

:::
by

:::
the

::::::
model

::::::::::
developers.

::::::::
Meaning,

::::
this

::::
study

::::::::
employs

:::::::::
calibration

:::
and

::
or

:::::::::::
optimization

::::::::::::
methodologies

::
as
::::::::::::

recommended
:::
by

:::
the

:::::
model

::::::::::
developers

::
for

::::::
model

:::::
users.

::::
The

::::::::
calibrated

:::::::::
parameters

:::
for

::::
the

:::::::::
distributed

:::::::::::
hydrological

::::::
models

:::::
were

:::::::
obtained

:::::
from

:::
the

::::::
model

::::::::::
developers.

::
In

:::
the

::::
case

:::
of

:::
the

:::::::::
conceptual

::::::::::
hydrological

:::::::
models

::
we

::::::
follow

:::
the

:::::
model

::::
run

:::::::::::
configuration

::
of

:::::::::::::::::
Knoben et al. (2020)

:
.275

2.4.1
::::::::::::::
PCR-GLOBWB

::::::
model

::::
runs
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:::
The PCR-GLOBWB model does not require additional calibration using streamflow observations

:::::::
regional

::::::::
parameter

::::::::::
optimization

after deriving the parameter set. ,
:::
as

:::
this

::
is

:::::::
typically

:::
not

:::::::::
conducted

::
by

:::
the

::::::
model

:::::::::
developers.

:::::::::
However,

:::
this

::::
does

:::
not

:::::
imply

::::
that

::
the

::::::
model

::::::
would

:::
not

::::::
benefit

::::
from

:::::::::
additional

:::::::::::
optimization.

:
The model does require an extensive

:
a spin-up period to establish

semi steady-state conditions at the start of the model run. The model is spun-up 30 years back to back
::::::::::
back-to-back

:
using a280

single water year climatology that is based on the average values of each calendar-day between 1-10-2000 and 30-09-2007.

The
:::::::
following

:
water year 2008 is discarded from analyses to avoid over fitting

::::::::
overfitting

:
at the start of the evaluation period

and the model is evaluated for the water years 2009 -
:
– 2015.

2.4.2 Calibrated and Default
::::
and

::::::::
optimized

:
wflow_sbm Model Runs

::::::
model

::::
runs

The wflow_sbm model is spun-up using the water year 2000 and additionally calibrated using streamflow
::::::::
discharge

:
obser-285

vations for the water years 2001-2007. Additional calibration is done
:::::::::
perfomered

:
by optimizing a single parameter using

the Kling-Gupta Efficiency Non-Parametric (KGE-NP) objective function (Pool et al. (2018)) based on streamflow
::::::::
discharge

observations and simulations
:::::::::
differences

:
at the catchment outletresulting .

:::::
This

:::::
results

:
in a single calibrated parameter set .

Imhoff et al. (2020) identified the KsatHorFrac parameter
::::::::
optimized

::::::::
parameter

:::
set

:::
per

:::::::::
catchment.

:::::::::::::::::
Imhoff et al. (2020)

:::::::
identified

::
the

:::::::::
horizontal

::::::::::
conductivity

:::::::
fraction

::::::::
parameter

::::::::::::
(KsatHorFrac)

:
as effective for single parameter value per catchment calibration

::::::::::
optimization.290

KsatHorFrac is an amplification factor of the vertical saturated conductivity that controls the lateral flow in the subsurface. The

::::
After

::::::::::
calibration,

:::
the water year 2008 is discarded from analyses and the model is evaluated for the water years 2009 - 2015.

For more information on the effects of calibration, the reader is referred to Aerts et al. (2022)
::::::::::::::
Aerts et al. (2022), Section 3.1

and Figure 3.295

The default wflow_sbm model run sets the KsatHorFrac parameter value to the default value of 100. An overview of the

model run periods is provided in Table 1.
::::
The

:::::::::
calibration

:::::
results

::
of
:::
the

::::::::::
wflow_sbm

::::::
model

:::
are

::::::::
presented

::
in

::::::::
Appendix

::::
A1.

Overview of the model run periods and spin-up years.

2.4.3
::::::::::
Conceptual

:::::::::::
hydrological

::::::
model

::::
runs

::::::
Similar

::
to

:::
the

:::::
other

:::::
model

:::::
runs,

::
the

::::::::::
conceptual

::::::::::
hydrological

::::::
model

::::
runs

:::
are

:::::::
spun-up

:::::
using

::
the

:::::
water

::::
year

:::::
2000

:::
and

:::::::::
calibrated300

::::
using

:::
the

:::::
water

:::::
years

:::::::::
2001-2007.

::::
The

:::::::::
calibration

::::::
method

::::
uses

:::
the

::::::::::
Coviariance

:::::
Matrix

::::::::::
Adaptation

::::::::
Evolution

:::::::
Strategy

:::::::::
(CMA-ES;

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
Hansen et al. (2003); Hansen (2006); Hansen and Ostermeier (2001)

:
).

::::
This

:::::::
method

:::::::::
optimizes

:
a
::::::::::::::

single-objective
:::::::
function

:::
to

:::
find

::::::
global

::::::::
parameter

:::::::::
optimums

:::::
based

:::
on

::::::::::::
non-separable

:::
data

:::::::::
problems.

::
A

::::::::::::
demonstration

::
of

:::
the

:::::::::
sensitivity

:::
of

:::
the

:::::::::
calibration

:::::::::
parameters

::
is

:::::
shown

:::
in

:::::::::::::::::
Knoben et al. (2020).

:::::::::
Following

:::::::::
calibration

:::::
based

:::
on

:::
the

::::::::
KGE-NP

::::::::
objective

::::::::
function,

:::
the

:::::
water

::::
year

::::
2008

::
is

::::::::
discarded

:::
and

:::
the

::::::
models

:::
are

::::::::
evaluated

:::::
based

::
on

:::
the

:::::
water

:::::
years

:::::::::
2009-2015

::::
using

:::
the

:::::
same

:::::::
KGE-NP

::::::::
objective

::::::::
function.305
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2.4.4 eWaterCycle

This study is conducted using the eWaterCycle platform (Hut et al., 2022). eWaterCycle is a community driven platform for the

running of hydrological model experiments. All components that are required to run hydrological models are FAIR by design

(Wilkinson et al., 2018). This is achieved by versioning models and datasets and creating workflows that are reproducible.310

Therefore, the platform is suitable for conducting benchmark
:::::
model

:::::::::::
performance

:
experiments. The model simulations were

conducted on the Dutch supercomputer Snellius to ensure faster model run time. We created example notebooks that use the

eWatercycle platform on cloud computing infrastructure(paste link + DOI).
:
:
::::::::::::::::::::::::::::::::
https://doi.org/10.5281/zenodo.7956488

:
.

2.5 Analyses

2.5.1 Model Evaluation
:::::::::
evaluation315

The hydrological model results
::::
runs

:::::::::
(calibration

::::
and

:::::::::
evaluation) are evaluated using the Kling-Gupta efficiency non-parametric

(KGE-NP, Pool et al. (2018)) objective function. This efficiency metric deviates from the more commonly used Kling-Gupta

efficiency (KGE, Gupta et al. (2009)) by instead of calculating the Pearson correlation and variability bias calculating the

:::::::::
calculating

:::
the

:
Spearman rank correlation and the normalized-flow-duration curve

::::::
instead

::
of

:::
the

::::::::
Pearson

:::::::::
correlation

::::
and

::::::::
variability

::::
bias. Values range from -∞

::
∞ to 1 (perfect score). In addition to the KGE-NP metric, we consider the Nash-320

Sutcliffe efficiency (NSE, Nash and Sutcliffe (1970)) to demonstrate the sensitivity of the results towards the selection of

objective function. We include the KGE-NP, KGE, modified KGE (Kling et al. (2012)), and the NSE objective functions in the

data repository for completeness and future reference.

2.5.2 Objective Function Sampling Uncertainty
::::::::
Discharge

:::::::::::
observation

::::::::::
uncertainty

The objective function sampling uncertainty is introduced because time series are not infinetly long and might contain outliers.325

These show up in the tails of the probability distribution of the squared errors between model simulations and observations. The

practical implementation is that a few data points in the time series can have a very large influence on the calculated objective

function value. To quantify the sampling uncertainty of the KGE-NP and NSE objective functions we applied the methodology

of Clark et al. (2021). This method combines bootstrap (Efron, 1979) and jacknife-after-bootstrap (Efron and Tibshirani, 1986)

methods to calculate the standard error and the tolerance interval of the objective function sampling uncertainty. We extended330

the GUMBOOT package (Clark et al., 2021) by adding the KGE-NP metric. The analysis of the objective function sampling

uncertainty is based on the tolerance interval (95th - 5th percentiles) of the jackknife and bootstrap methods. The tolerance

intervals of the models corresponding to each model experiment are averaged for each catchment and referred to as sampling

uncertainty.

2.5.3 Streamflow Observation Uncertainty335
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The results are analyzed based on three flow categories ,
::
ad

::::
hoc

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

::::::
based

:::::::
analysis

::
of

::::::
model

::::::::::
performance

::::::::::
differences

::::::
consists

:::
of

:
3
:::::
parts.

::::
The

::::
first

:::
part

:::::::
divides

:::
the

::::::::::
observation

:::
and

:::::::::
simulation

:::::
pairs

:::
into

::
3
::::
flow

:::::::::
categories

similar to Coxon et al. (2015), namely low flow, average flow, and high flow conditions. Low flow
:::
The

:::
low

::::
flow

::::::::
category is

based on the values
:::::::
observed

::::::::
discharge

::::::
values

::
at

:::
the

:::::::::
catchment

:::::
outlet between the 5th and 25th percentiles

::::::::
percentile

:::::
range,

average flow on the 25th and
::
to 75th percentiles

::::::::
percentile

:::::
range, and high flow on the 75th and

::
to 95th percentiles of observed340

streamflow at the catchment outlet (Table 2)
::::::::
percentile

:::::
range. Not all percentiles are included for the low and high flow cat-

egories due to limited data availability on quantified streamflow
::::::::
discharge observation uncertainty. Following the creation of

flow categories based on the percentiles of observed flow, the simulated streamflow results are divided into flow categories by

matching the time steps (dates).

Overview of flow categories and flow percentile ranges. Flow Category Low Flow Q5p - Q25p Average Flow Q25p - Q75p345

High Flow Q75p - Q95p

Next, the method
::
In

:::
the

::::::
second

::::
part,

:
illustrated in Figure 1C is applied to each flow category, catchment, and objective

function. First
::
c, the absolute difference of the

:::::::
between model simulations is calculated as shown in the example

::
for

:::::
each

::::
flow

:::::::
category

:::
and

:::::
each

:::::::::
catchment.

::::
This

::
is
::::::::::
exemplified

::
in

:::
the

:::::
form

::
of

::
a hydrograph in Figure 2A. The quantified streamflow

:
a.
::::
The

::::::::
discharge

:
observation uncertainty estimates of the CAMELS-GB dataset contain

::
are

:::::::::
processed

::
by

:::::::::
averaging

:::
the upper350

and lower bounds per
::
of

:::::::::
uncertainty

::::::::
estimates

:::
per

::::
flow

:
percentile (5, 25, 75, 95). First the percentile boundaries of each flow

category are averaged (e.g. 5th and 25th percentiles for the low flow category) resulting
::::
This

:::::
results

:
in the orange and red

dashed lines in Figure 2B. Next, the average of upper and lower bounds are taken and multiplied by the observations to create

the quantified streamflow observation estimate
::
b.

:::
We

::::
then

::::
take

:::
the

:::::::::
percentage

::
of

::::::::
discharge

:::::::::::
observations

::::
basd

:::
on

:::
the

:::::::
average

:::::::::
uncertainty

::::::::
estimates

::
to

:::::::
convert

:::
the

::::::::::
uncertainty

::::::::::
percentages

::
to

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty time series in m3/s

::::::
m3*s-1355

(green line). These bounds differ in values (e.g, +20% and -15%) as the uncertainty distributions are not symmetrical.

A
:::
The

::::
third

::::
part

::::::
applies

:
a
:::::::::
dependent

:
t-test is performed using the time series in Figure 2C

:
c with a 0.05 significance level to

determine if the observation uncertainty
::::
time

:::::
series

:
is greater than the model simulation difference . When this is the case it is

not possible to be conclusive on which modelis best performing.
::::
time

:::::
series.

:

::::
This

::::::
method

::
is

::::::
subject

::
to

:::::
certain

::::::::::
limitations,

::::::::::
particularly

::::::::
regarding

::
the

:::
use

::
of
:::
the

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

:::::::::
estimates.360

:::
Due

::
to
:::::::
absence

:::
of

:::
data

:::
the

::::::
upper

:::
and

:::::
lower

:::
5th

:::::::::
percentiles

:::
of

::::
flow

:::::
could

:::
not

::
be

::::::::
included

:::::
while

::::
these

::::
data

::::::
points

:::
can

::
be

:::::
most

::::::::
important

:::
for

::::
users

::
to

:::::::::
determine

::::::::::::
fit-for-purpose

::
of

:
a
::::::
model.

::
In

::::::::
addition,

:
it
::
is
::::::::
preferred

::
to

:::
use

:::
the

:::::
rating

:::::
curve

::::::::::
uncertainty

:::::
rather

:::
than

:::
the

::::::::::
uncertainty

::::::
bounds

::
of

::::
flow

::::::::::
percentiles.

:::
We

:::::
accept

:::::
these

:::::::::
limitations

::
as

:::
we

:::::::
promote

:::
the

:::
use

::
of

:::::::
existing

::::::
dataset

::
to

::::::
ensure

:::::::::
community

:::::::::::
participation

:::
into

::::::::::::
implementing

:::
the

::::::::
suggested

:::::::::
evaluation

:::::::::
procedure

::
in

::::
other

:::::::
studies.

3 Results365

Firstly, we present an overview of streamflow simulation based model performance captured by the

2.0.1
::::::::
Temporal

:::::::::
sampling

::::::::::
uncertainty
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Figure 2. Example hydrographs of the streamflow
:::::::
discharge

:
observation uncertainty analysis method. (A

:
a) Calculation

::::::::
calculation of the

absolute difference (blue) between model simulations (red and orange). (B
:
b) Calculation

::::::::
calculation of streamflow observation uncertainty in

m3/s
:::::
m3*s-1 (green). Dashed lines indicating upper and lower bounds expressed as percentages of observation uncertainty that are averaged

and multiplied with the observations (black). (V
:
c) Resulting

::::::
resulting time series, with, in blue, the absolute difference between model

simulations and, in green, the averaged
::::::

discharge
:
observation uncertainty in m3/s

::::
m3*s-1.

:::::::
Another

:::::
aspect

::
of

::::::
model

:::::::::::
performance

:::::::::
evaluations

::::
that

:::::
might

:::::::::
misinform

::::::
model

:::::
users

::
is

:::
the

::::::::
sensitivity

:::
of

::::::::
objective

::::::::
functions

::
to

:::
the

:::::::
temporal

::::::::
sampling

::
of

::::
time

::::::
series.

::::::::
Temporal

::::::::
sampling

::::::::::
uncertainty

:::::::::
determines

::
if

:::
the

::::
error

::::::::::
distribution

::
of

:::::::::
simulation

::::
and

:::::::::
observation

:::::
pairs

:
is
:::::::
heavily

:::::::
skewed.

::
A

:::
few

::::
data

::::
pairs

:::::
might

::::
have

::
a

:::::::::::::
disproportionate

:::::
effect

:::
on

:::
the

::::::::
calculated

::::::::
objective

::::::::
functions370

:::
that

:::
are

:::::
used

::
to

:::::::::
determine

:::::
model

::::::::::::
performance.

:::
The

:::::::::
inclusion

::
or

::::::::
exclusion

:::
of

:::::
these

::::
data

:::::
points

::::
due

::
to

:::
the

::::::::
selection

:::
of

:::
the

:::::::::
calibration

:::
and

:::::::::
evaluation

::::::
period,

:::::
hence

:::::
alters

:::
the

::::::::::
consistency

::
of

:::::
model

:::::::::::
performance

::::
over

::::
time.

:

::
To

::::::::
quantify

:::
the

::::::::
temporal

::::::::
sampling

::::::::::
uncertainty

::
of

::::
the KGE-NP and NSE objective functions at the catchment outlets.

Secondly, we show the distributions of the objective function difference and the objective function sampling uncertainty.

Thirdly, we show for each flow category the percentage of days that the observation uncertainty is greater than the differences375
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between model simulations. A t-test determines if the model simulation difference time series are significantly greater than the

observation uncertainty time series .

The calibration results of the wflow_sbm model and the spatially distributed results of the differences in objective function for

each model experiment are available in Appendix A1. Appendix A2 contains
:::::::
objective

::::::::
function,

:::
we

::::::
applied

:::
the

:::::::::::
methodology

::
of

:::::::::::::::
Clark et al. (2021).

::::
This

::::::
method

:::::::::::
sub-samples

:::
the

::::::::
simulation

::::
and

:::::::::
observation

::::
time

:::::
series

:::::::
through

:::::::::::
bootstrapping

:::
and

::::::::::::
(Efron, 1979)380

:::
and

:::::::::::::::::::
jacknife-after-bootstrap

::::::::::::::::::::::::
(Efron and Tibshirani, 1986)

:::::::
methods.

::::
The

::::::
change

::
in

::::::::
objective

:::::::
function

:::
due

::
to

:::
the

::::::::
shuffling

::
of

:::
the

::::::::::
sub-samples

::::::
allows

:::
for

:::
the

:::::::::
calculation

::
of

:::
the

::::::::
standard

::::
error

::::
and

::
its

::::::::
tolerance

::::::::
interval.

:::
The

::::::::
tolerance

::::::::
intervals

::::::::::::
corresponding

::
to

::::
each

:::::
model

:::::::
instance

:::
are

::::::::
averaged

:::
and

:::::::
referred

::
to

:::
as

:::::::
temporal

::::::::
sampling

::::::::::
uncertainty.

:::
We

::::::::
extended

:::
the

::::::::::
GUMBOOT

::::::::
software

:::::::
package

:::::::::::::::
Clark et al. (2021)

::
by

::::::
adding

:::
the

::::::::
KGE-NP

::::::
metric

::
for

::::
this

:::::
study.

3
::::::
Results385

::
In

:::
this

::::::
section

:::
we

::::
first

::::::
present an overview of the

:::::::::::::
discharge-based

::::::
model

::::::::::
performance

::::::
results

:::
for

::::
each

::
of

:::
the

::
3

:::
use

:::::
cases.

:::::
Next,

::
we

:::::
detail

:::
the

::::::
spatial

:
distributions of the GUMBOOT (sampling uncertainty ) resultsfor each objective function. Appendix A3

contains the spatially distributed
::::::::
maximum

::::::
model

::::::::::
performance

:::::::::
difference.

::::
This

::
is

:::::::::
succeeded

::
by

:::
the

::::::::::
presentation

::
of

::::::::::
uncertainty

:::::::
estimates

:::
for

::::::::
discharge

::::::::::::
observations,

:::::::::
categorized

:::
by

::::
flow.

::::::::::::
Subsequently,

:::
the

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

:::::
based

::::::::
analyses

::
of

::::::
relative

::::::
model

::::::::::
performance

::
is

:::::::::
presented.

:::
The

::::::
section

:::::
ends

::::
with

:::
the

:::::::
temporal

::::::::
sampling

::::::::::
uncertainty

:::::::
analysis

::::::
results.390

::::::::
Appendix

:::
A.1

::::::::
contains

:::
the

:::::::::
calibration

:
results of the streamflow observation uncertainty analyses.

::::::::::
wflow_sbm

:::::
model

::::
and

::::::::
Appendix

:::
A.2

:::
the

::::::::::::
Nash-Sutcliffe

:::::::::
efficiency

:::::
(NSE)

:::::
based

::::::
model

::::::::::
performance

::::::
results

::
of

:::
all

:::::::::
considered

:::::::
models.

3.1 Streamflow Based Model Performance

The model performance results are based on the streamflow estimates and streamflow observations at 396 catchment outletsand

are shown as cumulative distributions functions in Figure 3. In general the results show, to a certain degree, comparable skill395

in capturing observed streamflow by both hydrological models. Note, that the different objective functions in Figures 3ab are

not directly comparable (Knoben et al., 2019).

The inter-model comparison experiment results of the calibrated wflow_sbm & PCR-GLOBWB models show a large

difference between the

3.1
::::::::

Discharge
:::::
based

::::::
model

::::::::::::
performance400

:::::
Model

:::::::::::
performance

::
is

:::::::
assessed

:::::
using

::::::::
discharge

::::::::::
observation

::::
and

::::::::::
simulations

::
at

:::
299

:::::::::
catchment

::::::
outlets.

::::
The

::::::
results

:::
are

::::::
shown

::
in

:::::
Figure

::
3

::
as

::::::::::
Cumulative

::::::::::
Distribution

::::::::
Functions

:::::::
(CDFs)

::
of

:::
the KGE-NP distributions of the models above a KGE-NP of 0.25

(
:::::::
objective

::::::::
function.

:::::
These

::::::
results

::::
offer

::::::
insight

:::
into

:::
the

:::::::
model’s

::::::::
accuracy

::
in

:::::::::
simulating

::::::::
observed

::::::::
discharge.

:

:::
The

::::
CDF

:::
of

:::
the

:::::
model

:::::::::
refinement

:::
use

::::
case

::
in

:
Figure 3a ). The KGE-NP median of the calibrated

:::::::::
establishes

::::
that

:::::::::
optimizing

:
a
:::::
single

::::::::
effective

:::::::::
parameter

::::
leads

:::
to

::
an

:::::::::::
improvement

:::
for

:::::::::::::
approximately

::::
65%

::
of

:::
the

:::::::::::
catchments.

:::
The

::::::::::::
improvements

:::::::
remain405

::::::
modest

::
as

::::::::
indicated

:::
by

:::
the

::::::
median

:::::
value

::
of

::::
0.64

::::::::
KGE-NP

:::
for

:::
the

::::::
default

:
wflow_sbm is 0.77 compared to a median value of
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Figure 3.
:::::::::
Cumulative

::::::::
distribution

:::::::
function

:::::
(CDF)

::::
plots

::
of

::
the

::::::::::
Kling-Gupta

::::::::
Efficiency

:::::::::::
non-parametric

::::::::
(KGE-NP)

:::::::
objective

:::::::
function,

::::::
derived

:::
from

::::::::
discharge

:::::::
estimates

:::
and

::::::::::
observations

::
at

:::
299

::::::::
catchment

::::::
outlets.

::
(a)

:::::
shows

:::
the

::::
CDF

:::
for

::
the

:::::
model

:::::::::
refinement

:::
use

::::
case,

::::::::
optimizing

:::
the

::::::::
wflow_sbm

::::::::::
hydrological

:::::
model

::::
with

:
a
:::::
single

::::::::
parameter.

:::
(b)

:::::
shows

::
the

:::::
CDF

::
for

:::
the

:::::
model

:::::::::
comparison

:::
use

::::
case,

::::::::
comparing

:::
the

::::::::
optimized

::::::::
wflow_sbm

:::
and

:::::::::::::
PCR-GLOBWB

:::::::::
hydrological

::::::
models.

:::
(c)

::::::::::
demonstrates

:::
the

::::
CDF

::
for

:::
the

:::::
model

:::::::
structure

:::
use

::::
case,

:::::::::
showcasing

:::::
results

::::
from

:
6
::::::::
conceptual

::::::::::
hydrological

::::::
models.

0.43 for PCR-GLOBWB. Larger differences between distributions and, in general, lower values are found based on the NSE

metric
:::::
model

:::
and

::::
0.74

::::::::
KGE-NP

:::
for

::::
the

::::::::
optimized

::::::::::
wflow_sbm

::::::
model.

::::::
Larger

::::::
model

:::::::::::
performance

:::::::::
differences

:::
are

::::::
found

:::
for

::
the

::::::
model

::::::::::
comparison

:::
use

::::
case

:
in Figure 3b. The large differences are in part due to the additional calibration of the

:::::
Here,

::
the

:::::::::
optimized

:
wflow_sbm model . Another contributing factor is expected to be the difference in river routing, kinematic410

wave used by wflow_sbm and simple accumulation travel time by
:::::::
performs

:::::
better

::
in

::::
75%

:::
of

:::
the

:::::::::
catchments

:::::
than

:::
the PCR-

GLOBWB . The differences between objective functions can be explained by the
:::::
model.

:::::
Both

::::::
models

::::::::::
demonstrate

::::
poor

::::::
results

::
for

::::::::::::
approximately

:::::
25%

::
of

:::
the

::::::::
evaluated

:::::::::
catchments

::::::
(<0.40 KGE-NPfunction focusing more on the baseflow component while

the NSE objective function focuses more on average and peak flow).

The inter-model evaluation experiment results capture the effect of additional calibration of the wflow_sbm model . This415

is shown by the default and calibrated wflow_sbm model distributions with median values of 0.65 and 0.77 respectively. The

added value of calibration is less pronounced for the NSE results in Figure 3b as the model calibration routine only optimizes

for the KGE-NP objective function. Here, the median values are lower at 0.25 for the default and 0.50 for the calibrated

wflow_sbm
:::::
results

::
of

:::
the

::::::
model

:::::::
structure

::::
use

::::
case

:::
are

:::::
based

::
on

::
6
:::::::::
conceptual

:::::::::::
hydrological

::::::
models

::::
that

::::
only

::::::
deviate

::
in

::::::
model

:::::::
structure

::::::
(Figure

::::
3c).

:::::
From

:::
the

::::::
spread

::
in

:::::
model

::::::
results

::
it

:
is
:::::::

evident
:::
that

:::
the

::::
VIC

::::::
model

::::
lags

::::::
behind

::
in

::::::::::
performance

:::::::::
compared420

::
to

:::
the

:::::
other

:::::::
models.

:::
The

::::::::::
IHACRES

:::
and

:::::::
SMAR

::::::
models

:::::
yield

::::
very

::::::
similar

::::::
results

:::::::
despite

:::::
large

::::::::
structural

::::::::::
differences.

::::
The

::::::::::::
XINANJIANG

::::
and

:::::::
HBV-96

:::::::
models

:::
not

::::
only

:::::::
produce

::::::::::
comparable

::::::::
outcomes

::::
but

:::
also

:::::
share

::
a
:::::
more

::::::
similar

::::::
model

::::::::
structure.

:::
The

:::::
GR4J

::::::
model

::::::::::
consistently

::::::::::
outperforms

:::
the

:::::
other models. The differences between distributions of each objective function

establishes the importance of reporting multiple performance metrics. Overall,
:::
total

::::::
model

:::::::
structure

::::::::::
uncertainty,

::
as

:::::::::
expressed

::
by

:::
the

:::::::::
difference

:::::::
between

:
the differences are larger for the inter-model comparison experiment, smaller for the intra-model425
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Figure 4. Cumulative
:::::
Spatial

:
distribution function

:
of

:::
the

::::::
absolute

::::::::::
Kling-Gupta

::::::::
Efficiency

:::::::::::
non-parametric

:
(CDF

::::::
KGE-NP) plots of objective

functions based on streamflow estimate and observation at
::::::
function

::::::::
difference

::::::
between

:
the

::::
worst

:::
and

:::
best

::::::
model’s

::::::::::
performance

:::
per catch-

ment outlet
:::
and

:::
use

:::
case. With in blue

::
(a)

:::::
shows

:
the additionally calibrated

:::::
model

::::::::
refinement

:::
use

::::
case

::::
based

:::
on

::
the

::::::
default

:::
and

::::::::
optimized

wflow_sbm
:::::::::
hydrological

::::::
models.

:::
(b)

::::
shows

:::
the model , in orange

:::::::::
comparison

:::::
results

:::::
based

::
on the default

::::::::
optimized wflow_sbm model, and

in green the PCR-GLOBWB model
::::::::::
hydrological

:::::
models. (A

:
c) The Kling-Gupta Efficiency non-parametric (KGE-NP) objective function. (B)

The Nash Sutcliffe Efficiency (NSE) objective function. The
::::
shows

:::
the

:::::
model

:::::::
structure

:::
use

:::
case

:
results show closer agreement for objective

function values
:::::
based

::
on

::
the

:::::
worst

:::
and

:::
best

:::::
model

::::::::::
performances

:
of the intra-model evaluation than the inter-model comparison6

:::::::::
conceptual

:::::::::
hydrological

::::::
models.

evaluation experiment, and more pronounced for the NSE than the
::::
worst

::::
and

:::
best

::::::::::
performing

::::::
model’s

:::::
CDF

:
is
::::::::::
substantial,

:::::
while

::
the

::::::::::
differences

:::::::
between

::::::
models

:::
can

:::
be

::::::
subtle.

::::::
Median

:
KGE-NP objective function

:::::
values

:::
for

:::
the

::::::
models

:::
are

::
as

:::::::
follows:

::::
VIC

::
at

::::
0.65,

:::::::::
IHACRES

::
at

::::
0.80,

:::::::
SMAR

::
at

::::
0.82,

:::::::::::::
XINANJIANG

::
at

::::
0.84,

:::::::
HBV-96

::
at
:::::
0.85,

:::
and

:::::
GR4J

::
at

::::
0.88

::::::::
KGE-NP.

3.2 Objective Function Sampling Uncertainty

The distributions of the objective function difference and the sampling uncertainty of each model experiment are shown in430

Figure ??. The objective function difference distribution shows alarger spread in values for the inter-model comparison (
:::::
Next,

::
we

::::::::
consider

:::
the

:::::
spatial

::::::::::
distribution

::
of

:::
the

:::::::
results,

::::::::
presented

::
in

::::::
Figure

::
4,

:::::
based

::
on

:::
the

:::::::::
maximum

::::::::
KGE-NP

:::::::::
difference

:::::::
between

::
the

:::::::
models

::
of

:::::
each

:::
use

:::::
case.

::::::::::::
Improvements

::::
after

::::::
model

:::::::::
refinement

:::
are

::::::::
indicated

:::
by

:::
the

:::::::
positive

:
KGE-NP median of 0.48)

than for the intra-model evaluation (KGE-NP median of 0.07). This is to lesser extent the case for the sampling uncertainty
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distributions. Both model experiments show higher values for objective function difference and sampling uncertainty of the435

NSE than the KGE-NP objective function. This establishes a strong sensitivity of results towards objective function selection.

For both objective functions very large values of
::::::::
difference

::::::
values

::
in

::::::
Figure

:::
4a.

::::::
These

::::::
values

:::
are

::::::
mainly

:::::::
present

::
in
::::

the

:::::::
Northern

::::
and

:::::::
Southern

:::::
parts

::
of

:::::
Great

::::::
Britain.

:::
No

:::::
clear

:::::
spatial

:::::::
patterns

:::
are

::::::
visible

:::
for

:::
the

:::::
model

::::::::::
comparison

:::
use

::::
case

::
in

::::::
Figure

:::
4b,

::::::::::::
demonstrating

::::
high

::::::
spatial

:::::::::
variability

::
in

:::::::::::
performance

:::::
when

:::::::::
comparing

:::
the

::::::::::
wflow_sbm

::::
and

::::::::::::::
PCR-GLOBWB

:::::::::
distributed

::::::::::
hydrological

:::::::
models.

:::::
More

:::::::
spatially

:::::::::
consistent

:::::::::
differences

:::
are

:::::
found

:::
for

:::
the

::::::
model

::::::::
structure

:::
use

::::
case

::
in

::::::
Figure

:::
4c.

:::::
Here,

:::
the440

:::::
largest

:
differences are present in the negative domain. The relevance of which is debatable as for example Knoben et al. (2018)

pointed out that a KGE value of -0.42 and NSE of 0 corresponds to taking the mean of the observations
::::::::
Northern

:::
and

::::::::
Southern

::::
parts

::
of

:::::
Great

::::::
Britain.

(A) Box-plot of the objective function difference between the inter-model comparison models (wflow_sbm calibrated and

PCR-GLOBWB) and the intra-model evaluation models (wflow_sbm calibrated and default). (B) Box-plot of the sampling445

uncertainty (average tolerance interval) of both model experiments. The KGE-NP objective function is shown in red and the

NSE objective function in blue.

Next, the catchment simulations that contain greater sampling uncertainty than the difference in objective functions are

identified (Table ??). Of the 398 catchment simulations under consideration this is the case for 53 catchments based on the

KGE-NP objective function and 86 catchments based on the NSE objective function of the inter-model comparison. The450

intra-model evaluation contains more cases as the objective function differences are lower while the sampling uncertainty is

similar. This results in 210 catchment simulations that contain greater sampling uncertainty than objective function differences

for the KGE-NP objective function and 288 catchments for the NSE objective function. These results demonstrate that in

many catchments data points in the tails of the probability distribution of the squared errors between model simulations and

observations heavily influence the objective function455

3.2
::::::::

Discharge
::::::::::
observation

:::::::::::
uncertainty

::::::::
estimates

:::
The

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

::::::::
estimates

:::::::
consider

:::
the

:::
5th

::
to

::::
95th

::::::::
percentile

:::::
range

::
of

::::
flow.

:::::
These

::::::::
estimates

:::
are

::::::::::
categorized

:::
into

::
3

::::
flow

:::::::::
conditions

:::
and

::::
are

::::::::
presented

::
in

::::::
Figure

::
5.

::
In

:::
the

::::
box

::::
plot

:::
for

:::
low

:::::
flow

:::::::
category,

:::
we

:::::::
observe

::
a
::::
wide

:::::::::::
interquartile

:::::
range,

::::::
shown

::
by

:::
the

::::::
spread

::
of

:::
the

:::
box.

::::
This

::::::::
indicates

:
a
::::::
higher

:::::::::
variability

::
in

::::::::
discharge

:::::::::
observation

::::::::::
uncertainty

::::::::::
percentages.

::::
The

::::::
median

:::::
value,

::::::::::
represented

::
by

:::
the

::::
line

:::::
within

:::
the

::::
box,

::
is
::
at

:::
the

::::
20%

::::::::::
uncertainty

:::::
mark.

:::
The

::::::::
presence

::
of

:::::
many

:::::::
outliers

:::::
above

:::
the460

:::
box

:::::::
indicate

:::::::::
occasional

::::
large

:::::::::
deviations

::::
from

:::
the

:::::::
median

:::::
value.

:::
For

:::
the

:::::::
average

::::
flow

::::::::
category,

:::
the

::::
range

:::
of

:::::
values

::
is

::::::::
narrower

:::
than

:::
for

:::
the

::::
low

::::
flow

::::::::
category

::::
with

:
a
:::::::
median

:::::
value

::
of

:::::
15%.

:::
The

::::::
lowest

:::::::
median

:::::
value

::
is

:::::
found

:::
for

:::
the

::::
high

::::
flow

::::::::
category

::
at

::::
12%. It is difficult to determine whether the objective function differences are the result of modelling differences or mainly

due to sampling. Therefore further research is required that determines the validity of these data points that heavily influence

the objective function before drawing conclusions on model performance
:::::::
important

::
to

:::::::
mention

::::
that

:::
the

:::::::::
uncertainty

::
is
::::::::
expected465

::
to

::
be

:::::::::::
considerably

:::::
higher

::
if

:::
the

:::::::::
underlying

::::
data

:::::
would

:::::::
contain

:::
the

:::::
upper

:::
5th

:::::::::
percentiles

::
of

::::
flow

:::
for

:::
this

::::::::
category.

The spatial distribution of the sampling uncertainty results in Figure ?? show clusters of high sampling uncertainty for all

model experiments and objective functions in the South of Great-Britain
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Figure 5. Number
:::::::
Discharge

::::::::::
observation

:::::::::
uncertainty

::::::::
estimates

:
of

:::
299

:
catchment simulations

:::::
outlets

::::::
based

:::
on

:::
the

:::::
work

:::
of

::::::::::::::
Coxon et al. (2015)

::::::::
expressed

::
as

::::::::
uncertainty

:::::::::
percentages

:
per model experiment and objective function for which sampling

::::
flow

:::::::
category.

::
(a)

:::::
shows

:::
the

:::
low

:::
flow

:::::::
category uncertainty

:::::::
estimates

::::
based

::
on

:::
the

:::
5th

::
to

:::
25th

::::
flow

::::::::
percentiles.

:
(
:

b)
::::::
presents

:::
the

::::
25th

:
to
::::

75th
::::::::
percentile aver-

age tolerance interval
:::
flow

:::::::
category.

::
(c) is larger than

::::
shows

:
the difference in objective function

:::
high

::::
flow

:::::::
discharge

:::::::::
observation

:::::::::
uncertainty

:::::::
estimates

::
of

::
the

::::
75th

::
to

:::
95th

::::
flow

::::::::
percentiles.398 catchment simulations are considered.

3.3
:::

Use
:::::
Cases

:::
The

:::::::::
discharge

:::::::::
simulation

:::::::::
difference

::::
time

:::::
series

:::
of

:::
two

:::::::
models

::
is
:::::::::
expressed

::
in

:::::
cubic

::::::
meters

::::
per

::::::
second

::::
and

::::::::
compared

:::
to470

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

::::
time

:::::
series

:::
in

::::
cubic

::::::
meters

::::
per

::::::
second. This is most likely due to

::::
done

:::
by

:::::
using

:
a
:::::
t-test

::
to

::::::::
determine

::
if

:::
the

::::::::
simulation

::::::::::
differences

::
are

::::::
larger

:::
than

:::
the

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

:::::::::
estimates.

:::
The

::::::::
instances

:::::
where

::::
this

:
is
:
the presence of chalk geology that is known to cause difficulties for estimating streamflow using hydrological models. The

inter-model comparison results in Figures ??ab show that there is agreement on where high sampling uncertainty (>0.4) occurs.

This is more so the case for the NSE- than the KGE-NP objective function. The intra-model evaluation experiment results in475

Figures ??CD show more agreement on occurrences than the inter-model comparison. These results show only clusters of

objective function differences greater than sampling uncertainty in the West and North of Great-Britain.
:::
case

:::
are

::::::::
reported

::
in

::::
Table

::
2
:::
for

:::
the

:
3
:::
use

::::::
cases.

3.3.1
:::::
Model

::::::::::
refinement

:::
The

::::::
model

:::::::::
refinement

:::
use

:::::
case

::::::
results

::
in

:::::
Table

::
2

::::
show

::::
that

::::::::::::
approximately

::::
one

:::::
third

::
of

:::
the

:::::::::
considered

::::::::::
catchments

:::::::
contain480

:::::::
instances

:::
of

:::::::::
simulation

:::::::::
differences

::::::::
between

:::
the

::::::::::
wflow_sbm

::::::
default

::::
and

::::::::::
wflow_sbm

:::::::::
optimized

::::::
models

::::
that

:::
are

::::::::::
statistically

::::::
smaller

::::
than

:::
the

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::::::::
estimates.

:::::
This

:::::::::::
demonstrates

:::
the

:::::::::
importance

:::
of

:::::::::::
incorporating

::::::::::
(discharge)

:::::::::
observation

::::::::::
uncertainty

:::::
when

:::::::::
performing

::::::
model

:::::::::
refinement,

:::::::::
especially

:::::
when

:::::
based

::
on

::
a

::::::::::
large-sample

:::::::::
catchment

:::::::
dataset.

::::
This

:::::::::::
consideration

::::::
should

::
be

::::
part

::
of

:::
the

:::::::::
calibration

::::
and

:::::::::
subsequent

:::::::::
evaluation

:::::::
process.

:
In addition, more catchments contain very
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Table 2.
:::::::
Overview

::
of

::
the

::::::
number

::
of

:::::::
instances

:::
per

::::
flow

:::::::
category

::::
were

:::::::
discharge

:::::::::
observation

::::::::
uncertainty

::::::
exceeds

:::
the

::::::::
simulation

:::::::::
differences

::::
based

::
on

:::
299

:::::::::
catchments.

::::::
Results

:::
are

::::
based

:::
on

::::::::
dependent

:::::
t-test’s

:::
with

::
a
:::::::::
significance

::::
level

::
of

::::
0.05.

:::
Use

::::
Case

::::::
Models

::::
Flow

::::::::
Category

Discharge Obs. Uncertainty

>

Model Sim. Difference

Total Instances

:::::
Model

:::::::::
Refinement

wflow_sbm Default

& Optimized :::
Low

: ::
98

: ::
299

:

::::::
Average

::
98

:

:::
High

: :::
115

:

:::::
Model

:::::::::
Comparison

:

wflow_sbm Optimized

& PCR-GLOBWB :::
Low

: :
5
: ::

299
:

::::::
Average

:
4
:

:::
High

: :
3
:

:::::
Model

:::::::
Structure

6 Conceptual Hydrological

Models :::
Low

: :
1
: ::

299
:

::::::
Average

:
0
:

:::
High

: :
0
:

high sampling uncertainty (>0.4) indicating that the averaging of the tolerance interval reduces the sampling uncertainty more485

for the inter-model comparison
::
the

::::::
results

:::::::
indicate

::::
that

::::
when

:::::::::
discharge

:::::::::
observation

::::::::::
uncertainty

::
is

:::
not

:::::::::
considered,

::
it
::
is

:::::::
difficult

::
to

::::
draw

:::::::::::
conclusions

::
on

::::::::
whether

:::
the

::::::
model

::::::::
performs

:::::
better

::::
after

::::::::::
refinement.

:::::::
Overall,

::::
the

::::::
results

:::::
affirm

:::
the

::::::::::
importance

:::
of

:::::::::::
incorporating

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

::
in

:::
the

:::::::::::
optimization

::::::
routine

::
of

::::::::::
wflow_sbm

:::::
model.

Spatial distribution of the sampling uncertainty analyses results showing the average tolerance interval of sampling uncertainty

per objective function from white to dark red. Red circles indicate sampling uncertainty larger than objective function difference490

and green circles indicate sampling uncertainty smaller than objective function difference. (A) Inter-model comparison experiment

(wflow_sbm and PCR-GLOBWB) KGE-NP objective function. (B) Inter-model comparison experiment NSE objective function.

(C) intra-model evaluation experiment (wflow_sbm calibrated and default) KGE-NP objective function. (D) intra-model evaluation

experiment NSE objective function.

3.4 Streamflow Observation Uncertainty495

The observation uncertainty percentages per flow category and the percentage of days that the observation uncertainty is greater

than the model simulation differences (see Figure 2c) are shown in Figure ??. The observation uncertainty percentages in Figure

??A indicate high percentages of uncertainty throughout the case study area with median values of 19.85 (low flow), 15.52

(average flow), and 12.18 (high flow ). All flow categoriescontain outliers of more than 50 %
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3.3.1
:::::
Model

:::::::::::
comparison500

:::
For

:::
the

:::::
model

::::::::::
comparison

:::
use

::::
case

::::::
(Table

:::
2),

::::
there

::
is

:
a
:::::
lower

:::::::::
frequency

::
of

::::::::
instances

:::::
where

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::::::::
surpasses

:::::::::
differences

::
in

::::::::
discharge

::::::::::
simulations.

:::
The

::::::::::
comparison

:::::::
between

:::
the

::::::::
optimized

::::::::::
wflow_sbm

:::::
model

::::
and

::
the

::::::::::::::
PCR-GLOBWB

:::::
model

::::::
reveals

::::
that

::
in

::
5
::::::::::
catchments

:::
for

:::
low

:::::
flow,

::
4

:::
for

::::::
average

:::::
flow,

::::
and

:
3
:::
for

:::::
high

::::
flow

:::::::::
categories,

:::::::::
simulation

::::::::::
differences

::::::
exceed

::::::::
discharge

:::::::::
uncertainty

::::::::
estimates.

::::::
These

:::::::
findings

::::::
suggest

:::
that

:::
the

::::::::::::
interpretation

::
of

:::::
model

:::::::::::
performance

:
is
:::
not

:::::::::::
significantly

::::::
affected

:::
by

:::
the

::::::
ad-hoc

:::::::
addition

::
of

::::::::
discharge

:
observation uncertainty. Of interest is that the uncertainty percentages are highest505

for the
:::::::
However,

::::::::::
catchments

::::::::::::
demonstrating

:::
the

::::::
impact

::
of

::::::::::
observation

:::::::::
uncertainty

:::::::
warrant

::::::
carefull

:::::::::::
examination.

:

3.3.2
:::::
Model

:::::::::
structure

:::
The

:::::::
analysis

:::
of

::::::
model

:::::::
structure

::::::::::
uncertainty

::
in
::::

the
::::::
context

:::
of

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::::::
reveals

::::
that

::::
only

::
a
::::::
single

:::::::
instance

::
of

:::
the

:
low flow category while the agreement between model simulations is highest for this flow category. This is

shown by the lower percentages of days that the observation uncertaintyis greater than the simulation differences between510

models in Figure ??b. In addition, smaller simulation differences (intra-model comparison) result in more percentages of

days of observation uncertainty values surpassing simulation difference values.
:::::::
contains

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

:::
that

::::::
exceed

:::
the

::::::::::
simulation

::::::::
difference

::::::::
between

:::
all

:
6
::::::::::

conceptual
:::::::::::
hydrological

::::::
models

::::::
(Table

:::
2).

::::
This

::::::::::
establishes

:::
that

::::::
based

::
on

:::
the

:::::::
selected

:::::::
models

:::
the

::::::
model

:::::::
structure

::::::::::
uncertainty,

:::::::::
expressed

::
as

:::
the

:::::::::
difference

::
in
:::::::::

discharge
::::::::::
simulations,

::
is
::::::
larger

::::
than

::
the

:::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

::::::::
estimates

:::
for

::::
this

:::::::
dataset.

::::::::
However,

:::
the

:::::::::::
investigation

::::
into

:::
the

:::::::::
differences

::::::::
between

:::
the515

::::::::
individual

::::::
models

::::::
yields

::::::
several

::::::
insights

:::::
based

:::
on

:::
the

::::::
results

::
in

:::::
Figure

::
6.
:

:::
The

::::
VIC

::::::
model

::::::
results,

::::::::::::
characterized

::
by

:::
its

::::::::
relatively

:::::
lower

::::::::::::
performance,

::::::
contain

:::::
only

:
a
::::
few

::::::::
instances

:::::
where

:::::::::
discharge

:::::::::
observation

::::::::::
uncertainty

:::::::
exceeds

:::::::::
simulation

::::::::::
differences,

::::::
making

::
it

:::::::::
identifiable

::
as
:::

the
::::::

lesser
:::::::::
performing

::::::
model.

::
In

::::::::
contrast,

:::
the

::::::::
IHACRES

::::
and

::::::
SMAR

:::::::
models

::::::
exhibit

:
a
::::
high

:::::
level

::
of

:::::::::
simulation

::::::::::
agreement,

:::::::::::
demonstrated

:::
by

:
a
:::::
large

::::::
number

:::
of

::::::::
instances

::
in

:::::
Figure

:::
6c.

:::::
This,

::::::
despite

:::::::::
significant

:::::::::
differences

:::
in

::::
their

:::::::::
complexity

::::
and

::::::::
structural

::::::
design.

:::::::
Namely,

::::::::::
IHACRES

:
is
::

a
:::::
single

:::::
store520

::::::::::
hydrological

:::::
model

::::
and

::::::
SMAR

::
is

:
a
:
6
::::
store

:::::::::::
hydrological

:::::
model

::::
that

:::::::
accounts

:::
for

:::
soil

:::::::
moisture

::
in
::
a
:::::::
separate

::::
store.

::::
This

:::::::::
alignment

::
of

:::::::::
simulation

:::::
results

::::::::
between

::::::
models

::::
with

:::::::
varying

:::::::::::
complexities

::::::::
highlights

:::
the

:::::::
nuanced

::::::::
influence

:::
of

::::::::
structural

:::::::::
differences

:::
on

::::::::
simulation

:::::::::
outcomes.

::::
The

:::::::
HBV-96

:::
and

:::::::::::::
XINANJIANG

::::::
models

::::
that

::::
most

:::::::
closely

:::::::
resemble

:::::
each

::::
other

:::::
based

:::
on

:::
the

:::::::
number

::
of

:::::
stores,

:::::::
process

::::::::::
descriptions,

:::
and

::::::::::
parameters

::::::
contain

:::
low

:::::::
number

::
of

:::::::
instance,

::::::::
allowing

::
the

:::::::::::
identification

:::
of

::
the

:::::
better

::::::::::
performing

::::::
model.

:
525

Next, we applied a t-test to determine in which catchments the observation uncertainty is statistically larger than the

differences between simulations for each flow category and experiment (Table ??) . For the inter-model comparison experiment

we find that this is the case for 6 catchments of the low flow , 4 catchments of
:::::::
examine

:::
the

:::::
results

::::::
across

:::
the

:::::::::
individual

::::
flow

:::::::::
categories.

:::
The

::::
low

::::
flow

::::::::
category

::::::
(Figure

::::
6a)

:::
and

:::
the

:::::::
average

::::
flow

::::::::
category

:::::::
(Figure

:::
6b)

:::::
show

::::::
similar

::::::
trends,

::::::
though

:::::
with

:
a
:::::
lower

:::::::
number

::
of

::::::::
instances

:::
for

:
the average flow , and 3 catchments of the

:::::::
category

::::
with

:
a
::::::

lower
::::::
number

:::
of

::::::::
instances

:::
for530

::
the

:::::::
average

::::
flow

::::::::
category.

::::
The

:
high flow category

::::::
(Figure

:::
6c)

::
is

:::::::::::
characterized

:::
by

:
a
:::::

more
::::::::
frequent

:::::::::
occurrence

::
of

:::::::::
discharge

:::::::::
observation

::::::::::
uncertainty

:::::::::
surpassing

::::::::::
simulation

::::::::::
differences.

::::
This

:::
is

:::::::::
especially

::::::
evident

::::::::
between

:::
the

:::::::::
IHACRES

::::
and

:::::::
SMAR
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(A) Distributions of observation uncertainty percentages per flow category of 398 catchments. (B) The percentage of days that the

streamflow observation uncertainty is larger than the difference in streamflow simulation per flow category of 398 catchments. With in red

the inter-model experiment (calibrated wflow_sbm and PCR-GLOBWB) and in blue the intra-model evaluation experiment (calibrated and

default wflow_sbm).

Figure 6.
:::
Heat

::::
map

::
of

:::
the

:
6
::::::::
conceptual

::::::::::
hydrological

::::::
models

:::::::
showing

::
for

::::
each

:::::
model

::::::::::
combination

:::
the

::::::
number

::
of

:::::::
instances

::::::
(n=299)

::::
that

:::::::
discharge

:::::::::
observation

::::::::
uncertainty

::::::
exceeds

::::::::
simulation

:::::::::
differences.

::
(a)

::::::
number

::
of

:::::::
instances

:::
for

::
the

:::
low

::::
flow

:::::::
category,

:::
with

::
in
:::::
white

:::
low

:::::
values

:::
and

:
in
:::
red

::::
high

:::::
values.

:::
(b)

::::::
number

::
of

:::::::
instances

::
for

:::
the

::::::
average

::::
flow

:::::::
category.

::
(c)

::::::
number

::
of

:::::::
instances

::
for

:::
the

::::
high

:::
flow

:::::::
category.
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::::::
models.

::::
The

::::::::
variability

::
in

::::::::
structural

::::::
design

:::
and

::::::::::::::
parameterization

::::::
among

:::::::
different

::::::::::
hydrological

:::::::
models

::::
leads

::
to

::::::
notable

:::::::::
differences

::
in

::::
their

::::::
outputs,

:::::::::::
underscoring

:::
the

::::::::::
importance

::
of

:::::::
selecting

:::
the

::::::::::
appropriate

:::::
model

:::
by

::::::::
including

::::::::
discharge

:::::::::
observation

::::::::::
uncertainty

::
in

:::
the

::::::::::
calibration

:::
and

:::::::::
evaluation

:::::::
process.535

3.4
::::::::

Temporal
::::::::
sampling

::::::::::
uncertainty

:::
The

::::::::
temporal

::::::::
sampling

:::::::::
uncertainty

::
of

:::
the

::::::::
KGE-NP

::::::::
objective

:::::::
function

::
is

::::::
defined

::
as
:::

the
::::::::
tolerance

:::::::
interval

::
of

:::
the

:::::::
standard

:::::
error

::
of

:::
the

::::::::
objective

:::::::
function

::::
due

::
to

::::::::::::
sub-sampling

::
of

:::
the

:::::::::
simulation

::::
and

::::::::::
observation

:::::
pairs.

::::
This

:::::::
analysis

::::::::
provides

:::::::
insights

::::
into

::
the

::::::::
temporal

:::::::::
reliability

:::
and

:::::::::::::
interpretability

::
of

:::::::::::
hydrological

::::::
model

::::::::::::
performances.

::::::::
Analysis

::
of

::::::
results

::::
from

::::
the

:
6
::::::::::

conceptual

::::::::::
hydrological

:::::::
models,

::
as

::::::
shown

::
in

::::::
Figure

:::
7b,

::::::
reveals

::
a
::::::
pattern

:::::::::
consistent

::::
with

:::
the

::::::
model

::::::::::
performance

::::::::
depicted

::
in

::::::
Figure

:::
3c.540

::::::::::
Specifically,

:::
the

::::
VIC

:::::
model

::::::::
displays

:::
the

::::::
highest

::::::::
KGE-NP

:::::::::
uncertainty

::::::
across

::
all

:::::::::::
catchments,

::::::::
indicating

:::
its

::::::::
variability

::::
and

:::
the

::::::::
challenges

::
in
:::::
using

::::
this

:::::
model

::::::
current

:::::
setup

:::
for

:::::::
accurate

:::::::::
predictions

:::
in

:::::::
different

::::::::::
hydrological

::::::::
contexts.

:

:::
The

:::::::::
IHACRES

:::
and

::::::
SMAR

:::::::
models,

:::::
along

::::
with

:::::
GR4J,

::::::::::::::
XINANJIANG,

:::
and

:::::::
HBV-96,

:::::
show

::::::
similar

:::::
levels

::
of

:::::::::::::::
KGE-uncertainty.

::::
This

::::::::::
consistency

:::::
across

:::::::
models

::::
with

:::::::
varying

:::::::::::
complexities

:::::::
suggests

::::
that

::::::::
KGE-NP

:::::::::
uncertainty

::
is
:::::::::

influenced
::::

not
::::
only

:::
by

:::
the

:::::
model

::::::
design

:::
but

::::
also

::
by

:::::::::::
hydrological

:::::::::
conditions

:::
and

::::
data

::::::
quality.

::::::::::
Uncertainty

::::::
values

:::::
range

::::::
widely,

:::::
from

:::::
about

:::
0.1

::::::::
KGE-NP545

::
to

::::
over

:::
0.6,

:::::::::
indicating

::::::::
significant

:::::::::
variability

::
in

::::::::
temporal

:::::::::
robustness

::
of

::::::
results

::::::
(Figure

::::
7b).

:::::
When

:::::::::
comparing

:::
the

:::::::
average

::::::::
KGE-NP

::::::::
objective

::::::::
function

:::::::::
uncertainty

:::::
with

:::
the

::::::::
KGE-NP

::::::::::
differences

:::::::
between

:::::::::
individual

::::::
models,

::
it
::::::::
becomes

::::
clear

::::
that

::::::::::
uncertainty

::::
often

:::::::::::
overshadows

:::
the

::::::::::
differences

:::::::
between

:::::::
models. These are low values but can

potentially influence system scale conclusions. After exclusion of these catchments we can conclude that the model comparison

is not heavily influenced by the observation uncertainty . The smaller differences between simulation in the intra-model550

experiment result in many catchment simulations for which additional calibration does not significantly lead to improvements

of streamflow estimates in light of observation uncertainty . This is
:::::::::
particularly

:::
the

::::
case

:::
in

:::::::::::
comparisons

:::::::
between

:::::
GR4J

::
-

:::::::
HBV-96,

:::::::::::::
XINANJIANG

:
-
::::::::
HBV-96,

:::
and

::::::
SMAR

:
-
::::::::::
IHACRES.

:::::
These

:::::::
findings

:::::
imply

::::
that

:::
the

:::::::
inherent

:::::::::
uncertainty

::
in

:
the case for

116 of the low flow, 114 of the average flow, and 138 catchments of the high flow category. The differences in simulations are

more substantial for the inter-model comparison as only a few catchments per flow category are smaller than the observation555

uncertainty.
:::::::
objective

:::::::::
functions

::::
may

:::::
limit

:::
the

::::::
ability

::
to

::::::::::
distinguish

:::::::
between

::::::
model

::::::::::::
performances,

:::::::::::
complicating

::::::
efforts

:::
to

::::::
identify

:::
the

:::::
most

::::::::::::
fit-for-purpose

:::::
model

:::::
based

:::
on

:::
this

::::::
metric

:::::
alone.

::::
This

::::::::::
underscores

:::
the

:::::
need

:::
for

:
a
:::::
more

:::::::
nuanced

::::::::
approach

::
to

:::::
model

:::::::::
evaluation

:::
that

::::::::
considers

:::
not

::::
only

::::::::
objective

:::::::
function

::::::
metrics

:::
but

:::
also

:::::
other

:::::::::
contextual

::::::
factors

:::
and

::::::::
additional

:::::::::::
performance

::::::::
measures,

:::::::
ensuring

:::::
more

:::::
robust

::::
and

::::::
reliable

::::::
model

:::::::
selection

:::::::::
processes.

:

4 Discussion560

This study
:::
We

:::::::::
introduced

:::
an

::
ad

::::
hoc

:::::::
method

::::
that highlights the importance of taking into account streamflow observation

uncertainty and objective function sampling uncertainty when evaluating or comparing
:::::::
including

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

::::
when

:::::::::
evaluating

:
hydrological models.

::::::::
Discharge

::::::::::
observation

::::::::::
uncertainty

::
is

:::::::::
frequently

:::::::::
overlooked

:::
by

::::::
model

:::::
users,

:::::::
leading
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Figure 7. Result
::
(a)

::::::::
Temporal

:::::::
objective

::::::
function

:::::::
sampling

:::::::::
uncertainty

::::
based

:::
on

:
6
::::::::
conceptual

::::::::::
hydrological

::::::
models

:::::::
expressed

::
as

:::
the

::::::
average

:::::::
tolerance

::::::
interval of t-test with an statistical significance level of 0.05 determining if the observation

::::::
standard

::::
error

:::
due

::
to

:::::::::::
sub-sampling.

::::
With

::
on

:::
the

:::::::
horizontal

::::
axis

:::
the

::::
sorted

::::::
values

::
per

::::::::
catchment

:::
and

:::
on

:::
the

:::::
vertical

::::
axis

:::
the

:::::::
KGE-NP

:::::::
objective

::::::
function

:
uncertaintytime series

is larger than
:
.
:::
(b)

::::
Heat

:::
map

::
of
:

the simulation time series
:
6

::::::::
conceptual

::::::::::
hydrological

:::::
models

:::::::
showing

:
for each flow category and model

experiment
:::::::::
combination

:::
the

::::::
number

::
of

::::::::
instances

::::::
(n=299)

:::
that

:::
the

::::::
average

::::::::
objective

::::::
function

:::::::::
uncertainty

::::::
exceeds

:::
the

:::::::
objective

::::::::
functions

::::::::
differences

::
of

:::::
model

::::::::::
combinations. 398 catchments are considered

::::
With

::
in

::::
white

:::
low

:::::
values

:::
and

::
in

:::
red

:::
high

:::::
values

::::::::
indicating

:::
the

::::::
number

::
of

:::::::
instances.

::
to

:::::::
potential

::::::::::::::::
misinterpretations

::
of

:::::::
relative

::::::
model

:::::::::::
performance.

::::
Our

:::::::
findings

:::::::::
emphasize

::::
the

:::::::::
significant

::::::
impact

::
of

:::::::::
discharge

:::::::::
observation

::::::::::
uncertainty

::
on

::::::
model

::::::::::
performance

::::::::::::
interpretation.

:
565

We acknowledge that these are
::::::::::
observation

:::::::::
uncertainty

::
is
:
not the only sources

:::::
source of uncertainty as there is uncertainty

::
are

:::::::::::
uncertainties

:
in model inputs, model structure, parameter sets,

:::
and initial or boundary conditions , and more (e.g. Renard

et al. (2010); Dobler et al. (2012); Hatterman et al. (2018); Moges et al. (2021)). An uncertainty assessment of the complete

modelling chain is necessary to determine the validity of model results.
:::
e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Renard et al. (2010); Dobler et al. (2012); Hattermann et al. (2018); Moges et al. (2021)

:
).
:::::::::
Therefore

:::
the

::::::::
proposed

::::::
generic

::::::
tooling

:::::
does

:::
not

::::::
replace

::
a
:::
full

::::::::::
uncertainty

:::::::
analysis

::
of

:::::::::
modelling

::::::
chains

:::
that

::::
also

::::::::
accounts570

::
for

:::
the

::::::
impact

::
of

:::::
input

::::::::::
uncertainties

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Beven and Freer (2001); Pappenberger and Beven (2006); Beven (2006)

:
).
::
It
:::::
rather

::::::
assists

:::::
model

:::::
users

::::
with

::::::::::
interpreting

:::::::
relative

::::::
model

:::::::::::
performance

::::
and

::::::::
highlights

::::
the

:::::::::
importance

:::
of

::::::::::
conducting

:
a
::::

full
::::::::::
uncertainty

:::::::
analysis.

::::
Our

:::::
study

::::::::
therefore

:::::
only

:::::::::
constitutes

::::
just

::
a

:::::::
fraction

::
of

::
a
:::::::
broader

:::::::::
challenge,

::
in

::::::
which

:::::
input

::::::::::
uncertainty

:::::
plays

::
a

:::::::::
substantial

:::
role

::
as

:::
has

:::::
been

:::::::::::
demonstrated

::
in

:::::::::::::::::::::::
Bárdossy and Anwar (2023)

:
.

4.1 From sampling uncertainty to certainty575

The objective function sampling uncertainty assessed in Section 3.2 is the result of outliers in the probability distribution of

the squared errors between model simulations and observations. High values of sampling uncertainty indicate that certain data
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points have an exceptionally large effect on the objective function. It is therefore important to investigate the validity of these

data points as measurement error or model error might misconstrue the actual model performance

4.1
:::::::::::

Performance
::::::::::::
interpretation

::::::
under

::::::::
discharge

:::::::::::
observation

::::::::::
uncertainty580

:::
Our

:::::::
analysis

:::::::::::
demonstrates

:::
that

:::::::::
regionally

:::::::::
optimizing

:::
the

:::::::::
wflow_sbm

:::::::::::
hydrological

:::::
model

:::::
often

:::::
results

::
in

::::
only

::::::::
marginal

:::::::::::
improvements

::
in

:::::
model

:::::::::::
performance

::::::
(Figure

::::
3a).

::::::::
Although

:::
any

::::::::::::
improvement

::
is

::::::::
beneficial,

:::
the

:::::::
findings

:::::::
suggest

::::
that

:::::::::
discerning

:::
the

:::::::
superior

:::::
model

::::::
variant

::::::::
becomes

::::::::::
challenging

:::::::
without

::::::::
factoring

:::
in

:::
the

::::::::::
uncertainty

:::
of

::::::::
discharge

:::::::::::
observations

::::::
during

:::
the

::::::::::
calibration

::::::
process.

:::::
This

::
is

::::::
evident

::
in

:::
98

:::::::
instances

:::
for

::::
low

:::
and

:::::::
average

:::::::::
categories

::
of

::::
flow

:::
and

::
in
::::

118
::::::::
instances

::
of

:::
the

::::
high

::::
flow

::::::::
category

:::::
(Table

:::
2).

:::
The

:::::::
number

::
of

::::::::
instances

::
is

:::::::
expected

::
to
::::::
further

:::::::
increase

:::::
when

::::::::
including

:::::
flows

::
of

:::
the

:::::
lower

:::
and

::::::
upper

:::
5th

:::::::::
percentiles585

::
of

::::
flow

:::
are

::::::::
included.

::::
The

::::::::
adoption

::
of

:::
an

:::
ad

:::
hoc

::::::::
measure,

::
as

::::::::::
introduced

::
in

::::
this

:::::
study,

::::::::
provides

:
a
::::::::

practical
::::::
though

:::::::
limited

::::::
method

:::
for

:::::::::
improving

:::
the

::::::::::::
interpretability

::
of

:::::::
relative

:::::
model

::::::
results. For example, the spatial distribution of the results showed

agreement on high sampling uncertainty clustered in the South of Great-Britain. This region contains the karst (chalk)geology

that is known to be difficult to model correctly (Hartmann et al., 2018). Further inspection of the streamflow observations at the

catchment outlets did not show unexpected outliers that might indicate measurement error. It is therefore likely that differences590

between observations and simulations are large and inconsistent and might not only be influenced by how the time series are

sampled. Through the detailed inspection of the time series we can deem with a higher degree of certainty that the results are

not unjustly influenced by sampling.
::::::::
Therefore,

:::
we

::::::::::
recommend

:::
the

:::::::::
integration

::
of

:::::::::
discharge

:::::::::
observation

::::::::::
uncertainty

::::
into

::::
both

::
the

::::::
model

:::::::::
calibration

:::
and

:::::::::
evaluation

::::::::::
procedures,

:::::::
aligning

::::
with

:::
the

:::::::::
consensus

::
in

::::::::
literature.

In addition, we compared the distributions of the sampling uncertainty results of each model run and objective function in595

Appendix A2 to those presented for the VIC model using the large-sample CAMELS-US dataset by Clark et al. (2021). The

distributions of this study are similar for each model experiment and objective function and of similar magnitude to those of

Clark et al. (2021). Therefore,
:::::
When

:::::::::
comparing

:::::::
different

:::::::::::
hydrological

:::::::
models,

:::
we

::::
find

:::
that

:
the same conclusion is valid for

both studies in that care should be taken before drawing conclusions at the system scale. This is especially the case for the

identified catchments in this study that contain sampling uncertainty values greater than the difference in objective functions600

between two model simulations.

4.2 Why we should take into account observation uncertainty

The results of this study demonstrate that (streamflow) observation uncertaintyis important to consider when comparing or

evaluating hydrological models. If the difference between model simulations is within the uncertainty bounds of the observation

uncertainty it is not possible to draw conclusions on best performing model simulations. The intra-model experiment shows that605

smaller differencesbetween modelssuch as changes made to model structure, inputs, or parameterization and calibration result

in more of these occurrences. This is the case for 123 catchments based on the average of all flow categories. This does not mean

that the incremental improvements to the model structure are not important, but it does show that they might not be as relevant

as expected in light of
:::::::::
uncertainty

::
of

::::::::
discharge

:::::::::::
observations

::::::
slightly

::::::
masks

:::
the

:::::::::
differences

:::
in

::::::
relative

::::::
model

::::::::::
performance

:::
as

:::::
shown

:::
by

::
the

::
3
::
to

:
5
::::::::
instances

:::
per

::::
flow

:::::::
category

::
in

::::::
Figure

::
3b

:::
and

:::::
Table

::
2.

::::::::
Similarly

::
to

:::
the

:::::
model

::::::::::
comparison

:::
use

::::
case,

:::
the

::::::
model610
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:::::::
structure

:::
use

::::
case

::::::::
indicates

:::
that

::::::::
structural

:::::::::::
uncertainties

::::::::::
overshadow

:::
the

::::::
effects

::
of

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty.

::::::::
However,

::
the

::::::::::
comparison

::
of
:::::::::

individual
::::::
models

::
in
::::::
Figure

::
6

:::::
shows

:::::
many

::::::::
instances

::
of

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::::::::
exceeding

::::::
model

::::::::::
performance

::::::::::
differences.

:::
For

::::::::
instance,

:::
the

:::::::::
IHACRES

::::
and

::::::
SMAR

:::::::
models,

::::::
despite

:::::
their

::::::::
structural

::::::::::
differences,

::::::::::
demonstrate

::
a

::::
high

::::
level

::
of

:::::::::
simulation

:::::::::
agreement

::::::
(Figure

:::
3c)

::::
and

:::::::::
subsequent

::::::::
difficulty

::
in

:::::::::
discerning

:::::
model

:::::::::::
performance

:::::::::
differences

:::
in

::::
light

::
of

::::::::
discharge

:::::::::
observation

::::::::::
uncertainty.

::
In

:::::::
contrast,

:::
the

::::
VIC

:::
and

:::::::::::::
XINANJIANG

:::::::
models,

:::::
which

::::
have

::::::
similar

:::::::::
structures,

::::::
display

:::
for615

::::::::
two-thirds

::
of

:::
the

:::::::::
catchment

:::::::::
simulation

:::::::::
differences

:::::
within

:::
the

::::::::::
uncertainty

::::::
bounds

::
of

:::
the

::::::::
discharge

:::::::::::
observations.

::::
This

:::::::::
underlines

::
the

::::::::
complex

:::::::
interplay

::
of

::::::
model

::::::::
structures

::::
and

:::::::::
subsequent

:::::::::::
performance,

::::::::
especially

:::::
when

:::::::::
contrasted

::::
with

::::::::
discharge observation

uncertainty. The inter-model comparison contained only 3 to 6 catchments (

4.2
::::::::

Temporal
:::::::::
robustness

::
of

::::::
model

::::::::::::
performance

:::::
Model

:::::::::::
performance

:::
can

:::
be

::::::
heavily

:::::::::
influenced

:::
by

:
a
::::

few
::::
data

:::::
points

:::
in

:::
the

::::
time

:::::
series

:::
on

:::::
which

::::::
model

:::::::::::
performance

::
is

:::::
based620

:::::::::::::::
(Clark et al. (2021)

:
).
::::
This

::::
can

:::::
results

::
in

::::::
biased

:::::
model

::::::::::
performance

::::::::::::
interpretations

:
depending on the flow category) of significantly

higher observation uncertainty than simulation differences. We recommend that these catchment simulations are removed from

benchmarks or model comparisons.

In this study we used the limits of streamflow observation uncertainty at the catchment outlets as described in the CAMELS-GB

dataset. Besides the limitations of the quantification of the observation uncertainty itself, this study is limited by the availability625

of only the uncertainty bounds of uncertainty. If we had ideal data available we would use the standard deviations of the

observation uncertainty distributions as these are more conservative estimates. This would result in less catchment simulations

showing higher observation uncertainty than the differences between model simulations
::::::
selected

::::
time

::::::
period

::
for

:::::::::
calibration

::::
and

:::::::::
evaluation.

:::::
When

::::::
models

:::
are

::::::::
sensitive

::
to

::::::
certain

::::
data

::::::
points

:::
this

:::
can

:::
be

:::
due

::
to
::
a
::::
lack

::
of

::::::::
adequate

::::::
process

:::::::::::
descriptions

::
in

:::
the

:::::::::
considered

::::::
models.

::
In

::::::::
addition,

:::
this

:::::
might

::::
also

::::::
indicate

:::
the

::::::::
presence

::
of

::::::::::::
disinformative

:::::
events

:::
and

::::::
model

::::::::::
invalidation

:::
sites

::::::
where630

::
the

::::::
runoff

:::::::::
coefficient

::::::
exceeds

:
a
:::::
value

::
of

::
1

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Beven and Smith (2015); Beven (2023); Beven and Lane (2022); Beven et al. (2022)

:
)
::
or

:::
the

:::::::
presence

::
of

:::::::
atypical

::::
data

::::
(e.g.

::::::::::::::::::
Thébault et al. (2023)

:
).
:

::::::
Models

:::::
ought

::
to

::::::::::
demonstrate

::::::::
adequate

::::::::::
performance

::::::
across

:::
the

:::::
entire

::::
time

:::::
series

:::
and

:::
this

::::::
should

::
be

:::::::::
accurately

::::::::::
represented

::
in

::
the

:::::::::::
performance

:::::::::
outcomes.

:::
The

::::::::::
assessment

::
of

:::::::
temporal

::::::::
sampling

:::::::::
uncertainty

:::::
does

:::
not

:::::
imply

:::
that

::::
this

:
is
::::::
should

:::
not

::
be

:::
the

:::::
case,

:
it
:::::
rather

::::::
points

:::::::
towards

::
in

:::
the

:::::
model

:::::::::
simulation

::::
and

::::::::::
observation

::::
pairs

::::
that

:::
are

:::::
worth

:::::::::::
investigating.

::::::
These

::::::::
instances

:::
can

:::::
serve635

::
as

::::::::
indicators

:::
that

:::::::
suggest

:::::
areas

:::::
where

::::::
models

::::
may

::::::
require

::::::
further

:::::::
scrutiny

:::
and

:::::::::::::
improvements.

:::::::
Knowing

:::
the

::::::::
temporal

::::::::
sampling

:::::::::
uncertainty

::
is

:::::::
relevant

:::
for

:::::
model

:::::
users

::
as

::
it

:::::::
provides

::::::::::
information

:::
on

:::
the

::::::::::
consistency

::
of

:::
the

:::::
model

:::::::::::
performance

::::
over

::::
time

::::
that

:
is
:::::::::
necessary

::
to

::::::::
determine

:::
the

::::::::::::
fit-for-purpose

:::
of

:
a
::::::
model.

:::::::::
Therefore,

::
it

::
is

:::::::::::
recommended

:::
to

::::::
include

:::::::::
alternative

:::::::::
estimators

:::::
better

:::::
suited

::
for

:::::::
skewed

::::::::::
performance

::::
data

::
in

:::
the

:::::::
reporting

:::
of

:::::
model

::::::::::
performance

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Lamontagne et al. (2020); Shabestanipour et al. (2023); Towler et al. (2023)

:
).640

4.3 Moving towards standardized benchmark procedures
::::::::
Practical

:::::::::::
implications

:::
for

::::::
model

:::::
users

We introduced a method that accounts for streamflow observation uncertainty which is kept
:::
The

:::::::
method

:::::::::
introduced

::
in

::::
this

::::
study

::
is
:::::::::
purposely

:::::::
designed

::
to
:::

be as generic and easy to implement as possible . The generality ensures broader applicability
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in hydrology and geosciences. The method is applicable for any
::::::::::::
straightforward

::
as

::::::::
possible

::
to

::::::::
increase

:::
the

::::::::
potential

:::
for

:::::::
adoption

::
in

:::::
future

:::::::
studies.

::
It

:::
can

::
be

:::::::
applied

::
to

:::
any

::::::::::
hydrological

:
state or flux for which

:::::
where observation time series including645

uncertainty estimatesare available. In the absence of uncertainty estimates, one might use this method in combination with

multiple evaluation products. A rough estimate of uncertainty can be based on the probability density distribution of multiple

observation time series. The ease of implementation is key as it more likely to be adopted by other studies and to be part of

standardized benchmarks.

Benchmark procedures are workflows that are used to compare models. We advocate to include sampling uncertainty and650

observation uncertainty in our benchmark procedures. This can be achieved by reportingthe uncertainty values and after

conducting the analyses excluding catchment simulations from benchmarks. Reporting can be further improved by separating

flow conditions. In the case of streamflow the additional information through flow separation can be used to support hypotheses

related to connections between streamflow simulations and hydrological process descriptions. This distils into reporting more

meta-data with model outputs in a standardized manner
::::::
include

::::::::::
uncertainty

::::::::
estimates.

:
In

::::::::
addition,

:::
we

::::::::::
recommend

:::
for

::::
the655

::::::
routine

::::::::
reporting

::
of

:::::::::
evaluation

::::
data

:::::::::::
uncertainties

::
as

::::
well

:::
as

:::
the

::::::::
temporal

::::::::
sampling

::::::::::
uncertainty

::
of

::::::::
objective

::::::::
functions.

:::::
This

:::::
would

:::
not

::::
only

::::
yield

::
a

::::::
clearer

:::::::::::
understanding

::
of

:::
the

::::::::
relevance

::
of

::::::::::
differences

:::::::
between

:::::
model

::::::::
outcomes

:::
but

::::
also

:::
aid

::
in

:::::::::
identifying

::::::
samples

::::
that

:::::::
require

:::::::
cautious

::::::::::::
interpretation.

::::
This

:::::::::
reporting,

::::::::
however,

::::
does

:::
not

:::::::
replace

::::::
model

::::::::::
benchmarks

::::
that

::::::
include

::::
full

:::::::::
uncertainty

:::::::
analyses

::::
(e.g.

:::::::::::::::
Lane et al. (2019)

:
),
:::
but

::::::::
enhances

:::
the

::::::::::::
interpretability

:::
of

:::::
model

:::::::::::
performance

::
in

::
its

:::::::
absence.

:

For statistical and model benchmarks to be standardized it is necessary that the community agrees on best practices and660

provides a template for benchmark experiments and reporting and storage (Hoch and Trigg 2019). Standardized benchmark

procedures will increase the longevity of
:::
For model benchmark results for future research. Standardization will also reduce

redundant work as less model runs are required. This has the benefit of stimulating more time spent on novel research than

data intensive studies (Jain et al., 2022). Standardized benchmark templates should encompass multiple objective function,

as is reconfirmed by the sensitivity of results to objective function selection in this study, and workflows for the evaluation665

of multiple states and fluxes
::::
users,

::::
this

::::::::
approach

::::::
offers

:
a
:::::::::

pragmatic
::::
way

:::
to

:::::::::
understand

:::
the

:::::::::::
implications

:::
of

:::::::::
uncertainty

:::
in

::::
their

:::::
model

::::::::
selection

:::::::::
processes.

:::::
While

::::
our

::::::
method

:::::::::
facilitates

:
a
::::::
clearer

::::::::::::
understanding

:::
of

:::::
where

::::
and

::::
how

:::::::::::
uncertainties

:::::
affect

::::::
relative

:::::
model

:::::::::::
performance

::::::::::
differences,

:
it
::::::
should

:::
be

::::::
viewed

::
as

:
a
:::::::::::::
complementary

::::
step

:::::
rather

::::
than

::
a

::::::::::
replacement

:::
for

:
a
::::::::
thorough

:::::::::
uncertainty

:::::::
analysis.

Here, we make an effort to standardize the workflow by firstly using the same meteorological forcing data and streamflow670

observations that were used to create the

4.4
:::::::::

Limitations

:::
The

:::::
study

:::::::::
presented

::::
faces

:::::::
several

:::::::
practical

::::::::::
limitations.

:::::
First,

:::
the

:::::::::
exclusion

::
of

:::
the

:::::
lower

::::
and

:::::
upper

::::
5th

:::::::::
percentiles

::
of
:::::

flow

::::
from

:::
the

:::::::
analysis

:::::::::
introduces

:
a
:::::::::
constraint

::
on

:::
the

::::::::::
uncertainty

::::::::::
assessment,

::::::::::
overlooking

::::::
critical

::::
flow

:::::::::
conditions

::::
that

:::
are

::::
often

:::
of

::::::::
significant

:::::::
interest

::
in

:::::::::::
hydrological

:::::::
studies.

::::
This

::::::::
exclusion

:::::
limits

::::
the

:::::
ability

:::
to

::::
fully

:::::::::
understand

::::::
model

:::::::::::
performance

:::::
under

::
a675

:::::::
complete

:::::
range

::
of

:::::::::::
hydrological

:::::::::
conditions.

:::::::
Second,

:::
the

:::::::
reliance

::
on

::::::::::
uncertainty

::::::
bounds

:::::
rather

::::
than

:::::
direct

::::::::::
uncertainty

::::::::
estimates

::::
from

:::::
rating

:::::::
curves,

:::
due

::
to
:::::

their
:::::::
absence

::
in

:::
the

:
CAMELS-GB dataset for consistency and secondly through the creation of
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reproducible workflows using eWaterCycle (Hut et al., 2022). We use eWaterCycle to show how benchmark studies can be

done in a reproducible manner using high level readable code. Platforms like eWaterCycle should host standardized benchmark

procedures to achieve the benefits outlined above. With this study we aim to set first steps by providing documented example680

notebooks of the scripting (GitHub Repo:add DOI). This can be viewed as a template for a benchmark procedure when

studying the difference in hydrological model performance in the light of observation uncertainty and objective function

sampling uncertainty
::::::
dataset,

:::::
poses

:::::::
another

:::::::::
limitation.

::
By

:::::
using

:::::
broad

::::::::::
uncertainty

::::::
bounds

::::::
instead

::
of

::::::
precise

::::::::
estimates

:::::::
derived

::::
from

:::::
rating

:::::::
curves,

:::
the

:::::::
analysis

::::
may

:::
not

:::::::
capture

:::
the

::::
true

::::::::
variability

::::
and

::::::::::
uncertainty

:::::::
inherent

::
in

:::
the

::::::::
discharge

::::::::::::
observations.

::::
Last,

:::
the

::::::
study’s

:::::::
focuses

::::::
solely

::
on

:::::::::
evaluating

::::::
model

:::::::::::
performance

::::::::
primarily

:::::::
through

::::::::
discharge

::::::::::
simulations,

:::::::
without

:::::::
delving685

:::
into

:::
the

:::::::
reasons

::::::
behind

::::
good

::
or

::::
poor

::::::
model

:::::::::::
performance

::
as

:::
this

::
is

::::::
outside

::
of
:::

the
::::::
scope

::
of

:::
the

:::::
study. To facilitate comparisons

between different studies we encourage the hydrological community when doing benchmark studies to either use, or add to

the collection of , community standard benchmark templates. Future work should extent the benchmark procedure to include

evaluation of multiple states and fluxes.

We set out this study to highlight690

5
::::::::::
Conclusions

::::
This

::::
study

:::::::
assesses

:
the importance of including streamflow

::::::::
discharge observation uncertainty and objective function uncertainty

when conducting hydrological model evaluations or model comparisons based on
:::::::
temporal

::::::::
sampling

::::::::::
uncertainty

::
of

::::::::
objective

:::::::
functions

:::
in

::::::::::
hydrological

::::::
model

::::::::::
performance

::::::::::
evaluations

:::::
based

::
on

::
a large-sample hydrology dataset. By developing a generic

and easy to implement method we demonstrate how these uncertainties can be included in benchmark procedures. The scripting695

accompanying this study is easily adaptable to other case study areas, hydrological models , and forcing inputs due to

the implementation in eWaterCycle.
:::::::::
catchment

::::::
dataset.

:::::
This

::
is

::::
done

:::
by

::::::::
statistical

::::::
testing

::::
that

::::::::::
determines

::
if

:::
the

:::::::::
difference

::
in

::::::::
discharge

::::::::::
simulations

:::::::
between

::::
two

:::::::::::
hydrological

:::::::
models

::
is

:::::
larger

::
or

:::::::
smaller

::::
than

::::
the

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::::::::
estimates.

:::
To

::::::
support

:::
this

:::::::
analysis

::::
flow

:::::::::
categories

:::
are

::::::
created

:::::::
between

:::
the

::::
5th

:::
and

::::
95th

::::::::
percentile

:::::
range

:::
of

:::::::
observed

::::
flow

::::
and

:
3
:::
use

:::::
cases

:::
are

:::::::
devised.700

We demonstrated the methodology through two experiments. An inter-model comparison experiment of the
::
In

:::
the

::::::
model

:::::::::
refinement

:::
use

::::
case

::
a

:::::::::
substantial

:::
100

::::
out

::
of

::::
299

:::::::::
catchment

::::::::
instances

::::::
showed

:::::::::
discharge

:::::::::
simulation

:::::::::
differences

::::::::
between

:::
the

::::::
default

:::
and

:::::::::
optimized wflow_sbm and PCR-GLOBWB hydrological models and an intra-model evaluation experiment that

assesses the benefits of additional calibration based on streamflow observationsof the wflow_sbm model.

The main findings of these experiments are that for the sampling uncertainty assessment the intra-model evaluation experiment705

simulations of 210 (KGE-NP) and 288 (NSE) out of 398 catchments contain higher sampling uncertainty than the difference in

objective functions. For the inter-model comparison experiment simulations these are 53 (KGE-NP) and 86 (NSE) catchments

out of 398. In these cases
:::::
models

::::
that

::::
were

::::::
within

:::
the

:::::::::
uncertainty

::::::
bounds

:::
of

::::::::
discharge

:::::::::::
observations.

::::
This

::::::::::
emphasizes

::
the

:::::
need

::
for

::::::::::
integrating

::::::::
discharge

::::::::::
observation

:::::::::
uncertainty

:::
in

:::
the

:::::::::
calibration

::::::
process

:::
for

::::::
model

::::::::::
refinement.

::
As

::
a
:::::
result

:
it is difficult to

draw conclusions as to which model is best performing based on streamflow at the catchment outlet before further investigating710
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the validity of the data points causing the sampling uncertainty. The high number of occurrences establish and highlight the

importance of reporting sampling uncertainty.

For the observation uncertainty assessment,
::::::
discern

::
if

:::
the

:::::::::::
optimization

::
of

::::
the

:::::
model

:::::
leads

:::
to

::::::::
improved

::::::::::
simulations

:::
of

:::::
actual

:::::::::
discharge.

:::
For

:
the intra-model evaluation experiment shows,

:::::
model

::::::::::
comparison

::::
use

::::
case,

:::
we

::::::
found

::::
that depending

on the flow category, between 114 and 138 catchment simulations with statistically higher streamflow observation uncertainty715

than differencesbetween model simulations. Hence, no conclusions can be drawn on the better performing model simulation.

Lower values of between 3 and
:::::
model

:::::::::::
combinations

::
a

::::
large

:::::::
fraction

::
of

::::::::::
catchments

::::::
showed

::::::::
discharge

::::::::::
observation

::::::::::
uncertainty

::::::::
exceeding

:::::::::
simulation

::::::::::
differences.

:::::::
Thereby

:::::::::
suggesting

::::::
careful

:::::::::::
consideration

::
of

:::
this

:::::::::
uncertainty

::
in

::::::
model

::::::::::
performance

::::::::::
evaluations.

:::
The

::::::
model

:::::::
structure

::::::::::
uncertainty

:::
use

::::
case

::::
that

::
is

:::::
based

::
on

:
6 catchment simulations are found for the inner-model comparison

experiment. These should be reported and excluded from benchmarking. Given that the number of catchments is low, system720

scale conclusions are not as strongly affected by the streamflow
:::::::::
conceptual

::::::::::
hydrological

::::::
models

::::::::
indicated

::::
only

::
a

:::
few

::::::::
instances

::
of

::::::::
discharge

:::::::::
observation

::::::::::
uncertainty

::::::::
exceeding

:::::::::
simulation

::::::::::
differences.

::::::::
Indicating

::::
that

:::::
model

::::::::
structure

:::::::::
uncertainty,

:::::::::
expressed

::
as

::::::::
discharge

::::::::
simulation

::::::::::
differences,

:::::
often

::::::
exceeds

::::::::
discharge

:
observation uncertainty.

::::::::::
Comparison

::
of

:::
the

::
six

:::::::::
individual

::::::::::
hydrological

::::::
models

::::::
showed

:::
no

::::
clear

:::::::
relation

:::::::
between

:::::
model

::::::::::
complexity

:::
and

::::::
model

:::::::::::
performance.

These experiments demonstrated the importance of not accepting the output of benchmark efforts on face value when no725

analyses of sampling uncertainty and streamflow observation uncertainty are performed. Implementing the proposed method

in standardized benchmark procedures will lead to more robust benchmarking results
:::
Our

:::::
study

::::::::::
underscores

:::
the

::::::::
necessity

:::
of

:::::::::
integrating

::::::::
discharge

:::::::::
observation

::::::::::
uncertainty

:::
and

::::::::
temporal

::::::::
sampling

:::::::::
uncertainty

::::
into

::::::::::
hydrological

::::::
model

:::::::::
evaluations

::
to

::::::
ensure

:::::::
accurate,

:::::::
reliable,

::::
and

:::::::::
meaningful

:::::::::::
assessments

::
of

:::::
model

::::::::::::
performance.

:::::::::::
Implementing

::::
our

::::::::
proposed

:::::::::::
methodology

::
in

::::::::
reporting

:::::::
practices

::
is

::::::::
expected

::
to

:::::::
improve

:::
the

::::::::::
robustness

::
of

:::::::::::
hydrological

:::::
model

:::::
result

::::::::::::
interpretation,

::::::
aiding

::
in

:::::
more

::::::::
informed

::::::
model730

:::::::
selection

:::
and

::::::::::
refinement

:::::::
decisions

:::
by

:::::
model

:::::
users.
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Figure B1.
::::::::
Cumulative

:::::::::
distribution

::::::
function

:::::
(CDF)

::::
plots

::
of

:::
the

:::::::::::
Nash-Sutcliffe

::::::::
Efficiency

:::::
(NSE)

:::::::
objective

:::::::
function,

:::::
derived

::::
from

::::::::
discharge

:::::::
estimates

:::
and

::::::::::
observations

::
at

:::
299

::::::::
catchment

::::::
outlets.

:::
(a)

:::::
shows

:::
the

::::
CDF

:::
for

:::
the

:::::
model

::::::::
refinement

:::
use

::::
case,

:::::::::
optimizing

:::
the

:::::::::
wflow_sbm

:::::::::
hydrological

:::::
model

::::
with

:
a
:::::
single

::::::::
parameter.

:::
(b)

:::::
shows

:::
the

::::
CDF

::
for

:::
the

:::::
model

:::::::::
comparison

:::
use

::::
case,

::::::::
comparing

:::
the

::::::::
optimized

:::::::::
wflow_sbm

:::
and

::::::::::::
PCR-GLOBWB

:::::::::
hydrological

::::::
models.

:::
(c)

::::::::::
demonstrates

::
the

::::
CDF

::
for

:::
the

:::::
model

:::::::
structure

::
use

::::
case,

:::::::::
showcasing

:::::
results

::::
from

:::
six

::::::::
conceptual

:::::::::
hydrological

::::::
models.
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