
Reply to Review #2 

We would like to start by thanking the anonymous reviewer for their constructive comments and 

insightful review. We believe strongly that the feedback will help strengthen the revised manuscript 

and thereby will be of value to the hydrological modelling community.  

As mentioned in the reply to Review #1, we feel that the review may not fully capture the key 

message and central focus of our work, indicating that our framing requires significant improvement. 

In particular, we need to clarify the distinction between model developers and model users, a vital 

aspect for the proper framing of this study. As the authors of this publication, we belong to the model 

user category. 

It is essential to clarify that our intention is not to overlook any structural issues in the inputs, models, 

or their applications. The central point of our study is: “How do users of models, whom are not 

themselves the developers of these models” have to interpret differences in model output in the light 

of discharge observation uncertainty. Our study provides these users of models with the workflow and 

statistical tools to make that decision. We make a clear distinction between model developers and 

model users, because in daily use of models this distinction is also present. We illustrate this 

workflow and its usefulness with the model runs done with the two models on the CAMELS-GB 

dataset. The models are employed in this study as intended by the developers to demonstrate 

inevitable short comings and strengths of these models. We recognize the need to address this framing 

issue throughout the publication after careful revision. 

We are fully committed to addressing the specific concerns raised by the reviewer. In the following 

section, we will provide a point-by-point response to each concern and outline the steps we will take 

to address them adequately. 

General comments: 

“A significant overhaul is needed in my opinion. Mainly, the title says "observation uncertainty" but 

precipitation is also an observation and its uncertainty is left out. The paper should have said 

"observed discharge uncertainty" because that is the only thing it deals with.” 

In light of your feedback, We recognize that the publication needs to distinguish between the 

observation uncertainty and observed discharge uncertainty. To accurately represent our work, we will 

modify the title to 'observed discharge uncertainty,' as this encompasses the specific scope of our 

study. We will make sure to address this distinction throughout the revised manuscript. 

 

Specific comments: 

Abstract: 

What is temporal sampling and observation uncertainty? 

Indeed, these terms are ambiguous for readers and need clarification. We will improve the abstract by 

clarifying the terms and by using “discharge observation uncertainty” instead of “observation 

uncertainty”. The term “temporal sampling uncertainty” will be clarified by stating that this refers to 

the uncertainty that stems from the sampling of the evaluation period for objective function 

calculation. 

“L2-3: While mentioning that comparison studies are invalid, it should also be mentioned that all 

models (and the inputs used) are invalid to begin with. No model incorporates true nature. In my 

opinion, the point is more about finding out models that are useful for a given purpose.” 



We agree with the statement that models are flawed by nature and are only fit for a given research 

question (purpose). As mentioned in the review, if a model’s purpose is to accurately predict river 

discharge, as in our study, it is relevant to include discharge observation uncertainty in model 

comparisons. Adjustments will be made to include this in the revised manuscript. 

L3-5: Regarding the problem of temporal sampling, same data is fed to all models. If some perform 

better than others then, isn’t this what we are looking for? 

The aim is indeed to identify the best performing model. In hydrology, model often determined by 

implementing a singular objective function that quantifies the agreement between simulations and 

observations over a prolonged time period. As discussed in Clark et al. (2021), we must not overlook 

the relevance of temporal sampling when comparing hydrological models. For instance, Fowler et al. 

(2018) pointed out that equally weighting each year in the calibration timeseries emerges as the most 

robust strategy. This approach ensures that a given wet year’s influence, that may have a significant 

impact on the KGE-NP score (this study), is balanced with the potential value contained in dry years, 

particularly in the context of a changing climate. Furthermore, the work of Lamontagne et al. (2020) 

highlights an essential aspect of certain objective functions, which might exhibit low bias but still 

manifest considerable variability between samples of the streamflow time series. This variability can 

stem from the skewness and periodicity of the data. It is this variability that should be adequately 

captured by the hydrological models. Therefore, we highlight the problem of temporal sampling as 

evaluation procedures that only assess model performance on the whole temporal period can obscure 

objective judgement. 

L10-13: Only two models are compared? I would have used may be 10 given how large the number of 

test catchments is. Gao et al. 2018 show many in their first table (both conceptual and physically-

based). It would be interesting to see how the results change by taking more models. 

There is a wealth of hydrological models available of which only a small selection is presented in Gao 

et al. 2018. In this study, we demonstrate the use of an easy to implement methodology that is 

agnostic towards the selected models. Therefore, we feel that the addition of more models will not 

further exemplify the proposed method. We decided on using distributed models given their relevance 

for other research. Minimizing  redundant model runs and optimises time spent on novel research 

(Jain et al. 2022.) In addition, we utilized the eWaterCycle platform for model experimentation as it 

ensures reproducibility of this research. At the time of writing the number of available models on this 

platform is still limited, but actively being expanded upon. The analyses in this manuscript may be re-

run once more models are available on the platform.  

L11-13: For the inter-model case, please mention whether the models are calibrated or not. 

Thank you for this comment, we will rectify this in the revised manuscript.  

1. Introduction 

L31: I am really really sorry for my nit picking but hydrologists were well aware of the challenging 

aspects of hydrological modeling long before 2018. It is a well-known problem. I think you can omit 

the citation. 

We don’t view this as nit picking, we will remove the reference in the revised manuscript.  

L33-45: Very informative. Thanks. 

Thank you for this comment. 

2. Methodology 



L71: Observation uncertainty is mentioned but temporal uncertainty isn’t. Just add a few words for 

the sake of completeness. 

We will add a few words on temporal uncertainty in the revised manuscript for the sake of 

completeness.  

L94-99: Nicely summarized. 

Thank you for this comment. 

L103: Fine spatial resolution is used, but the problem of the daily temporal resolution is not treated. 

Small catchments (area < 1000 km2) have problems with time-of-concentrations. There, the peak 

precipitation and discharge take place at the same time step. Something that the model cannot solve 

and produces parameters that are unrealistic during calibration. The problem of a few values 

dominating the objective function is also the consequence of incorrect temporal resolution. At least in 

my experience. I have seen this problem for catchments of more than 4000 km2 size. And I have a 

sneaking suspicion that CAMELS-GB has smaller catchments inside it. A procedure has to be used 

that discards catchments where the precipitation peak and flow peak happen at the same time step, 

most of the times. Such a problem exists for larger catchment on daily time scales but to a much 

smaller degree. That is when a precipitation event happens near to the catchment mouth. 

Thank you for this insightful comment. We will identify and report the basins with large temporal 

discretisation errors as well as their catchment size. An additional analysis will be conducted 

following the mentioned procedure that highlights catchments where the precipitation peak and 

streamflow peak coincide in the same time step. The results will be critically reflected upon in the 

discussion chapter.  

Your feedback reinforces the importance of elucidating temporal sampling uncertainty. For instance, a 

hydrological simulations inability to capture peak flow might still yield a high objective function 

value when evaluated across an extended period. The potential penalization for missing peak flow can 

be mitigated by adequately capturing other components, such as baseflow. This underscores the 

intricate nature of the temporal sampling challenge, which we acknowledge in the study. 

L105-106: It is not mentioned why only two models were chosen. I don’t understand why legacy gave 

us two models only. In GB, Keith Beven has, for sure, used others. 

This is an ill-used term that will be removed from the revised manuscript. Originally legacy, referred 

to the relevance for evaluating hydrological models in the context of “hyper resolution modelling” 

(e.g, Wood et al., 2011; Beven and Cloke, 2012; Bierkens et al., 2015). 

L127: Yes, they will most probably lead to different conclusions. Hence, the recommendation of more 

than two models. 

The term in question has been misapplied and will be removed from the revised manuscript. Initially, 

it was employed to denote its relevance in assessing hydrological models within the framework of 

"hyper resolution modeling". 

L129-131:  Please elaborate as to why additional calibration is not needed. I do not understand. Is it 

so that model parameters are somehow known already? Comparing uncalibrated models to calibrated 

ones is unfair in my opinion. 

It's important to reframe the study to underscore that the authors are model users, not developers. We 

applied the models in accordance with the developers' intended use, meaning they were already 

calibrated and ready for direct application. Thus, evaluating the advantages of further calibration 

remains relevant. Although this comparison might appear biased, our curiosity lies in assessing 



whether enhanced model performance remains meaningful when considering discharge observation 

uncertainty. 

 

L145-151: Interesting. I am glad that this study relies so much on other’s work and doesn’t try to 

reinvent the wheel. 

We agree with the notion that adopting or relying on other’s qualitative work should be done when 

possible. 

L161-174: Here, I have a major problem with this study. The problem being that input uncertainty is 

not taken into account. Normally, observation locations are not enough to capture the point of the 

maximum precipitation which consequently leads to underestimation (in some cases overestimation) 

of the precipitation volume. This problem was demonstrated recently in Bárdossy and Anwar 2023. 

From the methodology explained here, I do not see any mention/treatment of this major problem till 

now.  

To address this significant concern, we will implement two key changes. Firstly, we will reframe the 

study to focus on discharge observation uncertainty, which is more accurate in capturing the essence 

of our investigation. Secondly, we acknowledge the necessity of addressing the aforementioned issue 

explicitly. We will introduce a discussion on this major problem in both the introduction and 

methodology sections. This will include a reflection on the challenges of performing demonstrations 

such as in Bárdossy and Anwar (2023) on a large-sample of catchments. Additionally, a dedicated 

section in the discussion will encompass a comprehensive reflection on all sources of input 

uncertainty. This will emphasize that our study constitutes just a fraction of a broader challenge, in 

which input uncertainty plays a substantial role. 

Also, I saw in the CAMELS-GB paper that they give a mean value of precipitation over the catchment. 

This is problematic, if used for a distributed model.  

Our study used distributed precipitation, temperature, and potential evapotranspiration fields as 

inputs. The CAMELS-GB paper used the same data to derive a single mean value per catchment.  

However, dealing with input, model and discharge uncertainty is an ill-posed problem and doesn’t 

seem to have any acceptable solution, as far as I know. A study that deals with observation 

uncertainty and leaves out precipitation will, in my humble opinion, lead to incorrect/invalid 

conclusions.  

One could argue that all models are presented with the same input, and therefore it is not much of a 

problem. But then, why consider observation uncertainty as all models are evaluated based on the 

same discharge? 

The point you raise about the uniformity of input might suggest that discharge observation uncertainty 

is less significant. However, it's important to note that while meteorological inputs might be similar, 

parameterization uncertainties and inherent model uncertainties vary between models. This leads to 

different propagation of uncertainties. The distinction in uncertainty propagation necessitates the 

consideration of discharge observation uncertainty, even when evaluations are based on the same 

observations.  

Slightly off topic. I think the readers would benefit if the temporal uncertainty methods are 

summarized like other topics previously. Using words like bootstrapping and jackknifing are not so 

helpful. After all, it is what the study is about. 

A short summary that does not rely on abstract terms would definitely benefit the reader. This will be 

adjusted in the revised manuscript.  



L175-181: Don’t all models struggle with the upper 5% of the distribution? I find it disconcerting that 

such an important detail is left out and is only mentioned now. These are the flows that cause actual 

problems; this is where major timing and volume problems exist and these are the time steps where 

the squared error dominates the objective function generally. I understand that not enough data was 

available but leaving the good stuff out is akin to ignoring the major problem at hand. Such details 

should be mentioned in the abstract as many are interested in the upper 5%. The low flows, I can 

forgive as they are contaminated by wastewater flowing in to the river which may or may not be 

originating, in terms of source, from the same catchment. 

This is a very valid point, we will rectify this by extending the analysis to include the limited set of 

catchments simulations that contain estimates for the upper percentiles of the uncertainty distribution. 

We appreciate your perspective on the significance of this detail, especially given that these flows 

often pose real-world challenges. We agree that not addressing this aspect can be misleading and 

downplays a major issue. 

Furthermore, we acknowledge the potential for this analysis to underscore both the importance of the 

temporal sampling issue and the relevance of considering the upper 5% in hydrological modelling 

assessments. 

L183: What is model A and B in figure 2A? Are 1A and 2A showing the same event? There is no value 

of discharge on the y-axis. How is one supposed to tell, say, whether there was an actual peak when 

model B also shows a peak or just that model B spontaneously rose to a high value? And given that A 

is not as reactive as B, my guess is that something is very wrong with A. 

To clarify, this figure was intentionally designed as an extreme example to illustrate our methodology, 

without cherry-picking specific events. We do recognize the need for better contextualization. In 

response to your feedback, we will enhance the figure's caption by explicitly stating that the 

illustration is an extreme case intended for methodological exemplification. This clarification will 

help readers better understand the purpose and context of the figure. 

3. Results 

L214-215: I find such a comparison to be meaningless. wflow_sbm default has some quasi-arbitrary 

parameters. These could have performed very good or very bad. In my opinion, if one has to take one 

single model, the calibrated model is the one because it the best we could do, assuming that the 

validation also shows improvement. Also, only one parameter was optimized. Which I find strange. If 

there is access to a supercomputer then, why not all (that may be optimized)? It would be interesting 

to see. I have no attachment with wflow_sbm or PCR-GLOBWB, but some sort of parameter 

optimization should also be done for this. At the end, it could be what the authors point out about how 

it routes flow. We would only know if optimization is carried out. 

As mentioned earlier, this comes down to the distinction between model users and developers. We 

employed the models as intended by the model developers. The models are readily calibrated and 

already optimized on HPC infrastructure. The reason for optimizing only a single parameter for the 

wflow_sbm model is that this was identified as an effective parameter for calibration that increases 

baseflow and decrease peak flow (Imhoff et al., 2020; Aerts et al., 2022). We find it therefore of 

interest to see what this additional calibration step entails from a model user perspective.  

L253-255: The relative low flow uncertainty could be higher due to wastewater being introduced into 

the streams as I mentioned earlier. And could also be due the presence of karst that is mentioned by 

the authors. 

Thank you for this insight, we will search for wastewater estimates to confirm this notion. If not 

available, we will investigate the relationship between human influence and low flow uncertainty as 



both are available in the CAMELS-GB dataset. The results of this additional analysis will be reported 

in the revised manuscript. 

L258-267: Here, I would like to stress again that without considering input uncertainty, the 

conclusions are incorrect as the results are (heavily) influenced by input (precipitation). And the 

authors should acknowledge this. 

We recognize the significant influence of input, particularly precipitation, on our results. To address 

this concern, we will include a dedicated section discussing input uncertainty and its broader 

implications. This discussion will underscore the interconnected nature of discharge observation 

uncertainty within a larger context. 

4. Discussion: 

L269-274: The authors finally mention the other sources of uncertainty this deep in the text. The 

reason why this problem is over-looked (by hydrologists that know about this problem) is that 

evaluating uncertainties is not trivial and requires much more data (which Coxon (2015) had the 

luxury of to some extent) computational power, and many assumptions (that likely remain unfulfilled 

or cannot be verified to hold). Working with uncertain data has been tried before but all end up at the 

same point i.e., if uncertainties have to be handled then the proper way is to take all types in to 

account simultaneously. This is a major problem. Uncertainty bounds of any variable are calculated, 

normally, using Gaussian-dependence. For precipitation, for example, advection and convection 

exists. Something that interpolation schemes cannot capture by considering only a subset of points in 

the catchment. Also, they are non-Gaussian fields. Radar shows some structure of the precipitation 

field but is also limited in its capabilities when it comes to precipitation volumes and is not always 

better than using gauge data. 

Thank you for this view on working with uncertain data, especially in the context of precipitation. The 

suggested literature by Bárdossy and  Anwar clearly demonstrates to us how this impacts rainfall-

runoff models. While acknowledging the limitations of current uncertainty estimation methods, we 

recognize the value of data sources such as CAMELS-GB in exploring uncertainties. Despite relying 

on assumptions like Gaussian mixture models, these sources offer valuable insights into the broader 

uncertainty landscape. In our discussion chapter, we will provide a more comprehensive reflection on 

these limitations, as well as the importance of incorporating all relevant sources of input uncertainty. 
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