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Abstract. This study assimilates for the first time polarimetric C-band radar observations from 

the German meteorological service (DWD) into DWD’s convective-scale model ICON-D2 using 10 

DWD’s ensemble-based KENDA assimilation framework. We compare the assimilation of 

conventional observations (CNV) with the additional assimilation of radar reflectivity Z 

(CNV+Z), with the additional assimilation of liquid or ice water content (LWC or IWC) estimates 

below or above the melting layer instead of Z where available (CNV+LWC/Z or CNV+IWC/Z, 

respectively). Hourly quantitative precipitation forecasts (QPF) are evaluated for two stratiform 15 

and one convective rainfall event in the summers of 2017 and 2021.   

With optimized data assimilation settings (e.g., observation errors), the assimilation of LWC 

mostly improves first guess QPF compared to the assimilation of Z alone (CNV+Z), while the 

assimilation of IWC does not, especially for convective cases, probably because of the lower 

quality of the IWC retrieval in these situations. Improvements are, however, notable for 20 

stratiform rainfall in 2021, for which the IWC estimator profits from better specific differential 

phase estimates due to a higher radial radar resolution compared to the other cases. The 

assimilation of all radar data sets together (CNV+LWC+IWC+Z) yields the best first guesses.  

All assimilation configurations with radar information consistently improve deterministic nine-

hour QPF compared to the assimilation of only conventional data (CNV). Forecasts based on 25 

the assimilation of LWC and IWC retrievals on average slightly improve Fraction Skill Score 

(FSS) and Frequency Bias (FBI) compared to the assimilation of Z alone (CNV+Z), especially 

when LWC is assimilated for the 2017 convective case and when IWC is assimilated for the 

high-resolution 2021 stratiform case. However, IWC assimilation again degrades forecast FSS 

for the convective cases. Forecasts initiated using all radar data sets together 30 

(CNV+LWC+IWC+Z) yield the best FSS. The development of IWC retrievals more adequate 
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for convection constitutes one next step to further improve the exploitation of ice microphysical 

retrievals for radar data assimilation. 

1 Introduction 

Heavy precipitation events can pose serious risks to the public and have increased in 35 

frequency and strength since the middle of the 20th century (IPCC, 2021). Thus, improving 

quantitative precipitation forecasts (QPF) is and remains of high societal interest. With the 

ever-increasing computing power of meteorological forecasting centers, the resolution of 

operational numerical weather prediction (NWP) models has increased up to the convective 

scale, allowing more accurate QPF. NWP requires model states close to the true atmospheric 40 

state (model initialization), which is usually achieved by combining short-term model forecasts 

(first guesses) and observational data statistically, taking into account their respective 

uncertainties, a process known as data assimilation (DA; e.g., Talagrand, 1997). Proper 

initialization at convective scales is challenging, because uncertainties in convective processes 

are difficult to estimate, and because of the observations required to resolve moist convective 45 

processes. Weather surveillance radars can provide such data with unique temporal and 

spatial resolution, and have become an indispensable data source for convective-scale NWP 

over the past decades.   

Radar observations have been successfully assimilated into convective scale NWP models, 

e.g. with 4D variational (4DVar; e.g., Lewis and Derber, 1985; Le Dimet and Talagrand, 1986) 50 

and 3D variational (3DVar; Courtier et al., 1998) DA methods (e.g., Sun and Crook, 1997, 

1998; Xiao et al., 2005). Over the past two decades, radar DA using the ensemble Kalman 

filter (EnKF; Evensen, 1994), a Monte Carlo approximation of the original Kalman filter 

(Kalman, 1960), has become increasingly popular particularly due to its ability to estimate the 

flow-dependent forecast uncertainty (the background error covariance matrix) at the 55 

convective-scale through an ensemble of model forecasts (e.g., Snyder and Zhang, 2003; 

Tong and Xue, 2005; Aksoy et al., 2009; Dowell et al., 2011; Tanamachi et al., 2013; Wheatley 

et al., 2015; Bick et al., 2016; Gastaldo et al., 2021). However, running a forecast ensemble of 

sufficient size to robustly estimate the forecast error covariance matrix is not feasible in 

operational routines due to the connected high computational costs, which can lead to 60 

sampling errors that can cause filter divergence and spurious long-range correlations in the 

model domain (e.g., Houtekamer and Mitchell, 1998; Hamill et al., 2001). Observation 

localization (Ott et al., 2004), which limits the radius within which observations affect the 

analysis, is a common approach to mitigate this problem. The Local Ensemble Transform 

Kalman Filter (LETKF; Hunt et al., 2007), a manifestation of the EnKF in which observation 65 

localization is a key feature and which computes analyses at each grid point independently 

allowing for easy parallelization, is currently very popular in the DA community. In addition to 
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being used for research purposes at the Japan Meteorological Agency (e.g., Miyoshi et al., 

2010) and the European Centre for Medium-Range Weather Forecasts (e.g., Hamrud et al., 

2015), the LETKF has been implemented operationally at the Italian Operational Centre for 70 

Meteorology (Gastaldo et al., 2021) as well as at the German Meteorological Service 

(Deutscher Wetterdienst, DWD), and MeteoSwiss. Assimilation of 3D radar observations with 

the LETKF has shown positive effects on short-term QPF (e.g., Bick et al., 2016; Gastaldo et 

al., 2021); at DWD, 3D radar DA with the LETKF became operational for the convective-scale 

NWP model ICON-D2 (limited area setup of the Icosahedral Nonhydrostatic model over 75 

Germany; Zängl et al., 2015) in spring 2021. 

Radar DA has mainly focused on the horizontal radar reflectivity factor (hereafter simply 

reflectivity) Z and the radial velocity V, with only Z providing direct information on cloud and 

precipitation microphysical processes. Dual-polarization (i.e., linear orthogonal polarization 

diversity; Seliga and Bringi, 1976, 1978; hereafter referred to as polarimetric) radar 80 

observations provide additional information on clouds and precipitation, such as the size, 

shape, orientation, and composition of hydrometeors (e.g., Zrnic and Ryzhkov, 1999). 

Therefore, polarimetric radar observations can help to improve the representation of cloud-

precipitation microphysics in NWP models, weather analyses, and consequently short-term 

QPF through model evaluation, parameterization developments, and DA (e.g., Kumjian, 2013; 85 

Zhang et al., 2019). Polarimetric radar observations have already been used to improve 

attenuation correction (e.g., Bringi et al., 1990; Testud et al., 2000; Snyder et al., 2010), 

quantitative precipitation estimation (e.g., Zrnic and Ryzhkov, 1996; Ryzhkov et al., 2005a; 

Tabary et al., 2011; Chen et al., 2021), severe weather observation and detection (e.g., 

Ryzhkov et al., 2005b; Bodine et al., 2013), hydrometeor classification (e.g., Park et al., 2009), 90 

and model evaluation (e.g., Jung et al., 2012; Putnam et al., 2014, 2017). However, exploitation 

of polarimetric information in DA is still in its infancy. One reason is the remaining uncertainties 

in the relationships between polarimetric radar moments and model microphysical state 

variables. Another reason is the lack of widespread operational polarimetric radar observations 

from national surveillance radar networks in the past. In recent years, many of these networks 95 

have been upgraded to polarimetry, e.g., in Germany, the USA, Canada, the UK, and China, 

providing a valuable new source of observational data for future operational NWP.  

Polarimetric moments can be linked to microphysical model state variables using either radar 

forward operators or retrieval algorithms. Radar forward operators compute synthetic radar 

moments based, e.g., on simulated parameterized particle size distributions, while retrievals 100 

estimate microphysical model state variables from radar observations prior to DA. The direct 

approach via forward operators is challenging because, e.g., hydrometeor shape, size, and 

orientation distributions, all of which affect (polarimetric) radar observations, are still rather 

rudimentarily represented or rarely taken into account in NWP models (e.g., Schinagl et al., 
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2019). The indirect approach via retrievals circumvents these model deficiencies, but suffers 105 

from retrieval uncertainties. A few case studies from the USA, Japan, and China have already 

attempted the direct DA of polarimetric observations with some success using the EnKF (e.g., 

Jung et al., 2008; Jung et al., 2010; Putnam et al., 2019; Zhu et al., 2020; Putnam et al., 2021) 

or the 3DVar method (e.g., Li et al., 2017; Du et al., 2021). Other studies have assimilated 

polarimetric observations indirectly via retrieved hydrometeor mixing ratios using the 4DVar 110 

approach (e.g., Wu et al., 2000), the 3DVar method (e.g., Li and Mecikalski, 2010, 2012), or 

the EnKF method (e.g., Yokota et al., 2016). Polarimetric data have also been used to modify 

cloud analysis schemes based on polarimetric signatures in storms (Carlin et al., 2017) or to 

improve hydrometeor classifications (Ding et al., 2022). To our knowledge, no study has yet 

assimilated polarimetric radar data in Central Europe. In preparation for the direct assimilation 115 

of polarimetric data, the single-polarization radar forward operator EMVORADO (Efficient 

Modular VOlume scan RADar Operator; Zeng et al., 2016), used operationally at DWD for the 

ICON-D2 model, is currently being upgraded to polarimetric capabilities, but is still in a testing 

phase. Regarding indirect assimilation, polarimetric retrieval algorithms for liquid and ice water 

content (LWC and IWC) have been proposed in the literature (e.g., Ryzhkov et al., 1998; Bringi 120 

and Chandrasekar, 2001; Doviak and Zrnic, 2006; Carlin et al., 2016; Ryzhkov and Zrnic, 2019; 

Bukovcic et al., 2020; Carlin et al., 2021), but most of these algorithms were developed with a 

focus on S-band radars in the USA. The applicability of these retrieval relations for Germany 

with its C-band radar network and its quite different precipitation climatology may thus be 

limited. Recently, a hybrid polarimetric LWC estimator adapted to the German national C-band 125 

network has been developed by Reimann et al. (2021). 

The present paper takes a first step towards the indirect assimilation of polarimetric radar 

observations using microphysical retrievals of LWC and IWC in Germany and evaluates their 

impact on short-term QPF relative to the direct assimilation of Z observations. Polarimetric 

radar observations from the German national C-band weather radar network are assimilated 130 

into the DWD ICON-D2 model using the corresponding DA framework KENDA (Kilometre-

scale Ensemble Data Assimilation; Schraff et al., 2016) implementing the LETKF scheme. 

LWC and IWC data are estimated from the polarimetric measurements below and above the 

melting layer using the hybrid retrievals of Reimann et al. (2021) and Carlin et al. (2021), 

respectively. We attempt to identify suitable assimilation configurations for LWC and IWC 135 

based on first-guess QPF quality and provide first insights into how the indirect assimilation of 

polarimetric information affects short-term QPF up to nine hours lead time. The study focusses 

on three intense precipitation periods in the summers of 2017 and 2021 over Germany. 

The remainder of the paper is structured as follows. Section 2 briefly introduces the ICON-D2 

model and the KENDA DA framework. Section 3 describes the data used and the applied 140 

microphysical retrieval algorithms. Section 4 shows the experimental setup including the 
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technique of assimilating the LWC and IWC retrievals and the experiment parts. Section 5 

presents the results of the experiments, and Sect. 6 presents the conclusions.   

2 Forecast model and assimilation framework 

2.1   The ICON-D2 model 145 

The ICON (Icosahedral Nonhydrostatic) modelling framework (Zängl et al., 2015) is a global 

NWP and climate modelling system jointly developed by DWD and the Max Planck Institute 

for Meteorology in Hamburg, Germany, and became operational in DWD’s forecasting system 

in 2015. In this study, we perform integrations with the convection-resolving, area-limited setup 

of the ICON model, ICON-D2, covering Germany and parts of its neighboring states. The 150 

ICON-D2 model uses an unstructured triangular grid with a resolution of about 2.2 km 

horizontally and 65 vertical levels; the near-ground levels are terrain-following and the higher 

levels gradually shift to constant heights towards the model top. Lateral boundary conditions 

are provided by simulations of the ICON-EU model, a nesting setup of the global ICON model 

over Europe. The ICON-D2 model became operational at DWD recently, ousting the previously 155 

used COSMO (COnsortium for Small-scale MOdelling) model (Baldauf et al., 2011). 

The ICON-D2 model provides prognostic variables including the 3D wind velocity components 

and the virtual potential temperature. The total density of the air-water mixture and the 

individual mass fractions of dry air, water vapor, cloud water, cloud ice, rain, snow, and graupel 

are further prognostic variables, which are simulated in our study with the single-moment 160 

microphysics scheme (Doms et al., 2011) representing a two-component system of dry air and 

water, which can occur in all three states of matter. 

2.2   The KENDA framework 

The KENDA system, originally developed for the COSMO model, is now operationally used for 

the ICON-D2 model at DWD and includes the LETKF scheme (Hunt et al., 2007). KENDA 165 

employs one deterministic model run in addition to the current 40-member ensemble (40+1-

mode), which is updated in the analysis using the Kalman gain for the ensemble mean 𝐊 as 

𝒙𝑎,𝑑𝑒𝑡 = 𝒙𝑏,𝑑𝑒𝑡 + 𝐊(𝒚𝑜 − 𝐻(𝒙𝑏,𝑑𝑒𝑡))        (1) 

with 𝒙𝑎,𝑑𝑒𝑡 and 𝒙𝑏,𝑑𝑒𝑡 the deterministic analysis and background, 𝒚𝑜 the observation vector, 

and 𝐻 a (non-linear) observation operator (Schraff et al., 2016). KENDA comprises various 170 

tools beneficial for ensemble-based DA. Among them are horizontal and vertical observation 

localization with a Gaspari-Cohn correlation function (Gaspari and Cohn, 1999) using 

individual length-scales to scale the inverse observation error covariance matrix. Moreover, 

KENDA allows for analysis calculations on a coarsened grid (Yang et al., 2009) to reduce the 

computational costs in the analysis step. KENDA also includes, e.g., multiplicative covariance 175 
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inflation (Anderson and Anderson, 1999), relaxation to prior perturbations (Zhang et al., 2004), 

and relaxation to prior spread (Whitaker and Hamill, 2012). 

The indirect assimilation of Z observations started at DWD in 2007 with Latent Heat Nudging 

(LHN; Stephan et al., 2008; Milan et al., 2008), which modifies the thermodynamic model state 

during model forward integration using low-elevation Z observations. LHN is applicable to both 180 

the ensemble and the deterministic run in KENDA. Recently, the direct assimilation of 3D Z 

and V observations from the German C-band radar network (see Fig. 1) in combination with 

LHN became operational in the ICON-D2 routine at DWD. Note that LHN and the assimilation 

of 3D V observations are not applied in this study (see below). 

3 Data sets and microphysical retrievals 185 

Intense summer precipitation events can pose a serious risk to society in Central Europe and 

are particularly difficult to forecast (Olson et al., 1995). Thus, we focus on three intense 

summer precipitation events in Germany. The first event covers a 2-day period of heavy, 

mostly stratiform precipitation over western Germany and its neighboring states from 13 to 14 

July 2021, resulting from a slow-moving low-pressure system and causing devastating 190 

flooding, e.g., along the Ahr river in North Rhine-Westphalia (case S2021). The second event 

covers a 3-day period from 24 to 26 July 2017 characterized by widespread intense, mostly 

stratiform precipitation. It also caused flooding especially in Lower Saxony in central-northern 

Germany along the Bode River catchment (case S2017). The third event dominated by 

convective precipitation covers a 1.5-day period from midday on 19 to 20 July 2017 (case 195 

C2017). 

3.1   Radar observations 

DWD operates a network of 16 polarimetric C-band radars (blue circles in Fig. 1) and one 

additional non-polarimetric radar (red circle). In “volume-scan” mode, the network monitors 

data consisting of Plan Position Indicators (PPI) at 10 radar elevation angles between 0.5 and 200 

25 degrees with maximum slant ranges of about 180 km every five minutes. The data have a 

resolution of one kilometer in range, which increased to 0.25 km in March 2021, and one 

degree in azimuth; they are taken from the DWD archive.  

For the direct assimilation of 3D Z data employed in this study, we use pre-processed Z 

observations including quality assurance and attenuation correction. For the LWC/IWC 205 

estimation, we use the raw polarimetric moments Z (given in dBZ), differential reflectivity ZDR 

(given in dB), total differential phase ΦDP (given in degrees), and co-polar cross-correlation 

coefficient ρHV. ZDR is the logarithmic ratio between the backscattered power at horizontal and 

vertical polarizations, which is 0 dB for isotropic scatterers and shows larger positive values 

for oblate particles and negative values for prolate particles. ΦDP is the lag in degrees of the 210 
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horizontally polarized electromagnetic wave behind the vertically polarized one as the radar 

signal propagates through the atmosphere filled with anisotropic scatterers such as raindrops. 

Typically, half the range-derivative of ΦDP, the specific differential phase shift KDP (given in 

deg/km), is considered, which is positive for radar volumes filled with oblate particles and is 

affected by the presence of liquid water. ρHV is the cross-correlation coefficient between the 215 

horizontally and vertically polarized waves and is thus a measure of the diversity of scatterers 

in a radar volume. ρHV decreases in the presence of pronounced diversity of hydrometeor 

shapes and in the presence of non-meteorological targets, making it a useful tool for radar 

data quality assurance.  

Kumjian (2013) notes that ρHV can be as low as 0.85 for snow/ice and 0.95 for rain at S-band. 220 

Here, we assume these values also for C-band. Thus, we only consider data below/above the 

melting layer for ρHV > 0.95/0.85 with ρHV corrected for noise before filtering (Ryzhkov and 

Zrnic, 2019). The height of the melting layer is determined from so-called Quasi-Vertical 

Profiles (i.e., azimuthal medians of PPIs measured at sufficiently high elevations and 

transferred to range-height displays; Trömel et al., 2014; Ryzhkov et al., 2016), as derived from 225 

PPIs of ρHV measured at a 5.5 degree elevation angle, or from the nearest operational DWD 

radio sounding, especially in convective situations. KDP is estimated from the filtered and 

smoothed ΦDP following Vulpiani et al. (2012) with a fixed window size of nine kilometers. This 

window size is required due to the rather coarse radial resolution (one kilometer) for most of 

the PPIs considered to keep noise low and reduce potentially negative KDP estimates. The 230 

horizontal specific attenuation A (given in dB/km) – the rate at which power is lost from the 

transmitted radar signal in horizontal polarization as it propagates through the precipitating 

atmosphere – is derived below the melting layer using the filtered and smoothed ΦDP and 

measured (attenuated) Z using the ZPHI method (Testud et al., 2000). In the retrieval 

algorithms, the attenuation parameter α (ratio between A and KDP, given in dB deg-1) is 235 

optimized for each ray using the self-consistency method proposed by Bringi et al. (2001). 

Finally, the raw Z and ZDR data are corrected for (differential) attenuation using the 

optimized/climatological α values below/above the melting layer and the climatological value 

for the differential attenuation parameter β at C-band 0.02 dB deg-1 (Ryzhkov and Zrnic, 2019). 

For more details on the polarimetric radar moments, see, e.g., Kumjian (2013).  240 

3.2   Hybrid liquid water content retrieval 

LWC is estimated from the polarimetric radar observations below the melting layer  following 

the hybrid retrieval proposed by Reimann et al. (2021) developed based on a large pure-rain 

disdrometer dataset and T-matrix scattering calculations at C-band. The estimator combines 

different polarimetric radar moments to optimally exploit and mitigate respective advantages 245 

and disadvantages known for different precipitation characteristics. For example, in weak 
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precipitation indicated by small total ΦDP increments ΔΦDP < 5 degrees below the melting 

layer, the LWC(Z, ZDR) relation is used (LWC always is in g m-3): 

log10(𝐿𝑊𝐶(𝑍, 𝑍𝐷𝑅)) = 0.058𝑍 − 0.118𝑍𝐷𝑅 − 2.36.                            (2a) 

In such situations, KDP is potentially noisy due to noise in ΦDP and A potentially suffers from 250 

an unreliable ΔΦDP estimation, while the influence of (differential) attenuation on Z and ZDR 

should be small for these rays. For stronger rain – rays with ΔΦDP > 5 degrees – the negative 

influence of (differential) attenuation on Z and ZDR increases, while less noise and uncertainty 

is expected in KDP and A; therefore, LWC(A) and LWC(KDP) estimators are used.  The LWC(A) 

estimator 255 

log10(𝐿𝑊𝐶(𝐴)) =  −0.1415 log10(𝐴)2 + 0.209log10(𝐴) + 0.46,    (2b) 

is used for radar bins with Z < 45 dBZ, when hail is unlikely, and the LWC(KDP) estimator  

log10(𝐿𝑊𝐶(𝐾𝐷𝑃)) = 0.568log10(𝐾𝐷𝑃) + 0.06,     (2c) 

is used for bins with Z > 45 dBZ, since KDP is less affected by hail than A. In addition, resonance 

scattering of medium and large sized raindrops at C-band may favour the use of LWC(𝐾𝐷𝑃) 260 

compared to LWC(A) in moderate to heavy rain. It should be noted, however, that the hybrid 

LWC estimator is likely unsuitable in the presence of hail and graupel, especially in certain 

convective situations, due to its derivation from pure-rain observations.  

3.3   Hybrid ice water content retrieval 

IWC is estimated above the melting using the hybrid estimator proposed by Carlin et al. (2021). 265 

It combines the relations based on ZDR and KDP (Ryzhkov and Zrnic, 2019) 

𝐼𝑊𝐶(𝑧𝐷𝑅 , 𝐾𝐷𝑃) = 4.0 ∗ 10−3 𝐾𝐷𝑃𝜆

1−𝑧𝐷𝑅
−1      (3a) 

with the one based on Z and KDP (Bukovcic et al. 2018, 2020) 

𝐼𝑊𝐶(𝑧, 𝐾𝐷𝑃) = 3.3 ∗ 10−2(𝐾𝐷𝑃𝜆)0.67𝑧0.33      (3b) 

with z and zDR are Z and ZDR given in linear units (mm6 m-3 and unitless), IWC in g m-3, and the 270 

radar wavelength λ set to 53 mm (C-band). The estimators in Eq. (3) are again combined to 

complement their individual strengths: Eq. (3a) is fairly immune to orientation and shape of 

snowflakes, but sensitive to variations in ice density and prone to errors from ZDR biases 

especially at low ZDR values; Eq. (3b) is immune to ZDR miscalibration, but sensitive to 

hydrometeor aspect ratio, orientation, and density. Eq. (3a) is used for ZDR > 0.4 dB and 275 

Eq. (3b) otherwise. Recently, Blanke et al. (2023) demonstrated the high accuracy of this 

hybrid estimator (correlation coefficient and root-mean-square deviation 0.96 and 0.19 g m-3, 

respectively) in an evaluation study with in-situ airplane observations on the west coast of the 

USA. It should be noted, however, that both parts of the hybrid IWC estimator in Eq. (3) are 
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adapted to snowfall, with their derivation based on an inversely proportional relationship 280 

between particle density and diameter, which usually does not hold for hail and graupel. 

Therefore, its applicability to hail/graupel convective situations in particular may be limited.  

4 Setup of assimilation experiments 

4.1   Retrieval resolution 

The retrieved LWC and IWC values with the resolution corresponding to the measured radar 285 

data are subjected to “superobbing” (see an example in Fig. 2), which is also applied to the Z 

data in KENDA. Superobbing reduces the resolution of the radar data to approximately match 

the resolution of the analysis grid by spatial and elevation-wise averaging in the linear scale to 

a Cartesian grid with a resolution (res_cartesian in km) corresponding to the analysis grid (10 

km for an analysis grid coarsening factor of three currently used in KENDA). The number of 290 

radar bins contributing to the averaging decreases with increasing distance from the radar, 

and the window size for the averaging (winsize_avg in km) is equal to res_cartesian in KENDA, 

but is also modified in our study while keeping res_cartesian constant. The minimum number 

of valid values in the superobbing window to perform superobbing (minnum_vals) is three 

observations, as used for the 3D Z DA in KENDA. Further details on the superobbing 295 

procedure can be found in Bick et al. (2016) and Zeng et al. (2021). 

The LWC and IWC estimates are assimilated with a lower limit (lower_lim) similar to the “no-

precipitation” threshold of 0 dBZ used for the Z assimilation in KENDA. In contrast to Z, the 

LWC and IWC data in no-precipitation are mostly filtered out by the applied ρHV thresholds, 

but such a lower data threshold can still be useful to limit the variability in the microphysical 300 

estimates and thus can also be used for tuning (personal communication with Ulrich Blahak, 

DWD). We choose lower_lim = -2.3 for log10(LWC), which approximately corresponds to 0 dBZ 

for Z when comparing measured log10(LWC) and synthetic Z data obtained from T-matrix 

scattering calculations for a large German pure-rain disdrometer data set (not shown). The 

rare occurrence of snow on the ground in Germany and instrumental limitations prevent a 305 

similar analysis for IWC. Therefore, we also use -2.3 for log10(IWC). 

Analogous to the assimilation of 3D Z data in KENDA, only the PPIs at radar elevation angles 

of 1.5, 3.5, 5.5, 8.0, and 12.0 degrees are used for LWC and IWC, and data from altitudes 

below 600 and above 9,000 m are not considered. The superobbed microphysical estimates 

are assimilated in the logarithmic scale, similar to the Z data in KENDA, which leads to better 310 

results than assimilating the data in the linear scale (not shown; e.g., Liu et al., 2020). 

4.2   Assimilation settings and first guess 

Z is currently assimilated in KENDA with a fixed observation error standard deviation 

(obserr_std) of 10 dBZ. We use a fixed value of obserr_std = 0.5, which can be obtained 
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statistically from the disdrometer data considered above: a difference Δ log10(LWC) = 0.5 315 

covers a similar fraction of the full range of data as ΔZ = 10 dBZ (not shown). This value is 

also used for log10(IWC). The horizontal observation localization length-scale (obsloc_hor) and 

the vertical observation localization length-scale (obsloc_ver) are set to 16 km and to increase 

with height from 0.075 to 0.5 in logarithm of pressure (ln(p)) as used for the 3D Z DA in KENDA. 

Moreover, microphysical analysis increments of only cloud water mixing ratio and specific 320 

humidity are produced, i.e., not all available hydrometeor species (e.g., rain, cloud ice, and 

graupel mixing ratios) are updated individually in KENDA’s standard configuration. 

First guesses of LWC and IWC are calculated with a simple “forward operator”, which uses the 

prognostic model variables total air density (𝜌𝑡𝑜𝑡, given in kg m-3) and the rain and cloud water 

mixing ratios 𝑞𝑟 and 𝑞𝑐 for LWC, and the snow, graupel, and cloud ice mixing ratios 𝑞𝑠, 𝑞𝑔, and 325 

𝑞𝑖 (all given in g m-3) for IWC at the model grid points via 

𝐿𝑊𝐶 =  103𝜌𝑡𝑜𝑡(𝑞𝑟 + 𝑞𝑐)         (4a) 

and 

𝐼𝑊𝐶 =  103𝜌𝑡𝑜𝑡(𝑞𝑠 + 𝑞𝑔 + 𝑞𝑖).         (4b) 

The first-guess LWCs and IWCs are then projected with the nearest-neighbor method onto the 330 

polar (PPI) grid of the observed LWC and IWC data and superobbed analogously to the 

observed data. This procedure is done for the ensemble and the deterministic run.  

4.3   Model initialization and lateral boundary data 

ICON-D2 model data in 40+1-mode for our evaluation periods are provided by DWD for the 

initial times of the experiment periods 00 UTC 13 July 2021, 00 UTC 24 July 2017, and 11 335 

UTC 19 July 2017. These data are output from the regular ICON-D2 routine and thus do not 

require further “spin-up” integrations prior to our assimilation experiments. ICON-EU model 

data provided by DWD are used as lateral boundary conditions every hour.  

4.4   Experiment part A: assimilation configurations 

From the model initial times, 3D LWC and IWC estimates are assimilated in hourly assimilation 340 

cycles instead of 3D Z data, where available, to avoid potential problems arising from 

assimilating the information from the Z data twice. Thus, Z data is always assimilated within 

the melting layer and in precipitation-free areas, where the LWC and IWC estimates are not 

available due to the applied ρHV thresholds. We exclude the assimilation of 3D V observations 

and LHN to focus on the assimilation of microphysical information from the radar network. We 345 

assimilate the LWC and IWC estimates separately to study their individual impact on weather 

forecasts, but also to identify individual best DA parameter (DAP; obsloc_hor, obsloc_ver, 

obserr_std, winsize_avg, lower_lim, and minnum_vals) sets. The DA configurations 
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assimilating LWC and IWC also assimilate conventional observations and are therefore 

referred to as CNV+LWC/Z and CNV+IWC/Z. The DA of only conventional observations and 350 

the DA of conventional and 3D Z observations are used as reference configurations CNV and 

CNV+Z, respectively.  

We consider a near-random sample of DAP settings generated via Latin Hypercube Sampling 

(LHS) by modifying the DAP values from their pre-selected values (pre-selected and modified 

values in Table 1; generated settings S1-01 to S1-12 in Table 2). The results of using the DAP 355 

configurations/values are compared with each other in terms of both first-guess deterministic 

and ensemble QPF quality via a single univariate measure newly introduced here – the joint 

quality score (JQS) 

𝐽𝑄𝑆𝑐/𝑣 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑤(𝛥CNV+Z𝐹𝑆𝑆𝑛𝑜𝑟𝑚[CNV+X/Z])  

+𝑚𝑒𝑑𝑖𝑎𝑛𝑤(𝛥CNV+Z𝐵𝑆𝑆𝑛𝑜𝑟𝑚[CNV+X/Z]).     (5) 360 

While changes in deterministic and ensemble QPF quality with respect to the CNV+Z 

configuration are not always consistent, the JQS provides a useful measure for the overall 

intercomparison of DA settings. In Eq. (5), FSS is the deterministic Fraction Skill Score 

(Roberts and Lean 2008), BSS is the Brier Skill Score (following Wilks 2019 and Bick et al., 

2016) quantifying the ensemble forecast quality, and both quantities are calculated using 365 

DWD’s RADOLAN (Radar-Online-Aneichung) product 

(https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/historical/

bin/) as verification data; ΔCNV+Z denotes differences with respect to the CNV+Z configuration; 

X is LWC or IWC; index “norm” denotes normalization with the means of ΔCNV+ZFSS[CNV+Z] 

or ΔCNV+ZBSS[CNV+Z]; medianw(…) denotes the weighted median. Medians are used instead 370 

of means in order to reduce the impact of outliers in FSS and BSS, and weights are determined 

by the fractions of threshold exceedances for a given time and threshold of the total number 

of exceedances at all thresholds (0.5, 1.0, 2.0, and 4.0 mm h-1) and events (C2017, S2017, 

and S2021) in the RADOLAN data (see Fig. 3). We use weighted medians over all cases and 

thresholds to compare QPF quality between different DAP configurations (JQSc) and 375 

additionally calculate weighted medians over all DAP settings that have the same DAP values 

to compare individual DAP values (JQSv).  

In addition to optimizing DAP sets in terms of first-guess quality, we also aim to optimally 

combine the radar data sets considered (i.e., Z, LWC, and IWC). Therefore, also the parallel 

assimilation of LWC or IWC and Z (configurations CNV+LWC+Z or CNV+IWC+Z, 380 

respectively), the combined assimilation of LWC and IWC estimates as alternatives to Z 

(configuration CNV+[LWC+IWC]/Z) or in parallel to Z (CNV+LWC+IWC+Z) are also evaluated 

with JQSc. 
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4.5   Experiment part B: nine-hour forecasts 

Finally, the impact of assimilating the 3D microphysical estimates with KENDA on forecasts 385 

with lead times greater than one hour is evaluated. The 3D LWC and IWC estimates are 

assimilated with the identified DAP sets and radar data set configurations that lead to the best 

first-guess QPF quality in hourly assimilation cycles, as before, and then nine-hour 

deterministic forecasts of the ICON-D2 model are initiated every third hour from the produced 

analyses. The quality of the deterministic nine-hour QPF is assessed using the FSS and the 390 

Frequency Bias (FBI; e.g. Bick et al., 2016). Probabilistic forecasts are not considered due to 

data storage limitations. 

5 Numerical results 

5.1   Experiment part A: assimilation configurations 

The CNV+LWC/Z configuration yields different first-guess FSS and BSS values for the different 395 

DAP settings (see Table 2) and precipitation cases (Fig. 4a, c). Improvements over the CNV+Z 

configuration considering all cases together are obtained, e.g., with the DAP sets S1-01 to S1-

03, or S1-06 (Fig. 4a4, c4). These best-performing sets all have rather small horizontal 

observation localizations obsloc_hor of 8 and 16 km and rather high lower limits lower_lim of -

1.15 and -2.30 (see Table 2). Similarly, the CNV+IWC/Z configuration also yields different first-400 

guess FSS and BSS values for different DAP sets (Table 2) and precipitation cases (Fig. 4b, 

d). Improvements over the CNV+Z configuration are mostly limited to the 2021 stratiform case, 

e.g., for the DAP settings S1-02 or S1-05 (Fig. 4b3, d3), while first-guess QPF is mostly 

degraded for the 2017 convective case (Fig. 4b1, d1). 

The univariate measure JQSv (see Sect. 4.4 and Eq. (5)), which uses the first-guess FSS and 405 

BSS values, is used to find the best DAP settings for LWC and IWC in terms of first-guess 

QPF quality. The DAP values obsloc_hor = 32 km, obsloc_ver = 0.5 ln(p), obserr_std = 0.5, 

winsize_avg = 5 km, lower_lim = -4.6, and minnum_vals = 25 % (i.e., 25 % of the radar pixels 

in the superobbing window must have valid values) give the worst (and negative) JQSv values 

for both LWC and IWC (blue and orange bars in Fig. 5a). Another 10 DAP sets in the vicinity 410 

of the better performing ones are sampled with LHS (S2-01 through S2-10 in Table 2). Further 

improvements over the CNV+Z configuration are obtained for the LWC assimilation (Fig. 4e, 

g), but are mostly only obtained for the 2021 stratiform case for the IWC assimilation (Fig. 4f3, 

h3). The new DAP settings (Table 2; Fig. 4e-h) do, however, on average not perform 

significantly better compared to the first sample (Table 2; Fig. 4a-d), except that strong 415 

negative outliers (e.g., S1-09 in Fig. 4a-d) do not appear anymore.   

The 22 DAP settings (Table 2) for the LWC and IWC assimilations are compared to each other 

in terms of first-guess deterministic and ensemble QPF quality using the univariate measure 
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JQSc (see Sect. 4.4 and Eq. (5)). Several DAP settings for the LWC assimilation yield positive 

JQSc values (black bars in Fig. 5b) and thus improved first-guess FSS and BSS values 420 

compared to the CNV+Z configuration, while for the IWC assimilation, positive JQSc values 

are limited to the 2021 stratiform case (red bars in Fig. 5e). The DAP set S2-06 

(obsloc_hor = 8 km, obsloc_ver = 0.2 ln(p), obserr_std = 0.25, winsize_avg = 20 km, lower_lim 

= -1.15, and minnum_vals = 3, see Table 2) for LWC yields overall the best JQSc (black bars 

Fig. 5b), while setting S1-02 (obsloc_hor = 8 km, obsloc_ver = 0.5 ln(p), obserr_std = 0.25, 425 

winsize_avg = 10 km, lower_lim = -1.15, and minnum_vals = 50 %, see Table 2) results in the 

best (but rather neutral) JQSc value for IWC (red bars in Fig. 5b).  

The assimilation of LWC (CNV+LWC/Z) with the respective best DAP setting in terms of first-

guess quality improves first-guess QPF for the 2017 precipitation cases (Fig. 4e1, e2, g1, g2 

and black bars in Fig. 5c, d) compared to the CNV+Z configuration while QPF quality is 430 

degraded for the stratiform S2021 case (Fig. 4e3, g3 and black bars in Fig. 5e). As expected, 

the time series of the first-guess FSS and BSS values at a threshold of 0.5 mm h-1 show slight, 

systematic improvements for the 2017 cases for some time intervals (green colors in Fig. 6a, 

c, e, g), but more pronounced degradations for the 2021 case (Fig. 6i, k). The assimilation of 

IWC (CNV+IWC/Z) with the respective best DAP set yields improvements over the CNV+Z 435 

configuration particularly for the stratiform S2021 case (Fig. 4b3, d3 and red bars in Fig. 5e), 

but clear quality decreases for the convective C2017 case (Fig. 4b1, d1 and red bars in Fig. 

5c). Time series of first-guess FSS and BSS values at a 0.5 mm h-1 threshold confirm this 

finding: slight, systematic improvements are evident for the 2021 case in some time periods 

(Fig. 6j, l), while degradations are visible for the 2017 convective case (Fig. 6b, d). The better 440 

performance of the IWC assimilation for the 2021 stratiform case may be due the higher radial 

resolution of the more recent radar data of DWD (recall that the resolution was increased from 

one kilometer to 0.25 km in spring 2021), which leads to better KDP estimates, because many 

more consecutive radar bins are considered for the nine-kilometer KDP -estimation window 

used. Using the same window length for the lower-resolution data for the 2017 cases means 445 

using only one quarter of the data compared to the 2021 case. Estimating KDP from only nine 

consecutive values may favor negative KDP estimates resulting in negative IWC values, which 

are set to the lower limit (lower_lim) value in the superobbing procedure and are thus treated 

as “no-precipitation”. The replacement of negative IWC estimates with zero or with the IWC(Z) 

retrievals following Atlas et al. (1995) led to some improvements, but the first-guess QPF 450 

quality remained below the CNV+Z configuration (not shown). 

Parallel assimilation of LWC and Z (CNV+LWC+Z), i.e., assimilation of LWC and Z at the same 

superobbing points, reduces the JQSc values compared to the alternative assimilation strategy 

(CNV+LWC/Z), but is still better than the CNV+Z configuration (lower black bars in Fig. 7). In 

contrast, the parallel assimilation of IWC and Z (CNV+IWC+Z) improves JQSc values 455 
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compared to the alternative assimilation strategy (CNV+IWC/Z; middle black bars in Fig. 7) 

above the CNV+Z quality. Assimilation of all radar data sets in parallel (CNV+LWC+IWC+Z) 

gives the best JQSc value (upper black bar in Fig. 7b).   

The impact of the LWC and IWC assimilation on the first-guess of temperature, relative 

humidity, and u-wind speed is investigated using conventional observations. The assimilation 460 

of radar information generally reduces standard deviations (SD) compared to the assimilation 

of only conventional data (CNV+Z, CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z 

configurations correspond to black, red, yellow, and blue curves in Fig. 8b, e, h), while the 

impact on mean bias deviations (MBD) is less clear (compare black solid, red, yellow, and blue 

curves with black dotted curves in Fig. 8c, f, i). The CNV+LWC/Z, CNV+IWC/Z, and 465 

CNV+LWC+IWC+Z configurations result in SDs and MBDs similar to the CNV+Z configuration, 

but slight, systematic SD improvements are evident for the u-wind speed with the CNV+IWC/Z 

configuration (yellow curve in Fig. 8h). 

5.2   Experiment part B: nine-hour forecasts 

With the best performing DAP sets for the LWC and IWC assimilations in terms of first-guess 470 

QPF quality, up to nine-hour forecasts are performed. Z observations (CNV+Z) clearly improve 

the deterministic FSS for a threshold of 0.5 mm h-1 for all forecast hours compared to the 

assimilation of only conventional data (CNV) on average for all cases (compare black with grey 

lines in Fig. 9a, d, g, j). This also holds for the deterministic FBI for the stratiform S2017 and 

S2021 cases, while for the convective C2017 case the underestimation is enhanced (compare 475 

black and grey curves in Fig. 9c, f, i, l). Assimilating LWC estimates instead of Z data where 

possible (CNV+LWC/Z) slightly further improves the FSS on average over all cases for most 

of the forecast time (red curve above the zero line in Fig. 9b). This overall positive impact 

results from the first six hours of the convective C2017 case and forecast hours five to nine of 

the stratiform 2021 case (Fig. 9e, k). FBI improvements are achieved for up to seven hours 480 

lead time (compare red with black curves in Fig. 9c) and at least for the first four hours lead 

time for all individual cases (compare red curves with grey and black curves in Fig. 9f, i, l).  

The IWC assimilation (CNV+IWC/Z) only marginally improves the FSS on average for the first 

five hours lead time (yellow curves in Fig. 9b) compared to the CNV+Z configuration. As 

expected from the first-guess analysis, the mean FSS for the convective C2017 case is mostly 485 

degraded (yellow curve in Fig. 9e) and the stratiform S2017 and S2021 cases are improved 

(yellow curves in Fig. 9h, k). For the S2021 case, the mean forecast FSS values are slightly 

improved for most of the forecast time (yellow curve mostly above zero line in Fig. 9k). 

Qualitatively similar results result for the FBI on average over all cases, which shows the best 

results for the first four forecast hours (compare yellow with the remaining curves in Fig. 9c). 490 
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The on average best FSS for the first six forecast hours are obtained, when all radar data sets 

are assimilated together (CNV+LWC+IWC+Z; blue curve in Fig. 9b); however, the good results 

for the FBI with the assimilation of IWC (CNV+IWC/Z) are not reached (compare blue and 

yellow curves in Fig. 9c), but the FBI is improved up to seven forecast hours compared to the 

CNV+Z configuration (black curve). 495 

As expected, the SDs of 2m temperature, 2m relative humidity, and 10m u-wind speed 

generally increase with forecast lead time for all DA configurations (CNV, CNV+Z, 

CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z  in Fig. 10). The assimilation of radar 

information always reduces the SDs. Interestingly, the assimilation of IWC yields the lowest 

SD for humidity (yellow curve in Fig. 10c) and wind (Fig. 10e) and is only marginally 500 

outperformed by the assimilation of all radar information in parallel (CNV+LWC+IWC+Z) for 

2m temperature (compared yellow with blue curve in Fig. 10a). The bias (MBD), however, is 

only reduced for the near-surface wind (Fig. 10f), while the absolute MBD generally increases 

due to the assimilation of radar data – except for the near-surface humidity, which achieves its 

lowest values when all radar information is assimilated in parallel (CNV+LWC+IWC+Z; blue 505 

curve in Fig. 10d).  

6 Conclusions 

We assimilated for the first time polarimetric information from radar observations of the German 

C-band radar network in the KENDA-ICON-D2 system of DWD. In this study, we used 

microphysical retrievals of liquid and ice water content (LWC and IWC) and evaluated their 510 

impact on short-term precipitation forecasts. First, the impact of assimilating the microphysical 

retrievals on the first-guess (hourly) precipitation forecasts was investigated with different data 

assimilation parameter (DAP; e.g., observation localization length-scales and errors) sets and 

radar data set configurations. Then, the most successful assimilation settings were used to 

initiate nine-hour precipitation forecasts.   515 

Four data set configurations were analyzed for finding the best DAP sets: only conventional 

observations (CNV), conventional and 3D reflectivity Z observations (CNV+Z), conventional 

data and 3D LWC estimates replacing Z observations where available (CNV+LWC/Z), and 

conventional data and 3D IWC estimates replacing Z observations where possible 

(CNV+IWC/Z). For the two stratiform cases in the summers of 2017 and 2021 and the one 520 

convective case in the summer of 2017, a rather small horizontal observation localization 

length-scale of 8 km and a lower limit of -1.15 in log10(LWC) and log10(IWC) yielded the best 

deterministic and ensemble first-guesses. Thus, best first guess of precipitation forecasts are 

achieved when the influence of the observed microphysical estimates on the model state is 

rather small in terms of observation localization length-scale and lower data limit. A rather small 525 

observation error standard deviation of 0.25 in log10(LWC) and log10(IWC) was most 
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successful. The best values for the other DAPs differed for LWC and IWC: vertical localization 

length-scales were 0.2 in logarithm of pressure for LWC and 0.5 in logarithm of pressure for 

IWC; best superobbing window sizes were 20 km for LWC and 10 km for IWC; the minimum 

number of valid values in the superobbing window was three observations for LWC and 50 % 530 

valid values for IWC.  

The LWC assimilation (CNV+LWC/Z) with the best performing DAP setting with respect to first-

guess QPF quality improved the first-guesses for most precipitation cases and accumulation 

thresholds compared to the CNV+Z configuration, while the best-performing DAP setting for 

IWC deteriorated the results, especially for the 2017 convective case, except for the stratiform 535 

case in 2021. The latter may be due to the radial resolution increase in the DWD volume scans 

from one kilometer to 0.25 km in spring 2021. The higher resolution improves the specific 

differential phase KDP estimation as part of the hybrid IWC retrieval, because more successive 

radar bins can be used for a given KDP window size. One reason for the poor performance of 

the IWC assimilation especially for the 2017 convective case, besides possible deficiencies in 540 

the model’s ice module, may be the fact that the IWC retrieval was developed for snowfall but 

not for hail or graupel likely being present during intense convective summer precipitation in 

Germany. Interestingly, the LWC assimilation led to consistent improvements for convective 

situations, despite a retrieval not adapted to hail or graupel either. The application of a higher 

co-polar cross-correlation coefficient ρHV threshold below the melting layer for filtering may 545 

have masked radar pixels contaminated with hail or graupel.  

In general, the best first-guess precipitation forecasts were obtained when all radar data sets 

(i.e., Z, LWC, and IWC) were assimilated together (CNV+LWC+IWC+Z).  

Nine-hour forecasts initiated with the CNV+LWC/Z configuration using the best DAP setting 

with respect to first-guess QPF quality slightly outperformed the CNV+Z configuration in terms 550 

of deterministic Fraction Skill Score FSS on average and for most forecast lead times with the 

best results for the 2017 convective case. The same applies to the assimilation of IWC 

(CNV+IWC/Z), however, the mean FSS mostly deteriorated for the convective case compared 

to the CNV+Z configuration, but was systematically improved over most of the forecast time 

for the high-resolution 2021 stratiform case. Forecasts initiated with the assimilation of all radar 555 

data sets (CNV+LWC+IWC+Z) yielded the best overall FSS. Furthermore, the assimilation of 

the LWC and/or IWC estimates (CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z) 

generally improved the mean frequency bias FBI over the CNV+Z configuration for most 

forecast hours. 

We used DWD’s standard configuration of KENDA, which only produces microphysical 560 

analysis increments in cloud water mixing ratio and specific humidity, i.e., not all available 

hydrometeor species (e.g., rain, cloud ice, and graupel mixing ratios) are updated individually. 
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This setting was chosen at DWD to optimize the assimilation impact of Z (personal 

communication with Klaus Stephan, DWD). Thus, it remains to be explored how changes in 

the updated (microphysical) variables change precipitation forecasts when polarimetric 565 

information contained in microphysical retrievals is assimilated. For example, it should be 

investigated if the update of the rain mixing ratio via cross-correlations in the first-guess 

ensemble from LWC observation increments or the update of ice species (e.g., snow and/or 

cloud-ice mixing ratios) via cross-correlations from IWC innovations would yield improved 

forecasts.  570 

Our study presented the benefits from the assimilation of state-of-the-art polarimetric 

microphysical retrievals below and above the melting layer adjusted for pure rain and snowfall, 

respectively, in a convective-scale NWP system in Germany. The results revealed only limited 

benefits with the assimilation of IWC retrievals in convective precipitation. Since the retrievals 

are based on assumptions valid for snow but not for graupel or hail, such as e.g. the inversely 575 

proportional relationship between density and size of hydrometeors, the potential presence of 

graupel and/or hail in convection may be at least partly responsible. Accordingly, the 

development of more adequate retrieval algorithms for convective cores constitutes one of the 

next steps to further improve the exploitation of ice microphysical retrievals for radar data 

assimilation. 580 
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Figure 1: German polarimetric C-band radar network operated by DWD. Crosses indicate locations of 
radar stations in Emden (EMD), Boostedt (BOO), Rostock (ROS), Hannover (HNR), Ummendorf (UMD), 
Prötzel (PRO), Essen (ESS), Flechtdorf (FLD), Dresden (DRS), Neuhaus (NEU), Neuheilenbach (NHB), 
Offenthal (OFT), Eisberg (EIS), Türkheim (TUR), Isen (ISN), Memmingen (MEM), and Feldberg (FBG), 
circles indicate approximate ranges of 150 km around radars; blue color indicates polarimetric and red 
color indicates non-polarimetric radars. 
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Figure 2: Visualization of the superobbing process from (a) a PPI of estimated LWC (Eq. (2)) below and 
IWC (Eq. (3)) above the melting layer (approximate upper and lower boundaries of the melting layer 
indicated by violet rings) at 1.5 degrees of the DWD radar NHB (see Fig. 1) for the stratiform precipitation 
case S2021 at 14 July 2021 16 UTC to (b) the corresponding field of superobbed (with the pre-selected 
settings winsize_avg = 10 km, lower_lim = -2.3, and minnum_vals = 3) log(LWC) and log(IWC) (colored 
dots) and superobbed reflectivity Z (grey squares), where no LWC/IWC estimates are available (e.g., 
within the melting layer). 

Figure 3: Exceedances of hourly rain accumulation thresholds 0.5 (black curves), 1.0 (green), 2.0 (blue), 
and 4.0 mm h-1 (yellow) in the RADOLAN data (hourly accumulations) for the rainfall cases (a) C2017, 
(b) S2017, and (c) S2021 as percentages of the total number of threshold exceedances in all three 
rainfall cases and thresholds considered. The fractions are used to determine weights for calculations 
of weighted medians of FSS and BSS (e.g., in Fig. 4), and for the calculation of the univariate measure 
JQS (see Eq. (5) in Sect. 4.4). 
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Figure 4: Weighted medians of differences in first-guess deterministic FSS (first and third panel rows) 
and BSS (second and fourth panel rows) between the CNV+LWC/Z (left block) or CNV+IWC/Z (right 
block) configurations with different sampled DAP settings (S1-01 to S1-12 and S2-01 to S2-10 in 
Table 2) and the CNV+Z configuration for accumulation thresholds 0.5, 1.0, 2.0, and 4.0 mm h-1 and the 
three rainfall periods considered (three left columns within each block). The right most column in each 
block shows the weighted median over all cases considered. Weights are determined by threshold 
exceedances in the RADOLAN data (see Fig. 3). Green color indicates improvements compared to the 
CNV+Z configuration, grey to dark purple color indicates degradations. 
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Figure 5: (a) Comparison of the investigated DAP values for obsloc_hor, obsloc_ver, obserr_std, 
winsize_avg, lower_lim, and minnum_vals (Table 1) in terms of the univariate measure JQSv (see Eq. 
(5) in Sect. 4.4) for the LWC (blue bars) and IWC (orange bars) assimilation with the DAP settings from 
the first DAP settings (S1-01 to S1-12 in Table 2). In (b), all 22 DAP settings (S1-01 to S1-12 and S2-
01 to S2-10 in Table 2) plus the pre-selected DAP setting (setting S-pre in Table 1) are compared with 
each other in terms of the univariate measure JQSc (see Eq. (5) in Sect. 4.4) for the LWC (black bars) 
and IWC (red bars) assimilation considering all rainfall cases together. Panels (c), (d), and (e) are like 
panel (b), but with the JQSc calculated for the individual rainfall cases C2017, S2017, and S2021, 
respectively. 
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Figure 6: Time series of the difference in first-guess deterministic FSS and BSS for a threshold of 
0.5 mm h-1 between the CNV+LWC/Z (left panel column) or CNV+IWC/Z (right panel column) 
configurations and the CNV+Z configuration using the found best-performing DAP settings for LWC and 
IWC (S2-06 and S1-02, see Table 2) with respect to first-guess quality in hourly assimilation cycles for 
the precipitation cases (a)-(d) C2017, (e)-(h) S2017, and (i)-(l) S2021. Green shading indicates 
improvements with respect to CNV+Z, grey shading indicates deteriorations.  
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Figure 7: Comparison of different radar data set configurations in terms of the univariate measure JQSc 
(see Eq. (5) in Sect. 4.4). Configurations assimilating LWC and/or IWC with the found best DAP settings 
(S2-06 and S1-02 in Table 2) in terms of first-guess QPF quality (a) instead of Z where possible 
(alternative Z assimilation) in configurations CNV+LWC/Z, CNV+IWC/Z, and CNV+[LWC+IWC]/Z 
(lower, middle, and upper bars), and (b) together with Z (parallel Z assimilation) in configurations 
CNV+LWC+Z, CNV+IWC+Z, and CNV+LWC+IWC+Z (lower, middle, and upper bars) are compared. 
Black bars indicate the JQSc calculated over all three rainfall cases, and blue, orange, and green bars 
indicate the JQSc calculated over the individual cases C2017, S2017, and S2021, respectively. 
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Figure 8: Vertical profiles of differences in standard deviations (SD) with respect to the CNV 
configuration (middle column) and of mean bias deviations (MBD; right column) of first-guesses of 
temperature (upper row), relative humidity (middle row), and u-wind (lower row) obtained from hourly 
assimilation cycles with the assimilation configurations CNV (black dotted), CNV+Z (black solid), 
CNV+LWC/Z (red), CNV+IWC/Z (yellow), and CNV+LWC+IWC+Z (blue curves) from conventional 
observations over Germany. The number of observations contributing to the SD and MBD calculations 
are shown in the left column (grey solid curves). All rainfall cases are considered and the found best 
DAP settings for LWC and IWC (S2-06 and S1-02 in Table 2) in terms of first-guess QPF quality are 
used for the LWC and IWC assimilations.  
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Figure 9: Left panel column: time series of the deterministic FSS for a 0.5 mm h-1 threshold of nine-hour 
forecasts initiated every third hour from hourly assimilation cycles with the CNV and CNV+Z 
configurations (grey and black curves) as means over all precipitation cases (upper row), over only the 
2017 convective case C2017 (second row), over only 2017 stratiform case S2017 (third row), and over 
only the 2021 stratiform case S2021 (lower row). Middle column: corresponding deviations in mean 
deterministic FSS from the CNV+Z configuration of the CNV+LWC/Z (red curves), CNV+IWC/Z (yellow 
curves), and CNV+LWC+IWC+Z (blue curves) configurations using the found best DAP settings for 
LWC and IWC assimilations (S2-06 and S1-01 in Table 2) in terms of first-guess QPF quality. Right 
column: corresponding mean deterministic FBI. 
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Figure 10: Mean standard deviations (SD; upper panel row) and mean bias deviations (MBD; lower 
panel row) of forecasted 2m temperature (left panel column), 2m relative humidity (middle panel 
column), and 10m u-wind (right panel column) from conventional observations in Germany as functions 
of the forecast lead time. Means are calculated over nine-hour forecasts initiated every third hour from 
hourly assimilation cycles with the assimilation configurations CNV (grey curves), CNV+Z (black curves), 
CNV+LWC/Z (red curves), CNV+IWC/Z (yellow curves), and CNV+LWC+IWC+Z (blue curves) using 
the found best DAP settings for the LWC and IWC assimilations (S2-06 and S1-02 in Table 2) in terms 
of first-guess QPF quality, and taking all rainfall cases C2017, S2017, and S2021 into account. 
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DAP 
values 

obsloc_ho
r (km) 

obsloc_ve
r (ln(p)) 

obserr_std winsize_av
g (km) 

lower_lim minnum_vals 

Pre-
selected 
(S-pre) 16 h.d. 0.50 10 -2.30 3 

Modificatio
n 1 

8 0.2 0.25 5 -1.15 25% 

Modificatio
n 2 

32 0.5 1.00 20 -4.60 50% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Pre-selected and modified (modifications 1 and 2) values for the DAPs obsloc_hor (horizontal 
observation localization length-scale in km), obsloc_ver (vertical localization length-scale in logarithm of 
pressure ln(p)), obserr_std (observation error standard deviation for log(LWC) and log(IWC)), 
winsize_avg (superobbing window size in km) , lower_lim (lower limit of the log(LWC) and log(IWC) 
data), and minnum_vals (minimum number of valid values for superobbing). 
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DAP 
settings 

obsloc_hor 
(km) 

obsloc_ver 
(ln(p)) 

obserr_std winsize_avg 
(km) 

lower_lim minnum_vals 

S1-01 16 h.d. 1.00 5 -2.30 50 % 

S1-02 8 0.5 0.25 10 -1.15 50 % 

S1-03 8 0.5 0.25 20 -1.15 3 

S1-04 32 0.5 0.50 5 -2.30 25 % 

S1-05 8 0.2 0.25 10 -4.60 50 % 

S1-06 16 h.d. 0.50 20 -1.15 25 % 

S1-07 32 0.2 1.00 5 -1.15 3 

S1-08 8 0.2 0.50 20 -2.30 3 

S1-09 32 0.5 0.50 5 -4.60 25 % 

S1-10 16 h.d. 1.00 10 -4.60 25 % 

S1-11 32 h.d. 1.00 20 -4.60 3 

S1-12 16 0.2 0.25 10 -2.30 50 % 

S2-01 16 0.2 1.00 20 -1.15 50 % 

S2-02 16 0.2 0.25 10 -2.30 3 

S2-03 8 h.d. 1.00 20 -1.15 3 

S2-04 16 0.2 1.00 20 -2.30 50 % 

S2-05 16 h.d. 0.25 10 -2.30 50 % 

S2-06 8 0.2 0.25 20 -1.15 3 

S2-07 8 0.2 1.00 10 -1.15 3 

S2-08 8 h.d. 0.25 10 -1.15 50 % 

S2-09 8 h.d. 1.00 20 -2.30 50 % 

S2-10 16 h.d. 0.25 10 -2.30 3 

 

 

 

 

Table 2: First and second near-random sample of DAP settings (S1-01 to S1-12 and S2-01 to S2-10) 
generated with Latin Hypercube Sampling from all the DAP values in Table 1 and with a reduced number 
of DAP values from Table 1 based on consideration of the univariate measure JQSv (see Eq. (5) in 
Sect. 4.4) calculated with the first sample, respectively.  


