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Abstract.

Carbonyl sulfide (COS), a trace gas in our atmosphere that leads to the formation of aerosols in the stratosphere, is largely

taken up by terrestrial ecosystems. Quantifying the biosphere uptake of COS could provide a useful quantity to estimate Gross

Primary Productivity. Some [..1 ]COS sources and sinks still contain large uncertainties, and several top down estimates of

the [..2 ]COS budget point to an underestimation of sources especially in the tropics. We extended the inverse model TM5-5

4DVAR to assimilate MIPAS satellite data, in addition to NOAA surface data as used in a previous study. To resolve possible

discrepancies among the two observational datasets, a bias correction scheme [..3 ]is necessary and implemented. A set of

inversions is presented that explores the influence of the different measurement [..4 ]streams and the settings of the prior fluxes.

To evaluate the performance of the inverse system, the HIAPER Pole-to-Pole Observations (HIPPO) aircraft observations and

NOAA airborne profiles are used. All inversions reduce the COS biosphere uptake from a prior value of 1053 GgS a−1 to10

much smaller values, depending on the inversion settings. These large adjustments of the biosphere uptake often turn parts

of the Amazonia into a COS source. Only inversions that exclusively use MIPAS observations, or strongly reduce the prior

errors on the biosphere flux maintain the [..5 ]Amazon as a COS sink. Inclusion of MIPAS data in the inversion leads to

a better separation of land and ocean fluxes[..6 ][..7 ][..8 ]. Over the Amazon, these inversions reduce the biosphere uptake

1removed: COS
2removed: COS
3removed: was
4removed: instruments
5removed: Amazonia as a COS sink. Assimilating both NOAA surface data and MIPAS data requires a small bias correction for MIPAS data, mostly at

higher latitudes, to correct for inconsistencies in the observational data and/or transport model errors. Analysis of the error reduction and posterior correlation

between
6removed: indicates that co-assimilation of NOAA surface observations and MIPAS data better constrains the
7removed: budget than assimilation of one individual dataset alone. Our inversions with bias corrections reduce the global biosphere uptake to respectively

570 and 687
8removed: a−1, depending on the prior biosphere error. Over the Amazonia
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from roughly 300 to 100 GgS a−1, indicating a strongly overestimated prior uptake [..9 ]in this region. Although a recent15

study also reported reduced COS uptake over the [..10 ]Amazon, we emphasize that a careful construction of prior fluxes

and their associated errors remains important. For instance, an inversion that gives large freedom to adjust the anthropogenic

and ocean fluxes of CS2, an important COS precursor, also closes the budget satisfactorily with much smaller adjustments

to the biosphere. [..11 ]We achieved better characterization of biosphere [..12 ]prior and uncertainty, better characterization

of combined ocean and land fluxes, and better constraint of both by combining surface and satellite observations. We20

recommend more COS observations to characterize biosphere and ocean fluxes, especially over the data-poor tropics.

1 Introduction

Understanding sources and sinks of greenhouse gases is a scientific challenge (Friedlingstein et al., 2020, 2022a, b). One

important climate-related process is the carbon uptake by terrestrial ecosystems, named gross primary productivity (GPP).

However, accurate estimation of GPP is difficult, since the measured net flux of carbon at ecosystem level is determined by25

both GPP and ecosystem respiration. In the recent decade, GPP proxy methods have been developed with the aim to improve

GPP estimates (Campbell et al., 2008; Wingate et al., 2010; Berry et al., 2013; Commane et al., 2015; Koren, 2021).

Carbonyl sulfide (COS), a low-abundant and long-lived trace gas with an average mixing ratio of about 500 pmol mol−1

in the Earth’s atmosphere (Montzka et al., 2007; Kremser et al., 2016), is biochemically coupled with CO2 (Stimler et al.,

2010; Campbell et al., 2008; Berry et al., 2013), and a major contributor to stratospheric sulfur aerosols (Crutzen, 1976; Turco30

et al., 1980; Brühl et al., 2012). The concentration of COS remains relatively constant and shows small inter-annual variability,

implying that the sources and sinks of COS are roughly balanced (Montzka et al., 2007). A recent study based on vertical

column measurements in the Network for the Detection of Atmospheric Composition Change (NDACC) (Hannigan et al.,

2022) reported a slightly increasing tropospheric trend in free tropospheric COS ranging from ∼0.0 to 1.55±0.30% a−1 in

2002–2016 that appears correlated with estimates of anthropogenic emissions (Hannigan et al., 2022). In the period 2016–35

2020, all NDACC stations show a free tropospheric decline in COS. Besides direct emissions of COS, carbon disulfide (CS2)

and dimethyl sulfide (DMS) are species that potentially account for substantial chemical production of COS in the troposphere

(Chin and Davis, 1993; Watts, 2000; Kettle et al., 2002; Ma et al., 2021; Jernigan et al., 2022).

COS is absorbed by terrestrial vegetation through photosynthesis sharing a similar pathway as CO2, but it is not emitted

from vegetation through respiration, which makes COS a promising diagnostic tracer to improve estimates of GPP globally40

(Wohlfahrt et al., 2012; Berry et al., 2013; Campbell et al., 2017; Whelan et al., 2018). Recently, COS observations have been

used to estimate regional GPP over arctic North America and boreal regions (Hu et al., 2021), and over the Amazonia forest

(Stinecipher et al., 2022), and to detect city-level signals from the urban biosphere (Villalba et al., 2021). Besides, isotopologue

measurement and modelling studies are being used to differentiate signals from various sources and sinks (Hattori et al., 2020;

9removed: over the Amazonia
10removed: Amazonia
11removed: Thus, a
12removed: and ocean fluxes by observations is urgently needed
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Davidson et al., 2021; Baartman et al., 2021; Nagori et al., 2022). In parallel, COS flux measurements combined with land45

surface models improve our understanding of the interaction of COS with plants and soils (Kooijmans et al., 2017, 2019;

Spielmann et al., 2019; Kooijmans et al., 2021; Maignan et al., 2021; Wu et al., 2015; Ogée et al., 2016; Abadie et al., 2022).

Inverse modelling to better constrain the global COS budget is also readily progressing (Suntharalingam et al., 2008; Berry

et al., 2013; Wang et al., 2016; Kuai et al., 2015; Ma et al., 2021; Remaud et al., 2022; Stinecipher et al., 2022).

The COS abundance and variability in the atmosphere is determined by multiple sources and sinks. Anthropogenic, oceanic50

and biomass burning emissions are the major sources of COS. The inventories of COS and CS2 anthropogenic emissions

are in the range of 223–586 GgS a−1 (Campbell et al., 2015; Zumkehr et al., 2018). Specifically for China, anthropogenic

emission estimates were reported as 174 GgS a−1 in 2015 (Yan et al., 2019), of which 31 GgS a−1 from domestic coal

combustion (Du et al., 2016). Global emissions from oceans of 600–800 GgS a−1 would be required to balance the global

COS budget (Berry et al., 2013; Glatthor et al., 2015; Kuai et al., 2015), but a mechanistic ocean box model and COS seawater55

measurements suggest that direct COS oceanic emissions are unlikely to fully account for the large missing source (Lennartz

et al., 2017, 2021, 2020). Biomass burning emissions of COS, estimated as 60±37 GgS a−1 by Stinecipher et al. (2019)

without accounting for biofuel, is unlikely to account for the missing source as well. More recently, a new chemical product

of DMS oxidation known as hydroperoxymethyl thioformate (HPMTF) was discovered, and may play a role in accounting for

the missing sources of COS in the troposphere (Wu et al., 2015; Veres et al., 2020; Fung et al., 2022; Jernigan et al., 2022).60

On the uptake part of the budget, the largest sink of COS is uptake by terrestrial vegetation and soils, with estimates ranging

from –500 to –1200 GgS a−1 (Campbell et al., 2008; Suntharalingam et al., 2008; Berry et al., 2013; Remaud et al., 2022).

Kooijmans et al. (2021) recently updated the COS biosphere uptake based on the Simple Biosphere Model (SiB4) and the

estimate is from –922 to –753 GgS a−1 by considering the linear dependency of the flux on the atmospheric COS mole

fraction and COS soil production. This estimate is also in line with inverse modelling studies, which report fluxes that range65

from –1053 to –862 GgS a−1 (Ma et al., 2021). The uncertainty in COS biosphere uptake introduced by the soil flux was

large (Whelan et al., 2013, 2016, 2018), and Abadie et al. (2022) reported a global net soil sink of only –30 GgS a−1 over

the 2009–2016 period. Finally, chemical loss by OH-induced tropospheric oxidation and stratospheric photolysis contribute

respectively about –100 GgS a−1 (Kettle et al., 2002; Montzka et al., 2007; Ma et al., 2021; Remaud et al., 2022) and –40 GgS

a−1 (Barkley et al., 2008; Brühl et al., 2012; Krysztofiak et al., 2015; Ma et al., 2021) to the COS sink.70

Satellites capable of observing COS include The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)

(Glatthor et al., 2017), the Tropospheric Emission Spectrometer (TES) (Kuai et al., 2014), The Atmospheric Chemistry Exper-

iment (ACE-FTS) (Bernath et al., 2021) and the Infrared Atmospheric Sounding Interferometer (IASI) (Vincent and Dudhia,

2017; Camy-Peyret et al., 2017; Cartwright et al., 2021). MIPAS and TES ended their observational period in respectively April

2012 and January 2018, and IASI and ACE are the only operational satellites, the latter sensing numerous gases including COS75

and its isotopologues (Yousefi et al., 2019). In the past, TES data was assimilated in the GEOS-Chem model to constrain at-

mospheric COS in the tropics. The results pointed to a missing source over the tropical oceans (Kuai et al., 2015). Recently,

MIPAS data was used in the same model to show that GPP over the Amazonia is likely in the lower range of previous estimates
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(Stinecipher et al., 2022). Satellite data have also served as validation data in COS modelling studies (Ma et al., 2021; Remaud

et al., 2022; Cartwright et al., 2022; Wang et al., 2023).80

In our previous inverse modelling study (Ma et al., 2021), we found that COS inverse modelling is an under-determined

problem caused by the scarcity of ground-based observations, specifically in tropical areas. In that light, it would be of particular

interest to investigate the application of satellite data to improve the global inversion of COS. In this study, we explore the use

of MIPAS data in addition to the NOAA surface observation network for COS. Specifically, we will present inversions based

on MIPAS only, NOAA only, and the combined data set. We attempt to explore a variety of data assimilation approaches to85

better separate the sources and sinks of COS. In addition, we explore the need for a bias correction scheme to account for the

different measurement principles of the data streams, and for potential biases in the model. Previous studies implemented and

explored bias correction in the TM5-4DVAR system (Basu et al., 2013; Houweling et al., 2014). In this paper, we will introduce

the observations and inverse model in Sections 2 and 3, analyse inversion performance, validation and the COS global budget

in Section 4. Discussion and conclusions follow in Sections 5 and 6.90

2 Observations of COS

2.1 NOAA surface network

The Global Monitoring Laboratory (GML) of the National Oceanic and Atmospheric Administration (NOAA) conducts con-

tinuous surface measurements at many sites globally, and provides long-term ground-based measurement data that are suitable

for inverse modelling studies. COS is measured over 14 observational sites since 2000 to present time (Montzka et al., 2007).95

The sites are depicted in Fig. 1.

Among the 14 measurement sites, 10 of them are located in the Northern Hemisphere (NH), and 4 in the Southern Hemi-

sphere (SH). Three are purely oceanic sites (MLO, KUM, and SMO) suitable to sample oceanic emissions. SMO is located in

the middle of the South Pacific between Hawaii and New Zealand. Another important station, MLO, is located on the north

side of Mauna Loa Volcano, Hawaii, at an elevation of 3397 m a.s.l. The KUM station also samples air from the ocean at100

Hawaii, but at sea level. From the perspective of inverse modelling, locations in the SH or over oceans are important because

they measure COS mole fractions from pristine areas or from the marine atmosphere. In contrast, sites over land are useful to

trace COS observations influenced by the biosphere or soil exchange, and sources from anthropogenic emissions and biomass

burning. The COS measurements are taken on a weekly or bi-weekly timescale, with an average measurement error of less than

8 pmol mol−1 (Montzka et al., 2007). The measurements are calibrated to maintain data consistency amongst NOAA sites.105

It is worth noting that the coverage of the NOAA surface network for COS is sparse, which leads to challenges for inverse

modelling. The total error used in inverse modelling includes the measurement error, the station dependent representation error,

and the flux error (Ma et al., 2021).
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2.2 MIPAS satellite

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was a Fourier transform spectrometer that flew on110

the Environmental Satellite (Envisat) mission. MIPAS was a limb sounder, designed to detect a wide range of gases between

the upper troposphere and lower thermosphere. The data sets retrieved by the European Space Agency from calibrated MIPAS

spectra include profiles of temperature, H2O, O3, CH4, N2O, HNO3, and NO2 (Fischer et al., 2008). The MIPAS COS dataset

used here (V5R_OCS_221/222) was retrieved with the level-2 data processor developed and operated by the Institute for

Meteorology and Climate Research (IMK) in cooperation with the Instituto de AstrofÌsica de AndalucÌa (IAA). COS retrievals115

from MIPAS data were characterized and compared with other data sets, showing that COS retrievals from MIPAS are good

quality measurements that reveal COS surface exchange processes (Glatthor et al., 2015, 2017). The data sets from MIPAS are

available from July 1, 2002 to April 8, 2012.

The MIPAS COS data consist of volume mixing ratio profiles, averaging kernels and geophysical information (temperature,

latitude, longitude, altitude, etc.). To compare modelled COS mixing ratios to MIPAS soundings the averaging kernel is applied120

as:

xconv = xprior +A(xmodel −xprior), (1)

where A is the MIPAS averaging kernel (AK, with dimension 60×60) matrix that contains information about the vertical

sensitivity, xmodel is the profile sampled from a transport model, xprior is the prior profile, and xconv the model profile

convolved with the AK. In practice, the prior for MIPAS COS retrieval is a zero profile, so Eq. (1) simplifies to:125

xconv =Axmodel. (2)

The convolved COS mixing ratios are compared to MIPAS retrievals and then included in the cost function for inverse

modelling. In this study with a focus on tropospheric COS, we only use the [..13 ]9th level of the MIPAS COS retrievals. To

make best use of the MIPAS data, we applied data quality control, and soundings that match one of the following criteria were

removed and the purposes are indicated:130

1. To avoid cloud contamination, soundings with a MIPAS visibility flag of zero are discarded.

2. To avoid low sensitivity indicated by the AK, soundings with a diagonal element of the 9th AK row smaller than 0.03

are removed.

3. To avoid artifacts due to orography, soundings with a difference of more than 6000 Pa between the MIPAS reported

surface pressure and the TM5 surface pressure are removed.135

13removed: 8
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Fig. 2 shows filtered MIPAS data analysis based on the annual mean of [..14 ]2009. Panel (a) demonstrates that the [..15 ]9th

row of the AK roughly peaks at around 200 hPa, indicating a retrieval sensitivity to the troposphere, at least in the tropics.

To motivate our selection for the [..16 ]9th MIPAS level, panel (b) shows the latitudinal distribution of the MIPAS COS mole

fraction at levels [..17 ]6, 8, [..18 ]9, 11, and 13. The MIPAS measurements for levels [..19 ]6, 8, 9 are relatively similar, but

COS mole fractions drop quickly for level [..20 ]11 and above, due to enhanced sensitivity to stratospheric COS, as shown140

in the mean COS profile in panel (c). Panel (d) shows the total number of valid MIPAS data after applying the data quality

control. It is evident that the number of valid MIPAS soundings drops when the level is closer to Earth’s surface, due to the

influence of clouds. In summary, the [..21 ]9th MIPAS level is chosen to best represent tropospheric COS, while still retaining

a substantial number of valid measurements.

2.3 Validation observations145

Since the COS inverse problem is data-constrained, independent data are crucial to further validate the inversion results, par-

ticularly with respect to the modelled vertical distribution. This is particularly true when assimilating surface observations

combined with MIPAS data, which has the highest sensitivity in the upper troposphere. For clarification, independent or val-

idation data refers to observations that are not assimilated in the inverse model. In principle, evaluation with independent

observations can help pinpointing potential model errors or poorly estimated flux adjustments.150

HIAPER Pole-to-Pole Observations (HIPPO) data provides valuable and well-calibrated COS concentrations between Jan-

uary 2009 and September 2011, a period with valid MIPAS data. HIPPO data were collected during several campaigns (see

Fig. 1) between the surface and the tropopause, and from the NH to the SH (Wofsy, 2011; Wofsy et al., 2017). HIPPO COS

measurements were evaluated to be consistent with the NOAA surface network. We use data from HIPPO campaigns 1–3 to

validate the inversion results. Next to HIPPO data, we use NOAA airborne profile data that are routinely collected. Most profile155

measurements are taken in North America, shown in Fig. 1 as red crosses.

3 Inverse model

Inverse modelling is a widely-used mathematical technique to estimate surface fluxes of trace gases, constrained by concentra-

tion observations at ground level or from space. The inverse model usually consists of a transport model and an observational

system, coupled to an optimizer that minimises the difference between observations and model results by changing the emis-160

sions. The transport model describes physical and chemical processes: advection in three dimensions, parameterisation of deep

14removed: 2009 and a time series from 2008 to 2010.
15removed: 8
16removed: 8
17removed: 5, 7,
18removed: 10, and 12.
19removed: 5, 7,
20removed: 10
21removed: 8
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convection and other sub-grid-scale mixing processes, and chemistry (Krol et al., 2005). The observational system in this study

includes the NOAA surface network and MIPAS data, and these data provide constraints to estimate surface fluxes of COS and

CS2. Note that we do not optimise DMS surface fluxes in this study.

3.1 Prescribed surface fluxes of COS, CS2 and DMS165

In the model implementation, we used the prior surface fluxes of the three tracers from Ma et al. (2021). Here, four categories

are predefined for COS surface fluxes: anthropogenic, biosphere, ocean and biomass burning. We briefly describe these fluxes

below and prior flux information is listed in Table 1.

The reported anthropogenic COS emissions range between 223–586 GgS a−1 (Zumkehr et al., 2018) in the period 2000–

2012. Specifically for 2009, the focus year of this study, the emissions amount to 354.2 GgS a−1. The anthropogenic sources170

are available as monthly estimates on a high spatial resolution resolution of 0.1◦×0.1◦. Furthermore, the Zumkehr et al. (2018)

inventory reports direct COS and CS2 emissions, and we used the CS2 to COS ratios of the various emission types to split

emissions into direct COS emissions and indirect CS2 emissions following Table 1 of Lee and Brimblecombe (2016). In

addition, a small amount of DMS emissions over land (6 GgS a−1) is also considered as an indirect COS source. DMS and

CS2 are treated as separate tracers that are quickly oxidized to COS (see below). The biosphere flux is the largest sink for175

COS and includes uptake by plants and soil at the surface. Here, we use the output generated by SiB4 model (Kooijmans et al.,

2021) from 2000 to 2020 to drive the TM5 model, in order to account for the inter-annual variability of biosphere uptake.

These fluxes are still evaluated assuming a constant atmospheric COS mole fraction of 500 pmol mol−1. This leads to a prior

flux estimate of –1053 GgS a−1. Fluxes are provided as monthly fields on a 1◦ ×1◦ resolution. Ocean fluxes of COS, CS2 and

DMS are based on climatological fields (Kettle et al., 2002; Suntharalingam et al., 2008; Lana et al., 2011). The COS oceanic180

flux depends on sea surface temperature and thus can be either a source or sink, depending on the season. COS biomass burning

emissions considered biomass burning and biofuel use, with an amount of 136 GgS a−1 (Ma et al., 2021).

3.2 Chemistry

The chemical conversion of CS2 and DMS is handled as described in (Ma et al., 2021). Briefly, CS2 is converted to COS

through reaction with OH assuming a yield of 0.83 (Stickel et al., 1993). DMS is converted to COS using a yield of 0.007185

(Barnes et al., 1994) assuming an exponential decay to COS with a timescale of 1.2 days (Khan et al., 2016). Recent studies

found a new DMS oxidation product HPMTF that potentially plays a role in COS production (Wu et al., 2015; Veres et al.,

2020; Fung et al., 2022; Jernigan et al., 2022). Here, we still use the assumption of a 0.7% yield from DMS oxidation (Barnes

et al., 1994). Note that the reaction rate of COS and OH quoted in Ma et al. (2021) contained a typo. Here we give the correct

equation:190

COS+OH−→ products [kOH =A× exp(
−1200

T
)], (R1)
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where T is temperature in K , and A is pre-exponential factor of Arrhenius equation (1.13 × 10−13 cm3 s−1 molecule−1)

for the reaction of COS with OH (Cheng and Lee, 1986). As in Ma et al. (2021) we used the OH climatology by Spivakovsky

et al. (2000) multiplied with 0.92 in the troposphere.

3.3 TM5-4DVAR system195

TM5-4DVAR is an offline global inverse model using 4DVAR data assimilation techniques (Krol et al., 2005, 2008; Meirink

et al., 2008; Bergamaschi et al., 2010). The 3-hourly meteorological fields from the European Centre for Medium-Range

Weather Forecasts (ECMWF) ERA-Interim reanalysis is employed to drive the offline TM5 model (Dee et al., 2011). The

[..22 ]TM5 transport model describes physical transport of tracers by atmospheric winds and their chemical loss and

production. The model settings are identical to Ma et al. (2021). The difference is that the MIPAS observations are200

assimilated into the inverse system and that a bias correction scheme is implemented.

The forward model consists of a transport operator and an observation operator that acts on a state vector x:

y =H(x). (3)

The TM5 model (H) simulates the mole fraction of COS, after which the misfit between model and measurement (surface

and/or satellite) is calculated, co-sampled in space and time. In this study the operator is linear, and Eq. (3) can be written as205

Hx. The value of the cost function J (Eq. (4)) is calculated with the forward model and the derivative of the cost function with

respect to the state vector elements is calculated with the adjoint model HT. An optimisation algorithm is used to minimize the

cost function up to a pre-defined gradient reduction. Eq. (4) is a classic form of a cost function in an inverse system (Tarantola,

2005; Brasseur and Jacob, 2017):

J(x) =
1

2
(x−xb)

TB−1(x−xb)+
1

2
(Hx−y)TR−1(Hx−y), (4)210

and the derivative of the cost function w.r.t the state vector x reads:

∇xJ(x) =B−1(x−xb)+HTR−1(Hx−y), (5)

where x is the state vector to be optimized, xb is the prior state vector. The covariance matrix B describes the uncertainty

statistics associated with the state vector. The covariance matrix R describes errors related to the misfit between observa-

tions and the model (Hx−y). While R is (often) assumed to be diagonal, off-diagonal elements of B are determined by215

user-prescribed spatial and temporal correlations of the fluxes (details of the used correlation lengths can be found in Ma

et al. (2021)). The inverse of B is not explicitly calculated owing to its huge size, but dealt with during pre-conditioning and

eigenvalue decomposition (Meirink et al., 2008).

22removed: model settings are generally the same as in Ma et al. (2021).
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Our implementation of TM5-4DVAR runs on a spatial resolution of 6×4 degrees horizontally, and vertically on 25 pressure

levels. Fluxes are optimized on a monthly time-scale. In this study, we focus on a 3-year inversion from January 1, 2008 to220

January 1, 2011. The initial condition is based on a previous 3-year inversion in which atmospheric COS was spun up using

atmospheric surface observations. The inversion model optimises all COS and CS2 fluxes, but keeps the DMS fluxes constant,

as scenario S1 described in Ma et al. (2021). Since the inverse system remains linear, including the comparison to MIPAS

satellite data, we use the CONGRAD algorithm (Lanczos, 1950) to optimize the fluxes until the gradient norm is reduced by

a factor of 10−7. We found that with this convergence criterion, the leading eigenvalue of the Hessian of the cost function is225

close to 1.0, which implies that both the fluxes, as well as the posterior errors can be reliably interpreted (Meirink et al., 2008).

Using the posterior co-variance matrix, the error reduction (ER, defined in Eq. (6)) and correlations of the optimized fluxes

can be evaluated.

ER= 1− errorposterior
errorprior

, (6)

where errorprior and errorposterior are the errors of posterior and prior fluxes, and also the diagonal elements in B230

matrix defined in Eq. 4. According to Meirink et al. (2008), the posterior error must be smaller than the prior error, leading

to an error reduction for an inverse system. We report correlations and error reductions of COS and CS2 fluxes based on

error aggregation over NH lands, NH oceans, SH lands and SH oceans during the period of 2009 in Sect. 4.5. The [..23 ]first

six months in 2008 and the last six months in 2010 are considered as [..24 ]spin-up and spin-down period, respectively. At

the beginning of the inversion, the optimized fluxes may be affected by the uncertain initial condition. At the end of the235

inversion, there are less observational data to constrain fluxes. We believe that the spin-up and spin-down approach

improves the statistics of the inversion.

3.4 Bias correction

A bias may exists amongst different measurement streams, e.g. between the NOAA surface network and the MIPAS satellite

data. This bias may be due to different instruments or calibration methods. In addition, since some of the sensitivity of the240

MIPAS data extents to the stratosphere (see Fig. 2(a)), some bias may be introduced by incorrect transport to, and chemistry in

the stratosphere. A bias correction scheme may successfully correct for systematic satellite measurement biases (Monteil et al.,

2013; Houweling et al., 2014). To correct for potential biases, we implemented a bias correction to MIPAS data with monthly

and latitudinal variations. The prior values of the bias correction are assumed to be 1.0, i.e. no bias existing between different

measurement systems. The cost function of the state vector of surface fluxes can be extended with a bias correction as:245

J(x,β) =
1

2
(x−xb)

TB−1(x−xb)+
1

2
(β−βb)

TBβ
−1(β−βb)+

1

2
(Hx−yNOAA)TRNOAA

−1(Hx− yNOAA)+
γ

2
(Hx− yMIPASβ)

TRMIPAS
−1(Hx− yMIPASβ),

(7)

23removed: years
24removed: spin up and spin down
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γ =
1

ei
. (8)

The derivative of the cost function with respect to the bias terms β then becomes:

∇βJ(x,β) =Bβ
−1(β−βb)−γRMIPAS

−1(Hx−yMIPASβ)yMIPAS. (9)

In these equations RMIPAS and RNOAA are the error covariance matrices associated with NOAA surface observations250

and MIPAS data, respectively. β is the bias correction parameter assigned to MIPAS measurements, and γ is a regularization

factor, which scales the MIPAS data part of the cost function. Eq. (8) relates the MIPAS error inflation to γ. The assumption

here is that NOAA surface observations and MIPAS profiles are all independent, so that the error covariance matrix for all

data in Eq. (4) is diagonal and can be separated into two matrices. The regularisation factor is similar with the terminology

defined in Brasseur and Jacob (2017). In our case, the number of MIPAS measurements (127243 in 2009 after data quality255

control) overwhelms the number of NOAA surface observations (490 in 2009), and the error inflation is a factor that limits the

weight of MIPAS data in the cost function. Note that the error inflation also can account for potential correlations between the

various MIPAS soundings. We determined that an error inflation of [..25 ]
√
10 leads to a reasonable balance between MIPAS

and NOAA terms in the cost function.

The derivative w.r.t β (Eq. (9)) is implemented in the data assimilation system, such that β is simultaneously optimized260

along with the fluxes. As discussed in Sect. 2, we selected the [..26 ]9th level of MIPAS data near 200 hPa to be assimilated

in the system. In the assimilation, a mass conservation mapping algorithm is used to map the 25 TM5 pressure levels to the 60

MIPAS levels.

The bias parameters β are multiplied to the MIPAS observations (Eq. (7)). The prior values of bias parameters are set to

1.0±0.003 as shown in Table 1. The small error assigned to bias parameters is to prevent the MIPAS data from being adjusted265

too strongly. We furthermore assume that the MIPAS bias depends on month and latitude, and not on longitude. The monthly

and latitudinal bias corrections are assumed to be correlated by decay functions that fall off in space and time. For the latitudinal

variations, a Gaussian decay function is selected:

corrh(ilat, jlat) = exp(
−(ilat · bin− jlat · bin)2

2L2 ), (10)

where ilat and jlat are the two correlated latitude indices, and bin is the bin size that determines how many bins taken into270

account. For MIPAS we take into account the latitude range from 80◦S to 80◦N and 16 latitude bins are applied, so bin equals

to 10◦. L is the spatial correlation length, which is set to 5◦. For the temporal correlation, an exponential decay is assumed:

corrt(imonth, jmonth) = exp(
−|imonth − jmonth|

τ
), (11)

25removed: 10
26removed: 8
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where imonth and jmonth are the two correlated month indices, and τ is the temporal correlation length, taken as 9.5

months. Finally, the covariance matrix Bβ is written as a Kronecker product of Eqs. (10) and (11).275

3.5 Evaluation metrics

To evaluate the performance of the inverse system, it is important to compare the model with assimilated and unassimilated data,

e.g. either ground-based observations or satellite observations. We use the statistical metrics χ2 to characterise the performance

of the inversions, by comparing the surface network observations and inversion results.

When the observations are assumed independent, χ2 is twice of the cost function (Tarantola, 2005):280

χN
2 = (x−xb)

TB−1(x−xb)+

N∑
k=1

(Hx− y)
2

σ2
(12)

In a well-balanced inverse problem, χ2
N is equal to the number of observations N . Since the background part of the cost

function is usually small, and we are interested in the performance of the inversion at different stations, we prefer to use the

station-based χ2 to characterize the performance of inversions. For comparison between model results and NOAA stations, the

station-based χ2 is defined as:285

χ2 =
1

N

N∑
i=1

(Hx− yi)
2

σ2
i

, (13)

where i denotes the ith station, and N is the number of observations at that station. Note that a χ2 of 1 denotes a statistically

good fit to the available observations, i.e. the difference between model result and measurements is of the same size as the

spread of the observations. For comparison between model and satellite data, χ2 is also used to compare the modelled and

MIPAS measured COS without taking the error inflation in order to avoid small values of the satellite χ2.290

In this study we also analyse regional correlation and error reduction on various spatial and temporal scales, as outlined

in Sect. 3.3. Aggregation to different scales is performed by accounting for the covariance from the full prior and posterior

covariance matrices. Results will be presented in Sect. 4.4 and 4.5.

3.6 Overview of inversions

To explore various model settings and simulation scenarios, we have designed a set of inversions, shown in Tables 2 and 3.295

The inversion scenario labelled S1 represents similar setting as used in Ma et al. (2021), with 50% prior errors for the COS

biosphere fluxes, and COS & CS2 ocean fluxes. To investigate the impact of the prior error settings on the posterior biosphere

fluxes, in scenario S0 the biosphere error was reduced to 10%, while the COS anthropogenic and biomass burning emission

errors were increased from 10% to 50%. For scenario S1, we assimilate only NOAA surface observations (NOAA-only_S1),

only MIPAS data (MIPAS-only_S1) and both observational datasets with (MIPAS+NOAA_bias=0.3%_S1) and without bias300

correction (MIPAS+NOAA_no-bias_S1). For scenario S0, we only consider assimilation of NOAA and MIPAS data with bias
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correction (MIPAS+NOAA_bias=0.3%_S0). Since we do not know the “true” MIPAS bias, a bias-corrected MIPAS-only

inversion is difficult to perform and not presented.

4 Results

4.1 Posterior fit to observations305

To demonstrate the performance of each inversion, we first evaluate the posterior fit at the 14 NOAA surface stations. Fig. 3

compares the various inversions at 6 selected stations. At Alert (ALT, Fig. 3a), MIPAS-only_S1 severely overestimates COS

observations, while the other inversions that assimilate NOAA data match the observations well. The same pattern is found at

station LEF (Fig. 3b). However, the posterior fit is less good at oceanic stations MLO and SMO (Fig. 3c and 3d). Here, the best

results are obtained for the NOAA-only_S1 inversion, which is logical because only NOAA surface data are assimilated. When310

MIPAS data are also assimilated, the model fit at MLO and SMO deteriorates, which implies trade-offs between assimilation

of surface and MIPAS data. At the Antarctica stations SPO and PSA (Fig. 3e and 3f) the model fit improves again. Overall,

the MIPAS-only_S1 inversion overestimates COS mixing ratios at all surface stations. This is the result of the low sensitivity

of MIPAS to COS that resides close to the surface. It also indicates that MIPAS information is biased high within the TM5-

4DVAR system. As outlined above, this might imply a [..27 ]lack of observations to constrain the model or a bias in the model315

transport and chemistry. [..28 ]However, a true bias of MIPAS compared to NOAA observations cannot be excluded. Glatthor

et al. (2017) also found positive differences of MIPAS retrievals compared to ACE-FTS profiles in the upper troposphere [..29

]and lower stratosphere.

To evaluate the performance of the various inversions (except for MIPAS-Only) at each NOAA station, Fig. 4 shows χ2 per

station (Eq. 13). The stations are sorted from South to North. As expected, the best performance is found for NOAA-only_S1320

(in blue). Values of χ2 close to one are found for CGO, LEF and MHD. Reasonable results are obtained at the stations, with

χ2 values less than 5. Although the agreement with observations improves considerably w.r.t. the prior (not shown), this could

indicate that error settings for these station were too conservative, possibly related to unaccounted processes that influence

the COS budget. Indeed we note considerable variability at remote ocean stations like MLO and SMO (see Fig. 3) that is not

reproduced well by the model.325

In Fig. 4, the worst performance is found for inversion MIPAS+NOAA_no-bias_S1 (excluding MIPAS-only inversion), with

a deteriorated model fit especially at SMO and MLO. When bias correction is applied in inversion MIPAS+NOAA_bias=0.3%_S1,

the model fit improves at all NOAA stations. When the prior errors are reduced for the biosphere flux (and increased for the an-

thropogenic and biomass burning fluxes, inversion MIPAS+NOAA_bias=0.3%_S0), the posterior fit degrades at most stations,

except for MLO. This indicates that adjustments of the biosphere fluxes play an important role in the goodness of the posterior330

fit. However, alternative choices of the prior error setting (e.g. scenario S0) still lead to satisfactory results.

27removed: true bias of MIPAS compared to NOAA observations ,
28removed: There is also a high
29removed: in certain regions (Glatthor et al., 2017)
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Next we evaluate the posterior fit to MIPAS data. The posterior model fit with MIPAS data for inversion MIPAS+NOAA_bias=0.3%_S1

is shown in Fig. 5. The mismatch (panel c) shows that the model, after bias correction, still slightly underestimates MIPAS

COS mixing ratios at high latitudes, and overestimates values over tropical regions. As expected from assimilated observa-

tions, the probability density function (panel d) indicates that the average modelled COS mixing ratio is relatively close to335

the MIPAS average. However, due to the large error on individual MIPAS soundings, the distribution of MIPAS is much

wider. Supplementary information Figs. S1 and [..30 ]S2 show the posterior model fit with MIPAS data for inversion MIPAS-

only_S1 and MIPAS+NOAA_no-bias_S1, respectively, where the bias correction scheme is not applied. In the case MIPAS-

only_S1, the MIPAS-based χ2 amounts to 16.4, and in the case MIPAS+NOAA_no-bias_S1 the χ2 increased to 17.33. This

implies that when both NOAA and MIPAS are assimilated, the fit is deteriorated to some extent. Interestingly, in the case340

MIPAS+NOAA_bias=0.3%_S1 the fit to MIPAS improved (χ2=14.8). In general, inversion MIPAS+NOAA_bias=0.3%_S1

reached an acceptable posterior model fit both at NOAA surface stations and to MIPAS data that are sensitive to the upper

troposphere.

4.2 Optimized bias correction parameters

Fig. 6 shows the posterior bias parameters as a function of month and latitude for inversion MIPAS+NOAA_bias=0.3%_S1.345

The posterior bias parameters are in the range 0.94–1.00, indicating that bias correction slightly reduces MIPAS observations

in order to reconcile the fit to surface observation. In the tropics, only a small bias correction is found, while higher latitudes

show larger corrections. At these latitudes there is also a slight seasonal cycle in the bias parameters, with larger corrections in

local winter. Since in local winter high latitude MIPAS observations are mostly sensitive to the stratosphere, this could indicate

potential model errors in transporting COS to the stratosphere. The other inversion scenario (S0, not shown) shows similar350

posterior bias parameters within the range of 0.94–1.0 with similar seasonal and latitudinal variations. The bias correction

parameters are not adjusted to reduce biases in tropical regions, and the reasons could be: (1) Mixing is fast in the

tropics and transport and chemistry errors are much smaller; (2) At higher latitudes MIPAS samples pressure levels in

the stratosphere, where the air is older. Thus, transport errors and errors in modelled COS breakdown become more

important; (3) The MIPAS data quality is better over the tropics.355

To show the overall performance of all inversions, Table 4 breaks down the cost function in terms of background costs,

NOAA costs, and MIPAS costs. The background part contains both the flux part and the costs associated with bias correction

(see Eq. (7)). Inversion NOAA-only_S1 has the smallest posterior cost, since only deviations with surface observations are

taken into account. For this inversion, the background costs are 15% of the model-data mismatch. Whenever MIPAS data is

assimilated, the satellite cost function becomes the dominant part, even though an error inflation of [..31 ]
√
10 is considered. It360

is instructive to look at the increase in the background term when bias correction is considered (MIPAS+NOAA_bias=0.3%_S1

and MIPAS+NOAA_bias=0.3%_S0). As expected within an inverse modelling framework, this increase in background costs

30removed:
31removed: 10
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is more than compensated by reductions in both the MIPAS costs and surface costs. It also shows that additional adjustments

to the fluxes are made to comply with both the surface and satellite data.

4.3 Validation with HIPPO and NOAA airborne profiles365

In this section, independent HIPPO and NOAA airborne profiles observations are used to evaluate the inversions. The evaluation

of HIPPO campaigns 1–3 is shown in Fig. 7. Notably, as can be seen in the first two rows of Fig. 7, the NOAA-only_S1

inversion underestimates COS in the troposphere, while inversion MIPAS-only_S1 generally overestimates COS in the lower

troposphere. The other inversions that assimilate MIPAS data decrease the bias against HIPPO observations. One remarkable

feature in the comparison with HIPPO campaign 1 in January 2009 is the model overestimate around the equator, that gets370

reduced in inversion MIPAS+NOAA_bias=0.3%_S0. This is caused by smaller biosphere flux adjustments that are the result

of the tighter error settings (prior error reduced from 50% to 10%, see Table 2). The HIPPO 1 air samples were taken close

to the Amazonia (Fig. 1). This indicates that the adjustments to the biosphere over the Amazonia in scenario S1 are likely too

large. This will be addressed further in Sect. 4.4.

The vertical distributions of inversions and HIPPO observations are shown in supplementary Figs. S3 and S4. In HIPPO375

campaign 1, the vertical profiles of the inversions are in good agreement with HIPPO vertical distribution, with differences less

than 20 pmol mol−1 below 10 km. For HIPPO campaigns 2 and 3, there is a negative bias between the inversions and HIPPO

observations. This points to underestimated oceanic contributions, as HIPPO campaigns 2 and 3 mainly covered the Pacific

Ocean.

The evaluation against NOAA airborne profiles is presented in Fig. 8. Note that the data were grouped to two regions:380

Alaska and the rest of North America as shown in Fig. 1. All inversions (except for MIPAS-only_S1) fit the profiles relatively

well. Again, inversion MIPAS-only_S1 (in green) overestimates NOAA airborne observations significantly. Other inversions

are generally slightly lower than the NOAA airborne observations, with slightly larger deviations when MIPAS bias correction

is applied. The NOAA airborne profiles were mainly acquired over continents, where the inversions seem generally well-

constrained by the NOAA surface network. Assimilation of MIPAS data does not strongly influence the agreement with the385

observed profiles. As shown in supplementary Fig. S5, we still find a low bias in our inversions, which however remains well

below 20 pmol mol−1 over North America.

4.4 The global and Amazonia COS budget

The global COS budgets of all inversions are graphically summarized in Fig. 9. Furthermore, the regional prior and posterior

COS and CS2 fluxes, errors and error reductions are listed in Table 5.390

The prior COS budget is not in balance with a net excess sink of –432 GgS a−1, as described in Ma et al. (2021). The

net fluxes of all inversion experiments are close to zero, which demonstrates the capability of the inverse model to close the

gap in the global budget. All inversions reduce the biosphere uptake, albeit with different amounts depending on the inversion

settings. Sometimes the biosphere sink even turns into a source, e.g. over the Amazonia (supplementary Fig. S6 from inversion

NOAA-only_S1). Although the MIPAS-only_S1 inversion overestimates COS both at the surface (Fig. 3) and in the lower395
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troposphere (Fig. 8), the tropical biosphere remains a sink in this inversion (Fig. 10). When NOAA and MIPAS data are co-

assimilated, the tropical biosphere still turns locally into a source, but less strong than for inversion NOAA-only_S1 (Fig. 10).

From Table 5, it is clear that most of the error reduction is obtained for the biosphere flux. Ocean fluxes of both COS and CS2

only see marginal error reductions of a few percent at most. The error reduction on anthropogenic emissions is also small for

the S1 inversions. However, as expected, error reductions become larger when their prior errors are increased from 10 % to 50400

% in scenario S0. For instance, error reductions on the biomass burning emissions are increased from 0.4% in scenario S1 to

31.0% globally in scenario S0.

In scenario S1, by far the largest adjustments are made to the tropical biosphere to close the COS budget. It is questionable,

however, whether positive fluxes from the Amazonia are realistic. In inversion MIPAS+NOAA_bias=0.3%_S0, the biosphere

remains a sink, as shown in Fig. 10. By reducing the prior error on the biosphere from 50% to 10%, the global biosphere prior405

error of 191.2 GgS a−1 in scenario S1 decreased to 38.2 GgS a−1 in scenario S0 (Table 5). To leverage the decrease of freedom,

the biomass burning and anthropogenic errors were increased to 50% in S0. Interestingly, despite the need for a tropical source,

biomass burning emission showed a decrease from 126.6±27.5 to 95.8±18.9 GgS a−1 in scenario S0. This might imply that

biomass burning is not responsible for the COS budget gap, in line with findings from Stinecipher et al. (2019). Instead, the

budget is closed by increasing the anthropogenic CS2 and COS emissions and CS2 ocean emissions. For instance, the global410

CS2 ocean source increased from 83.0±12.0 to 171.2±11.6 GgS a−1. Note that direct COS ocean emissions decreased in all

scenarios (except for MIPAS-only) because COS ocean exchange occurs mostly at high latitudes. Note also that many of the

adjustments, especially in scenario S0, are large compared to the error settings. For instance, the global biosphere COS flux

is adjusted from –1053.0±38.2 to –686.5±22.9 GgS a−1. A similar large adjustment is seen for the oceanic CS2 emissions.

This points to too tight prior error settings in scenario S0. However, the inversion system has to correct for the missing tropical415

source, which might be a structural model error (i.e. missing processes, incorrect regional or temporal correlation settings of

sources and sinks). Adjusting the tropical fluxes outside the predefined prior error ranges is the only way to close the budget. In

scenario S1 the error settings seem more realistic. However, as discussed above, the biosphere often turns into a source in the

S1 scenario. These results underscore the importance of a proper quantification of the prior fluxes and their associated errors

in inverse systems.420

To investigate how well the different fluxes can be separated in our inversions, Fig. 11 shows posterior correlations of

total COS fluxes aggregated over the different regions. In defining the fluxes, we quantified positive spatial and temporal

correlations in the prior fluxes. After inversion, however, the correlations often turn strongly negative when the inversions

cannot properly separate the fluxes. It can be inferred from Fig. 11 that the posterior fluxes from NH land and ocean are less

(negatively) correlated than the fluxes from SH land and ocean. This implies that the inverse model can better separate NH425

land and ocean sources or sinks. This is because most NOAA surface observations are located in NH. The MIPAS-only_S1 and

NOAA-only_S1 show high anti-correlations (–0.67 and –0.65) between SH land and ocean, which indicates poor separation

of land and ocean fluxes. The case MIPAS+NOAA_no-bias_S1 and MIPAS+NOAA_bias=0.3%_S0 decrease the correlations

between SH land and ocean to –0.55 and –0.38, respectively. This indicates that inclusion of MIPAS data in the inversion

leads to a better separation of land and ocean fluxes. Also the prior error specification has a large impact on the posterior430
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correlations. Specifically, the MIPAS+NOAA_bias=0.3%_S0 inversion helps the separation of COS sources and sinks between

land and ocean. The posterior CS2 correlations generally remain similar to the prior (see supplementary Fig. S7), because error

reductions for CS2 fluxes are generally marginal, except in scenario S0 (MIPAS+NOAA_bias=0.3%_S0).

Table 6 summarizes the COS and CS2 budgets, calculated for the Amazonia. The Amazonia COS budgets are aggregated by

adding the regions South American Temperate and South American Tropical of the 22 Transcom regions (Fig. 2 in Feng et al.435

(2011)). The prior biosphere flux of the Amazonia is –311.0 GgS a−1, and all the inversions tend to decrease the COS uptake

by the biosphere, implying an overestimated prior biosphere sink or an unknown source over the Amazonia. Notably, inversion

NOAA-only_S1 obtained a posterior biosphere flux of –10.6±48.0 GgS a−1. Interestingly, a fraction of the Northwestern

Amazonia turned in a source (see Fig. 10) that may be questioned in light of the overestimated HIPPO 1 samples (Fig. 7).

Inversion MIPAS-only_S1 obtained a larger posterior biosphere flux over the Amazonia of –145.7 GgS a−1, which is however440

still less than half of the prior sink. When MIPAS and NOAA observations are co-assimilated, inversion MIPAS+NOAA_no-

bias_S1 reverses the biosphere sink into a source of +15.5±25.9 GgS a−1. The biosphere again remains a sink when bias

correction is applied. Scenarios S1 and S0 with bias correction lead to biosphere flux of –99.5±26.3 GgS a−1 and –108.2±15.8

GgS a−1, respectively. Comparison to HIPPO 1 (Fig. 7) shows the smallest biases for scenario MIPAS+NOAA_bias=0.3%_S0.

4.5 Error reduction445

In this section, maps of the error reduction are analysed. The error reduction on the grid-scale of the model, aggregated over

all direct COS fluxes, is shown in Fig. 12. For reference, the regional and global error reductions are shown in parenthesis in

Table 5. Inversion MIPAS-only_S1 mainly reduces the prior error over tropical regions, covering the Amazonia region, Africa

and Central Asia. In contrast, inversion NOAA-only_S1 reduces the error mostly over the NH and mainly over North America,

where the NOAA surface network is more dense. On the grid scale, the SH sees little error reduction, partly due to the lack of450

surface observational constraints, but also because the ocean surface fluxes are distributed over a larger area compared to the

biosphere fluxes. Inversions MIPAS+NOAA_no-bias_S1 and MIPAS+NOAA_bias=0.3%_S1 reduce the errors again globally

over the continents. This demonstrates the complementary effects of NOAA observations and MIPAS data on constraining

the COS budget. Concerning error reductions for scenario S0, the error reduction is substantially smaller, because the prior

error on the biosphere flux is lowered from 50% to 10%. This largely limits the degrees of freedom to adjust the biosphere. It455

should be remembered that errors in our inverse system are defined as percentage of the fluxes themselves. Biosphere fluxes

are generally more localized and larger than ocean fluxes. As a result, the error reduction of the COS flux over the oceans is

small compared to the error reduction of the land fluxes (see Fig. S8). Again, this points to the need to carefully construct the

prior error covariance matrix B (Eq. 4). For instance, if we enlarge the prior errors on the CS2 ocean emissions to 150% based

on the S0 scenario (with a biosphere error of 10%), we find that the CS2 ocean emissions are enlarged to provide the required460

tropical COS source (see scenario of SCS2X in Fig. S9). In that solution, we find comparable agreement to independent data

with a global biosphere flux of –922.9±28.7GgS a−1 (–178.4±17.7 GgS a−1 over the Amazonia). Although the scenario is

extreme (i.e. small freedom to adjust the tropical biosphere flux and large freedom to adjust the ocean CS2 flux), this inversion

shows the need for accurate prior fluxes, including realistic errors.
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The error reduction in the CS2 total flux (supplementary Fig. S10) is significantly smaller compared to COS (Fig. 12).465

Again, this is attributed to the small prior errors shown in supplementary Fig. S11. In scenario S0, in which the prior error on

CS2 anthropogenic emissions is increased to 50%, larger error reductions are seen over land, e.g. close to 30% over NH land

areas. Interestingly, the CS2 ocean fluxes roughly double in inversion S0, however, with only a small error reduction. This is

clearly driven by the need for a tropical COS source, and the limited ability in scenario S0 to adjust the biosphere. It seems

therefore logical to increase the prior errors on ocean CS2 emissions in future inversions.470

5 Discussion

A general feature of inversion results is that the tropical biosphere uptake is reduced, depending on the inversion settings.

Recently, Stinecipher et al. (2022) reported that a smaller COS biosphere sink of –81.1±28.1 GgS a−1 over the Amazonia (i.e.

a low GPP model) leads to the best agreement to MIPAS observations, which is consistent with our findings. However, many

of our inversions turn parts of the Amazonia into a net source, and we question the realism of this result. This can potentially475

be the case that biosphere uptake is overestimated, or emissions from anthropogenic or biomass burning are underestimated.

Indeed, we show biases when we compare simulations using our optimized fluxes to HIPPO 1 observations (Fig. 7), which

disappear in a scenario in which we reduce the freedom to adjust the biosphere. This underscores the need to better characterize

the prior fluxes, including their error settings. Our scenario S0 currently optimizes fluxes well outside of the prior error settings.

Specifically, a good balance should be found in optimizing the tropical fluxes from land and ocean. The major challenge of480

inversions is how to improve the separation of ocean and land fluxes. The extra inversion SCS2X in supplementary Fig. S9

show that the SCS2X leads to a better separation of ocean and land fluxes. In SCS2X the prior errors of the ocean fluxes

are increased to 150% and the prior errors of the biosphere fluxes are reduced to 10%. On the positive side, we do find a

similar result as Stinecipher et al. (2022), who also found a largely reduced GPP flux based on the COS proxy approach

using MIPAS satellite data as climatological constraints. COS biosphere flux over the Amazon on a monthly time scale485

in 2008-2010. When the spin-up and spin-down periods are removed, results are consistent across the inversions. To

further improve the robustness of the source attribution, it would be necessary to extend the time span of the inversions

in future work. Adjustments of the budget terms outside of the prior errors could also point to structural model errors, such as

unaccounted processes. For instance, enhanced production of COS from DMS oxidation through the intermediate HPMTF

as recently reported (e.g. Jernigan et al. (2022)) could be such a process. The difficulty of our inverse system to properly fit490

observations over remote oceans (e.g. SMO and MLO, Fig. 3) might be indicative of unresolved processes over the oceans.

The enhanced CS2 flux could also come from DMS. Note that given the chemical mechanism of DMS oxidation, any COS

from DMS enhancement would not scale with the current prior flux, because in some regions with large DMS emissions, the

atmospheric conditions almost exclude any COS production, while in other regions (e.g. the tropical Pacific), the chemical

conditions tend to favour COS production.495

One of the limitations of the assimilation of MIPAS data in this work is that we only used one specific level of MIPAS data

to constrain the tropospheric COS mole fractions. We could exploit the MIPAS data more, e.g. by assimilating other levels.
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However, at higher latitudes the averaging kernels of MIPAS level [..32 ]9 already mixes information from the stratosphere

(Fig. 2), which makes the comparison vulnerable to model errors associated with transport and stratospheric removal. At lower

latitudes, there are much less useful observations after data quality control, especially missing observations over tropics.500

A recent paper exploited TES data to analyse the seasonal cycle of COS over the Amazonia (Wang et al., 2023). Assimilation

of TES data, for instance in combination with MIPAS data, could be a possibility to further constrain the tropical COS budget.

Unfortunately, like MIPAS, the TES instrument is no longer operational. Thus, more COS observations to better characterise

COS concentrations and fluxes are still urgently needed.

6 Conclusions and Outlook505

In this study we have implemented the combined data assimilation of surface observations and MIPAS satellite data within the

TM5-4DVAR system. The major conclusions are summarized as follows:

– 2008–2010 inversions show generally good agreement both to NOAA observations and MIPAS data, particularly with

the assistance of a bias correction scheme. The optimized bias parameters show that the bias correction reduced MIPAS

COS data at higher latitudes.510

– In all inversions, the largest adjustments are made to the biosphere fluxes. As a result, the required tropical COS source

is obtained by strongly reducing the tropical biosphere, e.g. over the Amazonia. Although the large flux adjustments over

the Amazonia are not always consistent with independent HIPPO observations, a yearly Amazonia COS uptake of 100

GgS is much smaller than the SiB4-based prior flux of about –300 GgS a−1 and consistent with findings of a recent

study by Stinecipher et al. (2022).515

– Analysis of the correlations between land and ocean fluxes indicates that assimilation of MIPAS data improves the

separation between ocean sources and land sinks. Analysis of the error reduction shows that MIPAS data generally adds

information compared to a NOAA-only inversion.

– A scenario in which the prior biosphere errors are reduced (S0) leads to a more realistic solution of the inverse problem.

However, in this scenario other fluxes are often optimized outside of the error settings. This could point to missing COS520

production terms in the model (e.g. from DMS), but also underscores the need to carefully construct the prior error

covariance matrix B (Eq. 4).

Overall, our study shows that, although MIPAS data provides useful additional information, closure of the COS budget

remains to some extent unresolved. Additional information could come from assimilation of satellite data from TES, ACE-

FTS, and IASI and data from NDACC (Hannigan et al., 2022). On top of that, additional characterization of the different COS525

sources (e.g. from oceans and DMS oxidation), and sinks (e.g. soils and biosphere) is recommended.
32removed: 8
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Figure 1. Measurement data locations in this study. HIPPO campaigns 1–3 are shown as colored flight tracks. NOAA airborne data are

shown as red crosses. NOAA stations are marked on the map with station names.
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[..33 ]

Figure 2. Filtered MIPAS satellite data annual mean in 2009: (a) The [..34 ]selected MIPAS mean averaging kernel rows, colored by their

representative [..35 ]altitudes; (b) selected MIPAS COS mean mole fractions on MIPAS levels ([..36 ]6, [..37 ]8, [..38 ]9, [..39 ]11, 13); (c)

MIPAS mean COS vertical profile; (d) Number of valid measurements on selected MIPAS levels after data quality control.[..40 ]

27



(a) Station: ALT (b) Station: LEF

(c) Station: MLO (d) Station: SMO

(e) Station: SPO (f) Station: PSA

Figure 3. NOAA surface measurements at selected stations, and modelled COS mole fractions of inversions. The NOAA surface observations

are plotted as red dots with their total error, and modelled COS mole fractions are plotted as solid lines. The first and last 6 months are shaded

in blue, as spin-up and spin-down periods, respectively. 28



Figure 4. Inversion metric χ2 (Eq. 13) at each NOAA surface station for all inversions except MIPAS-only_-S1. The red line denotes χ2=1.
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Figure 5. Comparison of the MIPAS observations with the results of inversion MIPAS+NOAA_[..41 ]bias=0.3%_S1. (a) modelled COS at

MIPAS level [..42 ]9; (b) bias corrected MIPAS observations in the upper troposphere (MIPAS level [..43 ]9); (c) mismatch (a) minus (b) ; (d)

probability density function of the modelled and MIPAS COS mole fractions.
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Figure 6. Optimized bias correction parameters for inversion MIPAS+NOAA_bias=0.3%_S1.
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Figure 7. Comparison of inversions with HIPPO observations as a function of latitude and altitude. The plotted results are modelled COS

minus HIPPO observations. The rows denote the five inversions labeled on the left column.
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Figure 8. Comparison of inversions with NOAA airborne profiles. The NOAA airborne data were separated to two regions: Alaska and North

America. The airborne profiles are averaged vertically in 500 m intervals. The grey shading is the standard deviation of the NOAA airborne

measurements within each vertical interval.
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Figure 9. Global COS budgets for the different inversions. The error bars represent the prior or posterior errors which are aggregated to the

global scale. Note that the prior errors on the fluxes are not plotted because scenarios S1 and S0 have different prior errors. Note further that

the CS2 and DMS budget terms are counted as indirect COS fluxes.
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Figure 10. The prior (APRI) and optimized (APOS) COS biosphere flux of all inversions. The flux represents the annual mean over 2009.
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Figure 11. Correlations of total COS fluxes between regions (NH lands and oceans, SH lands and oceans) for the prior and the inversions.

The top left panel is the prior correlation between regions. The total COS flux is the sum of anthropogenic, oceanic, biomass burning and

biosphere fluxes.
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Figure 12. Error reduction (in %) on the TM5 model grid-scale for inversions as shown for the total COS flux. The total COS flux is the sum

of anthropogenic, oceanic, biomass burning and biosphere fluxes.

37



Table 1. Description of inversion settings, prior fluxes and prior bias correction.

Prior flux Model flux abbv. Budget (GgS a−1) Hor. Res.(◦) Temp. Res. Reference

Direct oceanic COS COS ocean +40 2.5×2 climatology Kettle et al. (2002); Suntharalingam et al. (2008)

Indirect oceanic CS2 as COS CS2 ocean +81 2.5×2 climatology Kettle et al. (2002); Suntharalingam et al. (2008)

Indirect oceanic DMS as COS DMS ocean +156 2.5×2 climatology Kettle et al. (2002); Suntharalingam et al. (2008)

Direct anthropogenic COS COS anthr +155 0.1×0.1 monthly Zumkehr et al. (2018)

Indirect anthropogenic CS2 as COS CS2 anthr +188 0.1×0.1 monthly Zumkehr et al. (2018)

Indirect anthropogenic DMS as COS DMS land +6 1×1 monthly Zumkehr et al. (2018)

Biomass burning COS biobr +136 0.25×0.25 monthly Ma et al. (2021)

Sources – +762

Destruction by OH – –101 6×4 monthly Ma et al. (2021)

Destruction by photolysis – –40 6×4 monthly Ma et al. (2021)

Uptake by plants and soil COS biosp –1053 0.5×0.5 monthly Kooijmans et al. (2021)

Sinks – –1194

Net total – -432

Prior bias – 1±0.003 (unitless) 16 lat bins monthly This study

Table 2. Prior errors applied in the inversion scenarios in this study. The percentage is the prior error assigned to the prior fluxes. DMS

remains as the prior value and is not adjusted during optimisations. Note that the absolute grid-scale flux error depends also on the flux

quantity, which means that 10% error to the biosphere is larger than the same error to anthropogenic COS.

Scenario Biosphere Ocean COS Ocean CS2 Biomass burning Anthropogenic COS and CS2 DMS

S1 50% 50% 50% 10% 10% Prior

S0 10% 50% 50% 50% 50% Prior

Table 3. Inversions carried out in this study. The parameters are presented as MIPAS or NOAA assimilation, bias correction and bias error.

The inversion names are used to denote the experiment throughout the paper.

Inversion MIPAS assimilation NOAA assimilation Bias correction Bias error Scenario

NOAA-only_S1 No Yes No No S1

MIPAS-only_S1 Yes No No No S1

MIPAS+NOAA_no-bias_S1 Yes Yes No No S1

MIPAS+NOAA_bias=0.3%_S1 Yes Yes Yes 0.3% S1

MIPAS+NOAA_bias=0.3%_S0 Yes Yes Yes 0.3% S0
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Table 4. Breakdown of the cost functions of the five inversions. The costs are given for the NOAA network, MIPAS satellite data and the

background term, respectively.

Inversion NOAA network Satellite Background Total cost function

NOAA-only_S1 2144.3 0.0 347.1 2491.4

MIPAS-only_S1 0.0 33678.0 314.2 33992.0

MIPAS+NOAA_no-bias_S1 2640.6 35655.0 765.0 39060.0

MIPAS+NOAA_bias=0.3%_S1 2254.3 30531.0 2515.7 35301.0

MIPAS+NOAA_bias=0.3%_S0 2488.1 30755.0 3136.6 36380.0
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Table 5. Prior and posterior fluxes and their error reductions for all inversions. Fluxes are given as flux±error GgS a−1 (error reduction in

%). The flux errors are aggregated for each region and flux category using the posterior covariance matrix. Note that DMS fluxes are not

listed, since they are not optimized. The land and ocean fluxes are not strictly separated, because the 6◦ ×4◦ grid cells in coastal regions

cover both land and ocean.

Category Region S1 APRI NOAA-only_S1 MIPAS-only_S1 MIPAS+NOAA_no-bias_S1 MIPAS+NOAA_bias=0.3%_S1 S0 APRI MIPAS+NOAA_bias=0.3%_S0

COS anthr

Global 156.1±7.8 162.0±7.6 (2.8%) 169.7±7.7 (1.2%) 137.8±7.6 (3.0%) 155.2±7.6 (3.1%) 156.1±39.2 186.5±27.5 (29.9%)

NH land 124.6±6.9 129.8±6.7 (2.8%) 136.4±6.8 (1.2%) 108.5±6.7 (3.0%) 123.8±6.7 (3.1%) 124.6±34.5 150.9±24.2 (30.0%)

SH land 8.4±0.4 8.4±0.4 (0.0%) 8.6±0.4 (0.0%) 8.3±0.4 (0.0%) 8.3±0.4 (0.0%) 8.4±2.2 7.9±2.2 (1.4%)

NH ocean 15.8±0.8 16.5±0.8 (2.3%) 17.0±0.8 (1.0%) 14.0±0.8 (2.5%) 15.8±0.8 (2.6%) 15.8±4.2 20.9±3.2 (24.3%)

SH ocean 3.6±0.2 3.6±0.2 (0.1%) 3.7±0.2 (0.0%) 3.5±0.2 (0.1%) 3.6±0.2 (0.1%) 3.6±0.8 4.2±0.8 (2.2%)

COS ocean

Global 40.6±17.3 -0.3±12.7 (26.3%) 135.8±16.5 (4.9%) -117.1±12.4 (28.3%) -25.4±12.2 (29.3%) 40.6±17.3 -34.9±10.7 (38.4%)

NH land 2.6±0.7 1.7±0.6 (8.3%) 3.4±0.7 (0.6%) 0.1±0.6 (8.1%) 1.3±0.6 (8.2%) 2.6±0.7 1.8±0.6 (13.2%)

SH land 1.1±0.3 0.9±0.3 (10.8%) 2.2±0.3 (2.8%) -0.1±0.3 (11.9%) 0.8±0.3 (12.1%) 1.1±0.3 0.8±0.3 (16.2%)

NH ocean 15.7±8.7 7.4±7.8 (10.3%) 29.4±8.7 (0.8%) -21.4±7.8 (10.4%) 0.2±7.8 (10.9%) 15.7±8.7 5.4±7.4 (15.6%)

SH ocean 20.6±13.9 -10.8±9.1 (34.7%) 99.7±12.9 (7.2%) -95.6±8.6 (38.0%) -28.2±8.5 (38.3%) 20.6±13.9 -43.4±6.1 (56.2%)

COS biosp

Global -1053.0±191.2 -597.3±22.9 (88.0%) -761.0±25.1 (86.9%) -405.2±20.8 (89.1%) -570.0±20.8 (89.1%) -1053.0±38.2 -686.5±22.9 (40.2%)

NH land -506.4±100.3 -366.3±17.3 (82.8%) -380.9±16.7 (83.4%) -296.6±16.1 (84.0%) -334.9±15.8 (84.3%) -506.4±20.1 -395.7±14.5 (27.9%)

SH land -391.4±102.5 -179.4±20.3 (80.2%) -256.0±16.0 (84.4%) -87.5±15.0 (85.3%) -189.2±15.0 (85.4%) -391.4±20.5 -191.7±11.4 (44.3%)

NH ocean -82.1±16.9 -19.6±6.8 (59.5%) -64.9±6.4 (61.8%) -15.1±6.2 (63.5%) -20.6±6.1 (64.2%) -82.1±3.4 -52.0±2.7 (19.3%)

SH ocean -61.0±13.1 -15.5±8.5 (35.5%) -47.7±6.6 (50.0%) 3.8±7.2 (44.8%) -11.2±6.9 (47.2%) -61.0±2.6 -35.8±2.2 (15.3%)

COS biobr

Global 126.6±5.5 122.5±5.5 (0.4%) 124.2±5.5 (0.3%) 119.9±5.5 (0.4%) 120.0±5.5 (0.4%) 126.6±27.5 95.8±18.9 (31.0%)

NH land 59.0±2.7 56.6±2.7 (0.4%) 58.5±2.7 (0.2%) 55.6±2.7 (0.4%) 55.9±2.7 (0.4%) 59.0±13.4 30.7±11.6 (13.5%)

SH land 43.9±2.7 42.9±2.7 (0.2%) 42.8±2.7 (0.3%) 41.5±2.7 (0.4%) 41.5±2.7 (0.3%) 43.9±13.5 43.1±9.2 (32.1%)

NH ocean 7.8±0.4 7.5±0.4 (0.3%) 7.7±0.4 (0.2%) 7.5±0.4 (0.3%) 7.5±0.4 (0.3%) 7.8±2.0 6.4±1.7 (12.3%)

SH ocean 15.0±1.1 14.6±1.1 (0.1%) 14.3±1.1 (0.2%) 14.4±1.1 (0.2%) 14.3±1.1 (0.2%) 15.0±5.4 14.9±4.0 (26.2%)

COS total

Global -729.7±192.3 -313.1±18.5 (90.4%) -331.3±17.5 (90.9%) -264.6±16.2 (91.5%) -320.2±16.3 (91.5%) -729.7±63.7 -439.2±34.3 (46.1%)

NH land -320.3±100.6 -178.2±15.8 (84.3%) -182.7±15.1 (85.0%) -132.4±14.6 (85.5%) -153.9±14.4 (85.7%) -320.3±42.1 -212.2±27.7 (34.3%)

SH land -338.1±102.6 -127.3±20.1 (80.4%) -202.4±15.8 (84.6%) -37.9±14.9 (85.5%) -138.6±14.9 (85.5%) -338.1±24.7 -140.0±10.6 (56.9%)

NH ocean -42.8±19.0 11.8±9.5 (50.3%) -10.7±9.8 (48.6%) -15.0±9.3 (51.2%) 2.9±9.1 (52.4%) -42.8±10.5 -19.2±8.2 (21.1%)

SH ocean -21.7±19.1 -8.1±12.2 (36.0%) 70.0±13.0 (31.9%) -73.8±9.3 (51.3%) -21.4±9.2 (52.1%) -21.7±15.1 -60.2±7.4 (51.2%)

CS2 anthr

Global 189.0±9.2 184.7±9.0 (2.3%) 200.3±9.1 (1.3%) 170.7±9.0 (2.8%) 182.9±9.0 (2.7%) 189.0±46.2 245.5±32.6 (29.4%)

NH land 136.1±7.1 132.6±6.9 (2.4%) 144.9±7.0 (1.3%) 122.0±6.9 (2.9%) 131.3±6.9 (2.7%) 136.1±35.4 166.9±25.0 (29.3%)

SH land 6.5±0.3 6.5±0.3 (0.1%) 6.6±0.3 (0.1%) 6.5±0.3 (0.1%) 6.5±0.3 (0.1%) 6.5±1.6 11.9±1.5 (2.0%)

NH ocean 34.9±1.9 34.2±1.9 (2.1%) 37.0±1.9 (1.2%) 30.9±1.9 (2.6%) 33.7±1.9 (2.5%) 34.9±9.6 41.2±7.0 (27.6%)

SH ocean 9.0±0.6 9.0±0.6 (0.2%) 9.2±0.6 (0.1%) 8.9±0.6 (0.2%) 9.1±0.6 (0.2%) 9.0±3.2 24.8±3.0 (4.2%)

CS2 ocean

Global 83.0±12.0 96.7±11.9 (0.9%) 116.1±11.9 (1.0%) 68.7±11.8 (1.8%) 117.9±11.8 (1.6%) 83.0±12.0 171.2±11.6 (3.3%)

NH land 2.0±0.4 2.0±0.4 (0.2%) 2.4±0.4 (0.2%) 2.1±0.4 (0.4%) 2.3±0.4 (0.4%) 2.0±0.4 3.4±0.4 (0.6%)

SH land 1.5±0.3 1.5±0.3 (0.4%) 2.0±0.3 (0.4%) 1.8±0.3 (0.8%) 2.0±0.3 (0.6%) 1.5±0.3 2.7±0.3 (1.8%)

NH ocean 33.3±6.3 37.7±6.3 (0.7%) 43.2±6.3 (0.6%) 24.0±6.2 (1.3%) 42.2±6.2 (1.3%) 33.3±6.3 66.8±6.2 (1.4%)

SH ocean 45.9±7.8 55.2±7.7 (1.2%) 68.2±7.7 (1.0%) 40.3±7.6 (1.9%) 71.1±7.6 (1.7%) 45.9±7.8 97.8±7.5 (4.0%)

CS2 total

Global 272.0±15.1 281.3±14.9 (1.5%) 316.5±14.9 (1.6%) 239.4±14.7 (3.0%) 300.9±14.7 (2.8%) 272.0±47.7 416.7±34.0 (28.7%)

NH land 138.1±7.1 134.6±6.9 (2.4%) 147.3±7.0 (1.4%) 124.2±6.9 (2.9%) 133.6±6.9 (2.8%) 138.1±35.4 170.3±25.0 (29.4%)

SH land 8.0±0.4 8.0±0.4 (0.2%) 8.6±0.4 (0.3%) 8.3±0.4 (0.5%) 8.5±0.4 (0.4%) 8.0±1.6 14.7±1.6 (2.4%)

NH ocean 68.2±6.6 71.8±6.5 (1.1%) 80.1±6.5 (1.0%) 54.9±6.4 (2.1%) 75.8±6.4 (2.1%) 68.2±11.5 108.0±8.9 (22.1%)

SH ocean 54.9±7.8 64.2±7.7 (1.2%) 77.5±7.7 (1.1%) 49.3±7.7 (2.0%) 80.2±7.7 (1.7%) 54.9±8.4 122.6±8.0 (5.1%)
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Table 6. The same as Table. 5 but for Amazonia based on the 22 Transcom regions (Fig. 2 in Feng et al. (2011)), the Amazonia fluxes are

calculated as the sum of South American Temperate and South American Tropical.

Category Region S1 APRI NOAA-only_S1 MIPAS-only_S1 MIPAS+NOAA_no-bias_S1 MIPAS+NOAA_bias=0.3%_S1 S0 APRI MIPAS+NOAA_bias=0.3%_S0

Amazonia

COS anthr 2.2±0.2 2.2±0.1 (7.2%) 2.2±0.1 (25.5%) 2.2±0.1 (22.5%) 2.2±0.1 (21.4%) 2.2±0.8 2.2±0.8 (5.7%)

COS ocean 0.7±0.3 0.8±0.3 (12.9%) 1.2±0.2 (26.7%) 0.7±0.2 (27.3%) 1.0±0.2 (26.2%) 0.7±0.3 1.1±0.3 (11.4%)

COS biosp -311.0±115.0 -10.6±48.0 (58.3%) -145.7±28.4 (75.3%) 15.5±25.9 (77.5%) -99.5±26.3 (77.1%) -311.0±23.0 -108.2±15.8 (31.4%)

COS biobr 8.0±0.6 7.8±0.5 (8.2%) 8.1±0.4 (29.6%) 8.2±0.4 (26.0%) 8.0±0.4 (24.7%) 8.0±3.0 9.7±2.7 (10.2%)

COS total -300.1±115.0 0.1±48.0 (58.3%) -134.2±28.4 (75.3%) 26.5±25.9 (77.5%) -88.4±26.3 (77.2%) -300.1±23.2 -95.1±15.9 (31.4%)

CS2 anthr 3.3±0.2 3.3±0.2 (0.0%) 3.4±0.2 (0.0%) 3.4±0.2 (0.0%) 3.3±0.2 (0.0%) 3.3±1.0 4.2±1.0 (0.2%)

CS2 ocean 0.7±0.2 0.8±0.2 (0.1%) 0.9±0.2 (0.1%) 0.9±0.2 (0.3%) 1.1±0.2 (0.2%) 0.7±0.2 1.6±0.2 (0.5%)

CS2 total 4.0±0.3 4.1±0.3 (0.1%) 4.3±0.3 (0.1%) 4.2±0.3 (0.2%) 4.4±0.3 (0.1%) 4.0±1.0 5.8±1.0 (0.3%)
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