1	Table of contents
2	
3	Text S1. Sampling of aerosol filters.
4	Text S2. Additional setting information on the box model simulation of 28 September
5	2021.
6	Text S3. The determination of $J_{NO_3(aq)}$ and $J_{O_3 \rightarrow O^1D}$ in the chamber and ambient air.
7	Text S4. Additional laboratory experiments.
8	
9	Figure S1. The location of the observation site, Cape D'Aguilar.
10	Figure S2. The variation of HCOOH sensitivity with RH.
11	Figure S3. The 24-h backward trajectories of different kinds of air masses during the
12	field campaign.
13	Figure S4. The schematic diagram of the photochemical aging experiment.
14	Figure S5. The sources of CH ₂ OO in the modified case on 28 September 2021.
15	Figure S6. The model results on 28 October 2021.
16	Figure S7. Additional laboratory experiments show that HCOOH was produced by
17	nitrate rather than HONO.
18	
19	Table S1. The instruments and measured species or parameters in the field campaign.
20	Table S2. Summary of the PM _{2.5} sampling information.
21	Table S3. Input parameters to the box model of 28 September 2021.

23 Text S1. Sampling of aerosol filters.

We collected ambient aerosols at Cape D'Aguilar Super Site in Autumn for 24 photochemical aging experiments. The PM_{2.5} samples were collected on quartz-fiber 25 26 filters (8×10 inches) using a PUF-1000 high-volume sampler with a flow rate of 999 Lpm in 2020. All samplings were performed from 11:00 am local time (LT) to 10:00 27 am LT of the next day. The filters were pre-fired at 900 °C for 4 hours to remove organic 28 29 artifacts and stored in a freezer at -20 °C. Fractions with a given surface area from one 30 randomized-chosen filter were used to perform the photochemical experiments or other 31 analyses.

32

33 Text S2. Additional setting information on the box model simulation of 28 September34 2021.

35 The observation data on 28 September was used as input to constrain the model with 36 a time step of 5 min (Table S3). The data of trace gases (including O₃, NO, NO₂, CO and SO₂) and data obtained by ToF-CIMS (including HONO and N₂O₅) were averaged 37 38 to 5-min resolution. For the VOCs and OVOCs species, linear interpolations were 39 applied. The variables "ModelOptions.EndPointsOnly" and "ModelOptions.LinkSteps" were set to "1". The variable "ModelOptions.IntTime" was set to "300". No family 40 41 conservation was used. Readers are referred to a F0AM description paper for more 42 information (Wolfe et al., 2016).

43

44 **Text S3.** The determination of $J_{NO_3^-(aq)}$ and $J_{O_3 \to O^1D}$ in the chamber and ambient air. 45 The $J_{NO_3^-(aq)}$ and $J_{O_3 \to O^1D}$ in the chamber was calculated by (Eq. (1)),

46

 $I = \int q(\lambda)\sigma(\lambda)I(\lambda)d\lambda$ (1)

where $q(\lambda)$ is the quantum yield at wavelength λ (nm); $\sigma(\lambda)$ is the cross-section at 47 48 wavelength λ ; I(λ) is the flux of xenon lamp at wavelength λ and was calculated by 49 converting the irradiation energy spectra of the lamp (Fig. 6d) to photon flux based on Planck's equation. The q(λ) and $\sigma(\lambda)$ of aqueous nitrate at 298 K were derived from 50 51 (Chu & Anastasio, 2003). The q(λ) and $\sigma(\lambda)$ of O₃ generating O¹D were adopted from the recommended value from IUPAC under 298 K (https://uv-vis-spectral-atlas-52 mainz.org/uvvis/index.html). The $J_{NO_3(aq)}$ and $J_{O_3 \rightarrow O^1D}$ in the ambient was calculated 53 the Tropospheric Ultraviolet and Visible (TUV) radiation 54 by model (https://www.acom.ucar.edu/Models/TUV/Interactive TUV/) 55 under clear sky 56 conditions and then scaled to the field-measured jNO₂.

57

58 Text S4. Additional laboratory experiments.

59 Since HONO and HCOOH were simultaneously observed during the photochemical60 aging process, it is possible that HCOOH was produced from the heterogeneous

61 reactions between gas-phase OH radicals and particles. To check this possibility, an experiment was conducted as follows (Fig. S7). 4 Lpm HONO-containing air (78% RH, 62 63 7.2 ppb HONO, balanced with zero air) was injected into the chamber. The solution 64 was prepared with 0.15 wt.% HCHO but without adding NaNO₃. The pH of the solution was also adjusted to 2.7 using sulfuric acid. The background HCOOH concentration 65 was determined as 308.9 ppt when illuminating the chamber without the solution. After 66 adding the solution, the HCOOH concentration increased to 428.8 ppt. After 67 normalizing the HONO concentration in this experiment to that in the previous solution 68 experiments containing NaNO₃ (0.77 ppb HONO, 0.62 ppb HCOOH) (Fig. 6c), the 69 increased HCOOH concentration is 12.8 ppt, which is negligible. The conclusion is the 70 same when compared with the filter irradiation experiments (4.1 ppb HONO, 5.6 ppb 71

72 HCOOH). Therefore, the HONO photolysis contributes little to HCOOH production.

74 Supplementary figures

75

Figure S1. The location of the observation site, Cape D'Aguilar. (a) The location of
Hong Kong in South China. (b) The field observation site in Hong Kong Island. The
source is from Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,
USGS, AeroGRID, IGN, and the GIS User Community.

Figure S2. The variation of HCOOH sensitivity with RH.

Figure S3. The 24-h backward trajectories of different kinds of air masses during the
field campaign. The marine air masses occurred during 16–26 August and 11–23
September except 12, 15, and 16 September. The haze period occurred from 24
September to 2 October. The coastal air masses occurred during 4–31 October.

Figure S5. The sources of CH₂OO in the modified case on 28 September 2021.

Figure S6. The model results on 28 October 2021. (a) The variations of HCOOHconcentration. (b) The sources and sinks of HCOOH.

99 Figure S7. Additional laboratory experiments show that HCOOH was produced by100 nitrate rather than HONO.

102 Supplementary tables

Species	Instruments	Time
-		resolution
HCOOH, HONO, N ₂ O ₅	Iodide-ToF-CIMS, Aerodyne Inc.	1 s
O ₃	O ₃ analyzer, model 49i, Thermo Scientific	1 min
NO, NO ₂	NOx analyzer, model 42i-TLwithphotolyticconverter,ThermoScientific	1 min
СО	CO analyzer, model T300U, Teledyne	1 min
SO_2	SO ₂ analyzer, model T100U, Teledyne	1 min
jNO ₂	Filter Radiometer, Metcon	1 min
VOCs	GC-MS/FID, Chromatotec Group	1 h
OVOCs	Carbonyl sampler, model 8000-2, ATEC HPLC	3 h
Particle number size distribution	Scanning mobility particle sizer, TSI	5 min
Compositions in $PM_{2.5}$ and PM_{10} (including Na ⁺ , NH4 ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Cl ⁻ , NO3 ⁻ , SO4 ²⁻	MARGA	1 h

Table S1. The instruments and measured species or parameters in the field campaign.

Table S2. Summary of the PM_{2.5} sampling information.

Date	RH	Size (cm ²)	Aerosol	Dry-state
			loading	Surface area
			(mg)	density
2020.10.07	72.34	51.6	3.33	192.52
2020.10.08	68.39	53.4	3.55	195.89
2020.10.26	78.85	53.4	4.28	119.86
2020.11.02	65.68	56.1	5.55	251.79

2020.11.03	69.82	52.51	4.40	233.81
2020.11.04	58.30	55.35	2.77	170.15
2020.11.05	76.32	53.352	1.95	134.89

Table S3. Input parameters to the box model of 28 September 2021.

Donomotor	Diurnal average	Donomotor	Diurnal average
Farameter	value	Falameter	value
Temp (K)	302.34 ± 1.47	M3PE	0.015 ± 0.01
RH(%)	78.84 ± 5.4	MEPROPENE	0.033 ± 0.005
$jNO_2 (s^{-1})^1$	0.00744	BUT1ENE	0.011 ± 0.002
NO ²	0.079 ± 0.082	ME2BUT1ENE	0.011 ± 0.003
NO2	1.82 ± 1.29	ME2BUT2ENE	0.005 ± 0.002
O3	57.28 ± 9.35	PENT1ENE	0.005 ± 0.001
СО	217.6 ± 11.3	APINENE	0.021 ± 0.008
SO2	4.99 ± 0.23	BPINENE	0.016 ± 0.006
N2O5	0.033 ± 0.025	EBENZ	0.012 ± 0.003
HONO	0.113 ± 0.026	OXYL	0.009 ± 0.001
CH4 ³	2000	M2PE	0.011 ± 0.012
C2H6	0.95 ± 0.11	НСНО	2.24 ± 0.28
C3H8	0.40 ± 0.11	CH3CHO	0.47 ± 0.11
IC4H10	0.40 ± 0.35	GLYOX	0.057 ± 0.024
NC4H10	0.17 ± 0.08	C2H5CHO	0.077 ± 0.012
IC5H12	0.27 ± 0.12	CH3COCH3	4.35 ± 3.54
NC5H12	0.09 ± 0.02	MGLYOX	0.076 ± 0.020
NC6H14	0.013 ± 0.008	MACR	0.013 ± 0.006
NC7H16	0.008 ± 0.004	IPRCHO	0.057 ± 0.003
NC8H18	0.006 ± 0.001	MEK	0.155 ± 0.013
C2H2	0.25 ± 0.03	BIACET	0.051 ± 0.005
C2H4	0.33 ± 0.05	C4H9CHO	0.016 ± 0.001
C3H6	0.04 ± 0.007	C5H11CHO	0.017 ± 0.002
C4H6	0.057 ± 0.004	BENZAL	0.012 ± 0.001
C5H8	0.82 ± 1.01	M23C4 ³	0.035
BENZENE	0.075 ± 0.014	M2HEX ³	0.193
TOLUENE	0.11 ± 0.08	M3HEX ³	0.158
MXYL	0.02 ± 0.008	TM123B ³	0.029
M22C4	0.008 ± 0.001	TM124B ³	0.018

109 ¹ The data shown here is the highest value of jNO_2 (1-min resolution).

- 110 2 The unit of the input data below is ppb.
- ³ These air pollutants were assumed kept at a constant value.
- 112

113 Reference

- 114 Chu, L., & Anastasio, C. (2003). Quantum Yields of Hydroxyl Radical and Nitrogen
 115 Dioxide from the Photolysis of Nitrate on Ice. *Journal of Physical Chemistry A*,
 116 107(45), 9594–9602. https://doi.org/10.1021/jp0349132
- 117 Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., & Liao, J. (2016). The
- 118 framework for 0-D atmospheric modeling (F0AM) v3.1. Geoscientific Model
- 119 *Development*, 9(9), 3309–3319. https://doi.org/10.5194/GMD-9-3309-2016