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Abstract. The inter-dataset agreement of trends in subweekly near-surface (850 hPa) temperature variability over Southern 8 

Hemisphere midlatitude land masses is assessed among twelve global atmospheric reanalysis datasets. First, a A comparison 9 

of the climatological temperature variance and dominant sources and sinks of the variance reveals that, except for NCEP-10 

NCAR (R1) and NCEP-DOE (R2), there is a relatively good agreement for both their magnitudes and spatial distributions over 11 

the satellite era (1980–2022), which indicates that the key features of subweekly variability are sufficiently well represented. 12 

Concerning trends, ATthere is a A good agreement is noted for the positive trends found in subweekly variability over the 13 

satellite era affecting South Africa in September-October-November (SON) and Southern America in December-January-14 

February (DJF). Although most of the reanalyses agree concerning the positive trend affecting Australia in SON, it has not yet 15 

emerged from the noise associated with interannual variability when considering only the satellite era. It is significant, 16 

however, when the period is extended  (1954-2022) or limited to the most recent decades (1990-2022). The trends are explained 17 

primarily by a more efficient generation of subweekly temperature variance by horizontal temperature advection. This 18 

generation is also identified as a source of biases among the datasets. The trends are found to be reproduced even in those 19 

reanalyses that do not assimilate satellite data (JRA-55C) or that assimilate surface observations only (ERA-20C, 20CRv2c, 20 

and 20CRv3). 21 

1 Introduction 22 

Subweekly variability in the extratropics is produced by transient weather systems such as tropical storms, midlatitude 23 

cyclones/, anticyclones, tropical cyclones migrating poleward, and polar lows, and mesoscale storms, and hasexerting strong 24 

social impacts through the accompanying temperature and precipitation anomalies. Subweekly temperature variability, the 25 

focus of this work, is primarily generated by horizontal temperature advection. Amplification of temperature variance occurs 26 

when the advection of the climatological temperature gradient by subweekly wind anomalies acts to enhance subweekly 27 
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temperature anomalies, i.e. when they induce fluxes of heat against the mean temperature gradients (Oort, 1964). This process 28 

describes the conversion of the available potential energy (APE) from the basic-state circulation to subweekly disturbances (or 29 

eddies), or in other words, the baroclinic conversion of energy. It is the dominant source of APE for eddies with periods shorter 30 

than 10 days (Sheng and Derome, 1991). Whereas horizontal motion generates temperature variance, vertical motion acts to 31 

dissipate it. Subweekly wind anomalies are generally upward where and when subweekly temperature anomalies are positive, 32 

counteracting the latter through adiabatic cooling to maintain thermal wind balance. The process primarily represents the 33 

conversion from APE to kinetic energy (KE) and is of a similar order of magnitude to baroclinic generation. 34 

 35 

Trends in large-scale temperature gradients, brought about by human-induced radiative forcing, may alter the flow of energy 36 

between the mean state (mean APE) and transient eddies, and thus could potentially alter subweekly temperature variability. 37 

Global warming simulations based on CMIP5 models project an amplification of subweekly temperature variability in the 38 

Southern Hemisphere (SH), which is mostly concentrated over the subpolar ocean (~55-60°S) in DJF but may impact 39 

landmasses such as South Africa and Australia in JJA (Schneider et al., 2015). It is associated in part with an amplification of 40 

the meridional temperature gradient. Such amplification has been observed already in extratropical cyclone activity (Reboita 41 

et al., 2015). Subweekly variability, as observed in the eddy KEkinetic energy, is also projected to amplify in CMIP6 models 42 

over the SH, but this increase is strongly underrepresented in contrast to three reanalysis datasets (Chemke et al., 2022). It is 43 

generally not well known, however, how well subweekly temperature variability is represented in reanalyses and whether there 44 

is a good agreement concerning the trends observed in the past decades. 45 

 46 

 Discrepancies among reanalysis outputs may arise from differences in the representation of sub-grid-scale physical processes 47 

among the forecast models, differences in their data assimilation system, and differences in observations being assimilated 48 

(Fujiwara et al., 2017, 2022). It is well known that conventional observation data are have been scarce in the SH in contrast to 49 

the Northern Hemisphere (NH) (Noone et al., 2021), which can lead to comparatively larger uncertainties in the representation 50 

of atmospheric variability over the SH. Atmospheric circulation variability at the largest spatial scale, as captured by the 51 

annular mode indices (Northern Annular Mode in the NH and Southern Annular Mode in the SH), was shown to be more 52 

uncertain in the SH upper troposphere (Gerber and Martineau, 2018), especially before satellite observations became available 53 

for data assimilation. The agreement among the reanalysis datasets concerning synoptic-scale subweekly variability near the 54 

surface was assessed in the context of extratropical storm tracks, with better agreement found in the NH compared to the SH 55 

(Wang et al., 2016). For example, Sang et al. (2022) found that inter-dataset differences in the representation of baroclinicity 56 

were more pronounced in the SH than in the NH. Notably, in contrast to higher-resolution (newer) products, lower-resolution 57 

(older) products were found to underrepresent baroclinicity as well as eddy APE (i.e., 2-8 day temperature variance), especially 58 

in the upper troposphere. Their diagnostics, however, were either shown as zonal averages, or vertically-averaged quantities. 59 

The representation of the detailed spatial distributions of near-surface temperature variance and its trends in reanalyses remains 60 

largely unknown. 61 
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 62 

A comprehensive inter-comparison of the climatological properties of SH subweekly temperature variability and its recent 63 

trends in twelve major global reanalysis datasets is thus carried out in this study. First, the climatological spatial distribution 64 

in the SH of near-surface (850 hPa) temperature variability and its dominant sources/sinks from 1980 to 2010 are investigated 65 

in a reanalysis ensemble mean (REM) of the most recent reanalysis products, and the deviation of each reanalysis therefrom 66 

is also investigated. Then, the inter-reanalysis agreement in the trends is assessed with emphasis on midlatitude landmasses 67 

(South America, South Africa, and Australia), in recognition of the important socioeconomic impacts associated with trends 68 

in subweekly temperature variance and the associated temperature extremes. 69 

2 Methods 70 

2.1 Reanalysis data 71 

The reanalysis datasets used in this study are listed in Table 1. They can be classified into three categories depending on the 72 

type of data assimilated. Full input reanalyses are the standard reanalyses that assimilate all available observations. Most of 73 

them span the satellite era starting in 1979 and onward, but some also provide data before (ERA5 in the form of a back 74 

extension; JRA-55 and NCEP-NCAR (R1) as standard output). Surface input reanalyses assimilate only surface data and are 75 

typically used to investigate atmospheric variability over the past century, including long periods when satellite observations 76 

nor conventional radiosonde observations were available. Finally, conventional-input reanalyses assimilate only conventional 77 

observations but not satellite measurements. JRA-55C is a conventional-input reanalysis that was produced to assess the impact 78 

of satellite data assimilation by contrast to JRA-55. Since ERA5, JRA-55, and NCEP-NCAR (R1) do not assimilate satellite 79 

observations before 1979, they can be considered as conventional-input reanalyses before the satellite era. More details about 80 

which observations are assimilated by reanalyses datasets can be found in Fujiwara et al. (2017). Data sources for each 81 

reanalysis are listed in Table 2. 82 

 83 

To ensure fairness in our comparison and reduce computational costs, the reanalyses are first interpolated onto a 2.5° by 2.5° 84 

horizontal grid that matches that of the products provided on the coarsest grid (NCEP-NCAR (R1) and NCEP-DOE (R2)). We 85 

note that it is the original model resolution of each product, not that of the interpolated data onto which we apply our 86 

diagnostics, that influences atmospheric variability at short time scales (Sang et al., 2022). Our analyses focus on the 850-hPa 87 

pressure level, which is close enough to the surface but also sufficiently high to avoid missing data due to topography. Pressure 88 

level diagnostics are used to allow for an investigation of the processes responsible for temperature variability and its trends. 89 

Data at 925, 850, and 700 hPa are used to evaluate vertical derivatives. Variables analyzed include temperature (𝑇), meridional 90 

wind (𝑣), zonal wind (𝑢), and pressure velocity (𝜔). Daily means are obtained by averaging four time steps that are common 91 

to all reanalysis datasets (0, 6, 12, and 18 UTC). 92 

 93 
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Table 1: Reanalysis datasets investigated. 95 

Name Period Assimilation Reference 

20CRv2c 1948-2014 Surface input Compo et al. (2011) 

20CRv3 1948-2015 Surface input Slivinski et al. (2019) 

CFSR/CFSv2* 1979-2022 Full input Saha et al. (2010, 2014) 

ERA-Interim 1979-2019 Full input Dee et al. (2011) 

ERA5 1959-2022 Full input Hersbach et al. (2020) 

ERA-20C 1948-2010 Surface input Poli et al. (2016) 

NCEP-NCAR (R1) 1948-2022 Full input Kalnay et al. (1996) 

NCEP-DOE (R2) 1979-2022 Full input Kanamitsu et al. (2002) 

JRA-55 1958-2022 Full input Kobayashi et al. (2015) 

JRA-55C 1958-2012 Conventional input Kobayashi et al. (2014) 

MERRA** 1979-2016 Full input Rienecker et al. (2011) 

MERRA-2** 1980-2022 Full input Gelaro et al. (2017) 

*CFSR/CFSv2c is obtained by merging CFSR and CFSv2c. We note that model resolution changed between the two and minor changes were made to parameterizations. 96 

**Only assimilated (ASM) products are used. 97 

 98 

Table 2: Data source for each reanalysis 99 

Dataset URL/DOI Date accessed 

20CRv2c 
https://psl.noaa.gov/data/gridded/data.20thC_ReanV

2c.html 
13 April 2020 

20CRv3 
https://psl.noaa.gov/data/gridded/data.20thC_ReanV

3.html 
12 May 2022 

CFSR/CFSv2 
https://doi.org/10.5065/D69K487J  

https://doi.org/10.5065/D6N877VB 
5 December 2022 

ERA-Interim 
https://apps.ecmwf.int/datasets/data/interim-full-

daily/levtype=pl/ 
21 September 2017 

ERA5 https://doi.org/10.24381/cds.bd0915c6 29 October 2022 

ERA-20C https://doi.org/10.5065/D6VQ30QG 31 December 2015 

NCEP-NCAR 

(R1) 
http://www.esrl.noaa.gov/psd 4 December 2022 

NCEP-DOE (R2) http://www.esrl.noaa.gov/psd 7 November 2022 

JRA-55 https://doi.org/10.5065/D6HH6H41 26 October 2017 

https://psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html
https://psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html
https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html
https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html
https://doi.org/10.5065/D69K487J%20/
https://doi.org/10.5065/D6N877VB
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.5065/D6VQ30QG
http://www.esrl.noaa.gov/psd
http://www.esrl.noaa.gov/psd
https://doi.org/10.5065/D6HH6H41
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JRA-55C https://doi.org/10.5065/D67H1GNZ 5 November 2017 

MERRA https://doi.org/10.5067/8D4LU4390C4S 4 October 2017 

MERRA-2 https://doi.org/10.5067/QBZ6MG944HW0 22 November 2022 

To assess whether the trends observed at 850 hPa in reanalyses are consistent with those observed at the surface we investigate 100 

surface temperature data from the Berkeley Earth temperature record, a gridded station-based dataset (Rohde and Hausfather, 101 

2020). 102 

2.2 Subweekly temperature variability and its sources/sinks 103 

By applying temporal filtering to the atmospheric thermodynamic equation to decompose temperature and wind variability 104 

into various frequency bands, one can obtain a budget for subweekly temperature variance (𝑇′2
 or TVAR) as 105 

𝜕𝑇′2

𝜕𝑡
= −2𝑇′𝑣′ ⋅ 𝛻𝑇⏟𝐹ℎ𝑜𝑟𝑖𝑧

+2𝑇′𝜔′ (
𝑅𝑇

𝑐𝑝𝑝
−

𝜕𝑇

𝜕𝑝
) ⏟𝐹𝑣𝑒𝑟𝑡

+ 𝜒   ,  (1) 106 

where overbars denote the seasonal mean, and primes denote subweekly variability extracted with a 10-day high-pass filter. 107 

Here 𝜒 represents forcing terms of comparatively lesser importance such as diabatic heating, cross-frequency interactions, and 108 

advection of TVAR by the seasonal-mean circulation. When using reanalysis data, 𝜒 also includes the analysis increment, i.e., 109 

the correction performed during data assimilation, which may introduce an imbalance between the observed tendency and the 110 

generation/dissipation terms. The two leading forcing terms considered here include contributions from the horizontal 111 

advection of the seasonal-mean horizontal temperature gradient by the horizontal subweekly wind component  (1st right-hand 112 

side term; horizontal term or 𝐹ℎ𝑜𝑟𝑖𝑧) and from the vertical advection and adiabatic expansion/compression of the seasonal-113 

mean vertical temperature gradient and adiabatic expansion/compression by the vertical subweekly wind component (2nd right-114 

hand side term; vertical term or 𝐹𝑣𝑒𝑟𝑡). In eq. (1), the temporally-filtered thermodynamic equation is multiplied by 𝑇′ to obtain 115 

the tendency for temperature variance. As a consequence, 𝐹ℎ𝑜𝑟𝑖𝑧 and 𝐹𝑣𝑒𝑟𝑡 are functions of horizontal and vertical fluxes of 116 

heat, respectively. 117 

 118 

In the framework of atmospheric energetics (Lorenz, 1955; Oort, 1964), 𝐹ℎ𝑜𝑟𝑖𝑧 represents the APE conversion from the time-119 

mean flow to subweekly eddies by horizontal winds. 𝐹𝑣𝑒𝑟𝑡 represents both the conversion of eddy APE to eddy KE as well as 120 

the APE conversion from the seasonal-mean flow to subweekly eddies by vertical motions. The latter is in practice substantially 121 

smaller than the former and can be excluded from the energetics budget under scaling arguments (Tanaka et al., 2016). Thus 122 

𝐹𝑣𝑒𝑟𝑡 is considered here to primarily represent the conversion of eddy APE (~TVAR) to eddy KE. 123 

 124 

In this work, eq. (1) is evaluated at 850 hPa to have sufficient spatial coverage above the Earth’s surface while still representing 125 

near-surface processes. It is assessed for each season (DJF, MAM, JJA, SON) separately. 126 

https://doi.org/10.5065/D67H1GNZ
https://doi.org/10.5067/8D4LU4390C4S
https://doi.org/10.5067/QBZ6MG944HW0
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3 Results 127 

3.1 Climatological properties of subweekly temperature variability 128 

Climatological properties of subweekly temperature variability at 850 hPa (TVAR) are first investigated for the period 1980-129 

2010 for which all datasets are provided. They are assessed using the reanalysis ensemble mean (REM) which includes 130 

CFSR/CFSv2, ERA5, JRA-55, and MERRA-2, the current flagships from each reanalysis center (Fig. 1). TVAR is generally 131 

maximized at around 45°S over the South Atlantic and Indian Oceans in all seasons. This maximum is explained by the 132 

presence of the Antarctic polar frontal zone, a sharp gradient of sea surface temperature that anchors the midlatitude storm 133 

track (Nakamura et al., 2004; Nakamura and Shimpo, 2004), and accordingly, subweekly variability. Another prominent 134 

maximum in TVAR is observed over the Southern Pacific at around 65°S. It exhibits a strong seasonality with a maximum in 135 

JJA and owes its existence to the amplified thermal contrasts at the sea-ice margin (Nakamura et al., 2004; Nakamura and 136 

Shimpo, 2004). Interestingly, secondary maxima are sometimes observed over or near landmasses in eastern South America, 137 

South Africa, and southern Australia. Their presence indicates that land-sea contrasts, like the Antarctic polar frontal zone, 138 

have the potential to anchor subweekly variability, like the Antarctic polar frontal zone. The South -American maximum 139 

exhibits some seasonality, spreading over a greater land surface in JJA and SON, while being more concentrated and shifted 140 

to the south in DJF and MAM. The South-African maximum tends to be stronger in SON and weakest in DJF and MAM. Of 141 

all three sectors, the Australian maximum shows the greatest seasonality with greatly strongly amplified TVAR in SON and DJF 142 

and a clear minimum in JJA (Nakamura and Shimpo, 2004). 143 
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 144 

Figure 1: Climatology (1980-2010) of TVAR assessed at 850 hPa (shadings; K2) with the REM for the different seasons (rows). Areas 145 
below the Earth’s surface are masked in grey. 146 

 147 

The spatial distribution and seasonality of TVAR correspond well to those of Fhoriz (Fig. 2). Its mMaxima are found in the mid-148 

latitude South Atlantic – Indian Ocean sector (year-round) and the subpolar South Pacific (especially in JJA) when and where 149 

the horizontal gradients of the climatological seasonal-mean temperature (𝛻 ⋅ 𝑇; assessed with the spacing of 𝑇 contours in 150 

Fig. 2) are stronger, providing favorable conditions for the baroclinic development of weather systems. Other maxima in Fhoriz 151 

and this gradient found over eastern South America, South Africa, and southern Australia exhibit the same seasonality as TVAR, 152 

i.e., peaking in SON over South Africa and Australia and affecting a larger fraction of South American landmass in JJA and 153 

SON. These local maxima, which are comparatively greater than the gradient found over the oceans at similar latitudes, owe 154 
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their existence to stationary waves associated with the distribution of oceans, landmasses, and topography (Wallace, 1983). 155 

These are also sectors where the correlation between 𝑣’ and 𝑇’ tends to be large and negative, indicating that the baroclinic 156 

structure of subweekly eddies is efficient in producing poleward fluxes of heat against the background temperature gradient 157 

(not shown). 158 

 159 

Figure 2: Same as in Fig. 1, but for (left) Fhoriz (shadings; K2 day-1) and (right) Fvert (shadings; K2 day-1). The seasonal temperature 160 
climatology is overlaid over Fhoriz with purple contours at an interval of 5 K. Thicker contours indicate warmer temperatures. 161 

 162 

As evident in the right column in Fig. 2, Fvert displays a similar spatial distribution to Fhoriz but of the opposite sign, contributing 163 

to dissipating TVAR over the vast majority of the SH. From an energetics perspective, it indicates the conversion from APE 164 

(temperature anomalies) to KE (wind anomalies) of subweekly eddies. The similarity between Fhoriz and Fvert indicates that a 165 

significant fraction of eddy APE (~TVAR) gained from the basic-state circulation by baroclinic energy conversion (~Fhoriz) is 166 

immediately converted (~Fvert) to eddy KE. We note that Fvert does not perfectly offset Fhoriz, indicating that either other forcings 167 

or the analysis increments (both included in 𝜒 in eq. 1) are not necessarily negligible. It is in fact known that diabatic processes, 168 

including heat exchanges with the underlying ocean (Nonaka et al., 2009), tend to dissipate temperature anomalies at that 169 

timescale. 170 
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 171 

Figure 3: SON climatology (1980-2010) of TVAR (contours; 1 K2
 ; contour interval iss indicated by “cti” next to the colorbar) for the 172 

REM and individual reanalyses and biases from the REM (shadings; K2). The reanalyses included in the REM are labeledlabelled 173 
with (REM). Areas below the Earth’s surface are masked in grey. 174 

 175 

Inter-reanalysis uncertainties in these basic properties of subweekly variability are then investigated further in SON, when 176 

TVAR is maximized in South Africa and southern Australia (Fig. 3). In general, there is a relatively good agreement about TVAR 177 

among the various reanalysis datasets. Even the surface-input reanalyses (20CRv2c, 20CRv3, ERA-20C), despite a deficit in 178 

the midlatitudes, overall capture the distribution of TVAR. The modern full-input datasets tend to present only small biases 179 

relative to the REM climatology. Among all datasets, NCEP-NCAR (R1) and NCEP-DOE (R2) show the largest bias from the 180 

REM with negative biases reaching up to ~2.7 K2, which corresponds to up to ~50% of the REM climatology in some sectors. 181 

Whereas negative biases were found mostly over the ocean, weak positive biases were found over South Africa and southern 182 

Australia, which could be attributed to a greater density of observations available for assimilation.. Comparing biases in the 183 

main generation term Fhoriz (Fig. 4) and TVAR (Fig. 3), we find a general correspondence between the two; biases in TVAR usually 184 

correspond to areas of same-signed biases in Fhoriz. This is, however, not always the case. 20CRv2c, for instance, shows positive 185 

bias over the Indian Ocean, where TVAR is negatively biased. Biases in other forcing terms or compensation from the reanalysis 186 

increment (both included in 𝜒 in eq. 1) may contribute to this mismatch. The large-scale features of these biases tend to be 187 

similar in other seasons (Supplementary Figs. 1-6). For instance, the large negative biases affecting TVAR and Fhoriz in NCEP-188 

NCAR (R1) and NCEP-DOE (R2) are present throughout the year. 189 
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 190 

Figure 4: Same as in Fig. 3, but for Fhoriz (K2 day-1). The climatology is contoured at intervals of 2 K2 day-1
 with solid and dashed 191 

lines for positive and negative values, respectively. Thicker contours indicate larger magnitudes. 192 

 193 

3.2 Trends in subweekly temperature variability 194 

In this section, we investigate trends in TVAR over the SH. We first focus on the period from 1980 to 2022 to assess the most 195 

recent trends during the satellite era. The trends are found spatially inhomogeneous with sectors of both decreasing and 196 

increasing TVAR (Fig. 5). Considering the entire SH, however, positive trends appear to dominate. This is especially true for 197 

the midlatitude storm track (~40°-60°S). Over extratropical land masses, we observe significant positive trends over 198 

midlatitude South America in DJF for which the reanalyses agree well. Positive trends are also observed in MAM, but the 199 

maximum is shifted southward (~50°S) and not as widespread and significant over land compared to DJF. Of all sectors, South 200 

Africa shows some of the largest positive trends in TVAR with significant positive trends in SON. While most reanalyses agree 201 

on positive trends in JJA, they are not statistically significant. Although Australia is also found to be affected by positive trends 202 

in SON with a good agreement among the reanalyses, they are not statistically significant, either, for the period considered. 203 

Weaker trends are however observed in JJA over the southeastern Australian coast with more robust statistical evidence. 204 

 205 
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Most reanalyses agree concerning negative TVAR trends affecting eastern South America in SON, South Africa in DJF and 206 

MAM, as well as northern Australia in SON, but only the trend in Australia is statistically significant in the REM. Some of 207 

the most robust negative trends in TVAR are observed in DJF over the southern Indian Ocean, and in JJA over the South Pacific 208 

and South Atlantic, far away from land masses. 209 

 210 

Figure 5: Trends of TVAR (shadings; K2 year-1) over 1980-2022 are shown for the REM for the different seasons (rows). The 211 
climatology is overlaid with contours at 2 K2 intervals. Thicker contours indicate larger magnitudes. Significant trends (p-value < 212 
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0.05) are indicated with purple hatching. Areas where more than ¾ of reanalyses agree on the sign of the trends are hatched in 213 
green. 214 

 215 

The evolution of TVAR is investigated in more detail in Fig. 6 for the three major land sectors of interest. Despite the presence 216 

of time-mean biases in reanalyses as documented in the previous section, the year-to-year variability of TVAR is relatively 217 

similar among the various datasets over 1980-2022 in all the sectors. Over South Africa, however,  surface-input datasets such 218 

as 20CRv2c and to a lesser extent ERA-20C show weaker interannual variability and tend to be biased negatively, although 219 

we note an improvement in 20CRv3 over 20CRv2c. Over the other sectors, there is marked agreement between full-input and 220 

surface-input datasets, indicating that surface observations alone are sufficient to constrain TVAR over these sectors. 221 
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 222 

Figure 6: Time series of TVAR (K2) and its trend at three representative regions -- South America (left), South Africa (middle), and 223 
Australia (right) -- for different seasons (rows). The sectors over which TVAR is averaged are illustrated with dashed boxes in the 224 
lower panels of Figs. 1-2 and 5. Trends are computed for the period 1979-2022 (except for when datasets do not provide data for the 225 
full period) and illustrated with solid or dashed lines whether they are statistically significant or not (significant when p-value < 226 
0.05). The p-value corresponding to each reanalysis is indicated in each panel. TVAR from Berkeley Earth is assessed from 227 
observation-based data at the surface and scaled here by 2.5 for qualitative comparison with 850-hPa TVAR in reanalyses. 228 

 229 

 230 
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Trends in TVAR are generally similar among the reanalysis datasets over the satellite era and tend to be consistent with the 231 

trends observed in station-based surface data (Berkeley Earth). Over South Africa, surface TVAR trends are clearerhave a greater 232 

signal-to-noise ratio than the 850 hPa TVAR trends in the reanalyses and they are significant in JJA and DJF, seasons for which 233 

the reanalysis-based trends are not. SON TVAR trends observed over Australia at the surface are also more obvious than those 234 

seen at 850 hPa. They are, however, not significant, most likely because they have not emerged yet from the large interannual 235 

variability. It is also important to mention that the positive trends observed over South America in DJF, and South Africa in 236 

SON appear to be stronger in the satellite era (1980-2022) compared to the prior decades. What appeared to be a positive trend 237 

affecting TVAR over South America in SON before the satellite era has come to a halt afterward.  238 

 239 

Figure 7: The sensitivity of trends in TVAR (K2
 year-1) to the period sampled is assessed over South America in DJF (left), South 240 

Africa in SON (middle), and Australia in SON (right). The sectors over which TVAR is averaged are illustrated with dashed boxes in 241 
the lower panels of Figs. 1-3, 5, and 8-9. Significant trends (p-value < 0.05) are hatched in black. Trends assessed within the satellite 242 
era are delimited by dashed green lines. The y and x axes indicate the beginning and end, respectively, of the periods over which 243 
trends are assessed. TVAR from Berkeley Earth is assessed from observation-based data at the surface and scaled here by 2.5 for 244 
qualitative comparison with 850-hPa TVAR trends in reanalyses. 245 

 246 

The sensitivity of TVAR trends to the periods considered is confirmed by Fig. 7, which illustrates trends and their significance 247 

as computed for various periods. Many of the full-input reanalyses that extend back before the satellite era show negative 248 

trends over ~1970-1990 over South America (DJF) and South Africa (SON), as well as for ~1960-1978 over Australia (SON). 249 
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The South-American trends are, howeverby contrast, positive when assessed for the ~1954-1980 period. Yet, it must be kept  250 

in mind that aAssessing trends over such short periods, however, may capture apparent “inter-decadal variability” not 251 

associated withunrelated to climate change or discontinuities in assimilated observations, for example, atsuch as the beginning 252 

of satellite data assimilation in 1979 in full-input datasets providing data before the satellite era. Discontinuities in assimilation, 253 

however, may not be the main factor here, since TVAR in Berkeley Earth tends to show similar long-term tendencies. Fig. 7 254 

also reveals that trends affecting Australia are significant when assessing them for the whole period (1954-2022) or the most 255 

recent decades (1990-2022), which shows the most rapid intensification in ERA5, JRA-55, and the REM (see also Fig. 6 for 256 

Australia in SON). We note that NCEP-NCAR (R1) shows more negative trends for South America in DJF over 1960-2022 257 

compared to other reanalyses that provide extended data (Fig. 7). It appears to be linked with a negative TVAR bias in the 258 

satellite era in contrast to the earlier period (Fig. 6). The corresponding negative trends are also observed, though to a lesser 259 

extent, in ERA5, but not in JRA-55. The negative trend in NCEP-NCAR (R1) is very similar to the surface TVAR trends assessed 260 

in the Berkeley Earth dataset. Nevertheless, this does not mean that NCEP-NCAR (R1) is closer to reality in that sector 261 

compared to other reanalyses. It may be that it fails to adequately capture the differences in mechanisms driving surface and 262 

850 hPa variabilities. Over other sectors, TVAR trends in Berkeley Earth and reanalyses are qualitatively similar. 263 

 264 

We then turn our attention to the role of Fhoriz in driving the observed TVAR trends (Fig. 8). It is assessed by contrasting their 265 

spatial distributions (comparing Fig. 8 left column to Fig. 5). Those two have remarkably similar distributions in the 266 

extratropics (pattern correlation of 0.62 for trends ranging from 80°S to 20°S), confirming that the TVAR trends primarily result 267 

from modulations of the baroclinic development of subweekly weather systems, i.e., changes in the associated heat fluxes 268 

against the background temperature gradient. Reanalyses agree about the prominent positive trends affecting southern 269 

Australia in SON, South Africa in SON and JJA, and midlatitude South America in DJF. However, the trends in Fhoriz over 270 

landmasses are significant only over South Africa in SON for the period shown. Inspection of the meridional and zonal 271 

components of Fhoriz (not shown) reveals that the trends over the SH are mainly contributed to by trends in the meridional heat 272 

fluxes against the meridional gradient of seasonal-mean temperature (−2𝑣′𝑇′
𝜕𝑇

𝜕𝑦
).  273 



17 

 

 274 

Figure 8: Same as in Fig. 5, but for (left) Fhoriz (K2 day-1
 year-1; shading) and (right) 𝐹𝑦

𝑒𝑓𝑓
 (K m-1 yeardecade-1; shading). The contour 275 

intervals of the climatology are indicated by “cti” next tojust above the colorbars. 276 

 277 

One may consider that the TVAR and Fhoriz trends shown above tend to exhibit good correspondence simply because they may 278 

both capture trends in subweekly eddy amplitudes. For instance, eddies of the same structure, if of larger amplitude, will yield 279 

both larger TVAR and Fhoriz. This example illustrates that Fhoriz is inadequate to identify the source of the amplified TVAR. To 280 

factor out the impact of eddy amplitude from Fhoriz and thereby obtain an appropriate measure of TVAR generation efficiency, 281 

we here divide Fhoriz by the square root of the product of local eddy wind and temperature variance. For the meridional 282 

component of Fhoriz, this efficiency (𝐹𝑦
𝑒𝑓𝑓

)  takes the form  −2 (
𝑇′𝑣′

√𝑇′2 𝑣′2
)

𝜕𝑇

𝜕𝑦
, which is essentially the product of the local 283 

correlation between 𝑇’ and 𝑣’ and the meridional temperature gradient in the background state. The spatial distribution of 284 

trends in the efficiency thus defined (Fig. 8, right column)  is exhibit qualitatively similar spatial distribution to  the 285 

corresponding trends in Fhoriz and thus explains well the TVAR trends. We note that, when expressed as efficiency, trends in 286 

Fhoriz become significant over Australia in SON and in the midlatitude South Indian Ocean. This enhanced generation efficiency 287 
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can contribute to the Australian TVAR trends through the upstream generation of subweekly disturbances and the subsequent 288 

advection of TVAR by the westerly winds. 289 

 290 

In the extratropics, positive trends in Fhoriz efficiency are generally collocated with trends in the magnitude of the climatological 291 

temperature gradient (Fig. 9, left column). Most of these changes are explained by trends in the meridional temperature gradient 292 

of temperature (
|𝜕𝑇

𝜕𝑦|
, not shown). Amplified gradients are notably observed along the southern coast of Australia in SON, and 293 

South Africa in JJA and SON. In South America, by contrast, the correspondence between the trends in |𝛻𝑇| and Fhoriz is not 294 

clear. For instance, the temperature gradient in DJF is found to weaken over sectors of positive Fhoriz trends. We find that over 295 

that sector, the amplifying generation is attributable to the more favorable structure of baroclinic growth of subweekly 296 

anomalies. The correlation between −𝑣′  and 𝑇′  shows positive trends (red shading in Fig. 9, right column). Since their 297 

correlation is typically positive over that sector (polesouthward eddy heat fluxes), it represents an increase in the efficiency of 298 

subweekly eddies to produce heat fluxes against the equator-to-pole temperature contrast. Trends in Fhoriz over South Africa 299 

and Australia, in contrast, are dominated by the strengthening of the meridional temperature gradient, and only weak trends in 300 

the correlation between -v’ and T’ are observed over these sectors. We note, however, that just west of South Africa in SON, 301 

the correlation between -v’ and T’ significantly becomes more positive, which may, in combination with the amplified 302 

temperature gradient, contribute to increasing South African TVAR through enhanced generation efficiency (see right column 303 

of Fig. 8 in SON) and subsequent downstream advection. 304 
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 305 

Figure 9: Same as in Fig. 8, but for (left) |𝛻𝑇|(K m-1
 year-1) and (right) the correlation between -v’ and T’. 306 

 307 

 308 

The role of Fhoriz is further assessed by investigating how it affects biases in TVAR among the reanalyses. It is achieved here by 309 

correlating the trends in TVAR averaged over a reference region, assessed independently for each reanalysis, with trends in 𝐹𝑦
𝑒𝑓𝑓

 310 

at each grid point (heterogeneous correlation; Fig. 10). The correlation is evaluated in the reanalysis dataset space, indicating 311 

the relationship between reference TVAR and 𝐹𝑦
𝑒𝑓𝑓

 trend biases among reanalyses. Since the correlation is assessed for each 312 

grid point, a map showing the relationship between 𝐹𝑦
𝑒𝑓𝑓

 trends and reference TVAR trend is obtained. The use of such a map 313 

is motivated by the fact that remotely generated TVAR  by Fhoriz may affect the reference region through horizontal advection 314 

of TVAR by the basic-state circulation. The same analysis is repeated for the three regions of interest (panels of Fig. 10). An 315 

assessment of the spatial extent of TVAR trend biases is also performed by correlating TVAR trends at each grid point with the 316 

reference TVAR trend (homogeneous correlation; contours of Fig. 10).  317 

 318 

We find from the homogeneous correlation map that TVAR trend biases in SON over South Africa (Fig. 10, first row) are not 319 

geographically confined but tend to accompany, as indicated by large areas of positive correlation, biases of the same sign 320 
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around 30°S at almost all longitudes. Similarly, we also observe from the heterogeneous correlation a generally positive 321 

association with  𝐹𝑦
𝑒𝑓𝑓

 trends at a similar latitude band. In other words, biases affecting South Africa tend to be part of SH-322 

wide biases at similar latitudes. The biases affecting TVAR trends in DJF around eastern South America (Fig. 10, second row) 323 

are more geographically confined in comparison with a more modest correlation with TVAR trends (homogeneous correlation) 324 

over other SH sectors as well as positive correlations with  𝐹𝑦
𝑒𝑓𝑓

 trends (heterogeneous correlation) that are more concentrated 325 

near South America. Finally, TVAR trend biases in SON over southern Australia (Fig. 10, third row) tend to be associated with 326 

TVAR trend biases (homogeneous correlation) of the same sign in midlatitudes ~40–55°S over the South Pacific, Atlantic, and 327 

Indian oceans, and those of the opposite sign over the subtropics. Concerning the relationship with 𝐹𝑦
𝑒𝑓𝑓

 (heterogeneous 328 

correlation), there is notably a covariability with 𝐹𝑦
𝑒𝑓𝑓

 biases around South America. These findings indicate that biases in TVAR 329 

trends in reanalyses are not locally confined. Instead, they are part of broad biases in mean-state trends and their interactions 330 

with subweekly variability. 331 

 332 

Figure 10: Sources of inter-reanalysis bias evaluated by correlating among reanalyses trends in 𝐹𝑦
𝑒𝑓𝑓

 at each grid point with trends 333 

(1980-2010) in TVAR (shadings; heterogeneous correlation) averaged over three representative regions as indicated in individual 334 
panels with purple rectangles. Significant correlations (p-value < 0.05) are indicated with white hatching. Note that the season, which 335 
is also indicated in each panel, differs among the regions. For reference, the correlation is also assessed for TVAR trends at each grid 336 
point (homogeneous correlation; black contours; 0.2 intervals; solid and dashed lines for positive and negative correlations, 337 
respectively; the 0 lines are omitted). 338 
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4  Discussion and conclusions 339 

In summary, reanalysis datasets generally agree well concerning the climatological features (1980–2010) of TVAR in the SH 340 

(Fig. 3). It is maximized in the South Atlantic and Indian Oceans. Local maxima are also observed near or over land masses, 341 

specifically in SON and DJF over southern Australia, year-round around South Africa, and in JJA and SON around Argentina, 342 

indicating an anchoring of subweekly variability by land/sea thermal contrasts (Fig. 1). TVAR is primarily generated through 343 

horizontal advection (Fhoriz) and offset by vertical motion (Fvert) (Fig. 2). The spatial patterns of Fhoriz and its seasonality mirrors 344 

that of TVAR with, for instance, maxima over South Africa and Australia in SON and South America in JJA and SON. Among 345 

all datasets considered, NCEP-NCAR (R1) and NCEP-DOE (R2) show noticeable negative biases around the mid-latitude 346 

TVAR maximum that is associated with the storm track over the ocean (Fig. 4). This finding is in agreement with the substantial 347 

reduction of eddy APE identified in NCEP-DOE (R2) (Sang et al., 2022), which is attributed to its coarser model resolution. 348 

Over SH landmasses, however, the biases are greatly reduced, which may be due to the greater availability of observations. It 349 

is noted by NOAA’s Physical Sciences Laboratory that NCEP-NCAR (R1) is affected by the assimilation of erroneous surface 350 

pressure data in the SH. This error was however subsequently corrected in NCEP-DOE (R2), thus it is not the cause of the 351 

important biases observed in both datasets. The use of these two older datasets is generally discouraged by the SPARC 352 

Reanalysis Intercomparison Project (S-RIP) (Fujiwara et al., 2022). 353 

 354 

We find a good agreement concerning the significant positive TVAR trends (1980–2022) affecting South America in DJF and 355 

South Africa in SON (Fig. 5). Although most of the reanalyses agree concerning positive trends over southern Australia in 356 

SON, they are not statistically significant for the satellite era (1980–2022). The latter trends are, however, significant when 357 

considering a longer period (1954–2022) provided by some of the datasets (Fig. 7), likely due to the larger sample size, and 358 

for the most recent decades when the amplification of TVAR has accelerated. These trends are also observed in gridded, station-359 

based temperature records, indicating that they are not the result of discontinuities in data assimilation. Station-based TVAR 360 

trends are more pronounced than those at 850 hPa in reanalyses for South Africa and southern Australia in SON. It may indicate 361 

that changes in land surface processes amplify trends in subweekly variability. Those three sectors sometimes exhibit 362 

discontinuities in TVAR trends. For instance, TVAR in SON over South America tends to amplify before the satellite era but 363 

decreases afterward (Fig. 7). We observe similar discontinuities in trends surrounding the beginning of the satellite era in 364 

surface observations and reanalyses, indicating that these are not the result of discontinuities introduced by the advent of the 365 

assimilation of satellite observations. They are more likely due to multidecadal variability. This is also supported by the fact 366 

that surface-input reanalyses, whose assimilated observations are more constant over the period considered, also capture 367 

similar modulations in the trends. 368 

 369 

Our results appear consistent with the column-integrated SH-wide increases in wintertime EKE and moist static energy fluxes 370 

observed over 1979-2018 in reanalyses and to a lesser extent in CMIP6 model projections  (Chemke et al., 2022)., though not 371 
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in line with CMIP5 model projections (difference of mean EKE between 2080-2100 and 1980-2000) of a SH-wide summertime 372 

poleward shift of EKE (Chemke, 2022) which one may expect to result in reduced variability over South America. One possible 373 

explanation may be that the anticipated decrease in variability is being overpowered by a positive natural multidecadal trend 374 

in variability during the satellite era, but observations suggest that may unlikely be the case., They are, however,but less 375 

consistent with the iIntensification and poleward shift of the summertime (DJF) polar-front jet. This is were overall observed 376 

since the beginning of the satellite era as a result of the stratospheric ozone depletion (Orr et al., 2021), though pausing since 377 

2000 due to a hint of its recovery (Banerjee et al., 2020). From these changes, one would expect a weakening of temperature 378 

variability over South America. Perhaps more plausibly, itthis indicates that vertically-integrated EKE, or meridional shifts in 379 

the jetstreamjJetstream and associated changes in EKE, are not necessarily good indicators for near-surface temperature 380 

variance. The projected (2080-2099 compared to 1980-1999) summertime increase in 850-hPa temperature variance over 381 

South America documented by Schneider et al. (2015) seems to support the latter since it is projected despite the poleward 382 

shift of EKE (Chemke, 2022). It is worth noting that the prominent spatial inhomogeneities observed in TVAR trends suggest 383 

that it is necessary to avoid using large-scale spatial averaging, such as the zonal mean or column-integral, when interested in 384 

the potential socioeconomic impacts of changing atmospheric variability. 385 

 386 

Overall, the spatial patterns of Fhoriz trends and their efficiency are similar to those of TVAR trends, indicating that eddy fluxes 387 

of heat against the seasonal-mean gradient of temperature are the prime driver of amplified subweekly temperature variance. 388 

Whereas over South Africa and Australia it is concomitant with a local amplification of the meridional temperature gradient 389 

that is more prominent in SON, it is ascribed primarily to a change in the structure of subweekly eddies over South America 390 

in DJF that enhances their efficiency in transporting heat across the seasonal-mean temperature gradient. While the former can 391 

be deduced simply from large-scale temperature trends, the latter requires more detailed knowledge of how eddies react to 392 

seasonal-mean flow changes and cannot be inferred from future trends in temperature gradients alone. 393 

 394 

One potential source of bias in TVAR and Fhoriz trends among reanalyses is the impact of the representation of sea surface 395 

temperature (SST) on the development of atmospheric eddies. Masunaga et al. (2018) showed that a version of JRA-55C with 396 

improved SST resolution, JRA-55CHS, better represents mesoscale atmospheric structures up to the mid-troposphere. Many 397 

of the reanalysis products considered, transitioned through different SST datasets throughout their integration period (Ttable 398 

4 of Fujiwara et al., 2017) and these discontinuities could have introduced changes in TVAR. It is, however, challenging to 399 

assess the impact of SST representation in the context of this comprehensive comparison of reanalyses because of a lack of 400 

controlled experiments. We found, however, a tendency for datasets with amplified SST trends in the SH to also show 401 

amplified TVAR trends  (Fig. 11). For instance, we find evidence that reanalyses with more pronounced SST trends in the 402 

subtropical Pacific and Indian Oceans tend to have greater TVAR trends over South Africa. This simple analysis, however, does 403 

not account for SST resolution and suffers from a small sample size (five reanalyses), with strong influence from NCEP-404 



23 

 

NCAR (R1) as an outlier. Further confirmation of the role of SST is required in future work by carefully considering the 405 

transitions in the assimilation of various SST products. 406 

 407 

Figure 11: Same as in Fig. 10, but for SST trends (1980-2010; heterogeneous correlation; shading) based on a subset of reanalyses 408 
(ERA5, ERA-Interim, JRA-55, MERRA-2, NCEP-NCAR). For references, the correlation is also assessed for TVAR trends at each 409 
grid point (homogeneous correlation, black contours; 0.2 intervals; solid and dashed lines for positive and negative correlations, 410 
respectively). 411 

 412 

Concerning the value of surface-input reanalyses (20CRv2c, 20CRv2, and ERA-20C), we have found that they capture 413 

relatively well both the climatology and trends in TVAR despite the limited observations being assimilated. In fact, their 414 

representation of TVAR is similar to or sometimes even better than that of NCEP-NCAR (R1) and NCEP-DOE (R2), which 415 

benefit from full data assimilation over the 1979–2022 period. This suggests that they could potentially be used to reliably 416 

assess long-term changes in TVAR over the past century, either due to external forcing or multidecadal internal variability. 417 

Similarly, the conventional-input JRA-55C, which does not assimilate satellite observations, also agrees well with other 418 

reanalyses, indicating that satellite observations are not absolutely necessary to constrain TVAR near the surface over the sectors 419 

studied here. 420 

 421 
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It is important to mention that by comparing seasonally-averaged TVAR and generation/dissipation terms among the reanalyses, 422 

we are assessing their statistical representation of subweekly variability, not their ability to capture specific weather events. 423 

Observations in some sectors may sometimes insufficiently resolve migratory weather systems so that the model component 424 

of reanalyses is primarily responsible for generating dynamical variability. This model dependence may be especially 425 

important in surface-input reanalyses over vast oceanic sectors. In ensemble-based reanalyses, such as 20CR, this could 426 

contribute to suppressing a part of internal variability that is not properly constrained by observations. Assessing the ability of 427 

reanalysis datasets to adequately capture subweekly variability in a deterministic sense, i.e., capturing the occurrence of 428 

specific events, will be the topic of future work. 429 
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