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Abstract 

Severe seasonal air pollution events have become frequent over northern India, particularly over the 10 

Indo-Gangetic Plain (IGP). These episodic hazes, marked by exceedingly high levels of ambient PM2.5 

(particulate matter having an aerodynamic diameter ≤ 2.5 microns), are hazardous for visibility and 

public health. It is therefore imperative to examine the capabilities of current state-of-the-art coupled 

meteorology-chemistry models at predicting air quality over this region. We provide a comprehensive 

evaluation of WRF-Chem (v4.2.1) simulated seasonal meteorology and aerosol chemistry (PM2.5 and 15 

its black carbon (BC) component) using a range of ground-based, satellite and reanalysis products, with 

a focus on the November 2016 haze episode. Daily and diurnal features in simulated 2 m temperature 

show best agreement followed by relative humidity with overall low biases. Upper air meteorology 

comparisons with radiosonde observations show excellent model skill in reproducing the vertical 

temperature gradient (r > 0.95). Both ground and radiosonde observations confirm systematic 20 

overestimations in simulated surface wind speeds (by ~ 0.5 – 0.8 m s−1), driven by high nocturnal biases. 

Modelled PM2.5 concentrations generally compare well with the ground-based measurements in 

October-November (post-monsoon) but are strongly overestimated (by a factor of 2) in September 

(monsoon) due to dust constituent. Delhi experiences some of the highest daily mean PM2.5 

concentrations within the study region with largest biases during the extreme pollution episode. 25 

Dominant anthropogenic components in the modelled PM2.5 in Delhi during the episode include nitrate 

(~ 25 %), followed by secondary organic aerosols (~ 20 %), and primary organic matter, and elevated 

BC concentrations. Modelled spatiotemporal PM2.5 and BC compare well with MERRA-2 products. 

Spatially, high aerosol optical depth (AOD) over the IGP is accurately represented by the model relative 

to MODIS satellite (r ≥ 0.8), and ground-based AERONET observations (r ≥ 0.69), except during 30 

September. Generally, WRF-Chem correctly represents the meteorology during the afternoon and has 

a reasonable ability to reproduce wind patterns. This (among other factors like imperfect representation 

of emissions and land use information) plays a key role in dust overestimations in monsoon and 

anthropogenic aerosol underestimations in post-monsoon owing to enhanced dilution and mixing in the 

model. Overall, we find the model suitable to understand the aerosol feedbacks on meteorology during 35 

extreme pollution events with an improved diurnal characterisation of boundary layer processes and 

emissions estimates.  
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1. Introduction 

Atmospheric particle pollution in India is a persistent environmental issue and a leading health risk 

factor for its 1.4 billion population (Pandey et al., 2021). In 2019, ambient air pollution was estimated 40 

to cause almost a million premature deaths in India (Pandey et al., 2021). The State of Global Air 2022 

(HEI, 2022) reports that over 90% of the Indian population resides in areas where the annual mean 

concentrations of PM2.5 (particulate matter having an aerodynamic diameter smaller than 2.5 microns) 

exceed even the minimal interim target of 35 µg m−3 recommended by the World Health Organization 

Air Quality Guidelines (WHO 2021). The country is home to 18 of the 20 cities worldwide with the 45 

greatest rise in PM2.5 pollution in the last decade (HEI, 2022). This upward trend in degraded air quality 

is projected to continue across South Asia under current policies, including more frequent high pollution 

incidents over northern India (Kumar et al., 2018c; Paulot et al., 2022). These trends have huge 

consequences for the future life expectancy of the 400 million residents of this region which is currently 

reported to be reduced by more than 9 years under the current pollution burden (Greenstone and Fan|, 50 

2020). 

The Indo-Gangetic Plain (IGP) is situated south of the Himalayas and stretches from parts of Pakistan 

in the west, through north and east India and Nepal, to Bangladesh in the east. The IGP is a heavily 

populated region (home to over 40% of the total Indian population) with a large number of rural, 

suburban and urban clusters (Fig. 1a). It is characterised by intensive multi-cropping systems, rapid 55 

industrialisation and a growing economy, which results in a heterogeneous mix of particle and gaseous 

pollutant emissions (Venkataraman et al., 2018; Kumar et al., 2020a). The region is a global centre for 

poor air quality (Singh et al., 2017), underpinned by India being one of the largest emitters of 

anthropogenic aerosols in the world (Lu et al., 2011). The anthropogenic sources include vehicles, 

industry, burning of crop-waste and garbage, residential cooking and mining. The emissions 60 

contributions are dominantly composed of sulfate precursors and carbonaceous aerosols, driven by a 

rapid increase in demand for energy (Lu et al., 2011). Black carbon (BC) is fine particulate matter's 

light-absorbing component (Lack and Cappa, 2010) and is released during incomplete combustion of 

carbon-containing fossil fuels like coal, oil and gas, and biofuels like wood, agricultural residues and 

forest fires. BC particles are short-term climate forcers with a net positive radiative forcing 65 

(Ramanathan et al., 2001; Bond et al., 2013; Wang et al., 2014).  BC emissions from India are one of 

the highest globally and significantly impact the Indian summer monsoon, regional climate, and human 

health (Ramanathan et al., 2001). Natural particle sources such as mineral dust also substantially 

influence the air quality over the IGP and broader northern India (Li et al., 2017). Additionally, air 

quality over the IGP region is greatly affected by the prevailing meteorology, topography and the long-70 

range transport of pollutants (Kaskaoutis et al., 2014; Kumar et al., 2014; Schnell et al., 2018; Ojha et 

al., 2020).  
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In addition to the year-round poor air quality over the IGP region, recurring intense post-monsoon and 

winter haze episodes have been reported in numerous studies (Ram et al., 2016; Kanawade et al., 2020; 

Beig et al., 2019; Bharali et al., 2019; Thomas et al., 2019; Dhaka et al., 2020; Kumar et al., 2018a; 75 

Kumari et al., 2021; Gupta et al., 2022). Most of these severe episodes coincide with the biomass 

burning period (mid-October to November) during which agricultural land is cleared by burning crop 

residues, primarily paddy, in open fields (Singh et al., 2020). Although highly seasonal, the emissions 

from these multiple small to large fires emit large amounts of reactive gases and particles such as carbon 

monoxide (CO), nitrogen oxides (NOX), volatile organic compounds (VOCs), carbonaceous particles 80 

and other components of  PM2.5 and PM10 (Singh et al., 2020; Kumar et al., 2021). One such severe haze 

event over northern India occurred between the end of October and 7th November 2016 leading to daily 

mean PM2.5 concentrations of 300-600 µg m−3, some 20-40 times greater than the 24-h WHO 2021 Air 

Quality Guideline of 15 µg m−3 (Mukherjee et al., 2018; Sawlani et al., 2019; Kanawade et al., 2020; 

Jethva et al., 2019). Jethva et al (2019) reported that crop-residue fire counts over northwest India were 85 

particularly high in the 2016 post-monsoon period. Alongside crop biomass burning emissions, the 

unfavourable meteorology and accumulation of local urban emissions contributed to this week-long 

extremely high pollution episode (Kanawade et al., 2020; Sawlani et al., 2019).  

Modelling studies characterising air pollution over India have utilised a variety of regional chemistry 

transport models (Nair et al., 2012; Kumar et al., 2012a, b; Moorthy et al., 2013; Pan et al., 2015; 90 

Srivastava et al., 2016; Schnell et al., 2018; Ghosh et al., 2023). These studies highlight various 

problems in simulating atmospheric composition over the Indian subcontinent such as capturing the 

high aerosol loading, erroneous boundary-layer parametrizations, underestimations in emissions 

inventories, complex mountain topography and inaccurate moisture transport. This is especially true for 

simulations of surface BC concentrations, which utilise regional South Asian emissions inventories that 95 

are thought to underestimate the BC emissions (Kumar et al., 2015; Govardhan et al., 2019). Equally 

important is simulating the vertical distribution of BC particles and understanding their effect on 

atmospheric stability, for which only limited measurements have been made over India. These studies 

find high BC loadings vertically (up to 8 km altitude) over northwest and central India during different 

months (Babu et al., 2011; Bisht et al., 2016; Brooks et al., 2019). The role of these absorbing particles 100 

in modifying the vertical boundary layer structure during a haze episode over the northern Indian region 

has been poorly explored to date (Bharali et al., 2019). 

This study aims to evaluate the WRF-Chem regional atmospheric chemistry transport model for 

understanding the spatiotemporal aerosol-planetary boundary layer dynamics across north India and the 

IGP in September-November 2016. First, WRF-Chem simulations of surface and vertical meteorology 105 

are evaluated against multiple available observations from weather stations and radiosonde profiles and 

reanalysis datasets. Secondly, the modelled chemistry and aerosol optical properties are evaluated 

against reanalysis products, satellite, and ground-based measurements. The study focuses on 
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characterising monsoon to post-monsoon changes in meteorology and the atmospheric chemical 

composition of PM2.5 and BC.  110 

 

2. Data and Methods  

2.1 WRF-Chem model description and configuration 

The Weather Research and Forecasting model (version 4.2.1) coupled with Chemistry (WRF-Chem) 

(Grell et al., 2005; Fast et al., 2006) is an atmospheric chemistry transport model widely applied to the 115 

South Asia region, including its development as an air quality early-warning system for Delhi (Jena et 

al., 2021; Kumar et al., 2020b). It has a terrain-following vertical coordinate system and is available 

with a range of physical parameterizations (Skamarock et al., 2008). The transport of trace gases and 

aerosol species in WRF-Chem uses identical vertical and horizontal coordinates, allowing for feedbacks 

between meteorology and chemistry via radiation and photolysis (Grell et al., 2005). This makes WRF-120 

Chem well-suited for investigating and isolating the interactions between aerosols and meteorology.  

The single domain for this study covers the northern part of South Asia (20 – 38° N and 66 – 90° E) at 

12 km horizontal resolution (Fig. 1b), with 33 vertical levels from the surface to the model top which 

is fixed at 50 hPa. The lowest 10 levels are below 1 km. The configurations of WRF-Chem dynamical 

Figure 1. a) Degree of urbanisation based on 2015 human population size and built-up area density 

data over India from GHS-SMOD (Schiavina et al., 2023) b) Locations of the observation sites used 

for comparison in this study; the legend indicates the different datasets (ASOS: automatic weather 

stations, RAOB: Radiosonde observations, CPCB: Indian Central Pollution Control Board PM2.5 

ground monitoring stations, AERONET: Aerosol Robotic Network ground remote sensing 

observations). The inset figure is an enlarged map of Delhi capital and the geographical area falling 

under IGP region is highlighted in light blue colour. 

a b 
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and chemical parametrizations used in this study are adopted from the literature available for South 125 

Asia and are summarized in Supplementary Table S1. Hourly fifth-generation European Centre for 

Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) data at a horizontal resolution of 

0.25°  0.25° is used for initializing the meteorology, boundary conditions and nudging in the model 

(Hersbach et al., 2020). The WRF model temperature, horizontal winds and water vapour are nudged 

(relaxation time of 6  10-4 s-1) to ERA5 value. The input static terrestrial and land-use data are obtained 130 

from MODIS IGBP 21-category land-cover classification (Friedl et al., 2002).  

The time-varying boundary conditions for chemistry are taken from the global 6-hourly Model for 

Ozone and Related Chemical Tracers (MOZART-4)/ Goddard Earth Observing System Model version 

5 (GEOS, National Center for Atmospheric Research 2016). The simulation of gas-phase chemistry in 

WRF-Chem is provided by the updated MOZART-4 (Emmons et al., 2010, 2020) scheme which 135 

includes treatment of biogenic hydrocarbons and aromatics (Hodzic and Jimenez, 2011; Knote et al., 

2014). Description of aerosol chemistry, including organic aerosols, is provided by the Model for 

Simulating Aerosol Interactions and Chemistry (MOSAIC) 4-bin scheme (Zaveri et al., 2008). The 

MOSAIC scheme uses a sectional approach to divide dry aerosol diameter into four discrete bins: 

0.039–0.156 µm, 0.156–0.625 µm, 0.625–2.5 µm and 2.5–10 µm (the coarse PM bin) (Zaveri et al., 140 

2008). The aerosol distribution scheme includes both in-cloud and impaction scavenging and assumes 

aerosols to be internally mixed within the same bin and externally mixed between the bins (Riemer et 

al., 2019). MOSAIC simulates sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), calcium (Ca2+), 

carbonate (CO3
2-), black carbon (BC), primary organic mass (OM), liquid water (H2O), sea salt (NaCl) 

and other inorganic species such as minerals and trace metals (Zaveri et al., 2008). The Fast 145 

TroposphericUltraviolet–Visible (FTUV) photolysis scheme (Tie et al., 2003) provides photolysis rates 

and accounts for the aerosol feedback on photolysis (Hodzic and Knote, 2014).  

Monthly anthropogenic emissions at 0.1°  0.1° horizontal resolution are obtained from 2010 EDGAR-

HTAPv2.2 (Emission Database for Global Atmospheric Research for Hemispheric Transport of Air 

Pollution version 2.2, https://edgar.jrc.ec.europa.eu/dataset_htap_v2). The emission sectors included in 150 

EDGAR-HTAPv2.2 are industrial, residential, transportation, agriculture, shipping, energy, and 

aviation. For emissions from India, EDGAR-HTAPv2.2 incorporates the regional emissions inventory 

from the Model Inter-comparison Study for Asia Phase III (MICS-Asia III) to derive emissions maps 

at a common grid resolution of 0.1°  0.1° (Janssens-Maenhout et al., 2015). Under MICS-ASIA, a 

mosaic of regional anthropogenic emission inventories (MIX) was developed by combining the 155 

nationally reported estimates by Argonne National Laboratory (ANL-India) and REAS2 (Regional 

Emission inventory in Asia) (Lu et al., 2011; Li et al., 2017). The total emissions for SO2, NOx, NH3, 

PM10, PM2.5, BC, OC and non-methane volatile organic compounds (NMVOCs) are speciated in the 

model following the MOSAIC-MOZART chemistry mechanism. The anthropogenic emissions input 

have a simplified diurnal variation implemented where two sets of diurnal files are generated with each 160 
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file having identical 12 hourly values for all the pollutants. The use of EDGAR-HTAPv2.2 inventory 

from 2010 estimates adds some uncertainties to the model results. However, compared to other global 

inventories (e.g., ECLIPSE) of coarser resolution, the use of EDGAR-HTAPv2.2 has been found to 

simulate air quality over India satisfactorily (Saikawa et al., 2020; Upadhyay et al., 2020).  

In India, the post-harvest agricultural residue is largely cleared by burning it in open fields, and this is 165 

a dominant contributor to Indian PM2.5, BC, OC, SO2, NOx and NMVOC emissions (Venkataraman et 

al., 2018). As EDGAR emissions do not include any biomass burning emissions (from agricultural fires, 

wildfires or prescribed fires), these are derived from the Fire Inventory from NCAR, version 1.5 

(FINNv1.5) (Wiedinmyer et al., 2011). The emissions are based on satellite-measured locations of 

active fires and emission factors relevant to the underlying land cover (Akagi et al., 2011). The 170 

FINNv1.5 fire emissions inputs are distributed at 1 km spatial and hourly temporal resolution for 2016 

(https://www.acom.ucar.edu/Data/fire/). 

Biogenic emissions are calculated online (updated every  30 minutes) using the Model of Emissions of 

Gases and Aerosol from Nature (MEGAN v2.0) (Guenther et al., 2006). MEGAN uses satellite-driven 

land cover and modelled meteorological information (e.g., temperature, and photosynthetically 175 

available radiation, PAR) to estimate VOCs, NOx and CO from vegetation at 1 km spatial resolution. 

Dust emissions are generated online by incorporating Goddard Global Ozone Chemistry Aerosol 

Radiation and Transport (GOCART) scheme from terrain data and modelled meteorology (Chin et al., 

2002). The GOCART scheme, described in detail elsewhere (Ginoux et al., 2001; Zhao et al., 2010, 

2013), utilises the information about 10 m wind speed, threshold wind velocity (minimum value to 180 

reach for the dust emission to occur) and potential dust source region factors to calculate the dust 

emission flux. The total dust emission fluxes are calculated by multiplying with an empirical 

dimensional constant which is taken from Ginoux et al. (2001). The GOCART scheme then distributes 

the emitted dust particles into 4 size bins (described earlier). 

For our evaluation of WRF-Chem performance, hourly simulations are conducted for 01 September to 185 

30 November 2016. September falls within the south-west (SW) monsoon season (its withdrawal 

typically begins in mid-September) whilst October and November are in the post-monsoon season 

(Annual report 2016, India Meteorological Department). This permits a comparative assessment of 

meteorology and air quality between the two seasons. Although 2015-2016 was widely recorded as 

subject to a pronounced El Niño event, its effects over India lasted only until the summer of 2016 (India 190 

Meteorological Department, Govt. of India Ministry of Earth Sciences, 2017) and therefore should not 

significantly impact the study period. In terms of general climatology, the 2016 SW monsoon rainfall 

was recorded to be normal over the country, aside from a deficit in rainfall over parts of northwest India.  
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2.2 Meteorological data  

WRF-Chem simulated meteorology is compared with observational networks measuring daily surface 195 

weather (Iowa Environmental Mesonet- Automated Surface Observing System; IEM-ASOS Network) 

and atmospheric soundings (radiosonde observations (RAOB), University of Wyoming). Figure 1b 

shows the locations of the observation sites from these networks. The data links and access details are 

given in Table S2.  

 The IEM-ASOS network is an archive of global automated airport weather observations from weather 200 

stations operated by national agencies and airport authorities. Hourly air temperature (T2), relative 

humidity (RH), wind speed (WS) and wind direction (WD) data for 49 observation sites (Table S4) 

within the study domain are used. Processing and general quality control checking of the data is 

undertaken by the IEM-Network so the downloaded data was only checked for missing values before 

comparison with model output. 205 

Radiosonde measurements for vertical meteorology profile comparison are available for eight sites 

within the model domain. Pilot balloon soundings are undertaken by the India Meteorological 

Department and rigorous quality checks are performed before making them freely available (Durre et 

al., 2006). The radiosonde measurements are available each day at 00:00 UTC (05.30 and 17.30 Indian 

Standard Time (IST), respectively). No station has complete soundings for the entire study period so 210 

model-measurement comparisons include only times when observations are available. The sounding 

observations are vertically interpolated to the model’s pressure levels from 1000 hPa to 100 hPa. The 

average vertical temperature, virtual potential temperature (VPT), WS and RH profiles are compared 

for individual sites and temporal variability (as standard deviation) is reported for the entire period 

across all the pressure levels.  215 

The spatial features of modelled meteorology are compared against the global MERRA-2 reanalysis 

(Gelaro et al., 2017) dataset available at a latitude-longitude grid resolution of 0.5°  0.625° and 72-eta 

hybrid levels at 6-h frequency. MERRA-2 reanalysis data is provided by NASA’s Global Modelling 

and Assimilation Office (GMAO). The meteorological variables are re-gridded to WRF-Chem spatial 

resolution (12 km) and comparison was undertaken for T2, 10 m WS, water vapour mixing ratio (QV) 220 

and planetary boundary layer height (PBLH) variables.  

2.3 Ground-based PM2.5  

We evaluate the performance of WRF-Chem in simulating aerosols by comparing modelled PM2.5 mass 

concentrations and aerosol optical depth (AOD) at 550 nm with observations and reanalysis products. 

The measurements of surface PM2.5 used for model comparison are undertaken by the Central Pollution 225 

Control Board of India (CPCB), accessed via the OpenAQ platform (Table S1, Fig. 1b). In addition to 

general quality control procedures applied by CPCB, the hourly PM2.5 mass concentration data for 20 
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stations in the study domain was filtered for missing, zero and negative values. Days with <40 % of 

hourly measurements were also removed before comparing with the modelled PM2.5 mass 

concentrations. Since Delhi has many more individual sites than other states in the domain, the data is 230 

grouped into two categories: all sites within the Delhi region (n =8), and the remaining sites (referred 

to as ‘Others’, n =12), the majority of which are located within the IGP region (Fig. 1b, Table S4).  

2.4 Reanalysis PM2.5 and Black Carbon concentrations 

The spatial distributions of modelled surface PM2.5 and BC concentrations are compared with MERRA-

2 global reanalysis products, which is based on the GOCART scheme employed in the Goddard Earth 235 

Observing System version 5 (GEOS-5) atmospheric model (Randles et al., 2017). The GOCART model 

in MERRA-2 employs the online coupling of radiatively-active aerosols with meteorology in the 

GEOS-5 model. GOCART in MERRA-2 simulates OC, BC, sea salt, dust, and sulfate aerosols which 

are used to derive the total PM2.5 mass concentrations. The aerosols in the GOCART scheme are 

externally mixed and exclude the treatment of nitrate aerosols (Randles et al., 2017). AOD in MERRA-240 

2 is assimilated using multiple satellite and ground-based observation data including bias-corrected 

AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High-

Resolution Radiometer (AVHRR) instruments, Multi-angle Imaging Spectroradiometer (MISR) and 

Aerosol Robotic Network (AERONET). The aerosol assimilation uses satellite radiance and albedo 

from observing sensors and bias-corrected AOD, described in detail in Randles et al (2017). Based on 245 

past studies and recommendations, the PM2.5 concentration is calculated via the following summation 

of aerosol components in the size bin  2.5 µm diameter. 

[PM2.5] = [BC] + 1.6 × [OC] + 1.375 × [SO4
2-] + [Dust] + [Sea Salt]  

The multiplication factor of 1.375 on the sulfate ion concentration is based on the assumption in 

MERRA-2 that sulfate is primarily present as neutralised ammonium sulfate (Buchard et al., 2016; 250 

Provenc¸al et al., 2017; Song et al., 2018). OC in MERRA-2 is scaled up to organic matter concentration 

using values ranging from 1.2 - 2.6 and this study uses the factor 1.6 which is commonly used for urban 

carbonaceous particles (Chow et al., 2015; Buchard et al., 2016; Provenc¸al et al., 2017; Song et al., 

2018).  

2.5 Satellite and ground-based AOD data 255 

WRF-Chem AOD at 550 nm is compared with satellite observations from the MODIS sensor on board 

the Terra and Aqua polar orbiting satellites. The AOD products from MODIS have a 10 km horizontal 

resolution at equatorial local overpass times of 10.30 (Terra) and 13.30 (Aqua). AOD retrievals from 

MODIS are based on combined Dark Target (DT: retrieval algorithm over dark land and ocean surfaces) 

and Dark Blue algorithms (DB: bright land surface) and re-gridded to the WRF-Chem resolution of 12 260 
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km. AOD in WRF-Chem is simulated between wavelengths 300 - 1000 nm and interpolated to 550 nm 

using the Ångström power law (Ångström, 1964; Kumar et al., 2014).  

In addition, ground-based AERONET version 2 level 2.0 (quality-assured and cloud-screened) AOD is 

available at four locations (Fig. 1b) within the study domain and is used for comparison with modelled 

results. AERONET is a global network (Holben et al., 1998) that has been extensively used for 265 

validating satellite observations over South Asia (Sayer et al., 2014; Mhawish et al., 2017). 

Figure 2. Daily-mean time series (left) and mean diurnal cycle (right) of observed (black) and modelled 

(red) meteorological variables from 01 September – 30 Nov 2016 averaged across the 49 ASOS 

measurement sites shown in Figure 1b. From top to bottom: daily mean 2-m temperature, relative humidity, 

wind speed, and wind direction. The shaded regions indicate the standard deviation in the spatial variability 

in the model and measured variables. The vertical dashed lines delineate the period of severe high pollution 

between 30th October and 7th November. 
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2.5 Statistical Metrics 

Statistical metrics used here for the evaluation of model performance include mean bias (MB), 

normalized mean bias (NMB), mean absolute error (MAE), root mean square error (RMSE) and 

Pearson’s correlation coefficient (r). Definitions of these metrics are provided in Supplementary 270 

Material Table S3. 

 

 

  
Month/Variable MB NMB MAE RMSE r 

 (N = 49) 

Temperature (⁰C)     

September -0.28 -0.01 1.5 2.2 0.86 

October -0.75 -0.03 1.8 2.6 0.90 

November -0.84 -0.04 2.2 3.0 0.87 

RH (%)      

September -1.90 -0.03 7.8 10.0 0.75 

October -4.10 -0.07 10.1 13.2 0.79 

November -8.20 -0.15 12.8 17.7 0.65 

Wind Speed (m s−1)      

September 0.40 0.20 0.8 1.07 0.62 

October 0.54 0.36 1.0 1.26 0.30 

November 0.81 0.61 1.1 1.37 0.40 

Table 1. Summary of statistical comparison of monthly averaged modelled and observed 

meteorology variables from September to November 2016 for the 49 ASOS measurement sites 

shown in Figure 1b. The statistical metrics used for comparison are mean bias (MB), normalized 

mean bias (NMB), mean absolute error (MAE), root mean square error (RMSE) and Pearson’s 

correlation coefficient (r).  

coefficient (r).  
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  275 

Month MB NMB MAE RMSE r 

Temperature (⁰C)      

September -0.57 -0.03 1.4 2.12 0.99 

October -1.5 -0.10 1.9 2.67 0.99 

November -2.4 -0.22 2.7 3.30 0.99 

Wind Speed (m s−1)      

September -0.17 -0.09 0.57 0.73 0.85 

October -0.23 -0.12 0.64 0.85 0.76 

November -0.17 -0.08 0.79 1.09 0.73 

QV2 (g kg−1)      

September 0.56 0.05 0.94 1.38 0.98 

October 0.19 0.02 0.79 1.11 0.98 

November -0.07 -0.01 0.65 0.99 0.97 

PBLH (m)      

September -324 -0.28 355 430 0.69 

October -477 -0.37 481 550 0.67 

November -344 -0.36 356 446 0.70 

PM2.5 (µg m−3)      

September 54 1.9 55.1 72 0.87 

October 20 0.49 21.7 30 0.87 

November -8.4 -0.12 13.8 23 0.95 

BC (µg m−3)      

September 0.52 0.65 0.57 0.93 0.91 

October 0.24 0.19 0.44 0.79 0.91 

November -0.78 -0.28 0.89 1.42 0.92 

Table 2. Summary of statistical comparison of monthly averaged WRF-Chem and MERRA-2 derived 

meteorology variables from September to November 2016. The statistical metrics used for 

comparison are mean bias (MB), normalized mean bias (NMB), mean absolute error (MAE), root 

mean square error (RMSE) and Pearson’s correlation coefficient (r).  
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3. Meteorology evaluation results 

3.1 Near-surface meteorological fields 

Figure 2 shows modelled and measured time series of daily means and mean diurnal cycles (right panel) 

for 2-m temperature (T2), relative humidity (RH), wind speed (WS) and wind direction (WD) derived 

from hourly data and averaged across all the observational sites. The statistical comparison metrics for 280 

the three months are provided in Table 1. As the exact measurement heights at individual sites are not 

known, the comparisons are made assuming the standard above-ground heights of 2 m for temperature 

and RH and 10 m for wind speed and direction. Daily average T2 variability correlates well between 

the model and observations for all the months (r > 0.85), with maxima and minima captured well (Fig. 

2). Model MB for T2 is very slightly low, but by less than -0.8 ⁰C for all months. The T2 diurnal profile 285 

is also well represented by the model, with differences slightly larger (up to 2 ⁰C) during night-time.  

The general day-to-day variability in modelled surface RH also compares reasonably well with the 

observations (r range across the months:  0.65 – 0.79) with slight underestimations that gradually 

increase from -1.9 % in September to -8.2 % in November mainly due to underestimations seen in the 

night-time RH peaks. The observed diurnal RH cycle is also well simulated by the model, although as 290 

for T2 with larger differences during the night when RH is greatest. 

The differences in simulated 10 m wind patterns are relatively higher than those for T2 and RH with 

modelled WS showing a relatively poor correlation of r ≤ 0.4 and overestimations of about 0.5 – 0.8 m 

s−1 (36 - 61 %) in October and November. However, better correlation (r = 0. 62) and lower biases (MB 

= 0.4 m s−1 and NMB = 0.2) are observed for September. The diurnal variation of WS during daytime 295 

is captured quite well by the model, while the bias high at night (up to 1.5 m s−1) is the reason for the 

observed large biases in modelled daily variabilities in WS. Since local WD is highly variable across 

sites in different regions it is hard for a model to capture the daily variabilities. As for the other variables, 

the differences between modelled and observed WD are smallest during the daytime when the general 

wind direction is south-westerly and largest at night. 300 

Table 2 provides the statistical evaluation results from the comparison of WRF-Chem and MERRA-2 

global reanalysis data for mean T2, 10-m wind speed, water vapour mixing ratio (QV) and planetary 

boundary layer height (PBLH). The spatial maps of these variables are presented in Figures S1 and S2. 

Except for PBLH the meteorological variables generally show good spatiotemporal agreement between 

the model and MERRA-2 with the best agreement for T2 and QV, as reflected in the high spatial 305 

correlations (r ≥ 0.97). However, regional heterogeneities exist between the two datasets which are 

generally more evident temporally across all the variables. The largest spatial differences are seen for 

WS and QV which show overall underestimations by WRF-Chem for WS (in contrast to observed 

overestimations as compared to the measured data) and overestimations for QV (in contrast to observed 
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underestimations as compared to the measured data) in the wider IGP region. There is a stronger west-310 

east gradient in PBLH in MERRA-2 compared to WRF-Chem which possibly influences the PM2.5 

concentrations in MERRA-2. 

A seasonal dry bias in the WRF model over the Indian region due to possible errors in moisture fluxes 

has been reported previously (Kumar et al., 2012b; Conibear et al., 2018) and night-time 

underestimations in modelled RH similar in magnitude to this study were noted by Gunwani and Mohan 315 

(2017). A comparison of modelled results including ERA-5 (used to drive WRF-Chem here) and 

independent MERRA-2 global reanalysis datasets with hourly ground observations (Fig. S3) shows the 

highest positive bias in RH in ERA-5 during all the months while WRF-Chem and MERRA-2 tend to 

underestimate RH across all the months. This suggests the model likely these biases likely propagate 

from the global reanalysis data used to drive the meteorology. This may affect the model’s ability to 320 

capture the diurnal evolution of secondary aerosols by hygroscopic growth, particularly during the 

night.  

The observed positive bias in simulated 10 m WS (also seen in Fig. S1 meteorology comparison with 

ERA-5 and MERRA-2) is well known and the observed magnitude of the bias is largely consistent with 

previous studies (Zhang et al., 2016; Mues et al., 2018; Gunwani and Mohan, 2017; Wang et al., 2021). 325 

First, this could be in part due to inaccurate land-surface parameterizations (such as roughness length 

or surface drag and urban canopy) yielding smaller friction velocities and stronger winds in the model. 

Second, it could also be due to unknown differences in measured and modelled heights. However, the 

afternoon simulated WS are close to the observations which suggests there are underlying weaknesses 

in nocturnal stable boundary layer decoupling in the model. The associated turbulent fluxes and 330 

thermodynamic exchanges occurring in the atmospheric boundary layer are important for model 

simulated PBL and pollutant dispersal (Shen et al., 2023; Nelli et al., 2020). However, during the 

extreme pollution episode (30 October to 7 November) both model and observations agree on a 

reduction in WS (although with varying magnitudes) and a shift in WD. These changes highlight the 

role of stagnant meteorology in greatly enhancing the near-surface pollution lasting over a week.  335 
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Figure 4. Top to bottom: Comparisons of 

vertical profiles of temperature (⁰C), virtual 

potential temperature (VPT, ⁰C)  and wind 

speed (m s−1) between the model (red) and 

radiosonde observations (black) for 8 sites 

at 12 UTC (17.30 IST) averaged for 

September – November 2016. The 

horizontal lines show the standard 

deviation in the day-to-day temporal 

variability during the comparison period. 

a 

b 

c 
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c 

Figure 3. Top to bottom: Comparisons of 

vertical profiles of temperature (⁰C), 

virtual potential temperature (VPT, ⁰C) 

and wind speed (m s−1) between the model 

(red) and radiosonde observations (black) 

for 8 sites at 00 UTC (5.30 IST) averaged 

for September – November 2016. The 

horizontal lines show the standard 

deviation in the day-to-day temporal 

b 

a 
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3. 2 Vertical Profiles 340 

Figures 3 and 4 show averaged modelled and observed sounding profiles over individual RAOB sites 

(Fig. 1) for temperature (T), virtual potential temperature (VPT) and wind speed (WS) at 05.30 IST (00 

UTC) and 17.30 IST (12 UTC), respectively. The corresponding summaries of statistical metrics are 

presented in Tables 3 and 4. The upper air meteorology and thermodynamic structure are crucial 

parameters of the atmosphere as they impact the transport and convective distribution of pollutants. Of 345 

all the meteorological quantities examined here, vertical profiles of T and VPT are represented best by 

the model, with correlations of r ≥ 0.95 across all the sites and r = 1.0 for most of the sites at both times. 

At 05.30 IST, modelled T profiles show a warm bias of up to 1.5 ⁰C at 6 sites and a cold bias of up to 2 

⁰C at Delhi and Gwalior sites up to about 980 hPa (Fig. 3a) which gradually decreases with altitude. 

The model also captures the observed marked inversion near the surface in morning T and VPT profiles 350 

reasonably well at most sites. Agreement at 17.30 IST is even better (Fig. 4a): biases in modelled T 

profiles are less than 0.5 ⁰C below 980 hPa at all sites except Ranchi and negligible aloft. Overall, across 

all sites, the average MB, NMB and RMSE values are generally lower for VPT compared to T at both 

times (Tables 3 and 4). 

The simulated WS vertical profiles have larger variations across most of the sites at both times as 355 

compared to T and VPT profiles (Figures 3c and 4c). Consistent with the 10 m WS comparisons, the 

model tends to overestimate WS vertically by up to 4 m s−1 at 05.30 IST and up to 3 m s−1 at 17.30 IST 

in the lower layers but better captures it aloft (above ~900 hPa) with only slight differences across all 

the sites (Fig.  S4). Despite the considerable positive bias within the bottom layers, the model reproduces 

the observed higher WS at higher altitudes reasonably well, resulting in good correlations of r ≥ 0.77 at 360 

05.30 IST and r ≥ 0.95 at 17.30 IST. As an exception, the modelled WS profiles are very well 

represented over the Patna site (in the east) during both times. The results here differ from those of 

Mohan and Bhati (2011) who noted increased deviation in simulated WS at higher altitudes over Delhi 

during the summer months.  

The simulated RH profiles were also evaluated (Fig. S4) and show underestimations by up to 20 % in 365 

the lower layers of the model across most sites at both times, which decreases in magnitude at higher 

altitudes except at Gorakhpur. These biases vertically are generally more negative at 05.30 IST 

compared to 17.30 IST indicating a dry bias in early morning hours in the model, consistent with the 

ground observation comparisons.  

VPT profiles are particularly useful in understanding the stability and turbulence of the atmosphere 370 

which helps in the dilution of the pollutants within the mixed boundary layer. By accounting for 

moisture and temperature, a VPT profile indicates buoyancy and stability in the atmosphere and can be 

used to derive planetary boundary layer heights (Liu et al., 2019; Vogelezang and Holtslag, 1996). 

Figure 3 shows that, at all sites, observed and simulated temperature inversion layers close to the surface  
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Table 3. Summary of statistical comparison of modelled and observed 0.5.30 IST profiles from 375 

radiosonde data for the individual RAOB stations shown in Figure 1b averaged from September to 

November 2016. The statistical metrics used for comparison are mean bias (MB), normalized mean bias 

(NMB), mean absolute error (MAE), root mean square error (RMSE) and Pearson’s correlation 

coefficient (r).  

 380 

  

Station Name MB NMB MAE RMSE r 

Temperature 

(⁰C)      

Calcutta -0.22 0.03 0.58 0.83 1.00 

Delhi 0.14 -0.02 0.67 1.01 1.00 

Gorakhpur 0.14 -0.02 1.14 1.68 1.00 

Gwalior -0.08 0.01 0.67 1.12 1.00 

Jodhpur -0.25 0.03 0.92 1.92 1.00 

Lucknow -0.81 0.10 1.54 7.70 0.96 

Patna -0.15 0.02 0.75 1.06 1.00 

Ranchi -1.08 0.14 1.70 7.56 0.96 

VPT (⁰C)      

Calcutta -0.31 -0.01 0.70 0.98 1.00 

Delhi 0.09 0.00 0.74 1.09 1.00 

Gorakhpur -0.02 0.00 1.37 1.99 0.99 

Gwalior -0.16 0.00 0.78 1.29 1.00 

Jodhpur -0.37 -0.01 1.13 2.65 0.99 

Lucknow 0.14 0.00 1.24 3.87 0.98 

Patna -0.27 -0.01 0.90 1.25 1.00 

Ranchi 0.68 0.01 1.70 5.99 0.95 

 WS (m s−1)      

Calcutta -0.35 -0.04 1.34 2.02 0.96 

Delhi -0.29 -0.02 1.57 2.08 0.99 

Gorakhpur -0.78 -0.07 1.80 2.42 0.98 

Gwalior -0.33 -0.03 1.60 2.37 0.97 

Jodhpur -0.74 -0.06 1.82 2.41 0.98 

Lucknow 0.15 0.01 2.37 4.92 0.89 

Patna -0.59 -0.06 1.53 2.13 0.98 

Ranchi 0.58 0.07 2.65 5.33 0.77 

RH (%)      

Calcutta -1.09 -0.02 7.56 11.9 0.93 

Delhi -2.20 -0.08 6.23 10.0 0.92 

Gorakhpur -10.5 -0.21 15.4 19.4 0.88 

Gwalior -1.87 -0.06 7.21 10.9 0.93 

Jodhpur 1.54 0.07 8.59 11.7 0.89 

Lucknow -2.99 -0.08 10.4 15.1 0.87 

Patna -0.84 -0.02 9.37 14.4 0.92 

Ranchi -3.12 -0.07 10.6 16.5 0.89 
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at 5.30 IST, demonstrating the typical formation of an urban nocturnal stable boundary layer. In 

contrast, at 17.30 IST (Fig. 4), both the observed and modelled VPTs exhibit a typical well-mixed late 

afternoon profile due to surface heating, with higher values of VPT near the surface (33–36 ⁰C surface) 

that remains nearly constant up to about 850 hPa across most sites. The negligible biases and error 385 

statistics in T and VPT profiles (Tables 3 - 4) across all sites provide high confidence in model skill in 

simulating the thermodynamic structure of the atmosphere. This is an improvement on Mues et al. 

(2018) who reported larger biases in T profiles (up to 3 ⁰C and 7 ⁰C at 05.30 IST and 17.30 IST, 

respectively) at the Delhi site in winter and summer 2013. As noted in Section 3.1, and elsewhere 

(Mohan and Bhati, 2011; Gunwani and Mohan, 2017), errors in simulated WS are highly sensitive to 390 

local roughness length and model topography and are thus subject to greater noise. Given these 

limitations, we find the model performance statistics comparable to previous studies (Mohan and Bhati, 

2011; Kumar et al., 2012b) and close to the benchmarks provided by Emery and Tai (2001). 

4 Chemistry evaluation results  

4.1 Ground-based PM2.5  395 

Figure 5 compares the modelled and measured daily averaged time series (left) and diurnal variability 

(right) of surface PM2.5 concentrations from hourly samples from September to November 2016. The 

observations are spatially averaged across 8 sites in Delhi and 12 sites across the rest of the domain 

(referred to as ‘Others’). The statistical summary is presented in Table 5. The model adequately captures 

the day-to-day variation of PM2.5 for October-November, when it is biased low, while it fails to 400 

reproduce the daily variability during September when it is strongly biased high. On average, during 

September the model overestimates surface PM2.5 concentrations by more than a factor of two (NMB 

range: 1.69 to 1.91) across all the sites and underestimates in November by 26 % over Delhi and by 14 

% over Others. Overall, the model and observed daily surface PM2.5 correlate reasonably well during 

October (Delhi: r = 0.65, Others: r = 0.53) and November (Delhi: r = 0.76, Others: r = 0.66). Correlation 405 

for these months is better across Delhi sites but shows relatively larger mean biases (+17.7 to – 73.2 µg 

m−3) and NMBs (+0.13 to – 0.26) compared to Others. Additionally, the model tends to predict PM2.5 

concentrations with a fairly broad range of monthly RMSE values (56.3 – 138 µg m−3).  

The spatially averaged diurnal cycle for modelled surface PM2.5 shows a pronounced diurnal trend 

matching observations for Delhi sites, while the diurnal cycle is less pronounced at Others sites. 410 

Generally, diurnal trends are in good agreement across all sites, although on average the model tends to 

underpredict the afternoon dips and night-time peaks compared to the observations, indicating missing 

anthropogenic activities from the simplified emissions patterns derived from monthly estimates used in 

the model. The lack of a representation of a realistic diurnal activity cycle in the anthropogenic 

emissions highlights meteorology could be driving the modelled PM2.5 variation. Although this might 415 

partly be affected by the imperfectly represented diurnal variability of WS in the model (Section 3.1).  
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             Table 4. Same as Table 3, but for 17.30 IST profiles.  

 

  Station Name MB NMB MAE RMSE r 

Temperature 

(⁰C)      

Calcutta -0.16 0.02 0.57 0.82 1.00 

Delhi 0.04 -0.01 0.63 0.85 1.00 

Gorakhpur -0.02 0.00 1.24 1.89 1.00 

Gwalior -0.17 0.02 0.68 1.15 1.00 

Jodhpur -0.11 0.01 0.74 1.02 1.00 

Lucknow 0.01 0.00 0.95 1.73 1.00 

Patna 0.06 -0.01 0.75 1.20 1.00 

Ranchi -1.22 0.18 2.15 8.45 0.96 

VPT (⁰C)      

Calcutta -0.24 0.00 0.68 1.00 1.00 

Delhi -0.02 0.00 0.74 0.97 1.00 

Gorakhpur -0.31 -0.01 1.50 2.19 0.99 

Gwalior -0.26 0.00 0.81 1.39 1.00 

Jodhpur -0.20 0.00 0.91 1.25 1.00 

Lucknow -0.12 0.00 1.16 2.13 0.99 

Patna -0.01 0.00 0.85 1.34 1.00 

Ranchi 0.65 0.01 1.89 5.59 0.96 

 WS (m s−1)      

Calcutta -0.30 -0.04 1.30 1.78 0.97 

Delhi -0.24 -0.02 1.48 1.91 0.99 

Gorakhpur -0.71 -0.06 1.76 2.32 0.98 

Gwalior -0.27 -0.02 1.50 1.97 0.98 

Jodhpur -0.64 -0.06 1.76 2.27 0.98 

Lucknow -0.40 -0.03 1.81 2.42 0.98 

Patna -0.68 -0.06 1.49 2.01 0.98 

Ranchi -0.15 -0.02 1.88 2.74 0.95 

RH (%)      

Calcutta -2.13 -0.04 8.06 12.7 0.93 

Delhi -1.47 -0.06 6.73 10.6 0.90 

Gorakhpur -9.62 -0.20 14.9 18.8 0.86 

Gwalior -0.58 -0.02 7.80 12.0 0.90 

Jodhpur 2.29 0.12 8.54 11.4 0.86 

Lucknow -2.12 -0.06 10.9 14.9 0.85 

Patna -0.96 -0.02 9.44 14.0 0.91 

Ranchi 1.73 0.04 10.3 15.3 0.89 
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  420 

Figure 5.  Time series of daily means (left) and mean diurnal cycles (right) of observed and modelled PM2.5, 

averaged across 8 sites in Delhi and 12 sites over the rest of the domain (labelled ‘Others’) from September – 

November 2016. The shaded area in both panels shows standard deviation of the spatial variability of the 

model and measured PM2.5. The locations of the ground measurement sites are shown in Figure 1b. The 

vertical dashed lines delineate the period of severe high pollution between 30 October and 7 November. 

Figure 6.  Time series of daily means (left) and mean diurnal cycles (right) of modelled individual PM2.5 

components averaged across 8 stations in Delhi and 12 stations over the rest of the domain (labelled ‘Others’) 

from September – November 2016. The individual species contribution abbreviations are: SOA (secondary 

organic aerosol), POA (primary organic aerosol), SO4
2- (sulfate), NH4

+ (ammonium), NO3
-
 (nitrate), BC (black 

carbon). The vertical dashed lines delineate the period of severe high pollution between 30 October and 7 

November. 
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During the 30 October –7 November pollution episode both observations and model show the highest 

daily mean surface PM2.5 (Observed: 300 – 750 µg m−3, Modelled: 150 – 420 µg m−3) across Delhi, 

while relatively lower concentrations are seen across Others sites during this period (observed and 

modelled: < 200 µg m−3) (Fig. 5). The observed daily mean PM2.5 concentrations exceed the 24-h 

average 2021 WHO air quality guideline of 15 µg m−3 (WHO 2021) by nearly 50 times and the predicted 425 

concentrations exceed by nearly 28 times. The maximum negative differences (up to 350 µg m−3) 

between the daily mean modelled and observed PM2.5 also occur during this episode. During this period, 

the observed hourly PM2.5 concentrations exceed 1000 µg m−3 (mostly at night) at the Delhi US embassy 

site (in central Delhi) and exceed 800 µg m−3 at all the sites across Delhi and two downwind stations in 

the lower IGP (Lucknow and Kanpur). The corresponding modelled hourly concentrations at these 430 

locations and times underestimate PM2.5 by a factor of 2-3 (380 – 520 µg m−3), in part attributable to 

overestimated surface WS. One study characterising this 2016 high pollution episode over Delhi 

reported exceptionally high night-time mean PM2.5 concentrations of 2924 µg m−3 on 30 October 

(Diwali festival night), 1520 µg m−3  on 5 November, and day time mean values of nearly 1500 µg m−3 

on 6 November (Sawlani et al., 2019). The modelled and observed daily average PM2.5 across downwind 435 

Others sites peaks (> 250 µg m−3) only towards the end of the high pollution episode, suggesting a 

regional distribution of PM2.5 over time. The observed and simulated near-surface meteorology during 

this time over northern India shows stagnant conditions conducive for the build-up of pollutants: smaller 

WS (1-1.5 m s−1), lower PBLH (< 500 m) and a nearly 2 - 3 ⁰C drop in near-surface temperature leading 

to atmospheric inversion (Fig. 2). These stagnant conditions combined with regional and local 440 

anthropogenic emissions facilitate pollution accumulation within the shallow continental boundary 

layer over wider northern India. After the extreme pollution days (9 November onwards), the model 

captures the magnitude of daily PM2.5 variation well everywhere except for an observed peak across 

Delhi on 17 November. 

4.2 Modelled PM2.5 Composition  445 

The daily time series and average diurnal variability of modelled mean surface PM2.5 composition over 

observation sites in Delhi and Others are shown in Figure 6. Due to the lack of observed PM2.5 speciation 

data for this period, only modelled results are presented here. These are qualitatively compared with 

literature for other years as the aerosol loading over the Indian region exhibits stronger intra-annual 

variabilities than interannual variabilities (Conibear et al., 2018; Mhawish et al., 2021). The largest 450 

variations in daily PM2.5 components across all months are observed for secondary organic aerosol 

(SOA) and secondary inorganic aerosol (SIA) (sulfate, nitrate and ammonium) over all the sites. The 

concentration of fine dust particles dominates most evidently at the beginning of September and reduces 

to almost half in October and November but remains a non-negligible contributor to total PM2.5 on 

average (15 - 25 %) across all sites. The fine dust component is mainly responsible for the 455 

overestimations seen in modelled PM2.5 in September compared to the measurement. Another notable  
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Month MB NMB MAE RMSE r Obs_mean Mod_mean 

 PM2.5 (µg m−3)                                               Delhi sites (n = 8)   

September 111 1.91 111 124 0.17 58.7 170 

October 17.7 0.13 58.1 74.2 0.65 141 159 

November -73.2 -0.26 95.2 138 0.76 279 206 

                                                    Others sites (n  = 12)   

September 69.9 1.69 70.26 89.5 0.44 41.3 111 

October 10.9 0.11 40.71 56.3 0.53 102 113 

November -23.8 -0.14 54.94 73 0.66 172 148 

Month MB NMB MAE RMSE r 

PM2.5 (µg m−3) 

September 54 1.9 55.1 72 0.87 

October 20 0.49 21.7 30 0.87 

November -8.4 -0.12 13.8 23 0.95 

BC (µg m−3) 

September 0.52 0.65 0.57 0.93 0.91 

October 0.24 0.19 0.44 0.79 0.91 

November -0.78 -0.28 0.89 1.42 0.92 

Table 5. Statistical summary of comparisons of monthly mean modelled and observed PM2.5 

concentrations for September to November 2016 for Delhi (top) and Other stations (bottom). 

The statistical metrics are mean bias (MB), normalized mean bias (NMB), mean absolute error 

(MAE), root mean square error (RMSE) and Pearson’s correlation coefficient (r). n denotes 

number of available measurement stations in the group.  

 

Table 6. Statistical summary of comparisons of monthly mean concentrations (µg m-3) of PM2.5 and black 

carbon from the WRF-Chem model and MERRA-2 from September to November 2016. The statistical 

metrics are mean bias (MB), normalized mean bias (NMB), mean absolute error (MAE), root mean square 

error (RMSE) and Pearson’s correlation coefficient (r).  
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Figure 7. Spatial distributions of monthly mean concentrations (µg m-3) of a) PM2.5 and b) black carbon from 

the WRF-Chem model and MERRA-2 for September to November 2016. The monthly mean PM2.5 at the 

measurement sites are shown in circles in a).  

b a 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



24 
 

change is in the nitrate component which dramatically peaks during the high pollution period, together 460 

with SOA, ammonium and primary aerosols (OC, BC). The modelled peaks in PM2.5 and its components 

largely follow the observed PM2.5 trend (Oct - Nov period) which highlights the model's skill in 

representing the diversity of aerosols during dramatic shifts in surface particle pollution and is more 

clearly seen across Delhi sites than Others. Among SIA, the PM2.5 composition in November is 

dominated by nitrate aerosols (10 - 30 %) which are comparable to reported measurements. For 465 

example, a high nitrate fraction (20 - 27 %) in post-monsoon months has been reported in various 

measurement studies over India (Ram and Sarin, 2011; Schnell et al., 2018; Patel et al., 2021; Talukdar 

et al., 2021). The average modelled BC contribution over Delhi during September (3 µg m−3), October 

(8.2 µg m−3) and November (13.2 µg m−3) are comparable to the measured EC (assumed to be equivalent 

to modelled BC) concentrations (~3 µg m−3, ~ 6 µg m−3 and ~12 µg m−3, respectively) reported by 470 

Sharma et al. (2018). The dominance of secondary particle contribution to modelled PM2.5 during post-

monsoon months is fully consistent with other studies (Gani et al., 2019; Talukdar et al., 2021) although 

the relative abundance is lower. The diurnal variation of PM2.5 components over Delhi show more 

pronounced dips in primary and secondary inorganics, suggesting influence of local emissions while 

the fine dust component remains relatively stable, suggesting both local and natural non-local emissions 475 

influence.    

4.3 Comparison of PM2.5 and Black Carbon distribution with reanalysis products 

Figure 7 compares the monthly averaged spatial distribution of WRF-Chem modelled and MERRA-2 

reanalysis derived surface PM2.5 and BC concentrations. The corresponding domain-averaged 

performance statistics are summarised in Table 6.  The overall spatial agreement between the model 480 

and MERRA-2 is excellent for both PM2.5 and BC (r > 0.87, Fig. S6).  However, on a regional scale, 

the modelled PM2.5 is biased high over parts of arid western India and eastern Pakistan in September, 

resulting in a domain-wide NMB of 1.9. The model shows a stronger west-east gradient in PM2.5 than 

MERRA-2 with the highest modelled concentrations of >250 µg m−3 in the western and north-western 

regions. Agreement between the model and MERRA-2 improves for October-November. 485 

The high simulated PM2.5 loading over some parts of north-western India during September is most 

likely due to erroneous dust uplift by overestimated winds from the Thar Desert in the west (Fig. S6), 

the major seasonal natural dust source region (Bali et al., 2021; Kumar et al., 2018a). This 

overestimation could further be enhanced by the underestimation of dust deposition in the model arising 

from a dry bias over the land region in the domain (Ratnam and Kumar, 2005; Conibear et al., 2018). 490 

The notable change in modelled PM2.5 over the dust source region along the western borders from 

September to November shows a strong seasonality in dust emissions in the model. Compared to WRF-

Chem, MERRA-2 shows a slightly better comparison with monthly mean surface PM2.5 (Fig. 7a) for 
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individual monitoring sites with smaller differences between model-measured mean than WRF-Chem 

(especially for September).  495 

  

Figure 8. Spatial variation of monthly mean AOD at 550 nm derived from the model and MODIS sampled at 

local overpass times of 10.30 (Terra) and 13.30 (Aqua) for September to November 2016. Absolute differences 

of model minus satellite AOD are shown in the bottom row.   

Figure 9. Scatterplots of monthly averaged model versus MODIS-derived AOD at 550 nm for the months 

(from left to right) September, October, and November 2016. The 2:1, 1:1 and 1:2 lines (red dashed lines), 

the best-fit line (black line) and Pearson’s correlation coefficient r are also shown for each month.  
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In contrast, the highest BC concentrations occur along the IGP for all the months and increases from 

September to November (Fig. 7b). During October and November, the northwest and eastern parts of 

the IGP exhibit the highest PM2.5 and BC concentrations in both datasets. Compared to MERRA-2, 

modelled BC shows more distinguishable spatial features including localised hotspots coinciding with 500 

densely populated major metropolitan and industrial cities with clusters of coal-fired power plants 

(Singh et al., 2018). For instance, conspicuous localised regions appear over dense urban centres like 

Ahmedabad, Delhi, Kolkata, the steel industrial city of Jamshedpur, Raipur with heavy mining, 

Singrauli with ore-processing industries in the upper central domain, and Jharia coal belts in the east 

having clusters of coal-fired power plants. Overall, the spatial variabilities of BC and PM2.5 are quite 505 

similar in both WRF-Chem and MERRA-2 with WRF-Chem estimating slightly lower PM2.5 and BC in 

November over the majority of the IGP except over Delhi.  

 

4.4 Evaluation of aerosol optical depth with satellite and AERONET observations 

Figure 8 compares WRF-Chem simulated and MODIS (Aqua) retrieved monthly averaged distribution 510 

of AOD at 550 nm. The unitless quantity AOD is a measure of particle extinction within the atmospheric 

column from the surface to the top atmosphere and provides a useful spatial estimate of particle loading 

using satellite instruments. The spatial distributions of modelled and MODIS AOD agree well for all 

Figure 10.  Time series (left panel) and scatter plots (right panel) of modelled and AERONET daily averaged 

AOD at 550 nm over the 4 AERONOET stations shown in Figure 1b for the period September to November 

2016. 
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months (r ≥ 0.72 Table 7) although regional biases similar to the MERRA-2 comparisons occur over 

northern and western parts of the domain. As with MERRA-2 PM2.5 comparisons, during September 515 

the model captures well the high AOD (up to 1.2) over north-western India and along the borders with 

north-east Pakistan but predicts higher AOD over the western arid region (Fig. 8), indicated by the 

overall NMB of 0.69. The statistical evaluation metrics for all the months (Table 7) show there is a 

good overall agreement between modelled and satellite AOD which gradually improves from 

September to November. In both model and satellite data, AOD values are generally low (<0.5) outside 520 

of the broader IGP region in all the months. Although the satellite AOD shows higher spatial variability, 

a good spatial correlation exists between the two datasets in October-November (r = 0.80 and 0.86, 

respectively) (Fig. 9). The domain averaged modelled AOD (0.39 and 0.34, respectively) during these 

months are comparable to satellite retrieved AOD (0.32 and 0.34, respectively). Despite the overall 

underestimations during the biomass burning period of (mid-October to mid-November), the model 525 

captures high AOD values over some small, localised parts in Punjab and Haryana in northern India 

and north-eastern Pakistan, although with slightly lower magnitudes. The higher AOD along the entire 

IGP region is more apparent from the satellite observations in November, which show AOD values 

reaching ~ 2.0 (underestimated in the model by about 10 %) over parts of Punjab in the north and Uttar 

Pradesh and Bihar in the east (AOD >1.8). Interestingly, the regional hotspots along the IGP region, 530 

over eastern Uttar Pradesh and eastern Bihar as observed in modelled PM2.5 maps during October-

November are evident in MODIS AOD distribution but less discernible in modelled AOD maps (Fig. 

8). It is important to note that the MODIS satellite overpass times of 10.30 and 13.30 local time limits 

comparisons to the afternoon each day. Therefore, it is the modelled meteorological conditions typical 

to daytime (deep PBL height, increased WS) that affect the modelled AOD column. In a similar model 535 

set-up over northern India, Roozitalab et al. (2021) and Kulkarni et al. (2020) found comparable 

estimates of modelled AOD distribution during the 2017 post-monsoon high pollution event. 

To further evaluate model skill in predicting the optical properties of aerosols, the modelled daily 

averaged AOD at 550 nm is compared in Figure 10 against the four AERONET sites (Fig. 1b) in the 

study domain. There are missing data at all the sites with Kanpur in the east and Jaipur in the west (both 540 

dense urban locations) having the most data coverage. The daily variabilities of AOD comparison with 

point observations show similar trends as previously noted for comparison with satellite AOD and 

ground-based and MERRA-2 PM2.5 comparisons. The model evaluation against AERONET AOD 

largely agrees with the PM2.5 evaluations including higher disparities seen for September with a positive 

MB (0.02 to 0.43) across all the sites. However, the high daily averaged AERONET AOD (>1.0) at all 545 

sites during the high pollution event at the start of November is captured reasonably well by the model 

except in Lahore, a large city in eastern Pakistan, where the model underestimates AOD the most. Of 

the four sites, crop residue burning occurs in Lahore (Kulkarni et al., 2020), which is also situated close 
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to other biomass-burning regions of northwestern India. This AERONET site shows the highest 

observed (~3.0) and modelled (~2.0) AOD values during the high pollution episode.  550 

To further check for consistency between satellite and ground measurements, the time series of satellite, 

AERONET and modelled AOD at 550 nm at the four observation locations are shown in Figure 11. To 

compare the three datasets, the data points corresponding to the local overpass time of MODIS are 

selected from the hourly AERONET and WRF-Chem datasets. The satellite AOD generally matches 

more closely with AERONET at lower values and misses the magnitude of high AOD during high 555 

pollution days. Earlier studies have attributed the inaccuracies in MODIS AOD retrievals due to dense 

haze hanging over north India and the IGP region during severe pollution days (Mhawish et al., 2022). 

The modelled AOD captures the hourly AOD trend quite well but also underestimates AOD in absolute 

magnitude during high pollution days across the sites. Overall, the modelled AOD agrees well with 

satellite and ground observations during October and November despite some underestimations in 560 

absolute magnitudes.  

 

 

4.5 Discussion 

The discrepancies in model-observation particulate matter comparisons for September have also been 565 

noted in other studies for India and suggest inaccuracies in modelling moisture transport during the 

Figure 11.  Time series of MODIS-retrieved (green), modelled (red) and AERONET (blue) AOD at 550 

nm sampled at 13.30 IST over the 4 AERONET stations shown in Fig. 1b: from top to bottom, Jaipur, 
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monsoon season, which affects particle deposition and washout (Conibear et al., 2018; Mogno et al., 

2021). Furthermore, in 2016, almost all the ground stations were in urban locations of the IGP region, 

which prevents the evaluation of the model at more spatially representative rural locations. In addition, 

nearly all the measurement sites are on or near the roadside with heavy influences from dense traffic 570 

and local anthropogenic activities together with dense micro-scale urban features that are challenging 

to resolve in the model, including because emissions are only at monthly temporal resolution. The 

sudden jumps in particulate matter during an extreme pollution event are especially difficult to capture 

with the model (despite satisfactory meteorological fields) without updated emissions estimates and 

knowledge of dynamic local activity data (for instance diurnal activity profiles specific to Indian 575 

regions). For example, residential emissions are a major contributor to poor air quality in rural and 

suburban areas in northern India with an estimated 16 % to 80 % contribution towards SOA components 

of PM2.5  (Rooney et al., 2019).  
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Month MB NMB MAE RMSE r 

AOD (MODIS) 

September 0.25 0.69 0.28 0.34 0.72 

October 0.06 0.20 0.11 0.15 0.80 

November 0.00 -0.01 0.09 0.13 0.86 

  AERONET    

Jaipur      

September 0.43 0.96 0.43 0.45 0.38 

October 0.10 0.31 0.14 0.17 0.04 

November -0.03 -0.06 0.17 0.26 0.83 

Kanpur      

September 0.30 0.66 0.32 0.37 0.60 

October -0.01 -0.02 0.19 0.25 0.64 

November -0.15 -0.21 0.20 0.26 0.72 

Gandhi College      

September 0.02 0.04 0.22 0.27 -0.08 

October -0.03 -0.05 0.13 0.17 0.69 

Lahore      

September 0.39 0.49 0.49 0.57 0.15 

October -0.14 -0.13 0.38 0.50 0.26 

November -0.37 -0.37 0.44 0.65 0.75 

Table 7. Statistical summary of comparisons of monthly mean modelled and observed AOD at 550 

nm derived from MODIS and at the 4 AERONET stations from September to November 2016. The 

statistical metrics are mean bias (MB), normalized mean bias (NMB), mean absolute error (MAE), 

root mean square error (RMSE) and Pearson’s correlation coefficient (r). 

 

 

 

 

 

 

Month MB NMB MAE RMSE r 

AOD (MODIS) 

September 0.25 0.69 0.28 0.34 0.72 

October 0.06 0.20 0.11 0.15 0.80 

November 0.00 -0.01 0.09 0.13 0.86 

  AERONET    

Jaipur      

September 0.43 0.96 0.43 0.45 0.38 

October 0.10 0.31 0.14 0.17 0.04 

November -0.03 -0.06 0.17 0.26 0.83 

Kanpur      

September 0.30 0.66 0.32 0.37 0.60 

October -0.01 -0.02 0.19 0.25 0.64 

November -0.15 -0.21 0.20 0.26 0.72 

Gandhi College      
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Furthermore, the inaccuracies in simulating individual fractions of total PM2.5 also add to the observed 

model biases; for example, the lack of heterogeneous aqueous phase chemistry in the current aerosol 

scheme potentially underestimates the aerosol processes involving SOA formation (Tuccella et al., 

2012; Balzarini et al., 2015), while high contributions from dust in the MOSAIC scheme could lead to 

overestimations (Georgiou et al., 2018). In addition, the earlier studies report large positive biases in 600 

simulating surface and column concentrations of trace gases like NOx (Kumar et al., 2012a) and 

concentrations of SO2 (Conibear et al., 2018) over urban areas in India. These biases further contribute 

to uncertainties in simulating reactive trace gas and secondary pollutants.  

Significant post-harvest crop residue burning takes place in north-western states of India from late 

October to mid-November (Jethva et al., 2019), which impacts the air quality locally as well as in 605 

downwind regions of central and eastern IGP (Bhardwaj et al., 2016; Kanawade et al., 2020; Kulkarni 

et al., 2020; Singh et al., 2021; Mhawish et al., 2022; Govardhan et al., 2023). Other uncertainties in 

simulating PM2.5 concentrations arise from errors in scaling biomass burning emissions estimates which 

largely depend on the limited number of daily satellite-based retrievals and are sometimes compromised 

by dense smoke from fires being misrepresented as cloud cover in the detection algorithm (Cusworth 610 

et al., 2018). In their study, Singh et al. (2021) report the annual mean contribution of biomass burning 

to PM2.5  over India to be 8%, but with a strong seasonal dependence (up to 39 % in October-November 

in Delhi). As previously discussed in the literature, MODIS fire detection is susceptible to missing small 

fires like agricultural burning (Cusworth et al., 2018; Roozitalab et al., 2021). In addition to the surface 

measurements, comparisons with MERRA-2 products highlight a good agreement between the WRF-615 

Chem simulations and the reanalysis approach of employing satellite data assimilations. Navinya et al. 

(2020) and others, however, find MERRA-2 to underestimate simulated PM2.5 over India in comparison 

to the measurements.  

Overall, the evaluation of the WRF-Chem simulated chemistry demonstrates adequate performance 

during October and November for PM2.5 and is assessed to be suitable to investigate the atmospheric 620 

dynamics during extreme pollution events. The modelled results presented here, and in other studies of 

pollution episodes and aerosol climatology over India, clearly show that the October-November period 

has higher aerosol loading over most of the domain. A mix of factors like emission patterns, 

meteorology shifts and topography intensify the existing high pollution levels in some parts of India 

(Kulkarni et al., 2020; Kumar et al., 2018a; Mhawish et al., 2022; Kanawade et al., 2020). Sawlani et 625 

al. (2019) and Kanawade et al. (2020) attribute the 2016 haze episode to a mix of coinciding factors: 

local emissions from fireworks, enhanced fire counts from agricultural crop residue burning in 

northwestern states, stagnant conditions resulting from low temperatures, shallow PBL, weaker 

northwesterly winds, and high ambient RH. The crop residue burning in 2016 (over Punjab, Haryana 

and Uttar Pradesh in northwest India and Pakistan) detected by combined VIIRS and MODIS sensors 630 

reveal higher total burning events by up to 30% and 41% compared to 2017 and 2018, respectively 
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(Chhabra et al., 2019). Similar high pollution events have been reported during post-monsoon months 

in later years (Dekker et al., 2019; Kulkarni et al., 2020; Takigawa et al., 2020; Roozitalab et al., 2021; 

Beig et al., 2021; Mhawish et al., 2022). Additionally, a few studies also report a layer of biomass-

burning smoke aerosols at 2-3 km altitude above the IGP region using CALIPSO (Cloud–Aerosol Lidar 635 

and Infrared Pathfinder Satellite Observations) retrievals (Shaik et al., 2019; Kumar et al., 2018b), 

which is detrimental for haze occurrences and modifying local meteorology.  

5. Conclusions 

We comprehensively compare the WRF-Chem v4.2.1 modelled meteorology and aerosol chemistry 

with a wide range of observational data that includes ground-based, satellite and reanalysis products 640 

over northern India. The simulations are performed at a spatial resolution of 12 km and for the 2016 

monsoon (September) to post-monsoon (October-November) transition, with a focus on the severe haze 

pollution episode from 30 October to 7 November.  

The meteorological fields show strong seasonal and spatial variability over the IGP region with a 

marked decrease in temperature, WS, and PBLH from monsoon to post-monsoon, most notably for 645 

PBLH. Overall, we find that the model accurately represents meteorology during the afternoon hours. 

The surface daily and diurnal trend in temperature is best reproduced by the model, followed by relative 

humidity, with negligible biases across all sites. In contrast, daily mean model wind speed is widely 

biased high (by ~ 0.5 – 0.8 m s−1) largely due to strong night-time overestimations (up to 1.5 m s−1), 

while the afternoon WS is reasonably reproduced by the model. This suggests a potential model failure 650 

in surface layer decoupling at night.  

Comparison of upper air meteorology with radiosonde profiles shows negligible biases and excellent 

correlations for temperature and virtual potential temperature (r > 0.95) across all sites. The model 

overestimates wind speed in the lowest layers, consistent with surface observation comparisons whilst 

matching well with observed WS aloft. In comparison to MERRA-2 reanalysis products, modelled 655 

PBLH generally has negative mean bias of > 25 % in all the months but agrees well spatially.  

Modelled and observed PM2.5 concentrations show good agreement (except during September) with 

overall better correlations for 8 sites averaged across Delhi (r > 0.6) and 12 sites across the remaining 

domain (r > 0.5). In September, model concentrations show large biases due to overestimation in dust 

generation over the western arid region and possible long-range transport across the measurement sites.  660 

The model simulates the high pollution episode with notable peaks in daily mean PM2.5 concentrations 

but underestimates the exceptionally high observed daily PM2.5 (300 – 750 µg m−3) by a factor of 2-3. 

Despite the accurate representation of the vertical temperature gradient, the model underestimates high 

surface PM2.5 concentrations due to stronger simulated WS favouring the dispersion of the surface 

pollutants, together with uncertainties in the emissions inventories. Both the model and surface 665 
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measurements show that Delhi experiences the highest PM2.5 concentrations during the severe pollution 

episode followed by regional dispersal of pollutants downwind. During the episode, daily simulated 

anthropogenic PM2.5 composition comprised high fractions of nitrate (5 - 25 %) and secondary organic 

aerosols (10 - 20 %), consistent with previous measurement and modelling studies. The contribution of 

BC and primary organic matter to the total simulated PM2.5 mass also increases in November.   670 

Comparison with MERRA-2 reanalysis data shows the spatiotemporal distribution of surface PM2.5 to 

have systematic high biases in September along the dry western region of the domain and low bias in 

October-November in the IGP region. However, the model captures quite well the high PM2.5 and BC 

concentrations over the IGP, including Delhi and upwind biomass burning regions during November. 

Variability in modelled AOD compared with satellite retrievals from MODIS is captured very well with 675 

r ≥ 0.8 in October-November. The model likewise compares well with ground-based AERONET 

measurements of daily AOD (r ≥ 0.69) across all sites except during September.  

Our evaluations consistently reveal the best performance of the model in simulating PM2.5 and BC 

concentrations is for November followed by October, with model underestimations largely stemming 

from the extreme episodic nature of the pollution event. The lack of measurement data for individual 680 

PM2.5 components and the limited spatial coverage of measurement sites restricts the extent of the 

evaluation of this period. Overall, however, the model is found adequate for subsequent investigation 

of the vertical distribution of particle components and their interactions with meteorology through 

sensitivity simulations and improved emissions estimates. Our results also suggest that improved 

diurnal characterisation of boundary layer processes could considerably enhance the model 685 

performance over this region.  

Code and data availability 

All the data sets used for comparison and source codes for model simulations are openly available. 

WRF-Chem source code can be obtained from 

https://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The ERA-5 input data were 690 

downloaded from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-

levels?tab=overview. The chemical boundary conditions from MOZART are available at 

https://www2.acom.ucar.edu/gcm/mozart. All the emissions inputs and pre-processor tools were 

obtained from https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community. The links for 

openly available ground, satellite and reanalysis datasets used for evaluation are provided in Table 695 

S2.  

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



33 
 

Author contributions 

PA, DSS and MRH conceptualised the study. PA compiled the measurement datasets performed formal 

model simulations, and data analyses, curated the data and wrote the text with discussions and 

supervision by MRH and DSS. DSS and MRH edited and commented on the text. 700 

Competing interests. The authors declare that they have no conflict of interest. 

Acknowledgments 

This work was carried out on the Cirrus UK National Tier-2 HPC Service at EPCC 

(http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1). We 

acknowledge the WRF-Chem community and the Atmospheric Chemistry Observations and Modeling 705 

Lab (ACOM) of NCAR for providing the preprocessor tools {mozbc, fire_emis, anthro_emis, 

bio_emiss} used in this study (https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community last 

accessed 29 May 2023). We also acknowledge the use of data provided by GHSL - Global Human 

Settlement Layer (https://ghsl.jrc.ec.europa.eu/index.php last accessed 29 May 2023). The geographical 

maps were downloaded from https://github.com/IDFCInstitute/IndiaMap_Data (last accessed 29 May 710 

2023). PA is thankful to Alaa Mhawish for providing the MODIS data. The use of open software 

packages and python libraries are also gratefully acknowledged.  

Financial support 

PA acknowledges UoE scholarships (Principal’s Career Development Scholarships and Edinburgh 

Global Research Scholarship). DSS acknowledges support from Natural Environment Research 715 

Council (grant no. NE/S009019/1).   

 

References  

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., 

and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric 720 
models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 

Ångström, A.: The parameters of atmospheric turbidity, Tellus, 16, 64–75, 

https://doi.org/10.3402/tellusa.v16i1.8885, 1964. 

Babu, S. S., Moorthy, K. K., Manchanda, R. K., Sinha, P. R., Satheesh, S. K., Vajja, D. P., Srinivasan, 

S., and Kumar, V. H. A.: Free tropospheric black carbon aerosol measurements using high altitude 725 
balloon: Do BC layers build “their own homes” up in the atmosphere?: FREE TROPOSPHERIC 

BLACK CARBON AEROSOL, Geophys. Res. Lett., 38, n/a-n/a, 

https://doi.org/10.1029/2011GL046654, 2011. 

Bali, K., Dey, S., and Ganguly, D.: Diurnal patterns in ambient PM2.5 exposure over India using 

MERRA-2 reanalysis data, Atmospheric Environment, 248, 118180, 730 
https://doi.org/10.1016/j.atmosenv.2020.118180, 2021. 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



34 
 

Balzarini, A., Pirovano, G., Honzak, L., Žabkar, R., Curci, G., Forkel, R., Hirtl, M., San José, R., 

Tuccella, P., and Grell, G. A.: WRF-Chem model sensitivity to chemical mechanisms choice in 

reconstructing aerosol optical properties, Atmospheric Environment, 115, 604–619, 

https://doi.org/10.1016/j.atmosenv.2014.12.033, 2015. 735 

Beig, G., Srinivas, R., Parkhi, N. S., Carmichael, G. R., Singh, S., Sahu, S. K., Rathod, A., and Maji, 

S.: Anatomy of the winter 2017 air quality emergency in Delhi, Science of The Total Environment, 681, 

305–311, https://doi.org/10.1016/j.scitotenv.2019.04.347, 2019. 

Beig, G., Sahu, S. K., Rathod, A., Tikle, S., Singh, V., and Sandeepan, B. S.: Role of meteorological 

regime in mitigating biomass induced extreme air pollution events, Urban Climate, 35, 100756, 740 
https://doi.org/10.1016/j.uclim.2020.100756, 2021. 

Bharali, C., Nair, V. S., Chutia, L., and Babu, S. S.: Modeling of the Effects of Wintertime Aerosols on 

Boundary Layer Properties Over the Indo Gangetic Plain, Journal of Geophysical Research: 

Atmospheres, 124, 4141–4157, https://doi.org/10.1029/2018JD029758, 2019. 

Bhardwaj, P., Naja, M., Kumar, R., and Chandola, H. C.: Seasonal, interannual, and long-term 745 
variabilities in biomass burning activity over South Asia, Environ Sci Pollut Res, 23, 4397–4410, 

https://doi.org/10.1007/s11356-015-5629-6, 2016. 

Bisht, D. S., Tiwari, S., Dumka, U. C., Srivastava, A. K., Safai, P. D., Ghude, S. D., Chate, D. M., Rao, 

P. S. P., Ali, K., Prabhakaran, T., Panickar, A. S., Soni, V. K., Attri, S. D., Tunved, P., Chakrabarty, R. 

K., and Hopke, P. K.: Tethered balloon-born and ground-based measurements of black carbon and 750 
particulate profiles within the lower troposphere during the foggy period in Delhi, India, Science of The 

Total Environment, 573, 894–905, https://doi.org/10.1016/j.scitotenv.2016.08.185, 2016. 

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. 

G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. 

G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., 755 
Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., 

Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific 

assessment: BLACK CARBON IN THE CLIMATE SYSTEM, J. Geophys. Res. Atmos., 118, 5380–

5552, https://doi.org/10.1002/jgrd.50171, 2013. 

Brooks, J., Liu, D., Allan, J. D., Williams, P. I., Haywood, J., Highwood, E. J., Kompalli, S. K., Babu, 760 
S. S., Satheesh, S. K., Turner, A. G., and Coe, H.: Black Carbon physical and optical properties across 

northern Indiaduring pre-monsoon and monsoon seasons, Aerosols/Field 

Measurements/Troposphere/Chemistry (chemical composition and reactions), 

https://doi.org/10.5194/acp-2019-505, 2019. 

Buchard, V., da Silva, A. M., Randles, C. A., Colarco, P., Ferrare, R., Hair, J., Hostetler, C., Tackett, 765 
J., and Winker, D.: Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol 

Reanalysis over the United States, Atmospheric Environment, 125, 100–111, 

https://doi.org/10.1016/j.atmosenv.2015.11.004, 2016. 

Chhabra, A., Sehgal, V. K., Dhakar, R., Jain, N., and Verma, R.: MONITORING OF ACTIVE FIRE 

EVENTS DUE TO PADDY RESIDUE BURNING IN INDO-GANGETIC PLAINS USING 770 
THERMAL REMOTE SENSING, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3/W6, 

649–657, https://doi.org/10.5194/isprs-archives-XLII-3-W6-649-2019, 2019. 

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., 

Higurashi, A., and Nakajima, T.: Tropospheric Aerosol Optical Thickness from the GOCART Model 

and Comparisons with Satellite and Sun Photometer Measurements, JOURNAL OF THE 775 
ATMOSPHERIC SCIENCES, 59, 23, 2002. 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



35 
 

Chow, J. C., Lowenthal, D. H., Chen, L.-W. A., Wang, X., and Watson, J. G.: Mass reconstruction 

methods for PM2.5: a review, Air Qual Atmos Health, 8, 243–263, https://doi.org/10.1007/s11869-015-

0338-3, 2015. 

Conibear, L., Butt, E. W., Knote, C., Arnold, S. R., and Spracklen, D. V.: Residential energy use 780 
emissions dominate health impacts from exposure to ambient particulate matter in India, Nat Commun, 

9, 617, https://doi.org/10.1038/s41467-018-02986-7, 2018. 

Cusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., Marlier, M. E., DeFries, R. S., Guttikunda, 

S. K., and Gupta, P.: Quantifying the influence of agricultural fires in northwest India on urban air 

pollution in Delhi, India, Environ. Res. Lett., 13, 044018, https://doi.org/10.1088/1748-9326/aab303, 785 
2018. 

Dekker, I. N., Houweling, S., Pandey, S., Krol, M., Röckmann, T., Borsdorff, T., Landgraf, J., and 

Aben, I.: What caused the extreme CO concentrations during the 2017 high-pollution episode in India?, 

Atmos. Chem. Phys., 19, 3433–3445, https://doi.org/10.5194/acp-19-3433-2019, 2019. 

Dhaka, S. K., Chetna, Kumar, V., Panwar, V., Dimri, A. P., Singh, N., Patra, P. K., Matsumi, Y., 790 
Takigawa, M., Nakayama, T., Yamaji, K., Kajino, M., Misra, P., and Hayashida, S.: PM2.5 diminution 

and haze events over Delhi during the COVID-19 lockdown period: an interplay between the baseline 

pollution and meteorology, Sci Rep, 10, 13442, https://doi.org/10.1038/s41598-020-70179-8, 2020. 

Durre, I., Vose, R. S., and Wuertz, D. B.: Overview of the Integrated Global Radiosonde Archive, 

Journal of Climate, 19, 53–68, https://doi.org/10.1175/JCLI3594.1, 2006. 795 

Emery, C. and Tai, E.: Enhanced Meteorological Modeling and Performance Evaluation for Two Texas 

Ozone Episodes, 2001. 

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., 

Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, 

S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, 800 
version 4 (MOZART-4), Geoscientific Model Development, 3, 43–67, https://doi.org/10.5194/gmd-3-

43-2010, 2010. 

Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D., Lamarque, J.-F., Marsh, 

D., Mills, M. J., Tilmes, S., Bardeen, C., Buchholz, R. R., Conley, A., Gettelman, A., Garcia, R., 

Simpson, I., Blake, D. R., Meinardi, S., and Pétron, G.: The Chemistry Mechanism in the Community 805 
Earth System Model Version 2 (CESM2), Journal of Advances in Modeling Earth Systems, 12, 

e2019MS001882, https://doi.org/10.1029/2019MS001882, 2020. 

Fast, J. D., Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. 

A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the 

vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, Journal of 810 
Geophysical Research: Atmospheres, 111, https://doi.org/10.1029/2005JD006721, 2006. 

Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, 

C. E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., and Schaaf, C.: Global land cover 

mapping from MODIS: algorithms and early results, Remote Sensing of Environment, 83, 287–302, 

https://doi.org/10.1016/S0034-4257(02)00078-0, 2002. 815 

Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, 

L., and Apte, J. S.: Submicron aerosol composition in the world’s most polluted megacity: the Delhi 

Aerosol Supersite study, Atmospheric Chemistry and Physics, 19, 6843–6859, 

https://doi.org/10.5194/acp-19-6843-2019, 2019. 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



36 
 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, 820 
A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, 

V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. 

E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, 

B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. 

Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. 825 

Georgiou, G. K., Christoudias, T., Proestos, Y., Kushta, J., Hadjinicolaou, P., and Lelieveld, J.: Air 

quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and 

aerosol mechanism intercomparison, Atmospheric Chemistry and Physics, 18, 1555–1571, 

https://doi.org/10.5194/acp-18-1555-2018, 2018. 

Ghosh, S., Dey, S., Das, S., Riemer, N., Giuliani, G., Ganguly, D., Venkataraman, C., Giorgi, F., 830 
Tripathi, S. N., Ramachandran, S., Rajesh, T. A., Gadhavi, H., and Srivastava, A. K.: Towards an 

improved representation of carbonaceous aerosols over the Indian monsoon region in a regional climate 

model: RegCM, Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, 2023. 

Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J.: Sources and 

distributions of dust aerosols simulated with the GOCART model, Journal of Geophysical Research: 835 
Atmospheres, 106, 20255–20273, https://doi.org/10.1029/2000JD000053, 2001. 

Govardhan, G., Satheesh, S. K., Moorthy, K. K., and Nanjundiah, R.: Simulations of black carbon over 

the Indian region: improvements and implications of diurnality in emissions, Atmos. Chem. Phys., 19, 

8229–8241, https://doi.org/10.5194/acp-19-8229-2019, 2019. 

Govardhan, G., Ghude, S. D., Kumar, R., Sharma, S., Gunwani, P., Jena, C., Yadav, P., Ingle, S., 840 
Debnath, S., Pawar, P., Acharja, P., Jat, R., Kalita, G., Ambulkar, R., Kulkarni, S., Kaginalkar, A., Soni, 

V. K., Nanjundiah, R. S., and Rajeevan, M.: Decision Support System version 1.0 (DSS v1.0) for air 

quality management in Delhi, India, Atmospheric sciences, https://doi.org/10.5194/gmd-2022-300, 

2023. 

Greenstone, M. and Fan|, C.: Air Quality Life Index, Annual Update, 2020. 845 

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: 

Fully coupled “online” chemistry within the WRF model, Atmospheric Environment, 39, 6957–6975, 

https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. 

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global 

terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), 850 
Atmospheric Chemistry and Physics, 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. 

Gunwani, P. and Mohan, M.: Sensitivity of WRF model estimates to various PBL parameterizations in 

different climatic zones over India, Atmospheric Research, 194, 43–65, 

https://doi.org/10.1016/j.atmosres.2017.04.026, 2017. 

Gupta, T., Rajeev, P., and Rajput, R.: Emerging Major Role of Organic Aerosols in Explaining the 855 
Occurrence, Frequency, and Magnitude of Haze and Fog Episodes during Wintertime in the Indo 

Gangetic Plain, ACS Omega, 7, 1575–1584, https://doi.org/10.1021/acsomega.1c05467, 2022. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, 

C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., 

Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, 860 
R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., 

Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



37 
 

Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the 

Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. 

Hodzic, A. and Jimenez, J. L.: Modeling anthropogenically controlled secondary organic aerosols in a 865 
megacity: a simplified framework for global and climate models, Geosci. Model Dev., 4, 901–917, 

https://doi.org/10.5194/gmd-4-901-2011, 2011. 

Hodzic, A. and Knote, C.: WRF-Chem 3.6.1: MOZART gas-phase chemistry with MOSAIC aerosols, 

2014. 

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., 870 
Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET—A Federated 

Instrument Network and Data Archive for Aerosol Characterization, Remote Sensing of Environment, 

66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998. 

India Meteorological Department, Govt. of India Ministry of Earth Sciences: Annual Report 2016, 

2017. 875 

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., 

Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, 

G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps 

for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–

11432, https://doi.org/10.5194/acp-15-11411-2015, 2015. 880 

Jena, C., Ghude, S. D., Kumar, R., Debnath, S., Govardhan, G., Soni, V. K., Kulkarni, S. H., Beig, G., 

Nanjundiah, R. S., and Rajeevan, M.: Performance of high resolution (400 m) PM2.5 forecast over 

Delhi, Sci Rep, 11, 4104, https://doi.org/10.1038/s41598-021-83467-8, 2021. 

Jethva, H., Torres, O., Field, R. D., Lyapustin, A., Gautam, R., and Kayetha, V.: Connecting Crop 

Productivity, Residue Fires, and Air Quality over Northern India, Sci Rep, 9, 16594, 885 
https://doi.org/10.1038/s41598-019-52799-x, 2019. 

Kanawade, V. P., Srivastava, A. K., Ram, K., Asmi, E., Vakkari, V., Soni, V. K., Varaprasad, V., and 

Sarangi, C.: What caused severe air pollution episode of November 2016 in New Delhi?, Atmospheric 

Environment, 222, 117125, https://doi.org/10.1016/j.atmosenv.2019.117125, 2020. 

Kaskaoutis, D. G., Kumar, S., Sharma, D., Singh, R. P., Kharol, S. K., Sharma, M., Singh, A. K., Singh, 890 
S., Singh, A., and Singh, D.: Effects of crop residue burning on aerosol properties, plume characteristics, 

and long-range transport over northern India: Effects of crop residue burning, J. Geophys. Res. Atmos., 

119, 5424–5444, https://doi.org/10.1002/2013JD021357, 2014. 

Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J., 

Gentner, D. R., Goldstein, A. H., Hayes, P. L., Knighton, W. B., Oetjen, H., Setyan, A., Stark, H., 895 
Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-explicit 

mechanisms of SOA formation from glyoxal in aerosol in a 3-D model, Atmos. Chem. Phys., 14, 6213–

6239, https://doi.org/10.5194/acp-14-6213-2014, 2014. 

Kulkarni, S. H., Ghude, S. D., Jena, C., Karumuri, R. K., Sinha, B., Sinha, V., Kumar, R., Soni, V. K., 

and Khare, M.: How Much Does Large-Scale Crop Residue Burning Affect the Air Quality in Delhi?, 900 
Environ. Sci. Technol., 54, 4790–4799, https://doi.org/10.1021/acs.est.0c00329, 2020. 

Kumar, A., Sinha, V., Shabin, M., Hakkim, H., Bonsang, B., and Gros, V.: Non-methane hydrocarbon 

(NMHC) fingerprints of major urban and agricultural emission sources for use in source apportionment 

studies, Atmos. Chem. Phys., 20, 12133–12152, https://doi.org/10.5194/acp-20-12133-2020, 2020a. 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



38 
 

Kumar, A., Hakkim, H., Sinha, B., and Sinha, V.: Gridded 1 km × 1 km emission inventory for paddy 905 
stubble burning emissions over north-west India constrained by measured emission factors of 77 VOCs 

and district-wise crop yield data, Science of The Total Environment, 789, 148064, 

https://doi.org/10.1016/j.scitotenv.2021.148064, 2021. 

Kumar, M., Parmar, K. S., Kumar, D. B., Mhawish, A., Broday, D. M., Mall, R. K., and Banerjee, T.: 

Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields, 910 
Atmospheric Environment, 180, 37–50, https://doi.org/10.1016/j.atmosenv.2018.02.027, 2018a. 

Kumar, M., Parmar, K. S., Kumar, D. B., Mhawish, A., Broday, D. M., Mall, R. K., and Banerjee, T.: 

Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields, 

Atmospheric Environment, 180, 37–50, https://doi.org/10.1016/j.atmosenv.2018.02.027, 2018b. 

Kumar, R., Naja, M., Pfister, G. G., Barth, M. C., Wiedinmyer, C., and Brasseur, G. P.: Simulations 915 
over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): 

chemistry evaluation and initial results, Geoscientific Model Development, 5, 619–648, 

https://doi.org/10.5194/gmd-5-619-2012, 2012a. 

Kumar, R., Naja, M., Pfister, G. G., Barth, M. C., and Brasseur, G. P.: Simulations over South Asia 

using the Weather Research and Forecasting model with Chemistry (WRF-Chem): set-up and 920 
meteorological evaluation, Geoscientific Model Development, 5, 321–343, 

https://doi.org/10.5194/gmd-5-321-2012, 2012b. 

Kumar, R., Barth, M. C., Pfister, G. G., Naja, M., and Brasseur, G. P.: WRF-Chem simulations of a 

typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation 

budget, Atmospheric Chemistry and Physics, 14, 2431–2446, https://doi.org/10.5194/acp-14-2431-925 
2014, 2014. 

Kumar, R., Barth, M. C., Pfister, G. G., Nair, V. S., Ghude, S. D., and Ojha, N.: What controls the 

seasonal cycle of black carbon aerosols in India?, J. Geophys. Res. Atmos., 120, 7788–7812, 

https://doi.org/10.1002/2015JD023298, 2015. 

Kumar, R., Barth, M. C., Pfister, G. G., Monache, L. D., Lamarque, J. F., Archer‐Nicholls, S., Tilmes, 930 
S., Ghude, S. D., Wiedinmyer, C., Naja, M., and Walters, S.: How Will Air Quality Change in South 

Asia by 2050?, Journal of Geophysical Research: Atmospheres, 123, 1840–1864, 

https://doi.org/10.1002/2017JD027357, 2018c. 

Kumar, R., Ghude, S. D., Biswas, M., Jena, C., Alessandrini, S., Debnath, S., Kulkarni, S., Sperati, S., 

Soni, V. K., Nanjundiah, R. S., and Rajeevan, M.: Enhancing Accuracy of Air Quality and Temperature 935 
Forecasts During Paddy Crop Residue Burning Season in Delhi Via Chemical Data Assimilation, J. 

Geophys. Res. Atmos., 125, https://doi.org/10.1029/2020JD033019, 2020b. 

Kumari, S., Verma, N., Lakhani, A., and Kumari, K. M.: Severe haze events in the Indo-Gangetic Plain 

during post-monsoon: Synergetic effect of synoptic meteorology and crop residue burning emission, 

Science of The Total Environment, 768, 145479, https://doi.org/10.1016/j.scitotenv.2021.145479, 940 
2021. 

Lack, D. A. and Cappa, C. D.: Impact of brown and clear carbon on light absorption enhancement, 

single scatter albedo and absorption wavelength dependence of black carbon, Atmospheric Chemistry 

and Physics, 10, 4207–4220, https://doi.org/10.5194/acp-10-4207-2010, 2010. 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 945 
Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: 

MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



39 
 

framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, 

https://doi.org/10.5194/acp-17-935-2017, 2017. 

Liu, N., Zhou, S., Liu, C., and Guo, J.: Synoptic circulation pattern and boundary layer structure 950 
associated with PM2.5 during wintertime haze pollution episodes in Shanghai, Atmospheric Research, 

228, 186–195, https://doi.org/10.1016/j.atmosres.2019.06.001, 2019. 

Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in 

China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839–9864, https://doi.org/10.5194/acp-11-

9839-2011, 2011. 955 

Mhawish, A., Banerjee, T., Broday, D. M., Misra, A., and Tripathi, S. N.: Evaluation of MODIS 

Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: Implications of aerosols types and 

mass loading, Remote Sensing of Environment, 201, 297–313, 

https://doi.org/10.1016/j.rse.2017.09.016, 2017. 

Mhawish, A., Sorek-Hamer, M., Chatfield, R., Banerjee, T., Bilal, M., Kumar, M., Sarangi, C., Franklin, 960 
M., Chau, K., Garay, M., and Kalashnikova, O.: Aerosol characteristics from earth observation systems: 

A comprehensive investigation over South Asia (2000–2019), Remote Sensing of Environment, 259, 

112410, https://doi.org/10.1016/j.rse.2021.112410, 2021. 

Mhawish, A., Sarangi, C., Babu, P., Kumar, M., Bilal, M., and Qiu, Z.: Observational evidence of 

elevated smoke layers during crop residue burning season over Delhi: Potential implications on 965 
associated heterogeneous PM2.5 enhancements, Remote Sensing of Environment, 280, 113167, 

https://doi.org/10.1016/j.rse.2022.113167, 2022. 

Mogno, C., Palmer, P. I., Knote, C., Yao, F., and Wallington, T. J.: Seasonal distribution and drivers of 

surface fine particulate matterand organic aerosol over the Indo-Gangetic Plain, Aerosols/Atmospheric 

Modelling/Troposphere/Chemistry (chemical composition and reactions), https://doi.org/10.5194/acp-970 
2021-69, 2021. 

Mohan, M. and Bhati, S.: Analysis of WRF Model Performance over Subtropical Region of Delhi, 

India, Advances in Meteorology, 2011, 1–13, https://doi.org/10.1155/2011/621235, 2011. 

Moorthy, K. K., Beegum, S. N., Srivastava, N., Satheesh, S. K., Chin, M., Blond, N., Babu, S. S., and 

Singh, S.: Performance evaluation of chemistry transport models over India, Atmospheric Environment, 975 
71, 210–225, https://doi.org/10.1016/j.atmosenv.2013.01.056, 2013. 

Mues, A., Lauer, A., Lupascu, A., Rupakheti, M., Kuik, F., and Lawrence, M. G.: WRF and WRF-

Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley, 

Geosci. Model Dev., 11, 2067–2091, https://doi.org/10.5194/gmd-11-2067-2018, 2018. 

Mukherjee, T., Asutosh, A., Pandey, S. K., Yang, L., Gogoi, P. P., Panwar, A., and Vinoj, V.: Increasing 980 
Potential for Air Pollution over Megacity New Delhi: A Study Based on 2016 Diwali Episode, Aerosol 

Air Qual. Res., 18, 2510–2518, https://doi.org/10.4209/aaqr.2017.11.0440, 2018. 

Nair, V. S., Solmon, F., Giorgi, F., Mariotti, L., Babu, S. S., and Moorthy, K. K.: Simulation of South 

Asian aerosols for regional climate studies, Journal of Geophysical Research: Atmospheres, 117, 

https://doi.org/10.1029/2011JD016711, 2012. 985 

Navinya, C. D., Vinoj, V., and Pandey, S. K.: Evaluation of PM2.5 Surface Concentrations Simulated 

by NASA’s MERRA Version 2 Aerosol Reanalysis over India and its Relation to the Air Quality Index, 

Aerosol Air Qual. Res., 20, 1329–1339, https://doi.org/10.4209/aaqr.2019.12.0615, 2020. 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



40 
 

National Center for Atmospheric Research 2016 ACOM MOZART-4/GEOS-5 global model output 

UCAR 990 

Nelli, N. R., Temimi, M., Fonseca, R. M., Weston, M. J., Thota, M. S., Valappil, V. K., Branch, O., 

Wulfmeyer, V., Wehbe, Y., Al Hosary, T., Shalaby, A., Al Shamsi, N., and Al Naqbi, H.: Impact of 

Roughness Length on WRF Simulated Land-Atmosphere Interactions Over a Hyper-Arid Region, Earth 

and Space Science, 7, e2020EA001165, https://doi.org/10.1029/2020EA001165, 2020. 

Ojha, N., Sharma, A., Kumar, M., Girach, I., Ansari, T. U., Sharma, S. K., Singh, N., Pozzer, A., and 995 
Gunthe, S. S.: On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain 

towards winter, Sci Rep, 10, 5862, https://doi.org/10.1038/s41598-020-62710-8, 2020. 

Pan, X., Chin, M., Gautam, R., Bian, H., Kim, D., Colarco, P. R., Diehl, T. L., Takemura, T., Pozzoli, 

L., Tsigaridis, K., Bauer, S., and Bellouin, N.: A multi-model evaluation of aerosols over South Asia: 

common problems and possible causes, Atmos. Chem. Phys., 15, 5903–5928, 1000 
https://doi.org/10.5194/acp-15-5903-2015, 2015. 

Pandey, A., Brauer, M., Cropper, M. L., Balakrishnan, K., Mathur, P., Dey, S., Turkgulu, B., Kumar, 

G. A., Khare, M., Beig, G., Gupta, T., Krishnankutty, R. P., Causey, K., Cohen, A. J., Bhargava, S., 

Aggarwal, A. N., Agrawal, A., Awasthi, S., Bennitt, F., Bhagwat, S., Bhanumati, P., Burkart, K., 

Chakma, J. K., Chiles, T. C., Chowdhury, S., Christopher, D. J., Dey, S., Fisher, S., Fraumeni, B., 1005 
Fuller, R., Ghoshal, A. G., Golechha, M. J., Gupta, P. C., Gupta, R., Gupta, R., Gupta, S., Guttikunda, 

S., Hanrahan, D., Harikrishnan, S., Jeemon, P., Joshi, T. K., Kant, R., Kant, S., Kaur, T., Koul, P. A., 

Kumar, P., Kumar, R., Larson, S. L., Lodha, R., Madhipatla, K. K., Mahesh, P. A., Malhotra, R., 

Managi, S., Martin, K., Mathai, M., Mathew, J. L., Mehrotra, R., Mohan, B. V. M., Mohan, V., 

Mukhopadhyay, S., Mutreja, P., Naik, N., Nair, S., Pandian, J. D., Pant, P., Perianayagam, A., 1010 
Prabhakaran, D., Prabhakaran, P., Rath, G. K., Ravi, S., Roy, A., Sabde, Y. D., Salvi, S., Sambandam, 

S., Sharma, B., Sharma, M., Sharma, S., Sharma, R. S., Shrivastava, A., Singh, S., Singh, V., Smith, R., 

Stanaway, J. D., Taghian, G., Tandon, N., Thakur, J. S., Thomas, N. J., Toteja, G. S., Varghese, C. M., 

Venkataraman, C., Venugopal, K. N., Walker, K. D., Watson, A. Y., Wozniak, S., Xavier, D., Yadama, 

G. N., Yadav, G., Shukla, D. K., Bekedam, H. J., et al.: Health and economic impact of air pollution in 1015 
the states of India: the Global Burden of Disease Study 2019, The Lancet Planetary Health, 5, e25–e38, 

https://doi.org/10.1016/S2542-5196(20)30298-9, 2021. 

Patel, K., Bhandari, S., Gani, S., Campmier, M. J., Kumar, P., Habib, G., Apte, J., and Hildebrandt 

Ruiz, L.: Sources and Dynamics of Submicron Aerosol during the Autumn Onset of the Air Pollution 

Season in Delhi, India, ACS Earth Space Chem., 5, 118–128, 1020 
https://doi.org/10.1021/acsearthspacechem.0c00340, 2021. 

Paulot, F., Naik, V., and W. Horowitz, L.: Reduction in Near-Surface Wind Speeds With Increasing 

CO2 May Worsen Winter Air Quality in the Indo-Gangetic Plain, Geophysical Research Letters, 49, 

e2022GL099039, https://doi.org/10.1029/2022GL099039, 2022. 

Provenc¸al, S., Buchard, V., Silva, A. M. da, Leduc, R., Barrette, N., Elhacham, E., and Wang, S.-H.: 1025 
Evaluation of PM2.5 Surface Concentrations Simulated by Version 1 of NASA’s MERRA Aerosol 

Reanalysis over Israel and Taiwan, Aerosol Air Qual. Res., 17, 253–261, 

https://doi.org/10.4209/aaqr.2016.04.0145, 2017. 

Ram, K. and Sarin, M. M.: Day–night variability of EC, OC, WSOC and inorganic ions in urban 

environment of Indo-Gangetic Plain: Implications to secondary aerosol formation, Atmospheric 1030 
Environment, 45, 460–468, https://doi.org/10.1016/j.atmosenv.2010.09.055, 2011. 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



41 
 

Ram, K., Singh, S., Sarin, M. M., Srivastava, A. K., and Tripathi, S. N.: Variability in aerosol optical 

properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of haze and dust events, 

Atmospheric Research, 174–175, 52–61, https://doi.org/10.1016/j.atmosres.2016.01.014, 2016. 

Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the hydrological 1035 
cycle, Science, 294, 2119–2124, https://doi.org/10.1126/science.1064034, 2001. 

Randles, C. A., Da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, 

A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., and Flynn, C. J.: The MERRA-2 Aerosol 

Reanalysis, 1980 - onward, Part I: System Description and Data Assimilation Evaluation, J Clim, 30, 

6823–6850, https://doi.org/10.1175/JCLI-D-16-0609.1, 2017. 1040 

Ratnam, J. V. and Kumar, K. K.: Sensitivity of the Simulated Monsoons of 1987 and 1988 to Convective 

Parameterization Schemes in MM5, Journal of Climate, 18, 2724–2743, 

https://doi.org/10.1175/JCLI3390.1, 2005. 

Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol Mixing State: Measurements, 

Modeling, and Impacts, Rev. Geophys., 57, 187–249, https://doi.org/10.1029/2018RG000615, 2019. 1045 

Rooney, B., Zhao, R., Wang, Y., Bates, K. H., Pillarisetti, A., Sharma, S., Kundu, S., Bond, T. C., Lam, 

N. L., Ozaltun, B., Xu, L., Goel, V., Fleming, L. T., Weltman, R., Meinardi, S., Blake, D. R., 

Nizkorodov, S. A., Edwards, R. D., Yadav, A., Arora, N. K., Smith, K. R., and Seinfeld, J. H.: Impacts 

of household sources on air pollution at village and regional scales in India, Atmos. Chem. Phys., 19, 

7719–7742, https://doi.org/10.5194/acp-19-7719-2019, 2019. 1050 

Roozitalab, B., Carmichael, G. R., and Guttikunda, S. K.: Improving regional air quality predictions in 

the Indo-Gangetic Plain – case study of an intensive pollution episode in November 2017, Atmos. 

Chem. Phys., 21, 2837–2860, https://doi.org/10.5194/acp-21-2837-2021, 2021. 

Saikawa, E., Wu, Q., Zhong, M., Avramov, A., Ram, K., Stone, E. A., Stockwell, C. E., Jayarathne, T., 

Panday, A. K., and Yokelson, R. J.: Garbage Burning in South Asia: How Important Is It to Regional 1055 
Air Quality?, Environ. Sci. Technol., 54, 9928–9938, https://doi.org/10.1021/acs.est.0c02830, 2020. 

Sawlani, R., Agnihotri, R., Sharma, C., Patra, P. K., Dimri, A. P., Ram, K., and Verma, R. L.: The 

severe Delhi SMOG of 2016: A case of delayed crop residue burning, coincident firecracker emissions, 

and atypical meteorology, Atmospheric Pollution Research, 10, 868–879, 

https://doi.org/10.1016/j.apr.2018.12.015, 2019. 1060 

Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and Jeong, M.-J.: MODIS 

Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” 

data sets, and usage recommendations, Journal of Geophysical Research: Atmospheres, 119, 13,965-

13,989, https://doi.org/10.1002/2014JD022453, 2014. 

Schiavina, M., Melchiorri, M., and Freire, S.: GHS-DUC R2023A - GHS Degree of Urbanisation 1065 
Classification, application of the Degree of Urbanisation methodology (stage II) to GADM 4.1 layer, 

multitemporal (1975-2030), data.jrc.ec.europa.eu, https://doi.org/10.2905/DC0EB21D-472C-4F5A-

8846-823C50836305, 2023. 

Schnell, J. L., Naik, V., Horowitz, L. W., Paulot, F., Mao, J., Ginoux, P., Zhao, M., and Ram, K.: 

Exploring the relationship between surface PM2.5 and meteorology in Northern India, Atmospheric 1070 
Chemistry and Physics, 18, 10157–10175, https://doi.org/10.5194/acp-18-10157-2018, 2018. 

Shaik, D. S., Kant, Y., Mitra, D., Singh, A., Chandola, H. C., Sateesh, M., Babu, S. S., and Chauhan, 

P.: Impact of biomass burning on regional aerosol optical properties: A case study over northern India, 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



42 
 

Journal of Environmental Management, 244, 328–343, https://doi.org/10.1016/j.jenvman.2019.04.025, 

2019. 1075 

Sharma, S. K., Mandal, T. K., Sharma, A., Jain, S., and Saraswati: Carbonaceous Species of PM2.5 in 

Megacity Delhi, India During 2012–2016, Bull Environ Contam Toxicol, 100, 695–701, 

https://doi.org/10.1007/s00128-018-2313-9, 2018. 

Shen, C., Liu, Y., Shen, A., Cui, Y., Chen, X., Fan, Q., Chan, P., Tian, C., Xie, Z., Wang, C., Lan, J., 

Li, X., Wu, J., and Yang, Y.: Spatializing the roughness length of heterogeneous urban surfaces to 1080 
improve the WRF simulation-Part 2: Impacts on the thermodynamic environment, Atmospheric 

Environment, 294, 119464, https://doi.org/10.1016/j.atmosenv.2022.119464, 2023. 

Singh, N., Murari, V., Kumar, M., Barman, S. C., and Banerjee, T.: Fine particulates over South Asia: 

Review and meta-analysis of PM2.5 source apportionment through receptor model, Environmental 

Pollution, 223, 121–136, https://doi.org/10.1016/j.envpol.2016.12.071, 2017. 1085 

Singh, N., Agarwal, S., Sharma, S., Chatani, S., and Ramanathan, V.: Air Pollution Over India: Causal 

Factors for the High Pollution with Implications for Mitigation, ACS Earth Space Chem., 5, 3297–

3312, https://doi.org/10.1021/acsearthspacechem.1c00170, 2021. 

Singh, R., Kumar, S., and Singh, A.: Elevated Black Carbon Concentrations and Atmospheric Pollution 

around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data, IJERPH, 1090 
15, 2472, https://doi.org/10.3390/ijerph15112472, 2018. 

Singh, T., Biswal, A., Mor, S., Ravindra, K., Singh, V., and Mor, S.: A high-resolution emission 

inventory of air pollutants from primary crop residue burning over Northern India based on VIIRS 

thermal anomalies, Environmental Pollution, 266, 115132, 

https://doi.org/10.1016/j.envpol.2020.115132, 2020. 1095 

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., 

Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 3, Tech. Rep. 

NCAR/TN-475+STR, Boulder, Colorado, USA, 113 pp., 2008. 

Song, Z., Fu, D., Zhang, X., Wu, Y., Xia, X., He, J., Han, X., Zhang, R., and Che, H.: Diurnal and 

seasonal variability of PM2.5 and AOD in North China plain: Comparison of MERRA-2 products and 1100 
ground measurements, Atmospheric Environment, 191, 70–78, 

https://doi.org/10.1016/j.atmosenv.2018.08.012, 2018. 

Srivastava, N., Satheesh, S. K., Blond, N., and Krishna Moorthy, K.: Simulation of Aerosol Fields over 

South Asia Using CHIMERE - Part-II:Performance Evaluation, Current Science, 111, 83, 

https://doi.org/10.18520/cs/v111/i1/83-92, 2016. 1105 

Takigawa, M., Patra, P. K., Matsumi, Y., Dhaka, S. K., Nakayama, T., Yamaji, K., Kajino, M., and 

Hayashida, S.: Can Delhi’s Pollution be Affected by Crop Fires in the Punjab Region?, SOLA, 16, 86–

91, https://doi.org/10.2151/sola.2020-015, 2020. 

Talukdar, S., Tripathi, S. N., Lalchandani, V., Rupakheti, M., Bhowmik, H. S., Shukla, A. K., Murari, 

V., Sahu, R., Jain, V., Tripathi, N., Dave, J., Rastogi, N., and Sahu, L.: Air Pollution in New Delhi 1110 
during Late Winter: An Overview of a Group of Campaign Studies Focusing on Composition and 

Sources, Atmosphere, 12, 1432, https://doi.org/10.3390/atmos12111432, 2021. 

Thomas, A., Sarangi, C., and Kanawade, V. P.: Recent Increase in Winter Hazy Days over Central India 

and the Arabian Sea, Sci Rep, 9, 17406, https://doi.org/10.1038/s41598-019-53630-3, 2019. 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.



43 
 

Tie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P., and Collins, W.: Effect of clouds on photolysis 1115 
and oxidants in the troposphere, Journal of Geophysical Research: Atmospheres, 108, 

https://doi.org/10.1029/2003JD003659, 2003. 

Tuccella, P., Curci, G., Visconti, G., Bessagnet, B., Menut, L., and Park, R. J.: Modeling of gas and 

aerosol with WRF/Chem over Europe: Evaluation and sensitivity study, Journal of Geophysical 

Research: Atmospheres, 117, https://doi.org/10.1029/2011JD016302, 2012. 1120 

Upadhyay, A., Dey, S., Chowdhury, S., Kumar, R., and Goyal, P.: Tradeoffs between air pollution 

mitigation and meteorological response in India, Scientific Reports, 10, 14796, 

https://doi.org/10.1038/s41598-020-71607-5, 2020. 

Venkataraman, C., Brauer, M., Tibrewal, K., Sadavarte, P., Ma, Q., Cohen, A., Chaliyakunnel, S., 

Frostad, J., Klimont, Z., Martin, R. V., Millet, D. B., Philip, S., Walker, K., and Wang, S.: Source 1125 
influence on emission pathways and ambient PM 2.5 pollution over India (2015–2050), Atmos. Chem. 

Phys., 18, 8017–8039, https://doi.org/10.5194/acp-18-8017-2018, 2018. 

Vogelezang, D. H. P. and Holtslag, A. A. M.: Evaluation and model impacts of alternative boundary-

layer height formulations, Boundary-Layer Meteorol, 81, 245–269, 

https://doi.org/10.1007/BF02430331, 1996. 1130 

Wang, K., Zhang, Y., and Yahya, K.: Decadal application of WRF/Chem over the continental U.S.: 

Simulation design, sensitivity simulations, and climatological model evaluation, Atmospheric 

Environment, 253, 118331, https://doi.org/10.1016/j.atmosenv.2021.118331, 2021. 

Wang, R., Tao, S., Shen, H., Huang, Y., Chen, H., Balkanski, Y., Boucher, O., Ciais, P., Shen, G., Li, 

W., Zhang, Y., Chen, Y., Lin, N., Su, S., Li, B., Liu, J., and Liu, W.: Trend in Global Black Carbon 1135 
Emissions from 1960 to 2007, Environ. Sci. Technol., 48, 6780–6787, 

https://doi.org/10.1021/es5021422, 2014. 

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, 

A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions 

from open burning, Geoscientific Model Development, 4, 625–641, https://doi.org/10.5194/gmd-4-1140 
625-2011, 2011. 

WHO, 2021. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, 

Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide (Technical Report) 

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions 

and Chemistry (MOSAIC), Journal of Geophysical Research: Atmospheres, 113, 1145 
https://doi.org/10.1029/2007JD008782, 2008. 

Zhang, Y., Zhang, X., Wang, L., Zhang, Q., Duan, F., and He, K.: Application of WRF/Chem over East 

Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ, Atmospheric Environment, 

124, 285–300, https://doi.org/10.1016/j.atmosenv.2015.07.022, 2016. 

Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson, W. I. J., Fast, J. D., and 1150 
Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: 

modeling sensitivities to dust emissions and aerosol size treatments, Atmospheric Chemistry and 

Physics, 10, 8821–8838, https://doi.org/10.5194/acp-10-8821-2010, 2010. 

Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J. F., Zaveri, R. A., and Huang, J.: Uncertainty in 

modeling dust mass balance and radiative forcing from size parameterization, Atmospheric Chemistry 1155 
and Physics, 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, 2013. 

https://doi.org/10.5194/egusphere-2023-1150
Preprint. Discussion started: 7 August 2023
c© Author(s) 2023. CC BY 4.0 License.


