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Abstract. 

The  effusive-explosive  energy  emissions  process  in  a  volcano  is  a  dynamic  and  complex  physical  phenomenon.  The

importance  of  quantifying  this  complexity  in  terms  of  the  physical  and  mathematical  mechanisms  that  govern  these

emissions should be a requirement for deciding to apply a possible forecasting strategy with a sufficient degree of certainty.

The  complexity  of  this  process  is  determined  in  this  research by  means  of  the  reconstruction  theorem and  statistical

procedures applied  to  the effusive-explosive volcanic  energy  emissions  corresponding to  the activity  in  the Volcán de

Colima (western  segment  of  the  Trans-Mexican  volcanic  belt)  along the years  2013-2015.  The analysis  is  focused  on

measuring the degree of persistence, or randomness of the series; the degree of predictability of energy emissions; and the

quantification of the degree of complexity and “memory loss” of the physical mechanism throughout an episode of volcanic

emissions.  The results indicate that  the analysed time series  depict a high degree of persistence and low memory loss,

becoming the mentioned effusive-explosive volcanic  emission structure  a candidate  to  successfully  apply a forecasting

strategy.

Key-words:  Volcan  de  Colima explosions,  México,  fractal  reconstruction  theorem,  Hurst,  Lyapunov and Kolmogorov

exponents, possible forecasting and nowcasting strategies.

1 Introduction

A right forecasting of dangerous long drought episodes, high magnitude earthquakes or great volcanic emissions should be

one of the main objectives on the scientific fields of climatology, seismology or volcanology to prevent disasters which

could affect the environment and the human life. Several examples of forecasting algorithms could be cited, among them the

nowcasting strategy (Rundle et al., 2016, 2017), the multifractal analysis in seismology (Monterrubio-Velasco et al., 2020),
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the ARIMA process in climatic research (Lana et al, 2021), and neural algorithms (Lipton et al, 2015 and Lei, 2021) also

useful to predict  monthly rainfall.  These cited algorithms systematically forecast  the next episode taking into account a

certain number of previous recorded data, being this number strongly associated with the characteristics of the physical

mechanism. These forecasting results should be validated by previously analysing the degree of complexity and the “loss of

memory” of the physical mechanisms along the evolution of the physical process. In other words, how many previous data

would  be  necessary  for  a  right  use  of  a  forecasting algorithm and which  could  be  the  range  of  uncertainties  on  the

predictions. 

The database,  Section 2,  analysed in this research is the time series of explosive volcanic events (Vulcanian explosions)

emitted by Volcán de Colima (Western segment of Trans-Mexican volcanic belt) during the years 2013-2015. A Vulcanian

explosion is an eruption where fragmented material is expulsed to the atmosphere,  as result of an overpressure into the

conduit or lava dome (Arámbula-Mendoza et al., 2018). The event releases energy in several ways, based on elastic, seismic,

acoustic and thermal processes. The next explosion will occur when again the overpressure break again the impermeable

cap. The Volcán de Colima has emitted many Vulcanian explosions, some of them with generation of Pyroclastic Density

Currents (PDCs) until 5 km of runout (Arámbula-Mendoza et al., 2019). For these reasons, strategies for a right forecasting

of the mentioned Vulcanian explosions are important. 

 The reconstruction theorem (Section 3) is a mathematical strategy that allows quantify the degree of complexity in a time-

series  and it  loss  of  memory,  both required  to  validate a  possible forecasting  strategy (Dicks,  1999). Additionally,  the

nowcasting algorithm (Section 5), a statistical process developed by Rundle et al. (2016, 2017) to detect the risk of imminent

high magnitude earthquakes,  could be also applied to quantify the probability of an imminent high magnitude volcanic

emission. . 

The main objective of this work is to detect the degree of difficulty for a forecasting of volcanic emissions associated with

energies close to or exceeding 108 J. By means of the reconstruction theory (Diks, 1999) the complexity is measured  by

means of some parameters such as the persistence degree, the intensity of chaotic behavior of the system , and the “loss of

memory”  of  the  physical  mechanism.  Moreover,  the  statistical  distribution  of  the  effusive-explosive  energy  of  these

emissions and their return  periods are also analysed.  The just mentioned nowcasting strategy is also taken into account to

confirm future extreme emissions of energy.  The results obtained after applying the reconstruction theorem, analysing the

whole time series, 6 consecutive segments and 21 moving window data, are detailed in Section 4. 

The most relevant results of the reconstruction theorem and their effects on forecasting algorithms are discussed in Section 6.

Finally, the Section 7 (Conclusions), summarizes the most relevant results with respect to the expected success on preventing

volcanic energy emissions, based on forecasting and nowcasting processes.
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2. Database

A time series of volcanic explosions, named as Vulcanian explosions (Bachtell Clarke and Esposti Ongaro, 2015) emitted by

Volcán de Colima (Western segment of Trans-Mexican volcanic belt, years 2013-2015) (Arámbula-Mendoza et al., 2018) is

analysed. Figure 1a depicts the histogram of the logarithm of the emitted energy. The dataset contains 6182 observations of

the emissions equalling to or exceeding approximately 2x106 J accomplishing the Gutenberg-Richter law (Gutenberg and

Richter, 1958) as shows Figure 1b.

 Figure 2a describes the six segments to be analysed, where can be observed the highest explosions at the beginning of the

first segment [log10(Energy)=8.2], third segment [log10(Energy)=8.4] and at the end of the series, out of the 6th segment

[log10 (Energy)=8.9]. With the aim of analysing the whole set of volcanic emissions accomplishing the Gutenberg-Richter

law, Figure 2b depicts two examples of moving window segments.   

The statistical distribution of these emissions is analysed by means of the L-Skewness-Kurtosis formulation (Hosking and

Wallis, 1997). The statistical analysis of these emissions shows that the complete series of emissions, including those not

accomplishing the Gutenberg-Richter law, are well fitted to the Generalised Logistic, GL, function (Figures 3a and 3b).

Additionally, three different empirical distributions of extreme emissions, equalling to or exceeding respectively 90%, 95%

and 99% of data (Figure 3b), can be associated with the Generalised Extreme value, GEV, function.  Figure 4 shows the

evolution of these three expected extreme emissions with the increasing return periods (given in number of events equalling

to or exceeding 90, 95 and 99% respectively).  For instance, the expected values of emissions for the three percentage levels

and return periods up to 200 extreme emissions fit quite well the theoretical evolution, with emissions close to 1.0x108 J,

2.0x108 J  and 8.0x108 J  for  90,  95 and 99% extreme distributions.  This  first  approach  to  the possibility  of  very  high

explosions and the corresponding expected return period (number of extreme episodes before a very high extreme emission)

would be quite similar  to a nowcasting  analysis, strategy proposed by  Rundle et  al.  (2016, 2017) to detect  the risk of

imminent high magnitude earthquakes. 

3. The reconstruction theorem

Previously  to  the  reconstruction  theorem  (Diks,  1999)  based  on  monofractal  theory,  the  degree  of  randomness,  anti-

persistence or persistence of the analysed data is established taking into account the concept of the Hurst exponent (Turcotte

1997) which is defined as the exponent H of the power-law

R (τ )
S ( τ )

∝ τ H, (1)
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being R(t) the range of the different chosen segments of length t of a series and S(t) the corresponding standard deviation. H

close  to  0.5  implies  a  strong  randomness  of  the  series.  Conversely,  H  clearly  lowering  or  exceeding  0.5  means  anti-

persistence or persistence, respectively. Consequently, the Hurst exponent offers a first point of view of the behaviour of the

analysed series. It  has to be also remembered that the Hurst exponent has to be coincident with a specific value of the

generalised Hurst exponent, obtained by means of multifractal analysis (Kantelhardt et al., 2002) applied to the same series. 

The  analysis  of  the  monofractal  structure  of  a  series,  by  means  of  the  reconstruction  theorem  (Diks,  1999),  permits

quantifying its complex forecasting by means of the following parameters: 

-The necessary minimum number of nonlinear equations governing the physical mechanism, usually referenced as

correlation dimension, μ(m), being m the reconstruction space dimension. 

-The embedding dimension, dE, the asymptotic value of the correlation dimension, with m theoretically tending to

∞. 

-The Kolmogorov entropy, k, which quantifies the loss of memory of the mechanism along the analysed physical

process.

The reconstruction theorem process is based on generating a set of m-dimensional space vectors using the series {x(i)} of

data :

Z (i )=x i , x i+1 , ... , x i+m − 1, i=1 , ..., n − m+1       (2) 

being  n  the  length  of  the  series,  and  the  definition  of  the  correlation  integral  in  terms  of  the  Grassberger–Procaccia

formulation (Grassberger and Procaccia, 1983a, 1983b)

C (m , r )= lim
N → ∞

1
N 2 ∑

i , j=1

N

H {r −‖z ( i ) − z ( j )‖}                     (3)

 r being an Euclidean distance in the m-dimensional space and H{.} the Heaviside function. The correlation integral can be

rewritten as

C (m , r )=Ame− mk r μ (m )                        (4)

log {C (m,r ) }= log ( Am ) −mk+μ (m ) log  (r )                                             (5)

being  K the  Kolmogorov entropy exponent  and  Am and μ(m) the  correlation  amplitude  and  the  mentioned  correlation

dimension for every reconstruction dimension m.  A confident quantification of  μ(m) for every reconstruction dimension has
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to be carefully computed, avoiding a very flat evolution of C(m,r) for small values of r, caused by the lacunarity (Turcotte,

1997), and the saturation of C(m,r) for the highest values of r. With respect to the quantification of the Kolmogorov entropy,

K, by using equation 5, naming  μ(m) the term log{C(m, r)}−𝜇(m)log(r), and after obtaining  α(m), the equation 5 becomes

α (m)=log ( Am ) − mK       (6)

Equation 6 is characterised by an almost constant value of log ( Am ) for high reconstruction dimensions m. Consequently, a

very accurate value of the Kolmogorov coefficient K could be obtained by a linear regression in terms of equation 6, but only

for the mentioned set of the highest reconstruction dimensions m. The same set of m-dimensional space vectors permits the

computation of the Lyapunov exponents λi, (i=1,…m) (Eckmann et al., 1986; Stoop and Meier, 1988; Wiggins, 2003) which

quantify the intensity of chaotic behavior of a system  specially the first λ1 exponent) when the results, forthcoming volcanic

emissions at the present case, have been estimated by means of some forecasting algorithm. Additionally, the Kaplan-Yorke

dimension, DKY, (Kaplan and  Yorke,  1979)

DKY=l0+| 1
λl 0+1|∑j=1

l0

λ j                (7)

,with 𝓁0 the maximum number of Lyapunov exponents in decreasing order accomplishing

λ1+ λ2+ ...+ λl0
≥0,          (8)

quantifies  the  fractal  dimension  of  the  nucleus  around  of  which  the  consecutive  m-dimensional  vectors  describe  the

corresponding orbital trajectories. In short, the highest the value of DKY, more complex will be to establish the forthcoming

value of the analysed physical problem.

4. Results

4.1 The Hurst exponent.

The results of the Hurst exponent for the whole series and the six data segments is described in Figures 5a and 5b, being

obtained a clear sign of persistence for the complete series of Vulcanian explosions, with H exceeding a value of 0.7, a

moderate persistence for the first, second, fourth and fifth segments, a smooth increase of H from the fifth to the sixth

segment and a clear persistence (H > 0.70) for the third segment. This third clear persistence is detected for a data segment

including the second highest energy emission (Figures 2a and 2b). Conversely, the lowest Hurst exponents for the 
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first, second, fourth and fifth segments are characterised by more moderate emissions of energy. Finally, the increase of H

for the sixth segment could be caused by the imminence of the highest energy, an emission immediately after this data

segment. A more detailed evolution of the Hurst exponent is described by the 21 moving windows (Figures 6a and 6b), being

detected that the increasing of the persistence for the 6 first moving windows is stabilised for the other 15 windows with

notable signs of persistence, with H varying from 0.72 to 0.76. In short, the factor of persistence from the point of view of

the Hurst exponent suggests a certain facility of forecasting algorithms, being remarkable that after the first 1000 emissions,

(beginning of the five moving window), the highest persistency with some fluctuations is achieved and the highest emissions

are included in these windows.  

4.2 Embedding dimension.

With respect to the embedding dimension, Figure 7 illustrates five examples of the first segment of 1000 recorded emissions,

where the slope,  μ(m), of the log10{C(r)} with respect to log10{r} monotonically increases for an interval of r, being then

described  the  asymptotic  evolution  of  these  slopes  towards  the  definitive  embedding  dimension  dE.  The  embedding

dimensions for  the 21 moving windows and the 6 segments  are  respectively  summarised  in  Table  1 and Table  2.  By

remembering  that  this  dimension defines  the  minimum number  of  non-linear  differential  equations associated  with the

physical process, the most complex segments from the mathematical point of view would be the first, second, third and sixth,

being not so complex the fourth and fifth ones. Nevertheless, the discrepancies when comparing the different segments are

not excessive, given that 9 or 10 differential equations would be sufficient to analyse every one of the 6 segments. A quite

different evolution of dE is obtained for the 21 moving windows (Table 1), with dimensions approximately varying from 9.5

to 6.9.  Between the 11th and 13th moving windows dE diminishes  (a  more simplified mathematical  structure  should be

assumed for these volcanic emissions) and for the remaining windows (14 th -21th) their mathematical structures complexity

return to moderate values (7.3 – 7.6). 

4.3 The Kolmogorov entropy.

The obtained values of the Kolmogorov entropy exponent, based on equation 6 and summarised in Tables 1 and 2, are also

illustrated with some examples (Figure 8). In these four examples, the “loss of memory” of the physical mechanism is quite

similar for the 6th segment and the 10th moving window, with values of K which could complicate a bit more the forecasting

processes, in comparison with the previous 5th segment and the 13th moving window. In spite of these discrepancies with

respect to the “loss of memory” for the different segments and moving windows, they are quite similar in many cases, being

only remarkable two examples of extreme minimum (fifth segment, K =0.258) and extreme maximum (10 th moving window,

K = 0.410). Consequently, the “loss of memory”, making complex the forecasting process, would not affect in the same way

to all the volcanic explosive emissions.  

4.4 The Lyapunov exponents.
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A right computation of the Lyapunov exponents needs an iterative process, with the aim of minimising the final uncertainty

on every exponent. At the present computations, 975 iterations have been good enough to obtain the first fifteen exponents

with very small oscillations at the end of the iterative process. An example of this process is shown in Figure 9, where are

described the evolution of the exponents for the third segment of emissions up to λ15. A higher number of exponents is not

necessary by two questions. First, the possible errors or uncertainties on forecasting processes could be specially associated

with the first Lyapunov exponents. Second, observing the evolution at the end of iterations of the exponents of Figure 9, the

Kaplan-Yorke dimension can be computed without the necessity of Lyapunov exponents exceeding dimension 15. 

The results are summarised in Table 3, showing the mean and standard deviation for every one of the first ten Lyapunov

exponents,  obtained  for  the  21  moving  windows  and  the  six  data  segments  after  975  iterations  of  the  corresponding

computational  algorithm to  obtain  accurate  and  confident  values.  First,  in  agreement  with  the  results  exposed  in  the

mentioned table, every one of the λi exponents is quite similar both for segments and moving windows, bearing in mind the

very similar average values and small standard deviations. Second, the first small negative Lyapunov values are always

detected for λ7 or λ8. Consequently, the information offered by the Lyapunov exponents, concerning the possible errors on

forecasting,  should be very  similar  all  along the  emissions,  being not  detected  differences  between data  segments  and

moving  windows.  Finally,  the  Kaplan-Yorke  dimension  manifests a  notable  similarity  for  both,  segments  and  moving

window.

Whereas for the six trams, DKY varies from 12.51 to 12.75, the range is quite similar for the 21 moving windows, varying

from 12.70 to 13.04.  Consequently,  the fractal  dimension of  the nucleus around which the consecutive  m-dimensional

reconstructed vectors describe the corresponding trajectories is complex (a fractal dimension exceeding 12.0). Nevertheless,

this complexity becomes confined within a short interval, being quite similar for all segments and moving windows.

5. Some examples of nowcasting

The nowcasting process (Rundle et al., 2016, 2017) is based on the computation of the “natural time”, or in other words, the

number of consecutive earthquakes (seismic cycle length) with magnitudes within a determined interval. In this way, the

empiric  cumulative  distribution  function,  CDF,  of  these  “natural  times”  would  be  stablished  by  the  high  magnitude

earthquakes  interrupting  these  seismic  cycle  lengths.  Consequently,  the  nowcasting  process  does  not  exactly  predict  a

forthcoming high magnitude, but quantify the probability of an imminent high earthquake magnitude, based on the empiric

CDFs curves.

A first illustrative example of the nowcasting algorithm, from the point of view of the seismic activity, is depicted in Figure

10a.  It  corresponds  to  the  recorded  seismic  activity  in  Canterbury  (National  Earthquake  Information  Database,

https://www.gns.cri.nz, years 1990-2020). In spite of the minimum seismic magnitude accomplishing the Gurtenberg-Richter

law (Wiemer and Wyss, 2000) should be 3.5 (Figure 10b), maximum magnitudes of 4.5, 5.0 and 5.5, as well as a minimum

magnitude of 2.5, have been considered necessaries to obtain a more detailed evolution of the corresponding cycle lengths.
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The probability of forthcoming extreme magnitudes (7.2 and 7.8) interrupting a cycle length exceeds 80%. Consequently, the

probability of an earthquake of similar extreme magnitudes should be more or less imminent if the real cycling length is

approximately ranging between 100 and 1000 “natural times”, depending on the chosen maximum magnitude Mmax.

Two  examples  of  nowcasting  corresponding  to  volcanic  energy  explosions  are  shown  in  Figure  10b.  The  first  one

corresponds to the volcanic activity of the third segment (Figure 2a) and the second includes the whole series of volcanic

emissions. In both cases, the cycle lengths are obtained by considering a minimum and maximum level of volcanic emission

of,  respectively,  102.5 J  and 104.5 J.    Conversely to the example of seismic activity,  the few extreme levels exceeding

log10(Energy) = 8.0 are not associated with high CDF values. Consequently, the nowcasting algorithm could be considered

less effective in comparison with the seismic activity results, probably due to the mechanism of the volcanic emissions,

which  do  not  include  structures  such  as  background  activity,  swarms,  forecastings,  mainshocks  and  aftershocks.

Nevertheless, a notable number of high log10(Energy) emissions slightly smaller than 8.0, and some of them very close to the

highest emissions, are associated with values of CDFs close to 0.6, and even exceeding 0.8. An example of this fact could be

the third segment of emissions, where some of them are not independent but associated with the highest emission close to

8.5. In short, the nowcasting  process could be also assumed as an algorithm contributing to the predictability of volcanic

explosions, but perhaps not so obvious as for the case of seismic activities.

6. Discussion of the results

The  results  obtained  by  the  reconstruction  theorem  and  the  possible  relationships  between  the  fractal  reconstructions

exponents (H,  K,  l and dE) and changes on the volcanic emissions are summarized in Figures 11a and 11b. First of all,

relevant changes on parameters such as mean, standard deviation, skewness and kurtosis (Table 4) are not detected for the

different segments of volcanic emissions. Additionally, the Kolmogorov-Smirnov test (95 and 99% of probability) discards

the possible Gaussian distribution of these emissions, in agreement with Figures 3a and 3b, where the Generalised logistic

distribution (GLO) is assumed from the L-Skewness-Kurtosis formulation. 

The Hurst exponent (Figure 11a) is characterised by a continuous increase, finally achieving oscillations close to 0.7, with

evident structure of persistence  since the 7th up to the 21th moving window, all  of  them including two high emissions,

log10(energy) = 8.372 and 7.937.  Consequently, the values of Hurst would manifest persistence (convenient for appropriate

forecasting)  when  a  high  emission  becomes  included  in  the  moving  window.  Conversely,  the  “loss  of  memory”

(Kolmogorov exponent) of the physical mechanism (not convenient for good forecasting) increases up to the 10 th window,

notably  decreasing  for  the  rest  of  windows.  In  this  case,  the  influence  of  a  high  emission  would  appear  outdated  in

comparison with the results of the Hurst exponent. With respect to the Lyapunov exponent, l1, its changes along the moving

windows are small (Figure 11a) with not very remarkable discrepancies  with an average value of 0.169 and a standard

deviation of 0.013 (Table 3). Consequently, the different forecasting errors on energy emissions could not be different, at

least from the point of view of  l1. These errors could be also consequence of the degree of complexity of the non-linear
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differential  equations system, quantified by the embedding dimension, dE. Figure 11b depicts the clear reduction of this

complexity after the 10th moving window, with a fast decrease up to the 13 th window and values close to 7.5 after this last

cited window. Similar to the evolution of the Kolmogorov entropy, close to the 10th window, an evident decrease of both

fractal  parameters  is detected.  Reinforcing this similarity,  it  is  also noticeable the stabilised values of these two fractal

parameters for the 13th and 14th windows. It is also convenient to observe that, in agreement with the very similar obtained

Kaplan-Yorke  dimensions  (ranging  from  12.5  to  13.0)  for  segments  and  moving  windows,  the  data-vectors  of  high

dimension m used for the reconstruction theorem, depict a very similar structure. In other words, the trajectories of these

reconstructed vectors around the fractal nucleus are quite similar. 

   

With respect to the results of the nowcasting, the return period curves (90%, 95% and 99% of extreme emissions) could be,

as cited before, a strategy relatively similar. Nevertheless, the nowcasting process permits to decide minimum and maximum

emission of energy levels to define the best empirical distribution of cycle lengths of “natural waiting time”, detecting in this

way the probability, in  percentage, of a probable imminent volcanic emission of high energy. In spite of the nowcasting

method does not determine a concrete next volcanic emission, given that it is not a forecasting process, it takes into account

that future high emissions will be expected with similar “natural waiting times”. Although some emissions, (Figures 10b),

exceeding log10(Energy) = 7.5 have probabilities close to 50-60%, probabilities close to or exceeding 80% are also obtained.

In short, the nowcasting process seems to be more effective with seismic activity than volcanic emissions. Nevertheless, their

results could be also compatible and complementary with algorithms forecasting the high emission of volcanic energy.

7. Conclusions

The fractal parameters, obtained by means of the reconstruction theorem of 6 segments and 21 moving windows of the

analysed volcanic explosions in Volcán de Colima (México), as well as the nowcasting strategy, are the first steps for the

application of different forecasting processes. 

The results  suggest  that  different  strategies  for  future  forecasting  emissions can  be applied,  especially  for  high-energy

emissions. These forecasting strategies  can be based on  different algorithms (Box and Jenkins, 1976;  Lipton et al, 2015;

Rundel et al., 2017 and Lei, 2021, among others) and multifractal analysis of moving window data (Monterrubio-Velasco et

al.,  2020).  In  spite  of  the  uncertainties  with respect  to  the  waiting time  of  an emission and its  corresponding  energy,

estimated  by means  of  forecasting,  are  expected  to  be  non-negligible,  these  algorithms should depict  reasonably  good

approaches to real energy emissions bearing in mind the obtained reconstruction theory results. Additionally, the analysis of

the multifractal structure is expected to be a warning factor for volcanic activities associated with high emissions of energy,

quite similar to the analysis of consecutive seismic magnitudes (Monterrubio-Velasco et al., 2020) and usefully applied to

analyse climatic data, thermometric and pluviometric data, (Burgueño et al., 2014; Lana et al., 2023)  and also bearing in

mind  (Shimizu et al., 2002) the concept of multifractal complexity index, which could also contribute to detect imminent

extreme volcanic emissions of energy. In short, the reconstruction theory applied in this research, together with nowcasting
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and forecasting  algorithms and multifractal  theory  could be  a  very  important  process  to  prevent  extreme emissions of

volcanic energy.  .    
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Table 1. Embedding dimension and Kolmogorov coefficient for the 21 moving windows.
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MW 1 2 3 4 5 6 7 8 9 10 11
dE 9.356 9.309 9.195 9.037 9.287 9.237 9.24

6
9.044 9.36

1
9.45
6

8.89
8

K 0.362 0.363 0.355 0.357 0.354 0.362 0.38
3

0.373 0.39
1

0.41
0

0.39
7

MW 12 13 14 15 16 17 18 19 20 21
dE 7.188 6.910 7.277 7.270 7.372 7.385 7.49

5
7.550 7.46

7
7.49
5

K 0.297 0.266 0.279 0.286 0.281 0.284 0.29
5

0.297 0.29
1

0.28
7

Table 2.  Embedding dimension and Kolmogorov coefficient for the 6 segments of volcanic emissions.

SEGME
NT

1 2 3 4 5 6

dE 9.155 8.932 8.727 7.952 8.101 9.340
K 0.359 0.338 0.377 0.375 0.258 0.398

Table 3. Mean and standard deviation for the first ten Lyapunov exponents, after 975 iterations.

SEGME
NT

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

<l> 0.156 0.105 0.074 0.053 0.032 0.015 -
0.001

-
0.018

-
0.039

-
0.062

s(l) 0.011 0.004 0.005 0.004 0.003 0.003  
0.004

  
0.005

 
0.003

 
0.004

Table 4. Basic characteristics of the energy emissions (logarithm of energy), for the whole database, the 6 segments of 1,000

elements and the last segment of 182 elements. The empirical results of the Kolmogorov-Smirnov, K-S, test are compared

with the significance levels of 95 and 99%, KS_0.05 and KS_0.01, corresponding to the Gaussian distribution.

SEGME
NT

0001-
6182

0001-
1000

1001-
2000

2001-
3000

3001-
4000

4001-
5000

5001-
6000

6001-
6182

MAXIM
UM 8.903 8.187 7.574 8.372 7.937 7.650 7.667 8.903
MEAN 6.610 6.578 6.563 6.641 6.663 6.558 6.633 6.730
ST.DEV 0.283 0.233 0.225 0.313 0.310 0.242 0.292 0.470
SKEWN
ESS 1.394 1.252 0.931 1.267 1.035 1.144 0.834 2.085
KURT0S
IS 3.462 3.695 0.780 2.033 1.016 1.328 0.110 5.394
K-S 
TEST 0.102 0.081 0.083 0.106 0.091 0.102 0.095 0.154
K-
S_0.05 0.017 0.043 0.043 0.043 0.043 0.043 0.043 0.100
K-
S_0.01 0.021 0.051 0.051 0.051 0.051 0.051 0.051 0.120
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a)

b)

Figure 1. a) Histogram of the volcanic emission energies and b) logarithm of energies accomplishing the Gutenberg-Richter

law. 
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a)

b)         

Figure 2. a) Evolution of the volcanic energy emission accomplishing the Gutenberg-Richter law. Vertical  dashed lines

define the segments  (intervals  of  1000 data)  b)  Two examples  of  dataset  defined  by moving windows of  amplitude 2

thousand elements and shift of 200 positions.
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Figure 3. a) Cumulated distribution function of the effusive volcanic energy emissions, well fitted to the GLO (generalised

logistic distribution). b) The emissions equalling to or exceeding 90%, 95% and 99% could be associated with the GEV

(generalised extreme values distribution) in agreement with the L-Skewness / L-Kurtosis diagram. The theoretical cumulated

distribution GLO of the volcanic emissions is also confirmed by means of the mentioned diagram. 
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Figure 4. Return period curves (90, 95 and 99%) of extreme emissions. 
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(Figure 5 continue)
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Figure 5. Some examples of the Hurst exponent for a) the whole series of effusive emissions of energy accomplishing the

Gutenberg-Richter law and b) the same series fragmented on six trams of equal number of records. In agreement with the

definition of  equation (1),  R/S has  not units and   represents  the different  lengths (number of  data)  of  the segments

considered.
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Figure 6. a) Evolution of the Hurst exponent for the 21 moving windows and b) two examples for windows 2 and 6.

22

685

690

695

700

705

710

715



m = 2                                                       m = 4
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(Figure 7 continue)                                          

                                          m = 16

                                                                            

Figure  7.  An  example  of  the  evolution  of  embedding  dimension  (first  segment  of  1000  elements)  for  reconstruction

dimensions m = 2, 4, 8, 12, 16. The straight red line represents the interval of r values for which can be determined every one

of the embedding dimensions.
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(Figure 8 continue)

(b)
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Figure 8.  a)  Two examples  of Kolmogorov entropy exponents,  K, for  two segments of 1000 elements  and b)  for two

examples for moving windows. The vertical dashed lines define the parameter m interval used to determine the Kolmogorv

entropy for every data segment or moving window. 
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Figure 9. Fifteen Lyapunov exponents for the third segment of the effusive-explosive volcanic emissions.
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Figure 10 (continue)
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Figure 10. A comparison of nowcasting results for a) the seismic activity of Canterbury (New Zealand), years 1990-2021,

and b) the corresponding Gutenberg-Richter plot and c) the energy of the volcanic emissions of Colima (México), years

2013-2015, bearing in mind the SEGMENT 03 of volcanic emissions and all the volcanic record. The extreme three volcanic

records designed by an asterisk (Figure 10b) are the same detected in the Figure 10c.   

31

975

980

985

990

995

1000

1005



a)

b)

32

1010

1015

1020

1025

1030

1035

1040



Figure 11. a) Evolution of the Hurst exponent, H, the Kolmogorov entropy exponent, K, and the first Lyapunov exponent,

l1. b) Embedding dimension dE, for the 21 moving windows.  
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