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Abstract. This study assimilates for the first time polarimetric C-band radar observations from 

the German meteorological service (DWD) into DWD’s convective-scale model ICON-D2 using 10 

DWD’s ensemble-based KENDA assimilation framework. We compare the assimilation of 

conventional observations (CNV) with the additional assimilation of radar reflectivity Z 

(CNV+Z), with the additional assimilation of liquid or ice water content (LWC or IWC) estimates 

below or above the melting layer instead of Z where available (CNV+LWC/Z or CNV+IWC/Z, 

respectively). Hourly quantitative precipitation forecasts (QPF) are evaluated for two stratiform 15 

and one convective rainfall event in the summers of 2017 and 2021.   

With optimized data assimilation settings (e.g., observation errors), the assimilation of LWC 

mostly improves first guess QPF compared to the assimilation of Z alone (CNV+Z), while the 

assimilation of IWC does not, especially for convective cases, probably because of the lower 

quality of the IWC retrieval in these situations. Improvements are, however, notable for 20 

stratiform rainfall in 2021, for which the IWC estimator profits from better specific differential 

phase estimates due to a higher radial radar resolution compared to the other cases. The 

assimilation of all radar data sets together (CNV+LWC+IWC+Z) yields the best first guesses.  

All assimilation configurations with radar information consistently improve deterministic nine-

hour QPF compared to the assimilation of only conventional data (CNV). Forecasts based on 25 

the assimilation of LWC and IWC retrievals on average slightly improve Fraction Skill Score 

(FSS) and Frequency Bias (FBI)FSS and FBI compared to the assimilation of Z alone 

(CNV+Z), especially when LWC is assimilated for the 2017 convective case and when IWC is 

assimilated for the high-resolution 2021 stratiform case. However, IWC assimilation again 

degrades forecast FSS for the convective cases. Forecasts initiated using all radar data sets 30 

together (CNV+LWC+IWC+Z) yield the best FSS. The development of IWC retrievals more 
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adequate for convection constitutes one next step to further improve the exploitation of ice 

microphysical retrievals for radar data assimilation. 

1 Introduction 

Heavy precipitation events can pose serious risks to the public and have increased in 35 

frequency and strength since the middle of the 20th century (IPCC, 2021). Thus, improving 

quantitative precipitation forecasts (QPF) is and remains of high societal interest. With the 

ever-increasing computing power of meteorological forecasting centers, the resolution of 

operational numerical weather prediction (NWP) models has increased up to the convective 

scale, allowing more accurate QPF. NWP requires model states close to the true atmospheric 40 

state (model initialization), which is usually achieved by combining short-term model forecasts 

(first guesses) and observational data statistically, taking into account their respective 

uncertainties, a process known as data assimilation (DA; e.g., Talagrand, 1997). Proper 

initialization at convective scales is challenging, because uncertainties in convective processes 

are difficult to estimate, and because of the observations required to resolve moist convective 45 

processes. Weather surveillance radars can provide such data with unique temporal and 

spatial resolution, and have become an indispensable data source for convective-scale NWP 

over the past decades.   

Radar observations have been successfully assimilated into convective scale NWP models, 

e.g. with 4D variational (4DVar; e.g., Lewis and Derber, 1985; Le Dimet and Talagrand, 1986) 50 

and 3D variational (3DVar; Courtier et al., 1998) DA methods (e.g., Sun and Crook, 1997, 

1998; Xiao et al., 2005). Over the past two decades, radar DA using the ensemble Kalman 

filter (EnKF; Evensen, 1994), a Monte Carlo approximation of the original Kalman filter 

(Kalman, 1960), has become increasingly popular particularly due to its ability to estimate the 

flow-dependent forecast uncertainty (the background error covariance matrix) at the 55 

convective-scale through an ensemble of model forecasts (e.g., Snyder and Zhang, 2003; 

Tong and Xue, 2005; Aksoy et al., 2009; Dowell et al., 2011; Tanamachi et al., 2013; Wheatley 

et al., 2015; Bick et al., 2016; Gastaldo et al., 2021). However, running a forecast ensemble of 

sufficient size to robustly estimate the forecast error covariance matrix is not feasible in 

operational routines due to the connected high computational costs, which can lead to 60 

sampling errors that can cause filter divergence and spurious long-range correlations in the 

model domain (e.g., Houtekamer and Mitchell, 1998; Hamill et al., 2001). Observation 

localization (Ott et al., 2004), which limits the radius within which observations affect the 

analysis, is a common approach to mitigate this problem. The Local Ensemble Transform 

Kalman Filter (LETKF; Hunt et al., 2007), a manifestation of the EnKF in which observation 65 

localization is a key feature and which computes analyses at each grid point independently 

allowing for easy parallelization, is currently very popular in the DA community. In addition to 
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being used for research purposes at the Japan Meteorological Agency (e.g., Miyoshi et al., 

2010) and the European Centre for Medium-Range Weather Forecasts (e.g., Hamrud et al., 

2015), the LETKF has been implemented operationally at the Italian Operational Centre for 70 

Meteorology (Bonavita et al., 2010Gastaldo et al., 2021) as well as at the German 

Meteorological Service (Deutscher Wetterdienst, DWD), and MeteoSwiss. Assimilation of 3D 

radar observations with the LETKF has shown positive effects on short-term QPF (e.g., Bick 

et al., 2016; Gastaldo et al., 2021); at DWD, 3D radar DA with the LETKF became operational 

for the convective-scale NWP model ICON-D2 (limited area setup of the Icosahedral 75 

Nonhydrostatic model over Germany; Zängl et al., 2015) in spring 2021. 

Radar DA has mainly focused on the horizontal radar reflectivity factor (hereafter simply 

reflectivity) Z and the radial velocity V, with only Z providing direct information on cloud and 

precipitation microphysical processes. Dual-polarization (i.e., linear orthogonal polarization 

diversity; Seliga and Bringi, 1976, 1978; hereafter referred to as polarimetric) radar 80 

observations provide additional information on clouds and precipitation, such as the size, 

shape, orientation, and composition of hydrometeors (e.g., Zrnic and Ryzhkov, 1999). 

Therefore, polarimetric radar observations can help to improve the representation of cloud-

precipitation microphysics in NWP models, weather analyses, and consequently short-term 

QPF through model evaluation, parameterization developments, and DA (e.g., Kumjian, 2013; 85 

Zhang et al., 2019). Polarimetric radar observations have already been used to improve 

attenuation correction (e.g., Bringi et al., 1990; Testud et al., 2000; Snyder et al., 2010), 

quantitative precipitation estimation (e.g., Zrnic and Ryzhkov, 1996; Ryzhkov et al., 2005a; 

Tabary et al., 2011; Chen et al., 2021), severe weather observation and detection (e.g., 

Ryzhkov et al., 2005b; Bodine et al., 2013), hydrometeor classification (e.g., Park et al., 2009), 90 

and model evaluation (e.g., Jung et al., 2012; Putnam et al., 2014, 2017). However, exploitation 

of polarimetric information in DA is still in its infancy. One reason is the remaining uncertainties 

in the relationships between polarimetric radar moments and model microphysical state 

variables. Another reason is the lack of widespread operational polarimetric radar observations 

from national surveillance radar networks in the past. In recent years, many of these networks 95 

have been upgraded to polarimetry, e.g., in Germany, the USA, Canada, the UK, and China, 

providing a valuable new source of observational data for future operational NWP.  

Polarimetric moments can be linked to microphysical model state variables using either radar 

forward operators or retrieval algorithms. Radar forward operators compute synthetic radar 

moments based, e.g., on simulated parameterized particle size distributions, while retrievals 100 

estimate microphysical model state variables from radar observations prior to DA. The direct 

approach via forward operators is challenging because, e.g., hydrometeor shape, size, and 

orientation distributions, all of which affect (polarimetric) radar observations, are still rather 

rudimentarily represented or rarely taken into account in NWP models (e.g., Schinagl et al., 
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2019). The indirect approach via retrievals circumvents these model deficiencies, but suffers 105 

from retrieval uncertainties. A few case studies from the USA, Japan, and China have already 

attempted the direct DA of polarimetric observations with some success using the EnKF (e.g., 

Jung et al., 2008; Jung et al., 2010; Putnam et al., 2019; Zhu et al., 2020; Putnam et al., 2021) 

or the 3DVar method (e.g., Li et al., 2017; Du et al., 2021). Other studies have assimilated 

polarimetric observations indirectly via retrieved hydrometeor mixing ratios using the 4DVar 110 

approach (e.g., Wu et al., 2000), the 3DVar method (e.g., Li and Mecikalski, 2010, 2012), or 

the EnKF method (e.g., Yokota et al., 2016). Polarimetric data have also been used to modify 

cloud analysis schemes based on polarimetric signatures in storms (Carlin et al., 2017) or to 

improve hydrometeor classifications (Ding et al., 2022). To our knowledge, no study has yet 

assimilated polarimetric radar data in Central Europe. In preparation for the direct assimilation 115 

of polarimetric data, the single-polarization radar forward operator EMVORADO (Efficient 

Modular Volume VOlume Sscanning Radar RADar Forward Operator; Zeng et al., 2016), used 

operationally at DWD for the ICON-D2 model, is currently being upgraded to polarimetric 

capabilities, but is still in a testing phase. Regarding indirect assimilation, polarimetric retrieval 

algorithms for liquid and ice water content (LWC and IWC) have been proposed in the literature 120 

(e.g., Ryzhkov et al., 1998; Bringi and Chandrasekar, 2001; Doviak and Zrnic, 2006; Carlin et 

al., 2016; Ryzhkov and Zrnic, 2019; Bukovcic et al., 2020; Carlin et al., 2021), but most of 

these algorithms were developed with a focus on S-band radars in the USA. The applicability 

of these retrieval relations for Germany with its C-band radar network and its quite different 

precipitation climatology may thus be limited. Recently, a hybrid polarimetric LWC estimator 125 

adapted to the German national C-band network has been developed by Reimann et al. (2021). 

The present paper takes a first step towards the indirect assimilation of polarimetric radar 

observations using microphysical retrievals of LWC and IWC in Germany and evaluates their 

impact on short-term QPF relative to the direct assimilation of Z observations. Polarimetric 

radar observations from the German national C-band weather radar network are assimilated 130 

into the DWD ICON-D2 model using the corresponding DA framework KENDA (Kilometre-

scale Ensemble Data Assimilation; Schraff et al., 2016) implementing the LETKF scheme. 

LWC and IWC data are estimated from the polarimetric measurements below and above the 

melting layer using the hybrid retrievals of Reimann et al. (2021) and Carlin et al. (2021), 

respectively. We attempt to identify suitable assimilation configurations for LWC and IWC 135 

based on first-guess QPF quality and provide first insights into how the indirect assimilation of 

polarimetric information affects short-term QPF up to nine hours lead time. The study focusses 

on three intense precipitation periods in the summers of 2017 and 2021 over Germany. 

The remainder of the paper is structured as follows. Section 2 briefly introduces the ICON-D2 

model and the KENDA DA framework. Section 3 describes the data used and the applied 140 

microphysical retrieval algorithms. Section 4 shows the experimental setup including the 
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technique of assimilating the LWC and IWC retrievals and the experiment parts. Section 5 

presents the results of the experiments, and Sect. 6 presents the conclusions.   

2 Forecast model and assimilation framework 

2.1   The ICON-D2 model 145 

The ICON (Icosahedral Nonhydrostatic) modelling framework (Zängl et al., 2015) is a global 

NWP and climate modelling system jointly developed by DWD and the Max Planck Institute 

for Meteorology in Hamburg, Germany, and became operational in DWD’s forecasting system 

in 2015. In this study, we perform integrations with the convection-resolving, area-limited setup 

of the ICON model, ICON-D2, covering Germany and parts of its neighboring states. The 150 

ICON-D2 model uses an unstructured triangular grid with a resolution of about 2.2 km 

horizontally and 65 vertical levels; the near-ground levels are terrain-following and the higher 

levels gradually shift to constant heights towards the model top. Lateral boundary conditions 

are provided by simulations of the ICON-EU model, a nesting setup of the global ICON model 

over Europe. The ICON-D2 model became operational at DWD recently, ousting the previously 155 

used COSMO (COnsortium for Small-scale MOdelling) model (Baldauf et al., 2011). 

The ICON-D2 model provides prognostic variables including the 3D wind velocity components 

and the virtual potential temperature. The total density of the air-water mixture and the 

individual mass fractions of dry air, water vapor, cloud water, cloud ice, rain, snow, and graupel 

are further prognostic variables, which are simulated in our study with the single-moment 160 

microphysics scheme (Doms et al., 2011) representing a two-component system of dry air and 

water, which can occur in all three states of matter. 

2.2   The KENDA framework 

The KENDA system, originally developed for the COSMO model, is now operationally used for 

the ICON-D2 model at DWD and includes the LETKF scheme (see Appendix A or Hunt et al., 165 

2007) for more details on the LETKF). KENDA employs one deterministic model run in addition 

to the current 40-member ensemble (40+1-mode), which is updated in the analysis using the 

Kalman gain for the ensemble mean 𝐊 as 

𝒙𝑎,𝑑𝑒𝑡 = 𝒙𝑏,𝑑𝑒𝑡 + 𝐊(𝒚𝑜 − 𝐻(𝒙𝑏,𝑑𝑒𝑡))        (1) 

with 𝒙𝑎,𝑑𝑒𝑡 and 𝒙𝑏,𝑑𝑒𝑡 the deterministic analysis and background, 𝒚𝑜 the observation vector, 170 

and 𝐻 a (non-linear) observation operator (Schraff et al., 2016). KENDA comprises various 

tools beneficial for ensemble-based DA. Among them are horizontal and vertical observation 

localization with a Gaspari-Cohn correlation function (Gaspari and Cohn, 1999) using 

individual length-scales to scale the inverse observation error covariance matrix. Moreover, 

KENDA allows for analysis calculations on a coarsened grid (Yang et al., 2009) to reduce the 175 
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computational costs in the analysis step. KENDA also includes, e.g., multiplicative covariance 

inflation (Anderson and Anderson, 1999), relaxation to prior perturbations (Zhang et al., 2004), 

and relaxation to prior spread (Whitaker and Hamill, 2012). 

The indirect assimilation of Z observations started at DWD in 2007 with Latent Heat Nudging 

(LHN; Stephan et al., 2008; Milan et al., 2008), which modifies the thermodynamic model state 180 

during model forward integration using low-elevation Z observations. LHN is applicable to both 

the ensemble and the deterministic run in KENDA. Recently, the direct assimilation of 3D Z 

and V observations from the German C-band radar network (see Fig. 1) in combination with 

LHN became operational in the ICON-D2 routine at DWD. Note that LHN and the assimilation 

of 3D V observations are not applied in this study (see below). 185 

3 Data sets and microphysical retrievals 

Intense summer precipitation events can pose a serious risk to society in Central Europe and 

are particularly difficult to forecast (Olson et al., 1995). Thus, we focus on three intense 

summer precipitation events in Germany. The first event covers a 2-day period of heavy, 

mostly stratiform precipitation over western Germany and its neighboring states from 13 to 14 190 

July 2021, resulting from a slow-moving low-pressure system and causing devastating 

flooding, e.g., along the Ahr river in North Rhine-Westphalia (case S2021). The second event 

covers a 3-day period from 24 to 26 July 2017 characterized by widespread intense, mostly 

stratiform precipitation. It also caused flooding especially in Lower Saxony in central-northern 

Germany along the Bode River catchment (case S2017). The third event dominated by 195 

convective precipitation covers a 1.5-day period from midday on 19 to 20 July 2017 (case 

C2017). 

3.1   Radar observations 

DWD operates a network of 16 polarimetric C-band radars (blue circles in Fig. 1) and one 

additional non-polarimetric radar (red circle). In “volume-scan” mode, the network monitors 200 

data consisting of Plan Position Indicators (PPI) at 10 radar elevation angles between 0.5 and 

25 degrees with maximum slant ranges of about 180 km every five minutes. The data have a 

resolution of one kilometer in range, which increased to 0.25 km in March 2021, and one 

degree in azimuth; they are taken from the DWD archive.  

For the direct assimilation of 3D Z data employed in this study, we use pre-processed Z 205 

observations including quality assurance and attenuation correction. For the LWC/IWC 

estimation, we use the raw polarimetric moments Z (given in dBZ), differential reflectivity 

ZDRZDR (given in dB), total differential phase ΦDPPHIDP (given in degrees), and co-polar 

cross-correlation coefficient ρHVRHOHV. ZDRZDR is the logarithmic ratio between the 

backscattered power at horizontal and vertical polarizations, which is close to 0 dB for isotropic 210 
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scatterers and shows larger positive values for oblate particles and negative values for prolate 

particles. ΦDPPHIDP is the lag in degrees of the horizontally polarized electromagnetic wave 

behind the vertically polarized one as the radar signal propagates through the atmosphere 

filled with anisotropic scatterers such as raindrops. Typically, half the range-derivative of 

ΦDPPHIDP, the specific differential phase shift KDPKDP (given in deg/km), is considered, which 215 

is positive for radar volumes filled with oblate particles and is affected by the presence of liquid 

water. ρHVRHOHV is the cross-correlation coefficient between the horizontally and vertically 

polarized waves and is thus a measure of the diversity of scatterers in a radar volume. 

ρHVRHOHV decreases in the presence of pronounced diversity of hydrometeor shapes and in 

the presence of non-meteorological targets, making it a useful tool for radar data quality 220 

assurance.  

Kumjian (2013) notes that ρHVRHOHV can be as low as 0.85 for snow/ice and 0.95 for rain at 

S-band. Here, we assume these values also for C-band. Thus, we only consider data 

below/above the melting layer for ρHVRHOHV > 0.95/0.85 with ρHVRHOHV corrected for noise 

before filtering (Ryzhkov and Zrnic, 2019). The height of the melting layer is determined from 225 

so-called Quasi-Vertical Profiles (i.e., azimuthal medians of PPIs measured at sufficiently high 

elevations and transferred to range-height displays; Trömel et al., 2014; Ryzhkov et al., 2016), 

as derived from PPIs of ρHV measured at a 5.5 degree elevation angle, or from the nearest 

operational DWD radio sounding, especially in convective situations. KDPKDP is estimated 

from the filtered and smoothed ΦDPPHIDP following Vulpiani et al. (2012) with a fixed window 230 

size of nine kilometers. This window size is required due to the rather coarse radial resolution 

(one kilometer) for most of the PPIs considered to keep noise low and reduce potentially 

negative KDPKDP estimates. The horizontal specific attenuation A (given in dB/km) – the rate 

at which power is lost from the transmitted radar signal in horizontal polarization as it 

propagates through the precipitating atmosphere – is derived below the melting layer using the 235 

filtered and smoothed ΦDPPHIDP and measured (attenuated) Z using the ZPHI method 

(Testud et al., 2000). In the retrieval algorithms, the attenuation parameter α (ratio between A 

and KDPKDP, given in dB deg-1) is optimized for each ray using the self-consistency method 

proposed by Bringi et al. (2001). Finally, the raw Z and ZDRZDR data are corrected for 

(differential) attenuation using the optimized/climatological α values below/above the melting 240 

layer and the climatological value for the differential attenuation parameter β at C-band 0.02 

dB deg-1 (Ryzhkov and Zrnic, 2019). For more details on the polarimetric radar moments, see, 

e.g., Kumjian (2013).  

3.2   Hybrid liquid water content retrieval 

LWC is estimated from the polarimetric radar observations below the melting layer  following 245 

the hybrid retrieval proposed by Reimann et al. (2021) developed based on a large pure-rain 
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disdrometer dataset and T-matrix scattering calculations at C-band. The estimator combines 

different polarimetric radar moments to optimally exploit and mitigate respective advantages 

and disadvantages known for different precipitation characteristics. For example, in weak 

precipitation indicated by small total ΦDPPHIDP increments ΔΦDPPHIDP < 5 degrees below 250 

the melting layer, the LWC(Z, ZDRZDR) relation is used (LWC always is in g m-3): 

log10log(𝐿𝑊𝐶(𝑍, 𝑍𝐷𝑅𝑍𝐷𝑅)) = 0.058𝑍 − 0.118𝑍𝐷𝑅𝑍𝐷𝑅 − 2.36.                            (2a) 

In such situations, KDPKDP is potentially noisy due to noise in ΦDPPHIDP and A potentially 

suffers from an unreliable ΔΦDPPHIDP estimation, while the influence of (differential) 

attenuation on Z and ZDRZDR should be small for these rays. For stronger rain – rays with 255 

ΔΦDPPHIDP > 5 degrees – the negative influence of (differential) attenuation on Z and ZDRZDR 

increases, while less noise and uncertainty is expected in KDPKDP and A; therefore, LWC(A) 

and LWC(KDPKDP) estimators are used.  The LWC(A) estimator 

log10log(𝐿𝑊𝐶(𝐴)) =  −0.1415 log10log(𝐴)2 + 0.209log10log(𝐴) + 0.46,    (2b) 

is used for radar bins with Z < 45 dBZ, when hail is unlikely, and the LWC(KDPKDP) estimator  260 

log10log(𝐿𝑊𝐶(𝐾𝐷𝑃𝐾𝐷𝑃)) = 0.568log10log(𝐾𝐷𝑃𝐾𝐷𝑃) + 0.06,     (2c) 

is used for bins with Z > 45 dBZ, since KDPKDP is less affected by hail than A. In addition, 

resonance scattering of medium and large sized raindrops at C-band may favour the use of 

LWC(𝐾𝐷𝑃) compared to LWC(A) in moderate to heavy rain. It should be noted, however, that 

the hybrid LWC estimator is likely unsuitable in the presence of hail and graupel, especially in 265 

certain convective situations, due to its derivation from pure-rain observations.  

3.3   Hybrid ice water content retrieval 

IWC is estimated above the melting using the hybrid estimator proposed by Carlin et al. (2021). 

It combines the relations based on ZDRZDR and KDPKDP (Ryzhkov and Zrnic, 2019) 

𝐼𝑊𝐶(𝑧𝐷𝑅𝑧𝐷𝑅, 𝐾𝐷𝑃𝐾𝐷𝑃) = 4.0 ∗ 10−3 𝐾𝐷𝑃𝐾𝐷𝑃𝜆

1−𝑧𝐷𝑅𝑧𝐷𝑅−1      (3a) 270 

with the one based on Z and KDPKDP (Bukovcic et al. 2018, 2020) 

𝐼𝑊𝐶(𝑧, 𝐾𝐷𝑃𝐾𝐷𝑃) = 3.3 ∗ 10−2(𝐾𝐷𝑃𝐾𝐷𝑃𝜆)0.67𝑧0.33      (3b) 

with z and zDRzDR are Z and ZDRZDR given in linear units (mm6 m-3 and unitless), IWC in g m-3, 

and the radar wavelength λ set to 53 mm (C-band). The estimators in Eq. (3) are again 

combined to complement their individual strengths: Eq. (3a) is fairly immune to orientation and 275 

shape of snowflakes, but sensitive to variations in ice density and prone to errors from ZDRZDR 

biases especially at low ZDRZDR values; Eq. (3b) is immune to ZDRZDR miscalibration, but 

sensitive to hydrometeor aspect ratio, orientation, and density. Eq. (3a) is used for ZDRZDR > 

0.4 dB and Eq. (3b) otherwise. Recently, Blanke et al. (2023) demonstrated the high accuracy 
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of this hybrid estimator (correlation coefficient and root-mean-square deviation 0.96 and 0.19 280 

g m-3, respectively) in an evaluation study with in-situ airplane observations on the west coast 

of the USA. It should be noted, however, that both parts of the hybrid IWC estimator in Eq. (3) 

are adapted to snowfall, with their derivation based on an inversely proportional relationship 

between particle density and diameter, which usually does not hold for hail and graupel. 

Therefore, its applicability to hail/graupel convective situations in particular may be limited.  285 

4 Setup of assimilation experiments 

4.1   Retrieval resolution 

The retrieved LWC and IWC values with the resolution corresponding to the measured radar 

data are subjected to “superobbing” (see an example in Fig. 2), which is also applied to the Z 

data in KENDA. Superobbing reduces the resolution of the radar data to approximately match 290 

the resolution of the analysis grid by spatial and elevation-wise averaging in the linear scale to 

a Cartesian grid with a resolution (res_cartesianLC in km) corresponding to the analysis grid 

(10 km for an analysis grid coarsening factor of three currently used in KENDA). The number 

of radar bins contributing to the averaging decreases with increasing distance from the radar, 

and the window size for the averaging (winsize_avgLS in km) is equal to res_cartesianLC in 295 

KENDA, but is also modified in our study while keeping res_cartesianLC constant. The 

minimum number of valid values in the superobbing window to perform superobbing 

(minnum_valsMV) is three observations, as used for the 3D Z DA in KENDA. Further details 

on the superobbing procedure can be found in Bick et al. (2016). and Zeng et al. (2021). 

The LWC and IWC estimates are assimilated with a lower limit (lower_limLL) similar to the “no-300 

precipitation” threshold of 0 dBZ used for the Z assimilation in KENDA. In contrast to Z, the 

LWC and IWC data in no-precipitation are mostly filtered out by the applied ρHVRHOHV 

thresholds, but such a lower data threshold can still be useful to limit the variability in the 

microphysical estimates and thus can also be used for tuning (personal communication with 

Ulrich Blahak, DWD). We choose lower_limLL = -2.3 for log10log(LWC), which approximately 305 

corresponds to 0 dBZ for Z when comparing measured log10log(LWC) and synthetic Z data 

obtained from T-matrix scattering calculations for a large German pure-rain disdrometer data 

set (not shown). The rare occurrence of snow on the ground in Germany and instrumental 

limitations prevent a similar analysis for IWC. Therefore, we also use -2.3 for log10log(IWC). 

Analogous to the assimilation of 3D Z data in KENDA, only the PPIs at radar elevation angles 310 

of 1.5, 3.5, 5.5, 8.0, and 12.0 degrees are used for LWC and IWC, and data from altitudes 

below 600 and above 9,000 m are not considered. The superobbed microphysical estimates 

are assimilated in the logarithmic scale, similar to the Z data in KENDA, which leads to better 

results than assimilating the data in the linear scale (not shown; e.g., Liu et al., 2020). 
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4.2   Assimilation settings and first guess 315 

Z is currently assimilated in KENDA with a fixed observation error standard deviation 

(obserr_stdOE) of 10 dBZ. We use a fixed value of obserr_stdOE = 0.5, which can be obtained 

statistically from the disdrometer data considered above: a difference Δ log10log(LWC) = 0.5 

covers a similar fraction of the full range of data as ΔZ = 10 dBZ (not shown). This value is 

also used for log10log(IWC). The horizontal observation localization length-scale 320 

(obsloc_horLH) and the vertical observation localization length-scale (obsloc_verLV) are set 

to 16 km and to increase with height from 0.075 to 0.5 in logarithm of pressure (ln(p)) as used 

for the 3D Z DA in KENDA. Moreover, microphysical analysis increments of only cloud water 

mixing ratio and specific humidity are produced, i.e., not all available hydrometeor species 

(e.g., rain, cloud ice, and graupel mixing ratios) are updated individually in KENDA’s standard 325 

configuration.  

First guesses of LWC and IWC are calculated with a simple “forward operator”, which uses the 

prognostic model variables total air density (𝜌𝑡𝑜𝑡, given in kg m-3) and the rain and cloud water 

mixing ratios 𝑞𝑟 and 𝑞𝑐 for LWC, and the snow, graupel, and cloud ice mixing ratios 𝑞𝑠, 𝑞𝑔, and 

𝑞𝑖 (all given in g m-3) for IWC at the model grid points via 330 

𝐿𝑊𝐶 =  103𝜌𝑡𝑜𝑡(𝑞𝑟 + 𝑞𝑐)         (4a) 

and 

𝐼𝑊𝐶 =  103𝜌𝑡𝑜𝑡(𝑞𝑠 + 𝑞𝑔 + 𝑞𝑖).         (4b) 

The first-guess LWCs and IWCs are then projected with the nearest-neighbor method onto the 

polar (PPI) grid of the observed LWC and IWC data and superobbed analogously to the 335 

observed data. This procedure is done for the ensemble and the deterministic run.  

4.3   Model initialization and lateral boundary data 

ICON-D2 model data in 40+1-mode for our evaluation periods are provided by DWD for the 

initial times of the experiment periods 22 UTC 12 July 2021, 00 UTC 23 July, and 00 UTC 18 

July 2017. These data are output from the regular ICON-D2 routine and thus do not require 340 

further “spin-up” integrations prior to our assimilation experiments. Hourly assimilation cycles 

such as in the operational routine including DA of conventional (e.g., surface station, radio 

sounding, and aircraft data) and 3D radar observations, and including LHN, are performed to 

obtain model states for the initial times of the experiment periods 00 UTC 13 July 2021, 00 

UTC 24 July 2017, and 11 UTC 19 July 2017. These data are output from the regular ICON-345 

D2 routine and thus do not require further “spin-up” integrations prior to our assimilation 

experiments. ICON-EU model data provided by DWD are used as lateral boundary conditions 

every hour.   
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4.4   Experiment part A: assimilation configurations 

From the model initial times, 3D LWC and IWC estimates are assimilated in hourly assimilation 350 

cycles instead of 3D Z data, where available, to avoid potential problems arising from 

assimilating the information from the Z data twice. Thus, Z data is always assimilated within 

the melting layer and in precipitation-free areas, where the LWC and IWC estimates are not 

available due to the applied ρHVRHOHV thresholds. We exclude the assimilation of 3D V 

observations and LHN to focus on the assimilation of microphysical information from the radar 355 

network. We assimilate the LWC and IWC estimates separately to study their individual impact 

on weather forecasts, but also to identify individual best DA parameter (DAP; obsloc_horLH, 

obsloc_verLV, obserr_stdOE, winsize_avgLS, lower_limLL, and minnum_valsMV) sets. The 

DA configurations assimilating LWC and IWC also assimilate conventional observations and 

are therefore referred to as CNV+LWC/Z and CNV+IWC/Z. The DA of only conventional 360 

observations and the DA of conventional and 3D Z observations are used as reference 

configurations CNV and CNV+Z, respectively.  

We consider a near-random sample of DAP settings generated via Latin Hypercube Sampling 

(LHS) by modifying the DAP values from their pre-selected values (pre-selected and modified 

values in Table 1; generated settings S1-01 to S1-12 in Table 2). The results of using the DAP 365 

configurations/values are compared with each other in terms of both first-guess deterministic 

and ensemble QPF quality via a single univariate measure newly introduced here – the joint 

quality score (JQS) 

𝐽𝑄𝑆𝑐/𝑣 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑤(𝛥CNV+Z𝐹𝑆𝑆𝑛𝑜𝑟𝑚[CNV+X/Z])  

+𝑚𝑒𝑑𝑖𝑎𝑛𝑤(𝛥CNV+Z𝐵𝑆𝑆𝑛𝑜𝑟𝑚[CNV+X/Z]).     (5) 370 

While changes in deterministic and ensemble QPF quality with respect to the CNV+Z 

configuration are not always consistent, the JQS provides a useful measure for the overall 

intercomparison of DA settings. In Eq. (5), FSS is the deterministic Fraction Skill Score 

(Roberts and Lean 2008; more details in Appendix B), BSS is the Brier Skill Score (following 

Wilks 2019 and Bick et al., 2016; see Appendix C) quantifying the ensemble forecast quality, 375 

and both quantities are calculated using DWD’s RADOLAN (Radar-Online-Aneichung) product 

(https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/historical/

bin/) as verification data; ΔCNV+Z denotes differences with respect to the CNV+Z configuration; 

X is LWC or IWC; index “norm” denotes normalization with the means of ΔCNV+ZFSS[CNV+Z] 

or ΔCNV+ZBSS[CNV+Z]; medianw(…) denotes the weighted median. Medians are used instead 380 

of means in order to reduce the impact of outliers in FSS and BSS, and weights are determined 

by the fractions of threshold exceedances for a given time and threshold of the total number 

of exceedances at all thresholds (0.5, 1.0, 2.0, and 4.0 mm h-1) and events (C2017, S2017, 
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and S2021) in the RADOLAN data (see Fig. 3). We use weighted medians over all cases and 

thresholds to compare QPF quality between different DAP configurations (JQSc) and 385 

additionally calculate weighted medians over all DAP settings that have the same DAP values 

to compare individual DAP values (JQSv).  

In addition to optimizing DAP sets in terms of first-guess quality, we also aim to optimally 

combine the radar data sets considered (i.e., Z, LWC, and IWC). Therefore, also the parallel 

assimilation of LWC or IWC and Z (configurations CNV+LWC+Z or CNV+IWC+Z, 390 

respectively), the combined assimilation of LWC and IWC estimates as alternatives to Z 

(configuration CNV+[LWC+IWC]/Z) or in parallel to Z (CNV+LWC+IWC+Z) are also evaluated 

with JQSc. 

4.5   Experiment part B: nine-hour forecasts 

Finally, the impact of assimilating the 3D microphysical estimates with KENDA on forecasts 395 

with lead times greater than one hour is evaluated. The 3D LWC and IWC estimates are 

assimilated with the identified best DAP sets and radar data set configurations that lead to the 

best first-guess QPF quality in hourly assimilation cycles, as before, and then nine-hour 

deterministic forecasts of the ICON-D2 model are initiated every third hour from the produced 

analyses. The quality of the deterministic nine-hour QPF is assessed using the FSS and the 400 

Frequency Bias (FBI; e.g. Bick et al., 2016; more details in Appendix D). Probabilistic forecasts 

are not considered due to data storage limitations. 

5 Numerical results 

5.1   Experiment part A: assimilation configurations 

The CNV+LWC/Z configuration yields different first-guess FSS and BSS values for the different 405 

DAP settings (see Table 2) and precipitation cases (Fig. 4a, c). Improvements over the 

assimilation of Z data alone (CNV+Z)  configuration considering all cases together are 

obtained, e.g., with the DAP sets S1-01 to S1-03, or S1-06 (Fig. 4a4, c4). These best-

performing sets all have rather small horizontal observation localizations obsloc_horLH of 8 

and 16 km and rather high lower limits lower_limLL of -1.15 and -2.30 (see Table 2), which 410 

may be due to discrepancies between true and model microphysics. Similarly, the IWC 

assimilation instead of Z where available (CNV+IWC/Z)  configuration also yields different first-

guess FSS and BSS values for different DAP sets (Table 2) and precipitation cases (Fig. 4b, 

d). Improvements over the CNV+Z configuration are mostly limited to the 2021 stratiform case, 

e.g., for the DAP settings S1-02 or S1-05 (Fig. 4b3, d3), while first-guess QPF is mostly 415 

degraded for the 2017 convective case (Fig. 4b1, d1). 

The univariate measure JQSv (see Sect. 4.4 and Eq. (5)), which uses the first-guess FSS and 

BSS values, is used to find the best DAP settings for LWC and IWC in terms of first-guess 
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QPF quality. The DAP values obsloc_horLH = 32 km, obsloc_verLV = 0.5 ln(p), obserr_stdOE 

= 0.5, winsize_avgLS = 5 km, lower_limLL = -4.6, and minnum_valsMV = 25 % (i.e., 25 % of 420 

the radar pixels in the superobbing window must have valid values) give the worst (and 

negative) JQSv values for both LWC and IWC (blue and orange bars in Fig. 5a). Another 10 

DAP sets in the vicinity of the better performing ones are sampled with LHS (S2-01 through 

S2-10 in Table 2). Further improvements over the assimilation of Z alone (CNV+Z)  

configuration are obtained for the LWC assimilation (Fig. 4e, g), but are mostly only obtained 425 

for the 2021 stratiform case for the IWC assimilation (Fig. 4f3, h3). The new DAP settings 

(Table 2; Fig. 4e-h) do, however, on average not perform significantly better compared to the 

first sample (Table 2; Fig. 4a-d), except that strong negative outliers (e.g., S1-09 in Fig. 4a-d) 

do not appear anymore.   

The 22 DAP settings (Table 2) for the LWC and IWC assimilations are compared to each other 430 

in terms of first-guess deterministic and ensemble QPF quality using the univariate measure 

JQSc (see Sect. 4.4 and Eq. (5)). Several DAP settings for the LWC assimilation yield positive 

JQSc values (black bars in Fig. 5b) and thus improved first-guess FSS and BSS values 

compared to the assimilation of Z alone (CNV+Z),  configuration, while for the IWC 

assimilation, positive JQSc values are limited to the 2021 stratiform case (red bars in Fig. 5e). 435 

The DAP set S2-06 (obsloc_horLH = 8 km, obsloc_verLV = 0.2 ln(p), obserr_stdOE = 0.25, 

winsize_avgLS = 20 km, lower_limLL = -1.15, and minnum_valsMV = 3, see Table 2) for LWC 

yields overall the best JQSc (black bars Fig. 5b), while setting S1-02 (obsloc_horLH = 8 km, 

obsloc_verLV = 0.5 ln(p), obserr_stdOE = 0.25, winsize_avgLS = 10 km, lower_limLL = -1.15, 

and minnum_valsMV = 50 %, see Table 2) results in the best (but rather neutral) JQSc value 440 

for IWC (red bars in Fig. 5b).  

The assimilation of LWC instead of Z data where possible (CNV+LWC/Z) with the respective 

best DAP setting in terms of first-guess quality improves first- guess QPF for the 2017 

precipitation cases (Fig. 4e1, e2, g1, g2 and black bars in Fig. 5c, d) compared to the 

assimilation of Z data alone (CNV+Z)  configuration while QPF quality is degraded for the 445 

stratiform S2021 case (Fig. 4e3, g3 and black bars in Fig. 5e). As expected, the time series of 

the first-guess FSS and BSS values at a threshold of 0.5 mm h-1 show slight, systematic 

improvements for the 2017 cases for some time intervals (green colors in Fig. 6a, c, e, g), but 

more pronounced degradations for the 2021 case (Fig. 6i, k). The assimilation of IWC 

(CNV+IWC/Z) with the respective best DAP set yields improvements over the CNV+Z 450 

configuration particularly for the stratiform S2021 case (Fig. 4b3, d3 and red bars in Fig. 5e), 

but clear quality decreases for the convective C2017 case (Fig. 4b1, d1 and red bars in Fig. 

5c). Time series of first-guess FSS and BSS values at a 0.5 mm h-1 threshold confirm this 

finding: slight, systematic improvements are evident for the 2021 case in some time periods 
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(Fig. 6j, l), while degradations are visible for the 2017 convective case (Fig. 6b, d). The better 455 

performance of the IWC assimilation for the 2021 stratiform case may be due the higher radial 

resolution of the more recent radar data of DWD (recall that the resolution was increased from 

one kilometer to 0.25 km in spring 2021), which leads to better KDPKDP estimates, because 

many more consecutive radar bins are considered for the nine-kilometer KDP KDP-estimation 

window used. Using the same window length for the lower-resolution data for the 2017 cases 460 

means using only one quarter of the data compared to the 2021 case. Estimating KDPKDP from 

only nine consecutive values may favor negative KDPKDP estimates resulting in negative IWC 

values, which are set to the lower limit (lower_limLL) value in the superobbing procedure and 

are thus treated as “no-precipitation”. The replacement of negative IWC estimates with zero or 

with the IWC(Z) retrievals following Atlas et al. (1995) led to some improvements, but the first-465 

guess QPF quality remained below the CNV+Z configuration (not shown). 

Parallel assimilation of LWC and Z (CNV+LWC+Z), i.e., assimilation of LWC and Z at the same 

superobbing points, reduces the JQSc values compared to the alternative assimilation strategy 

(CNV+LWC/Z), but is still better than the assimilation of Z only (CNV+Z configuration (; lower 

black bars in Fig. 7). In contrast, the parallel assimilation of IWC and Z (CNV+IWC+Z) improves 470 

JQSc values compared to the alternative assimilation strategy (CNV+IWC/Z; middle black bars 

in Fig. 7) above the CNV+Z quality. Assimilation of all radar data sets in parallel 

(CNV+LWC+IWC+Z) gives the best JQSc value (upper black bar in Fig. 7b).   

The impact of the LWC and IWC assimilation on the first-guess of temperature, relative 

humidity, and u-wind speed is investigated using conventional observations. The assimilation 475 

of radar information generally reduces standard deviations (SD) compared to the assimilation 

of only conventional data (CNV+Z, CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z 

configurations correspond to black, red, yellow, and blue curves in Fig. 8b, e, h), while the 

impact on mean bias deviations (MBD) is less clear (compare black solid, red, yellow, and blue 

curves with black dotted curves in Fig. 8c, f, i). The CNV+LWC/Z, CNV+IWC/Z, and 480 

CNV+LWC+IWC+Z configurations result in SDs and MBDs similar to the assimilation of Z 

alone (CNV+Z),  configuration, but slight, systematic SD improvements are evident for the u-

wind speed with the CNV+IWC/Z configuration (yellow curve in Fig. 8h). 

5.2   Experiment part B: nine-hour forecasts 

With the best performing DAP sets for the LWC and IWC assimilations in terms of first-guess 485 

QPF quality, up to nine-hour forecasts are performed. Z observations (CNV+Z) clearly improve 

the deterministic FSS for a threshold of 0.5 mm h-1 for all forecast hours compared to the 

assimilation of only conventional data (CNV) on average for all cases (compare black with grey 

lines in Fig. 9a, d, g, j). This also holds for the deterministic FBI for the stratiform S2017 and 

S2021 cases, while for the convective C2017 case the underestimation is enhanced (compare 490 



 

15 

 

black and grey curves in Fig. 9c, f, i, l). Assimilating LWC estimates instead of Z data where 

possible (CNV+LWC/Z) slightly further improves the FSS on average over all cases for most 

of the forecast time (red curve above the zero line in Fig. 9b). This overall positive impact 

results from the first six hours of the convective C2017 case and forecast hours five to nine of 

the stratiform 2021 case (Fig. 9e, k). FBI improvements are achieved for up to seven hours 495 

lead time (compare red with black curves in Fig. 9c) and at least for the first four hours lead 

time for all individual cases (compare red curves with grey and black curves in Fig. 9f, i, l).  

The IWC assimilation of IWC instead of Z where possible (CNV+IWC/Z) only marginally 

improves the FSS on average for the first five hours lead time (yellow curves in Fig. 9b) 

compared to the CNV+Z configuration. As expected from the first-guess analysis, the mean 500 

FSS for the convective C2017 case is mostly degraded (yellow curve in Fig. 9e) and the 

stratiform S2017 and S2021 cases are improved (yellow curves in Fig. 9h, k). For the S2021 

case, the mean forecast FSS values are slightly improved for most of the forecast time (yellow 

curve mostly above zero line in Fig. 9k). Qualitatively similar results result for the FBI on 

average over all cases, which shows the best results for the first four forecast hours (compare 505 

yellow with the remaining curves in Fig. 9c). 

The on average best FSS for the first six forecast hours are obtained, when all radar data sets 

are assimilated together (CNV+LWC+IWC+Z; blue curve in Fig. 9b); however, the good results 

for the FBI with the assimilation of IWC (CNV+IWC/Z) are not reached (compare blue and 

yellow curves in Fig. 9c), but the FBI is improved up to seven forecast hours compared to the 510 

CNV+Z configuration (black curve). 

As expected, the SDs of 2m temperature, 2m relative humidity, and 10m u-wind speed 

generally increase with forecast lead time for all DA configurations (CNV, CNV+Z, 

CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z  drawn as grey, black, red, yellow, and 

blue curves, respectively, in Fig. 10). The assimilation of radar information always reduces the 515 

SDs. Interestingly, the assimilation of IWC yields the lowest SD for humidity (yellow curve in 

Fig. 10c) and wind (Fig. 10e) and is only marginally outperformed by the assimilation of all 

radar information in parallel (CNV+LWC+IWC+Z) for 2m temperature (compared yellow with 

blue curve in Fig. 10a). The bias (MBD), however, is only reduced for the near-surface wind 

(Fig. 10f), while the absolute MBD generally increases due to the assimilation of radar data – 520 

except for the near-surface humidity, which achieves its lowest values when all radar 

information is assimilated in parallel (CNV+LWC+IWC+Z; blue curve in Fig. 10d).  

6 Conclusions 

We assimilated for the first time polarimetric information from radar observations of the German 

C-band radar network in the KENDA-ICON-D2 system of DWD. In this study, we used 525 

microphysical retrievals of liquid and ice water content (LWC and IWC) and evaluated their 



 

16 

 

impact on short-term precipitation forecasts. First, the impact of assimilating the microphysical 

retrievals on the first-guess (hourly) precipitation forecasts was investigated with different data 

assimilation parameter (DAP; e.g., observation localization length-scales and errors) sets and 

radar data set configurations. Then, the most successful assimilation settings were used to 530 

initiate nine-hour precipitation forecasts.   

Four data set configurations were analyzed for finding the best DAP sets: only conventional 

observations (CNV), conventional and 3D reflectivity Z observations (CNV+Z), conventional 

data and 3D LWC estimates replacing Z observations where available (CNV+LWC/Z), and 

conventional data and 3D IWC estimates replacing Z observations where possible 535 

(CNV+IWC/Z). For the two stratiform cases in the summers of 2017 and 2021 and the one 

convective case in the summer of 2017, a rather small horizontal observation localization 

length-scale of 8 km and a lower limit of -1.15 in log10log(LWC) and log10log(IWC) yielded the 

best deterministic and ensemble first-guesses. Thus, best first guess of precipitation forecasts 

are achieved when the influence of the observed microphysical estimates on the model state 540 

is rather small in terms of observation localization length-scale and lower data limit, possibly 

due to discrepancies between model and true microphysics. A rather small observation error 

standard deviation of 0.25 in log10log(LWC) and log10log(IWC) was most successful. The best 

values for the other DAPs differed for LWC and IWC: vertical localization length-scales were 

0.2 in logarithm of pressure for LWC and 0.5 in logarithm of pressure for IWC; best superobbing 545 

window sizes were 20 km for LWC and 10 km for IWC; the minimum number of valid values in 

the superobbing window was three observations for LWC and 50 % valid values for IWC.  

The LWC assimilation (CNV+LWC/Z) with the best performing DAP setting with respect to first-

guess QPF quality improved the first-guesses for most precipitation cases and accumulation 

thresholds compared to the assimilation of Z alone (CNV+Z),  configuration, while the best-550 

performing DAP setting for IWC deteriorated the results, especially for the 2017 convective 

case, except for the stratiform case in 2021. The latter may be due to the radial resolution 

increase in the DWD volume scans from one kilometer to 0.25 km in spring 2021. The higher 

resolution improves the specific differential phase KDPKDP estimation as part of the hybrid IWC 

retrieval, because more successive radar bins can be used for a given KDPKDP window size. 555 

One reason for the poor performance of the IWC assimilation especially for the 2017 

convective case, besides possible deficiencies in the model’s ice module, may be the fact that 

the IWC retrieval was adjusted developed for snowfall but not for hail or graupel likely being 

present during intense convective summer precipitation in Germany. Interestingly, the LWC 

assimilation led to consistent improvements for convective situations, despite a retrieval not 560 

adapted to hail or graupel either. The application of a higher co-polar cross-correlation 
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coefficient ρHVRHOHV threshold below the melting layer for filtering may have masked radar 

pixels contaminated with hail or graupel.  

In general, the best first-guess precipitation forecasts were obtained when all radar data sets 

(i.e., Z, LWC, and IWC) were assimilated together (CNV+LWC+IWC+Z).  565 

Nine-hour forecasts initiated with the CNV+LWC/Z configuration using the best DAP setting 

with respect to first-guess QPF quality slightly outperformed the assimilation of Z data alone 

(CNV+Z)  configuration in terms of deterministic Fraction Skill Score FSS on average and for 

most forecast lead times with the best results for the 2017 convective case. The same applies 

to the assimilation of IWC (CNV+IWC/Z), however, the mean FSS mostly deteriorated for the 570 

convective case compared to the CNV+Z configuration, but was systematically improved over 

most of the forecast time for the high-resolution 2021 stratiform case. Forecasts initiated with 

the assimilation of all radar data sets (CNV+LWC+IWC+Z) yielded the best overall FSS. 

Furthermore, the assimilation of the LWC and/or IWC estimates (CNV+LWC/Z, CNV+IWC/Z, 

and CNV+LWC+IWC+Z) generally improved the mean frequency bias FBI over the 575 

assimilation of Z alone (CNV+Z)  configuration for most forecast hours. 

We used DWD’s standard configuration of KENDA, which only produces microphysical 

analysis increments in cloud water mixing ratio and specific humidity, i.e., not all available 

hydrometeor species (e.g., rain, cloud ice, and graupel mixing ratios) are updated individually. 

This setting was chosen at DWD to optimize the assimilation impact of Z (personal 580 

communication with Klaus Stephan, DWD). Thus, it remains to be explored how changes in 

the updated (microphysical) variables change precipitation forecasts when polarimetric 

information contained in microphysical retrievals is assimilated. For example, it should be 

investigated if the update of the rain mixing ratio via cross-correlations in the first-guess 

ensemble from LWC observation increments or the update of ice species (e.g., snow and/or 585 

cloud-ice mixing ratios) via cross-correlations from IWC innovations would yield improved 

forecasts.  

Our study presented the benefits from the assimilation of state-of-the-art polarimetric 

microphysical retrievals below and above the melting layer adjusted for pure rain and snowfall, 

respectively, in a convective-scale NWP system in Germany. The results revealed only limited 590 

benefits with the assimilation of IWC retrievals in convective precipitation. Since the retrievals 

are based on assumptions valid for snow but not for graupel or hail, such as e.g. the inversely 

proportional relationship between density and size of hydrometeors, the potential presence of 

graupel and/or hail in convection may be at least partly responsible. Accordingly, the 

development of more adequate retrieval algorithms for convective cores constitutes one of the 595 

next steps to further improve the exploitation of ice microphysical retrievals for radar data 

assimilation. 
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Appendices 

Appendix A: Local Ensemble Transform Kalman Filter  

The Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007) uses an ensemble of 600 

background model states each of dimension N 

{𝒙𝑘
𝑏,𝑚: 𝑚 = 1, 2, … , 𝑀} (A1) 

at time 𝑡𝑘, with M the ensemble size, resulting from the forward integration of an ensemble of 

analyses 

{𝒙𝑘−1
𝑎,𝑚 : 𝑚 = 1, 2, … , 𝑀} (A2) 605 

at time 𝑡𝑘−1. In the following formulations we refer to time step 𝑡𝑘 and drop the time index for 

simplicity. The mean and covariance matrix associated with the background ensemble are 

given by 

�̅�𝑏 = 𝑀−1 ∑ 𝒙𝑏,𝑚𝑀
𝑚=0   (A3) 

and 610 

𝐏b = (𝑀 − 1)−1𝐗b(𝐗b)𝑇, (A4) 

with 𝐗b a 𝑁 × 𝑀-matrix the columns of which are the perturbations of the individual background 

ensemble members from the respective background ensemble mean as 

𝐗b =  [
𝑥𝑏,𝑛=0,𝑚=0, − 𝑥

𝑏,𝑛=0
⋯ 𝑥𝑏,𝑛=0,𝑚=𝑀 − 𝑥

𝑏,𝑛=0

⋮ ⋱ ⋮

𝑥𝑏,𝑛=𝑁,𝑚=0 − 𝑥
𝑏,𝑛=𝑁

⋯ 𝑥𝑏,𝑛=𝑁,𝑚=𝑀 − 𝑥
𝑏,𝑛=𝑁

]. (A5) 

In the LETKF analysis, an ensemble of analyses such as in Eq. (A2) is constructed at time 𝑡𝑘 615 

such that the associated ensemble mean and covariance matrix are given by 

�̅�𝑎 = 𝑀−1 ∑ 𝒙𝑎,𝑚𝑀
𝑚=0  (A6) 

and  

𝐏a = (𝑀 − 1)−1𝐗a(𝐗a)𝑇, (A7) 

with the columns of the 𝑁 × 𝑀-matrix 𝐗a, like 𝐗b, the perturbations of the individual analysis 620 

ensemble members from their respective analysis ensemble mean. The analysis increment is 

determined in the M-dimensional subspace spanned by the background ensemble 

perturbations or columns of 𝐗b by minimizing the cost function 

𝐽(𝒘) = (𝑀 − 1)𝒘𝑇𝒘 + (𝒚𝑜 − 𝐻(�̅�𝑏 + 𝐗b𝒘))
𝑇

𝐑−1(𝒚𝑜 − 𝐻(�̅�𝑏 + 𝐗b𝒘)). (A8) 

Here, the vector 𝒘 ∈ 𝑅𝑀 determines a model state 𝒙 through a linear combination of the 625 

background ensemble perturbations via 
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𝒙 = �̅�𝑏 + 𝐗b𝒘. (A9) 

𝒚𝑜 in Eq. (A8) denotes the P-dimensional observation vector, the 𝑃 × 𝑃-matrix 𝐑 is the 

corresponding covariance matrix, and 𝐻 is the observation operator. In the LETKF, 𝐻 is 

linearized about the background ensemble mean as 630 

𝐻(�̅�𝑏 + 𝑿𝑏𝒘) ≈ �̅�𝑏 + 𝐘b𝒘 (A10) 

with �̅�𝑏 the ensemble mean of the background ensemble in observation space and 𝐘b the 

corresponding 𝑃 × 𝑀-matrix of observation-background ensemble perturbations. Applying the 

linearization in the cost function formulation in Eq. (A8) yields 

𝐽∗(𝒘) = (𝑀 − 1)𝒘𝑇𝒘 + (𝒚𝑜 − �̅�𝑏 + 𝐘b𝒘)
𝑇

𝐑−1(𝒚𝑜 − �̅�𝑏 + 𝐘b𝒘), (A11) 635 

and the minimum of 𝐽∗ can be explicitly calculated due to its formulation in the low-dimensional 

ensemble space. We yield the mean and covariance matrix in ensemble space 

�̅�𝑎 = �̃�a(𝐘b)
T

𝐑−1(𝒚𝑜 − �̅�𝑏)  (A12) 

and 

�̃�a = ((𝑀 − 1)𝐈 + (𝐘b)T𝐑−1𝐘b)−1, (A13) 640 

and the corresponding mean and covariance matrix in the full N-dimensional model space 

�̅�𝑎 = �̅�𝑏 + 𝐗𝑏�̅�𝑎 = �̅�𝑏 + 𝐗b�̃�a(𝐘b)
T

𝐑−1(𝒚𝑜 − �̅�𝑏) (A14) 

and 

𝐏a = 𝐗b�̃�a(𝐗b)T. (A15) 

Thus, the analysis ensemble mean �̅�𝑎 is calculated by adding to the background ensemble 645 

mean �̅�𝑏 the innovation or observation increment 𝒚𝑜 − �̅�𝑏 weighted by the Kalman gain 𝐊 =

𝐗b�̃�a(𝐘b)
T

𝐑−1. The individual analysis ensemble members are determined using a symmetric 

square root 

𝐗a = 𝐗b𝐖a (A16) 

with 650 

𝐖a = ((𝑀 − 1)�̃�a)1/2 (A17) 

such that 

𝒙𝑎,𝑚 = �̅�𝑏 + 𝐗b(�̅�𝑎 + 𝐖m
a ) (A18) 

with 𝑾𝑚
𝑎  the m-th column of 𝐖a.  

Appendix B: Fraction Skill Score (FSS) 655 
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The Fraction Skill Score (FSS; Roberts and Lean, 2008) is calculated via projection of the 

forecasted and observed precipitation accumulations onto the verification grid (the RADOLAN 

grid reduced to three kilometers to better fit the model data of about 2.2 km horizontal 

resolution). The RADOLAN data are averaged over nine grid points, while the model data are 

selected by the nearest-neighbor method. The projected fields of observations 𝑃𝑂 and model 660 

first-guess 𝑃𝑀 are converted to binary fields 𝐼𝑂 and 𝐼𝑀 for the chosen precipitation accumulation 

thresholds 𝑞 

𝐼𝑂,(𝑞) = {
1    𝑓𝑜𝑟 𝑃𝑂 ≥ 𝑞
 0   𝑓𝑜𝑟 𝑃𝑂 < 𝑞

   (B1) 

and 

𝐼𝑀,(𝑞) = {
1   𝑓𝑜𝑟 𝑃𝑀 ≥ 𝑞
0   𝑓𝑜𝑟 𝑃𝑀 < 𝑞

.  (B2) 665 

Fractions of surrounding points within squares of 𝑛 × 𝑛 data points in the binary fields 𝐼𝑂,(𝑞) 

and 𝐼𝑀,(𝑞), 𝐹𝑂,(𝑛,𝑞)and 𝐹𝑀,(𝑛,𝑞), that have a value of one are calculated for each verification grid 

point. Finally, the FSS for a window size n and precipitation threshold q is computed as 

𝐹𝑆𝑆(𝑛,𝑞) = 1 −
𝑀𝑆𝐷(𝑛,𝑞)

𝑀𝑆𝐷(𝑛,𝑞),𝑟𝑒𝑓
  (B3) 

with the mean squared deviation (MSD) for the observation and forecast fractions 670 

𝑀𝑆𝐷(𝑛,𝑞) =
1

𝑁
∑ [𝐹𝑂,(𝑛,𝑞),𝑖−𝐹𝑀,(𝑛,𝑞),𝑖]

2𝑁
𝑖=1   (B4) 

and the total number of verification grid points N. The reference MSD 

𝑀𝑆𝐷(𝑛,𝑞),𝑟𝑒𝑓 =
1

𝑁
∑ 𝐹𝑂,(𝑛,𝑞)𝑖

2 + 𝐹𝑀,(𝑛,𝑞)𝑖
2𝑁

𝑖=1   (B5) 

represents the largest possible MSD from the observation and forecast fractions. The FSS 

shows values between zero and one with the higher values the better. In this paper, n is chosen 675 

to be five corresponding to a 15 km window. 

Appendix C: Brier Skill Score (BSS) 

The Brier Score (BS; Wilks, 2019) is a measure for the accuracy of probabilistic forecasts and 

takes the forecast ensemble into account via 
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𝐵𝑆(𝑞) =
1

𝑁
∑ [𝑝(𝑞),𝑖 − 𝐼𝑂,(𝑞),𝑖]

2𝑁
𝑖=1   (C1) 680 

with 𝑝(𝑞),𝑖 the fraction of ensemble members within the ensemble exceeding the threshold 𝑞 at 

the ith verification grid point. The Brier Skill Score BSS for a threshold 𝑞 is then calculated as 

𝐵𝑆𝑆(𝑞) = 1 −
𝐵𝑆

𝐵𝑆𝑟𝑒𝑓
  (C2) 

with 𝐵𝑆𝑟𝑒𝑓 the Brier score of a reference ensemble forecast (here forecasts resulting from 

configuration CNV). The BSS shows positive values if the probabilistic QPF fits the 685 

observations better than the reference QPF and vice versa. 

Appendix D: Frequency Bias (FBI) 

The Frequency Bias (FBI)  

 𝐹𝐵𝐼(𝑞) =
𝑎(𝑞)+𝑏(𝑞)

𝑎(𝑞)+𝑐(𝑞)
 (D1) 

with 𝑎(𝑞) the total number of verification grid points that exceed threshold 𝑞 in 𝑃𝑂 and 𝑃𝑀, 𝑏(𝑞) 690 

the total number of points where 𝑞 is exceeded in 𝑃𝑀 but not in 𝑃𝑂, and 𝑐(𝑞) the total number 

of points for which 𝑞 is not exceeded in 𝑃𝑀 but in 𝑃𝑂. The FBI shows values below/above one 

in the case of under/overforecasted number of threshold exceedances.  
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Figure 1: German polarimetric C-band radar network operated by DWD. Crosses indicate locations of 
radar stations in Emden (EMD), Boostedt (BOO), Rostock (ROS), Hannover (HNR), Ummendorf (UMD), 
Prötzel (PRO), Essen (ESS), Flechtdorf (FLD), Dresden (DRS), Neuhaus (NEU), Neuheilenbach (NHB), 
Offenthal (OFT), Eisberg (EIS), Türkheim (TUR), Isen (ISN), Memmingen (MEM), and Feldberg (FBG), 
circles indicate approximate ranges of 150 km around radars; blue color indicates polarimetric and red 
color indicates non-polarimetric radars. 
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Figure 2: Visualization of the superobbing process from (a) a PPI of estimated LWC (Eq. (2)) below and 
IWC (Eq. (3)) above the melting layer (approximate upper and lower boundaries of the melting layer 
indicated by violet rings) at 1.5 degrees of the DWD radar NHB (see Fig. 1) for the stratiform precipitation 
case S2021 at 14 July 2021 16 UTC to (b) the corresponding field of superobbed (with the pre-selected 
settings winsize_avg = 10 km, lower_lim = -2.3, and minnum_vals = 3) log(LWC) and log(IWC) (colored 
dots) and superobbed reflectivity Z (grey squares), where no LWC/IWC estimates are available (e.g., 
within the melting layer). 

Figure 3: Exceedances of hourly rain accumulation thresholds 0.5 (black curves), 1.0 (green), 2.0 (blue), 
and 4.0 mm h-1 (yellow) in the RADOLAN data (hourly accumulations) for the rainfall cases (a) C2017, 
(b) S2017, and (c) S2021 as percentages of the total number of threshold exceedances in all three 
rainfall cases and thresholds considered. The fractions are used to determine weights for calculations 
of weighted medians of FSS and BSS (e.g., in Fig. 4), and for the calculation of the univariate measure 
JQS (see Eq. (5) in Sect. 4.4). 



 

34 

 

 1020 

 

Figure 4: Weighted medians of differences in first-guess deterministic FSS (first and third panel rows) 
and BSS (second and fourth panel rows) between the CNV+LWC/Z (left block) or CNV+IWC/Z (right 
block) configurations with different sampled DAP settings (S1-01 to S1-12 and S2-01 to S2-10 in 
Table 2) and the CNV+Z configuration for accumulation thresholds 0.5, 1.0, 2.0, and 4.0 mm h-1 and the 
three rainfall periods considered (three left columns within each block). The right most column in each 
block shows the weighted median over all cases considered. Weights are determined by threshold 
exceedances in the RADOLAN data (see Fig. 3). Green color indicates improvements compared to the 
CNV+Z configuration, grey to dark purple color indicates degradations. 
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Figure 5: (a) Comparison of the investigated DAP values for obsloc_hor, obsloc_ver, obserr_std, 
winsize_avg, lower_lim, and minnum_vals (Table 1) in terms of the univariate measure JQSv (see Eq. 
(5) in Sect. 4.4) for the LWC (blue bars) and IWC (orange bars) assimilation with the DAP settings from 
the first DAP settings (S1-01 to S1-12 in Table 2). In (b), all 22 DAP settings (S1-01 to S1-12 and S2-
01 to S2-10 in Table 2) plus the pre-selected DAP setting (setting S-pre in Table 1) are compared with 
each other in terms of the univariate measure JQSc (see Eq. (5) in Sect. 4.4) for the LWC (black bars) 
and IWC (red bars) assimilation considering all rainfall cases together. Panels (c), (d), and (e) are like 
panel (b), but with the JQSc calculated for the individual rainfall cases C2017, S2017, and S2021, 
respectively. 
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Figure 6: Time series of the difference in first-guess deterministic FSS and BSS for a threshold of 
0.5 mm h-1 between the CNV+LWC/Z (left panel column) or CNV+IWC/Z (right panel column) 
configurations and the CNV+Z configuration using the found best-performing DAP settings for LWC and 
IWC (S2-06 and S1-02, see Table 2) with respect to first-guess quality in hourly assimilation cycles for 
the precipitation cases (a)-(d) C2017, (e)-(h) S2017, and (i)-(l) S2021. Green shading indicates 
improvements with respect to CNV+Z, grey shading indicates deteriorations.  
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Figure 7: Comparison of different radar data set configurations in terms of the univariate measure JQSc 
(see Eq. (5) in Sect. 4.4). Configurations assimilating LWC and/or IWC with the found best DAP settings 
(S2-06 and S1-02 in Table 2) in terms of first-guess QPF quality (a) instead of Z where possible 
(alternative Z assimilation) in configurations CNV+LWC/Z, CNV+IWC/Z, and CNV+[LWC+IWC]/Z 
(lower, middle, and upper bars), and (b) together with Z (parallel Z assimilation) in configurations 
CNV+LWC+Z, CNV+IWC+Z, and CNV+LWC+IWC+Z (lower, middle, and upper bars) are compared. 
Black bars indicate the JQSc calculated over all three rainfall cases, and blue, orange, and green bars 
indicate the JQSc calculated over the individual cases C2017, S2017, and S2021, respectively. 
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Figure 8: Vertical profiles of differences in standard deviations (SD) with respect to the CNV 
configuration (middle column) and of mean bias deviations (MBD; right column) of first-guesses of 
temperature (upper row), relative humidity (middle row), and u-wind (lower row) obtained from hourly 
assimilation cycles with the assimilation configurations CNV (black dotted), CNV+Z (black solid), 
CNV+LWC/Z (red), CNV+IWC/Z (yellow), and CNV+LWC+IWC+Z (blue curves) from conventional 
observations over Germany. The number of observations contributing to the SD and MBD calculations 
are shown in the left column (grey solid curves). All rainfall cases are considered and the found best 
DAP settings for LWC and IWC (S2-06 and S1-02 in Table 2) in terms of first-guess QPF quality are 
used for the LWC and IWC assimilations.  
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Figure 9: Left panel column: time series of the deterministic FSS for a 0.5 mm h-1 threshold of nine-hour 
forecasts initiated every third hour from hourly assimilation cycles with the CNV and CNV+Z 
configurations (grey and black curves) as means over all precipitation cases (upper row), over only the 
2017 convective case C2017 (second row), over only 2017 stratiform case S2017 (third row), and over 
only the 2021 stratiform case S2021 (lower row). Middle column: corresponding deviations in mean 
deterministic FSS from the CNV+Z configuration of the CNV+LWC/Z (red curves), CNV+IWC/Z (yellow 
curves), and CNV+LWC+IWC+Z (blue curves) configurations using the found best DAP settings for 
LWC and IWC assimilations (S2-06 and S1-01 in Table 2) in terms of first-guess QPF quality. Right 
column: corresponding mean deterministic FBI. 
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Figure 10: Mean standard deviations (SD; upper panel row) and mean bias deviations (MBD; lower 
panel row) of forecasted 2m temperature (left panel column), 2m relative humidity (middle panel 
column), and 10m u-wind (right panel column) from conventional observations in Germany as functions 
of the forecast lead time. Means are calculated over nine-hour forecasts initiated every third hour from 
hourly assimilation cycles with the assimilation configurations CNV (grey curves), CNV+Z (black curves), 
CNV+LWC/Z (red curves), CNV+IWC/Z (yellow curves), and CNV+LWC+IWC+Z (blue curves) using 
the found best DAP settings for the LWC and IWC assimilations (S2-06 and S1-02 in Table 2) in terms 
of first-guess QPF quality, and taking all rainfall cases C2017, S2017, and S2021 into account. 
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DAP 
values 

obsloc_ho
r (km)LH 

(km) 

obsloc_ve
r (ln(p))LV 

(ln(p)) 

obserr_stdO
E 

winsize_av
g (km)LS 

(km) 

lower_limL
L 

minnum_valsM
V 

Pre-
selected 
(S-pre) 16 h.d. 0.50 10 -2.30 3 

Modificatio
n 1 

8 0.2 0.25 5 -1.15 25% 

Modificatio
n 2 

32 0.5 1.00 20 -4.60 50% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Pre-selected and modified (modifications 1 and 2) values for the DAPs obsloc_hor (horizontal 
observation localization length-scale in km), obsloc_ver (vertical localization length-scale in logarithm of 
pressure ln(p)), obserr_std (observation error standard deviation for log(LWC) and log(IWC)), 
winsize_avg (superobbing window size in km) , lower_lim (lower limit of the log(LWC) and log(IWC) 
data), and minnum_vals (minimum number of valid values for superobbing).Pre-selected and modified 
(modifications 1 and 2) values for the DAPs LH (horizontal observation localization length-scale in km), 
LV (vertical localization length-scale in logarithm of pressure ln(p)), OE (observation error standard 
deviation for log(LWC) and log(IWC)), LS (superobbing window size in km) , LL (lower limit of the 
log(LWC) and log(IWC) data), and MV (minimum number of valid values for superobbing). 
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DAP 
settings 

obsloc_hor 
(km)LH 

(km) 

obsloc_ver 
(ln(p))LV 

(ln(p)) 

obserr_stdOE winsize_avg 
(km)LS (km) 

lower_limLL minnum_valsMV 

S1-01 16 h.d. 1.00 5 -2.30 50 % 

S1-02 8 0.5 0.25 10 -1.15 50 % 

S1-03 8 0.5 0.25 20 -1.15 3 

S1-04 32 0.5 0.50 5 -2.30 25 % 

S1-05 8 0.2 0.25 10 -4.60 50 % 

S1-06 16 h.d. 0.50 20 -1.15 25 % 

S1-07 32 0.2 1.00 5 -1.15 3 

S1-08 8 0.2 0.50 20 -2.30 3 

S1-09 32 0.5 0.50 5 -4.60 25 % 

S1-10 16 h.d. 1.00 10 -4.60 25 % 

S1-11 32 h.d. 1.00 20 -4.60 3 

S1-12 16 0.2 0.25 10 -2.30 50 % 

S2-01 16 0.2 1.00 20 -1.15 50 % 

S2-02 16 0.2 0.25 10 -2.30 3 

S2-03 8 h.d. 1.00 20 -1.15 3 

S2-04 16 0.2 1.00 20 -2.30 50 % 

S2-05 16 h.d. 0.25 10 -2.30 50 % 

S2-06 8 0.2 0.25 20 -1.15 3 

S2-07 8 0.2 1.00 10 -1.15 3 

S2-08 8 h.d. 0.25 10 -1.15 50 % 

S2-09 8 h.d. 1.00 20 -2.30 50 % 

S2-10 16 h.d. 0.25 10 -2.30 3 

 

 

 

 

Table 2: First and second near-random sample of DAP settings (S1-01 to S1-12 and S2-01 to S2-10) 
generated with Latin Hypercube Sampling from all the DAP values in Table 1 and with a reduced number 
of DAP values from Table 1 based on conisderationconsideration of the univariate measure JQSv (see 
Eq. (5) in Sect. 4.4) calculated with the first sample, respectively.  
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