Understanding offshore high-ozone events during TRACER-AQ 2021 in Houston: Insights from WRF-CAMx photochemical modeling

Wei Li¹, Yuxuan Wang¹, Xueying Liu¹, Ehsan Soleimanian¹, Travis Griggs¹, James Flynn¹, and
 Paul Walter²

¹Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA

7 ²Department of Mathematics, St. Edward's University, Austin, TX, USA

8 *Corresponding author: Yuxuan Wang (ywang246@central.uh.edu)*

9 Abstract. Mechanisms for high offshore ozone (O₃) events in the Houston area have not been systematically

10 examined due to limited O₃ measurements over water. In this study, we used the datasets collected by three boats

11 deployed in Galveston Bay and the Gulf of Mexico during the Tracking Aerosol Convection Interactions

12 ExpeRiment/Air Quality (TRACER-AQ) field campaign period (September 2021) in combination with the Weather

13 Research and Forecasting (WRF) coupled Comprehensive Air quality Model with Extensions (CAMx) modeling

14 system (WRF-CAMx) to investigate the reasons for high offshore O₃. The model can capture the spatiotemporal

variability of daytime (10:00-18:00) O_3 for the three boats (R > 0.7) but tends to overestimate O_3 by ~10 ppb on

16 clean days and underestimate O_3 by ~ 3 ppb during high- O_3 events. The process analysis tool in CAMx identifies O_3

17 chemistry as the major process leading to high O_3 concentrations. The region-wide increase of long-lived VOCs

18 through advection transits O_3 formation to be more sensitive to NO_x , leading to more O_3 production under a NOx-

limited regime. In addition, the VOC-limited O₃ formation is also boosted along western Galveston Bay and the

20 Gulf coast under high-NO_x conditions brought by the northeasterly winds from the Houston Ship Channel. Two case

21 studies illustrate that high offshore O₃ events can develop under both large- and meso-scale circulations, indicating

22 both the regional and local emissions need to be stringently controlled. Wind conditions are demonstrated to be

23 important meteorological factors in such events, so they must be well represented in photochemical models to

24 forecast air quality over the urban coastal regions accurately.

25 **1. Introduction**

26 The greater Houston area has been designated as ozone (O₃) nonattainment by U.S. Environmental Protection

27 Agency (EPA) under the National Ambient Air Quality Standards (NAAQS) standards (Nonattainment Areas for

28 Criteria Pollutants (Green Book), 2023). O_3 is a secondary criteria pollutant whose formation is non-linearly

29 dependent on the relative abundance of its precursors: volatile organic compounds and nitrogen oxides. Houston

30 experiences significant anthropogenic emissions of these precursors, mainly from transportation and petrochemical

facilities along the Houston Ship Channel (Leuchner and Rappenglück, 2010; Soleimanian et al., 2022). In addition,

32 due to its unique location at the land-water interface, high O_3 events in Houston are known to be related to complex

- 33 meteorological conditions with the interactions between synoptic and mesoscale circulations. Dry and polluted
- 34 continental air masses brought by northerly winds after the cold front passage are often linked with O_3 exceedances
- 35 (Darby, 2005; Rappenglück et al., 2008; Ngan and Byun, 2011). Extremely high O₃ can occur under a land-sea
- 36 breezes recirculation, in which the land breeze in the morning transports the pollution-laden air toward Galveston
- 37 Bay or the Gulf of Mexico, followed by the return of the aged pollutants in the afternoon by the onshore bay or sea
- breeze (Banta et al., 2005; Caicedo et al., 2019; Li et al., 2020). Such high-O₃ events in coastal urban regions are
- 39 challenging for air quality models to capture as the physical and chemical processes of O_3 over both land and water
- 40 need to be well-constrained (Caicedo et al., 2019; Bernier et al., 2022).
- 41 To understand the interplay among meteorology, emissions, and chemistry, various field campaigns have been
- 42 deployed in the Houston area, such as the Texas Air Quality Study in 2000 and 2006 and the Deriving Information
- 43 on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-
- 44 AQ) in 2013. A common goal of these field campaigns was to evaluate the predictive ability of numerical weather
- 45 and air quality models using the collected observations (Misenis and Zhang, 2010; Yu et al., 2012; Li and
- 46 Rappenglück, 2014; Mazzuca et al., 2016; Pan et al., 2017). Although these studies greatly improve our
- 47 understanding of the reasons for high ozone events in Houston, they mainly focused on the onshore area due to the
- 48 absence of offshore measurements. Higher levels of O₃ over water bodies than the adjacent land have been observed
- 49 in other coastal regions with poor air quality, such as the Chesapeake Bay and Lake Michigan, due to several factors
- 50 including but not limited to the offshore advection of polluted air masses, photochemical productions from local
- 51 (e.g., marine traffic) and aged land emissions, shallow marine planetary boundary layers (PBL), the lack of NO_x
- 52 titration, and low dry deposition rates (Dye et al., 1995; Goldberg et al., 2014; Sullivan et al., 2019; Abdi-Oskouei et
- al., 2022; Dreessen et al., 2023). Air quality modeling evaluations against these observations show difficulties in
- 54 numerical prediction of O₃ over water with an overall positive bias for low O₃ and negative bias for high O₃ due in
- part to the misrepresentation of marine meteorology and PBL (Dreessen et al., 2019; Abdi-Oskouei et al., 2020;
- 56 Dacic et al., 2020; Baker et al., 2023). However, to our knowledge, high O₃ events off the Houston coast in
- 57 Galveston Bay and the Gulf of Mexico have not been systematically examined. The predictive ability of
- 58 photochemical models in capturing such events has yet to be quantified.
- 59 More recently, the Tracking Aerosol Convection Interactions ExpeRiment/Air Quality (TRACER-AQ) field
- 60 campaign revisited the Houston area in September 2021. The campaign implemented a variety of observational
- 61 platforms covering both offshore and onshore locations, such as stationary sites, boats, lidar, ozonesondes, and
- 62 airborne remote sensing. In particular, instruments onboard three boats continuously collected O_3 and
- 63 meteorological data from July to October over Galveston Bay and the Gulf of Mexico, which provides a valuable
- 64 opportunity to understand the reasons driving high O₃ concentrations over water and the O₃ non-attainment at air
- 65 quality monitors near the Houston coastline. Furthermore, the Texas Commission on Environmental Quality
- 66 (TCEQ) has created a new emission inventory for its 2019 state implementation plan (SIP) modeling platform to
- 67 conduct photochemical simulations using the Comprehensive Air quality Model with Extensions (CAMx) driven by
- the Weather Research and Forecasting (WRF) meteorology. Using the established new emission inventory and

- 69 observations, an evaluation of offshore O₃ prediction can provide insights into model deficiencies over water and
- 70 help improve air quality forecasting in coastal urban regions.

71 This study aims to improve our understanding of high offshore O₃ concentrations in the Houston coastal zone during

the TRACER-AQ 2021 field campaign based on observations and WRF-CAMx modeling, a regulatory model used

- 73 by TCEQ. We first evaluate the performance of model simulations of O_3 and then investigate the reasons causing
- high-O₃ events relative to clean days, taking advantage of the process analysis tools from CAMx. Lastly, we present
- 75 two case studies to better understand the development of elevated O_3 over water. Potential sources of model bias are
- 76 also discussed.

77 2. Data and model setup

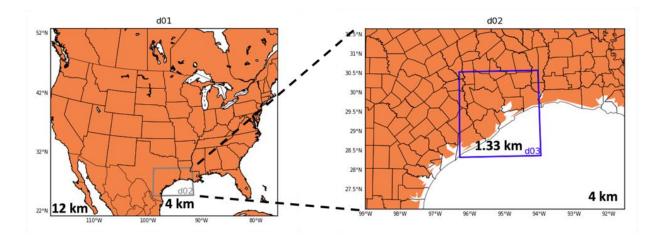
78 **2.1 Meteorological and air quality observations**

79 TCEQ has O₃ and other pollutants routinely measured at the continuous ambient monitoring stations (CAMS) across 80 the Houston region. Some of these stations also observe meteorological variables, such as wind speed and direction, 81 temperature, and relative humidity (RH). These data can be downloaded from the Texas Air Monitoring Information 82 System (TAMIS, last access: 22 September 2023) website. A commercial shrimp boat and a pontoon boat owned by 83 the University of Houston (UH) were operated mainly on the east and west sides of Galveston Bay, respectively. Another commercial boat, the Red Eagle, was docked to the north of Galveston Island and typically traveled up to 84 85 90 km offshore in the Gulf of Mexico and occasionally northward through the Ship Channel to the port of Houston. 86 Automated O_3 sampling instruments were installed on the three boats with a compact weather station measuring 87 temperature, pressure, RH, and wind conditions. The sample inlet was attached to an elevated location on the boats 88 to avoid titration from the boats' exhausts. Details of these devices can be found in Griggs et al. (submitted). In 89 addition, ozonesondes were launched from the pontoon and Red Eagle boats on selected days and locations to 90 investigate the vertical O₃ profiles. All the campaign data can be found on the TRACER-AQ website (https://www-91 air.larc.nasa.gov/cgi-bin/ArcView/traceraq.2021, last access: 22 September 2023).

- 92 During the offshore operational period of July to October, hourly averaged O₃ mixing ratios exceeded 100 ppb
- 93 several times. We identified O₃ exceedance days when offshore boat O₃ observations registered a daily maximum 8-
- hour average (MDA8) O_3 in exceedance of 70 ppb, the current criteria of the NAAQS for O_3 . Six episodes with high
- 95 O_3 were obtained: July 26 28, August 25, September 6 11, September 17 19, September 23 26, and October 6
- 96 9. These episodes are accompanied by at least one CAMS site exceeding the 70 ppb MDA8 O₃ threshold,
- 97 indicating an extensive land-water air mass interaction.

98 2.2 WRF and CAMx model configuration

99 This study used the WRF model v3.9.1.1. We set up three domains with different horizontal resolutions that cover


- 100 the contiguous United States, Southeast Texas, and the Houston-Galveston-Brazoria region, referred to as domains
- 101 d01, d02, and d03, respectively, as shown in Figure 1. The corresponding horizontal resolutions and grid numbers

for d01 – d03 are 12 km \times 12 km (373 \times 310 grids), 4 km \times 4 km (190 \times 133 grids), and 1.33 km \times 1.33 km (172 \times 184 grids), respectively. All domains have identical vertical resolutions with 50 hybrid sigma-eta vertical levels spanning from the surface to 10 hPa. Boundary conditions of the two inner domains were generated from the outer domain.

106 To select the WRF configurations that best represent the monitoring data, we designed eight model experiments with 107 different initial and boundary condition (IC/BC) inputs, microphysics options, PBL schemes, data assimilation 108 method (e.g., observation nudging), and reinitializing techniques. Details of the design and evaluation of each 109 experiment can be found in Liu et al. (2023). Based on the campaign-wide evaluation of the modeled meteorology, 110 the best simulation was used to drive the CAMx model. The model configuration of the best simulation includes the 111 hourly High-Resolution Rapid Refresh (HRRR) meteorological data as IC/BC inputs, the local closure Mellor-112 Yamada-Nakanishi-Niino (MYNN) PBL option (Nakanishi and Niino, 2009), and the Morrison double moment 113 (2M) microphysics scheme (Morrison et al., 2009) with no nudging and reinitializing techniques applied. Other 114 settings used for the WRF simulation include the Monin-Obukhov Similarity surface layer (Foken, 2006), the Noah

115 land surface scheme (Chen and Dudhia, 2001), the Rapid Radiative Transfer Model (RRTM) longwave and

- shortwave radiation schemes (Iacono et al., 2008), and the New Tiedtke cumulus parameterization (Zhang et al.,
- 117 2011).

118

120

121 This study also used the CAMx model v7.10. The three CAMx domains aligned with the WRF grids but had smaller

spatial coverage. The corresponding horizontal resolutions and grid numbers for domains 1-3 are $12 \text{ km} \times 12 \text{ km}$

- 123 $(372 \times 244 \text{ grids}), 4 \text{ km} \times 4 \text{ km} (156 \times 126 \text{ grids}), and 1.33 \text{ km} \times 1.33 \text{ km} (153 \times 162 \text{ grids}), respectively. All$
- 124 domains have identical vertical resolutions with 30 vertical levels from the surface to ~100 hPa. The IC/BC inputs
- for the outmost domain are from the GEOS-Chem (v12.2.1) global simulation with NEI 2011 nitrogen oxides (NO_x)
- emissions scaled down to 2021. The Carbon Bond version 6 revision 5 (CB6r5) was used for gas-phase chemistry,

127 including the inorganic iodine depletion of O₃ over oceanic water (Burkholder et al., 2019). The first-order eddy

128 viscosity (K-theory) diffusion scheme was selected for vertical mixing within the PBL, in which the vertical

129 diffusion coefficients (Kv) were supplied from WRF outputs. Dry deposition is based on the Wesely scheme

130 (Wesely, 1989).

Emission files with 12 km and 4 km spatial resolutions from the preliminary 2019 SIP modeling platform provided 131 132 by TCEQ are used in the simulation. These emissions include anthropogenic emissions, biogenic emissions 133 generated from the Biogenic Emission Inventory System (BEIS), wildfire emissions based on the Fire INventory 134 from NCAR (FINNv2), ship emissions estimated from the Gulfwide Emissions Inventory (GWEI). No lighting 135 emissions are included in the model. Since our domains are smaller than those in the SIP modeling, the original 136 emission files were cropped to match the grid boundaries for CAMx to read properly. In addition, we redistributed 137 the on-road emissions from 4 km to 1.33 km over the Houston area. The 4 km emission fluxes were first 138 disaggregated evenly to the 1.33 km grids and then collected onto major roads using a 1 km rasterized road shapefile 139 to produce on-major-road 1.33 km emissions. Some 1.33 km grid points off the major roads had missing values, 140 which were filled using a smoothing method that averaged eight nearby grid points. The scaling factors for on- and 141 off-major-road emissions were kept in order to maintain the on-road emission budget consistent before and after the 142 spatial redistribution. Finally, total emissions were calculated by adding the 1.33 km on- and off-major-road 143 emissions. The emissions for other sectors were also similarly interpolated to 1.33 km without separating into no- or 144 off-major-road temporary emissions. The redistributed emissions were tested to perform better in capturing the on-145 road distributions than using the Flexi-nesting function in CAMx (Figure S1 and Table S1), which can regrid the 146 emissions on the fly.

147 The simulation was performed for two periods, July 20 - 30 and August 20 -October 13, to cover the six high-O₃

episodes defined in Section 2.1. A 10-day spin-up before each period was applied. Other days in the two periods are

149 considered clean scenarios with low O₃ concentrations. Process analysis, including integrated process rate analysis

150 (IPR), integrated reaction rate analysis (IRR), and chemical process analysis (CPA), was turned on when running the

151 model. IPR contains O₃ change rate from several chemical and physical processes, such as chemistry (CHEM),

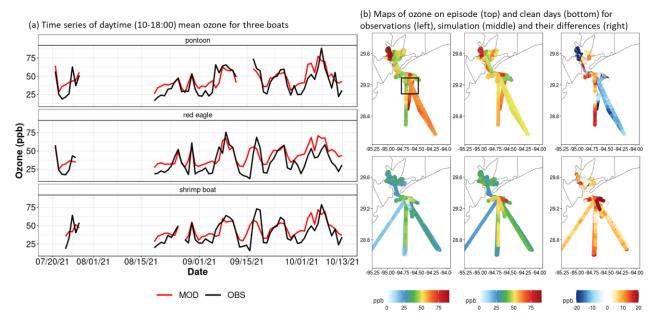
152 horizontal and vertical advection (ADV) and diffusion (DIF), and deposition (DEP). IRR provides detailed

153 information about the reaction rate of all the chemical reactions in the CB6r5 scheme. CPA improves upon IRR by

154 computing parameters useful for understanding O₃ chemistry, such as O₃ production rate and regime. The abundance

and reactivity of ozone precursors determine the ozone production regime, which can be indicated by the loss of

- HO_x radicals (HO_x=OH+HO2) as the termination of ozone chain reactions. Under low NOx conditions, the most
- 157 important HO_x loss is the self-reaction of hydroperoxyl radical (HO₂), producing hydrogen peroxide (H₂O₂), which
- 158 is used to represent NO_x -limited ozone production. In urban areas with high NO_x concentrations, the dominant sink
- 159 for HO_x radicals is the oxidation of nitrogen dioxide (NO₂) by hydroxyl radical (OH), resulting in the production of
- 160 nitric acid (HNO₃). Thus, the O_3 formation regime in the model is determined based on the ratio of H_2O_2 production
- 161 rate from HO₂ self-reaction to HNO₃ production rate from OH reaction with NO₂, in which $P(H_2O_2)/P(HNO_3) < 10^{-10}$


162 0.35 indicates a VOC-limited regime and ≥ 0.35 indicates a NOx-limited regime (Sillman, 1995). There is no 163 transition scheme available in this method.

164 **3. Results**

165 **3.1 Evaluation of O₃ simulations**

166 The time series of the daytime (10:00 - 18:00) mean O₃ at the three boats are shown in Figure 2a, and the evaluation

- 167 statistics are listed in Table 1. The evaluation excludes nighttime data to reduce the effects from land as the boats
- 168 stayed at the dock at night. Indeed, an hourly time series evaluation with nighttime data included (Figure S2 and
- 169 Table S2) shows a larger bias between modeled ozone and boat observations. The spatiotemporal variability of
- 170 daytime O_3 at the three boats is well captured by the model with a correlation coefficient (R) value greater than 0.70.
- 171 Overall, the model overestimates daytime O_3 by 4.57 ppb (11%), 7.82 ppb (22%), and 4.35 ppb (9%) for the
- 172 pontoon boat, Red Eagle, and shrimp boat, respectively. On episode days, high O₃ mixing ratios can be found over
- 173 Galveston Bay and the Gulf of Mexico (Figure 2b). The model captures some of the variability (R=0.42-0.51),
- 174 with negative mean bias (MB) values of ~4.5 ppb (8%) for the pontoon and shrimp boats and a nearly unbiased
- simulation (MB=0.05 ppb) for the Red Eagle boat. While the O₃ variability is better predicted on clean days (R=0.69
- -0.76), the model shows higher values of MB than those on high-O₃ days ranging from 9.15 ppb (29%) to 11.28
- 177 ppb (41%), which drives the overall model overestimation.

179 Figure 2. (a) Time series of daytime (10:00 – 18:00) mean ozone for observations at three boats (black) and simulations

- (red). (b) Maps of observed (left column), simulated (middle column), and their difference (right column) of ozone during
 ozone episodes (top row) and clean days (bottom row). The black box shows the selected offshore region for process analysis
 in the next section.
- 183

- 184 While we did not find any previous efforts modeling offshore O_3 in the Houston area to compare our results, an
- 185 evaluation against onshore measurements can help validate our model performance. The time series of the daytime
- 186 mean O₃ from simulations and observations from CAMS sites are displayed in Figure 3, and the evaluation statistics
- 187 are summarized in Table 2. The model captures the onshore O_3 variability (R=0.79) with an overall overestimation
- 188 of 7.89 ppb (20%), mainly due to the high positive bias of 10.93 ppb (34%) on clean days. This result is comparable
- 189 with the model performance from previous studies focusing on the same area (e.g., Xiao et al., 2010; Pan et al.,
- 190 2015; Kommalapati et al., 2016), which further verifies the reliability of our model settings.

191

Table 1. Daytime (10:00 – 18:00) ozone evaluation metrics at three boats, including the observed and simulated mean values, correlation coefficient (R), mean bias (MB), normalized mean bias (MB), mean absolute error (MAE), and root mean square error (RMSE).

Boat	Period	Observed mean (ppb)	Simulated mean (ppb)	R	MB (ppb)	NMB (%)	MAE (ppb)	RMSE (ppb)
pontoon	all days	41.18	45.76	0.77	4.57	11.12	9.75	11.57
	ozone episode	58.57	54.21	0.51	-4.36	-7.44	8.34	11.31
	clean days	32.06	41.33	0.76	9.27	28.93	10.50	11.71
Red Eagle	all days	34.86	42.69	0.71	7.82	22.45	11.15	13.42
	ozone episode	51.20	51.25	0.42	0.05	0.08	9.71	11.92
	clean days	27.60	38.88	0.69	11.28	40.89	11.80	14.03
shrimp boat	all days	39.99	44.35	0.73	4.35	10.89	9.15	11.47
	ozone episode	57.22	52.22	0.43	-5.00	-8.74	8.88	11.65
	clean days	31.17	40.32	0.69	9.15	29.36	9.28	11.38

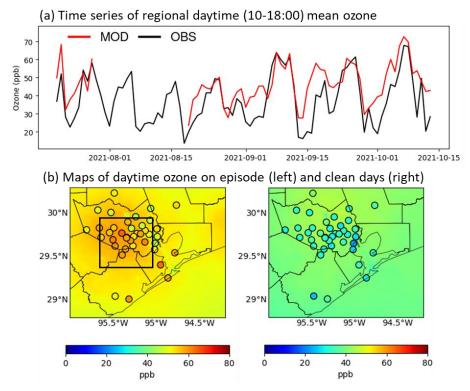


Figure 3. (a) Time series of daytime (10:00 – 18:00) mean ozone for observations at CAMS sites (OBS; black line) and simulations (MOD; red line). (b) Maps of observed (points) and simulated (background) daytime ozone during ozone

199 episodes (left) and clean days. The black box shows the selected onshore region for process analysis in the next section.

200

201 Table 2. Daytime (10:00 – 18:00) ozone evaluation metrics at CAMS sites. The metrics are the same as in Table 1.
--

Sites	Period	Observed mean (ppb)	Simulated mean (ppb)	R	MB (ppb)	NMB (%)	MAE (ppb)	RMSE (ppb)
CAMS	all days	38.87	46.76	0.79	7.89	20.32	9.41	11.72
	ozone episode	54.63	56.17	0.64	1.54	2.81	5.31	7.15
	clean days	31.34	42.28	0.64	10.93	34.88	11.35	13.37

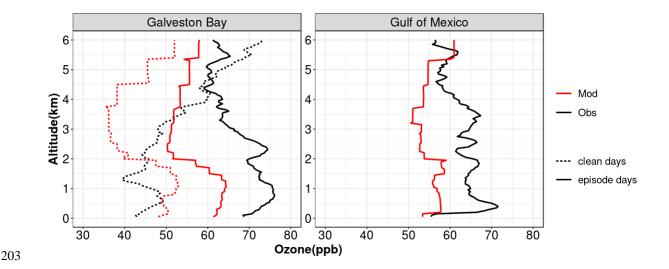


Figure 4. Ozone vertical distribution from the afternoon (12:00-18:00) ozonesonde launches (Obs; black lines) and simulations (Mod; red lines) at Galveston Bay averaged on clean days (dashed lines) and ozone-episode days (solid lines). The Gulf of Mexico only sampled ozone on high-ozone days.

207 We also evaluated the modeled vertical O₃ profiles against the afternoon (12:00-18:00) ozonesondes launched over

208 Galveston Bay and the Gulf of Mexico. During the study period, there were five and nine afternoon launches over

209 Galveston Bay on clean and O₃-episode days, respectively, while the Gulf of Mexico only had five afternoon

210 launches during high-O₃ events. All the ozonesondes available for high-O₃ conditions are from the two episodes of

211 September 6-11 and 23-26. The average O₃ profiles from these launches are shown in Figure 4. Free tropospheric O₃

212 with altitudes greater than 2 km is underestimated for both locations on both clean and O₃-episode days, which

213 indicates the long-range transported O₃ is underrepresented by the model. Over Galveston Bay, the overestimation

of O₃ within the mixed layer below 2 km on clean days changes to underestimation on episode days, and the

underestimation increases from 5 ppb at the surface to 10 ppb near 1 km. The two high-O₃ episodes in September

are featured by a O_3 plume between 2 – 3 km as shown by the O_3 lidar observations in Liu et al. (2023), which is

217 missed by the model as shown by the two example days on September 9 and 24 of each episode over Galveston Bay

(Figure S3). The underestimation of O_3 in the lower free troposphere and the mixed layer on episode days can be

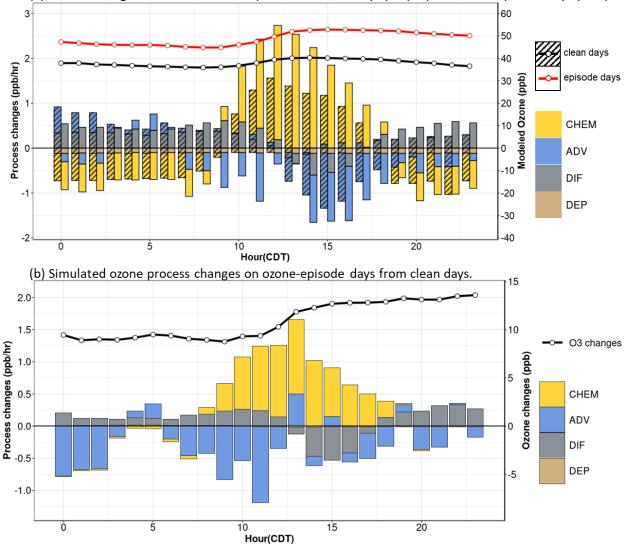
219 partly explained by the missing of the high-O₃ plumes which can be mixed down when the cap inversion is weak

(Liu et al., 2023). There is an approximately 10 ppb underestimation across all altitudes below 4 km over the Gulf of

221 Mexico. An ozonesonde from the Gulf of Mexico on September 9 recorded high ozone up to the top of the marine

222 layer at 370 m, which is missed by the model and leads to the highest bias. This case will be discussed in the case

study of Section 3.3.

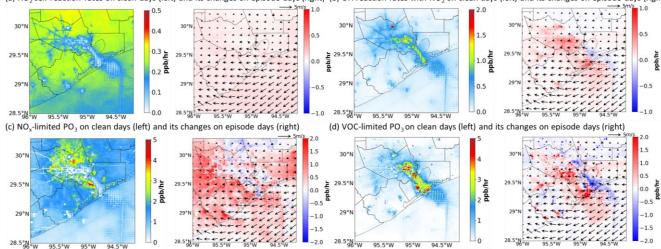

To conclude, despite the overall model bias for vertical O₃ distributions, the acceptable model performance for

offshore and onshore O_3 prediction at the surface indicates that the modeling system can be applied to conduct

226 process analysis and help identify the processes influencing high O₃ concentrations over the water surface.

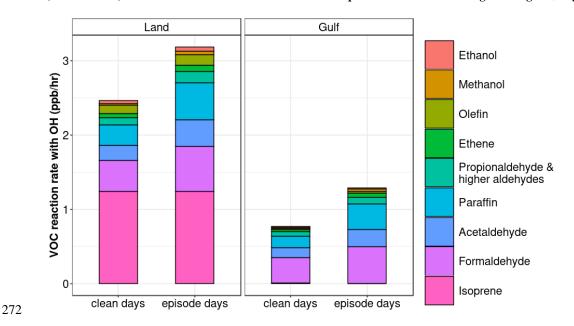
227 **3.2 Process analysis over the Gulf of Mexico**

228



(a) Diurnal changes of simulated ozone process on clean days (stripes) and ozone-episode days (bars).

Figure 5. (a) Diurnal changes of simulated ozone processes over the Gulf of Mexico (black box in Figure 2), including chemistry (CHEM), advection (ADV), vertical diffusion (DIF), and deposition (DEP) on clean days (stripes) and O₃-episode days (bars) integrated across the lowest five model layers. Overlaid lines and points are simulated hourly ozone on clean (black) and O₃-episode (red) days. (b) Process (filled bars) and O₃ (black line) changes during high-O₃ episodes relative to clean days.


- This section examines how the CAMx simulated O_3 processes change during high- O_3 episodes relative to clean
- days. The process analysis is calculated over a subregion of the Gulf of Mexico with high O_3 mixing ratios observed
- (black box in Figure 2b) and integrated across the lowest five model layers comparable to the morning PBL heights
- 237 over water. The diurnal average of each process on clean and O₃ episode days is shown in Figure 5a. Chemistry
- 238 (CHEM) is the major O₃ source during daytime and becomes the primary O₃ sink after sunset. Advection (ADV)
- serves as a pathway for an O₃ sink for most hours, especially during the day, while vertical diffusion (DIF) mostly
- 240 contributes as an O₃ source. Deposition (DEP) constantly removes O₃ from the atmosphere at all hours, yet with a

- 241 marginal value of 0.1 ppb/hr. Similar patterns can be found over the Houston urban area with a much bigger
- 242 magnitude (Figure S4). During high-O₃ events, CHEM is the most important process causing higher O₃ levels over
- water relative to clean days, followed by vertical DIF (Figure 5b). We examined the simulated O_3 vertical profiles
- and PBL heights averaged over the process analysis region on clean and episode days in Figure S5. O₃ across the
- entire profile is higher on episode days than clean days, indicating an elevated O₃ background on high-O₃ days. In
- addition, the profiles of potential temperature observed by the ozonesondes show an inversion layer at ~1.5 km on
- 247 episode days (Figure S6). More vertical diffusion can occur if high O₃ in the inversion layer is mixed down from
- above the PBL when the capping inversion is weak (Liu et al., 2023).
- 249 The CPA analysis can provide more insights into the enhanced O₃ production during high-O₃ events. We first
- investigated the rates of HO_2 self-reaction and OH reaction with NO_2 in Figure 6a-b since they are used by the
- 251 model to determine the O₃ chemical regime. A region-wide increase in the HO₂ self-reaction rate leads to the
- enhancement of PO₃ under a NO_x-limited regime (Figure 6c). Similarly, the frequency of PO₃ under a NOx-limited
- regime also increases regionally (Figure S7). The frequency at each grid cell is the ratio of the number of hours with
- a greater than zero NO_x -limited PO₃ to the total midday hours (11:00 15:00) during the study period. HO₂ is
- formed following the oxidation of VOCs by OH. Thus, we further compared the OH reactivity of VOCs averaged
- from 11:00 to 15:00 on clean and episode days in Figure 7. Isoprene has the highest contribution to the total VOC
- reactivity on the land, but its reactivity does not increase during high-O₃ events. Instead, paraffin, formaldehyde, and
- acetaldehyde are the three VOCs experiencing the highest increase of reaction rate with OH over both land by 0.22
- 259 ppb/hr (84%), 0.19 ppb/hr (45%) and 0.15 ppb/hr (73%) and water by 0.18 ppb/hr (114%), 0.15 ppb/hr (44%) and
- 260 0.11 ppb/hr (82%), respectively, which indicates a higher contribution from regional transport on episode days as
- they are relatively long-lived VOCs capable of traveling long distances. Indeed, the paraffin IPR analysis shows that
- the ADV process dominates the increase of paraffin during morning hours from 06:00 to 11:00 over water (Figure
- 263 S8). The trajectory analysis focusing on two O₃ episodes in September shows air masses were transported from the
- northern/central states (Soleimanian et al., 2023), consistent with the wind directions demonstrated in Figure 6. Such
- wind conditions can also bring NO_x emissions from the Houston Ship Channel downwind towards the western side
- of Galveston Bay and the Gulf of Mexico, causing a higher OH reaction rate with NO₂ (Figure 6b) and enhanced
- 267 PO₃ under a VOC-limited regime (Figure 6d) therein.

(a) HO2 self-reaction rates on clean days (left) and its changes on episode days (right) (b) OH reaction rates with NO2 on clean days (left) and its changes on episode days (right)

Figure 6. Maps of the rate (ppb/hr) of HO₂ self-reaction (a), OH reaction with NO₂ (b), ozone production (PO₃) under NO_x limited (c) and VOC-limited (d) regimes on clean days (left) and its changes under episode days (right) during midday
 (11:00 - 15:00). Black arrows indicate the simulated wind speed and directions averaged on high-O₃ days.

Figure 7. OH reaction rates with different VOCs on clean days and ozone-episode days during 11:00 – 15:00 over the urban area (Land; black box in Figure 3) and the Gulf of Mexico (Gulf; black box in Figure 2).

- 275 In summary, O₃ chemistry is the major process responsible for the high O₃ mixing ratios over the Gulf of Mexico
- during the study period. The VOC species with a long lifetime advected from the northeast increase over land and
- 277 water, leading to a region-wide enhancement of PO₃ under a NOx-limited regime. The downwind transport of NO_x
- from the Ship Channel also expands the VOC-limited area towards the west side of Galveston Bay and the Gulf of
- 279 Mexico, contributing to the higher-than-normal PO₃.

280 3.3 Case studies

- Although the above analysis reveals the general reasons responsible for the high offshore O₃ events, the multiple-
- day average can miss out on some important aspects regarding the causes of these events. In this section, we selected
- two case days, September 9 and October 7, to further demonstrate the development process of high O₃ in detail.

284 **3.3.1 Case study of September 9, 2021**

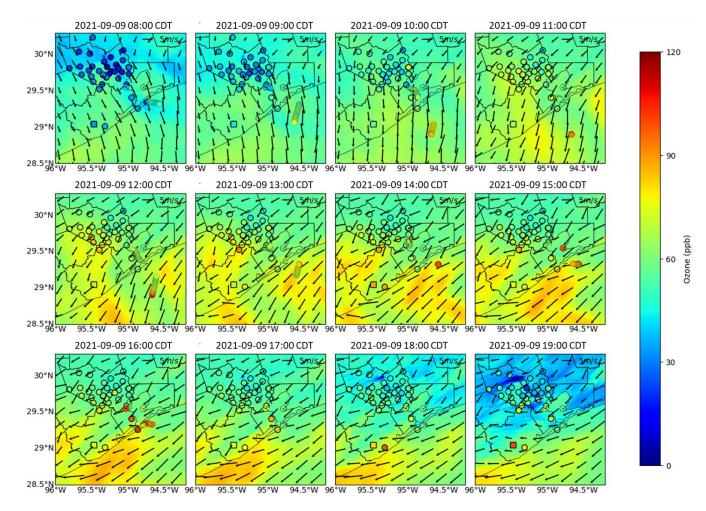


Figure 8. Hourly simulated ozone distributions (color contours) from 08:00 to 19:00 in Central Daylight Time (CDT) on September 9 overlaid with winds (arrows). Onshore and offshore dots indicate ozone from CAMS sites and boat observations. The square mark highlights the Lake Jackson CAMS site.

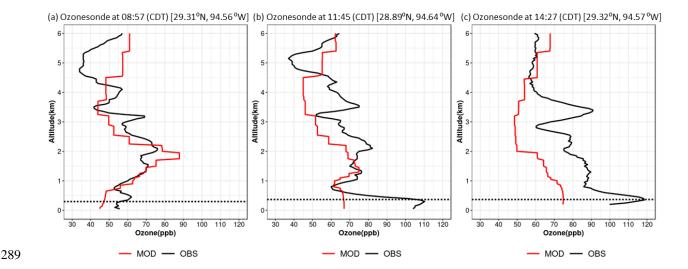


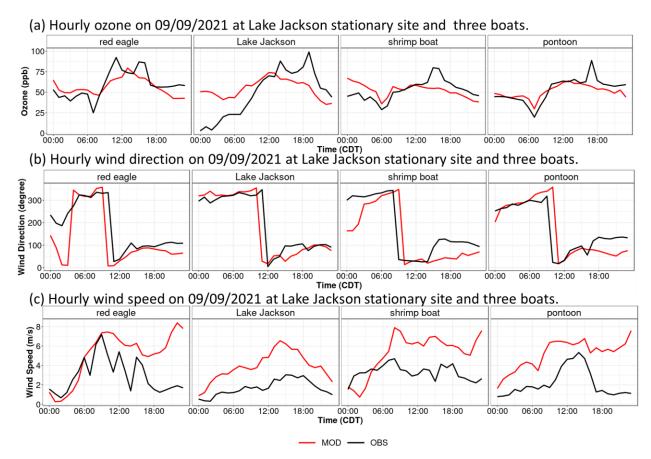
Figure 9. Ozone vertical profiles from ozonesondes (black line) and model simulations (red line) at 08:57 (a), 11:45 (b), and
 14:27 (c) on September 9. Black dash lines indicate the observed boundary layer height.

292 Multiple CAMS sites exceeded the 70 ppb MDA8 O₃ standard on September 9, with the Red Eagle boat sampling 293 the up to 115 ppb 1-minute O_3 in the Gulf of Mexico off the coast of Galveston Island. The hourly progression of the 294 observed and simulated O_3 is displayed in Figure 8, overlaid with modeled winds. In the morning, the study area 295 was dominated by northerly winds bringing the fresh emissions offshore while the pontoon boat was sampling over 296 the west side of Galveston Bay and the Red Eagle boat was traveling in the Gulf of Mexico off the coast of 297 Galveston Island. The ozonesonde launched near 09:00 shows a moderate level of O₃ (~55 ppb) below the shallow 298 marine boundary layer of 200 m overlaid by a residual layer with a maximum O₃ mixing ratio of 63 ppb at ~500 m 299 (Figure 9a). Around 11:00-12:00, with high solar radiation, the seaward-transported emissions formed O_3 through 300 photochemical reactions over water, which was captured by the Red Eagle boat with an hourly peak O_3 mixing ratio 301 of 92 ppb (Figure 10a). Correspondingly, the O_3 vertical profile from the 11:45 balloon launch at the Red Eagle deck 302 recorded the highest O₃ of 110 ppb at ~315 m (Figure 9b).

However, the model missed these peak values because the simulated wind speed is up to 4 m/s higher than

304 observations (Figure 10c), making the plume advect faster. This also leads to a two-hour earlier arrival of the

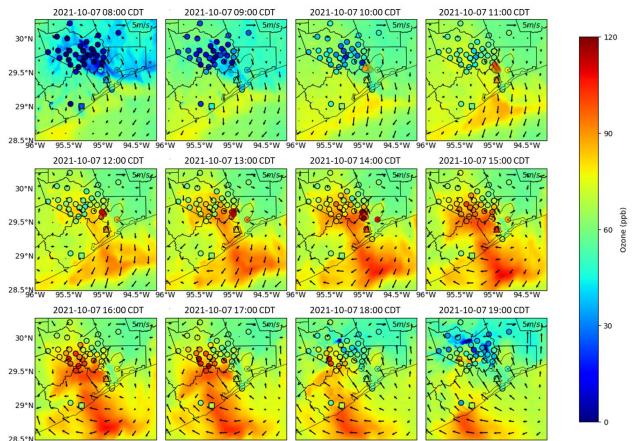
modeled O_3 peak at the Lake Jackson coastal site (square mark in Figure 8) than the observed first peak at 14:00


306 (Figure 10a). At the same time, another plume was brought into the Gulf of Mexico from the east boundary of the

domain as the wind directions changed from north to east. As the Red Eagle boat steered back to Galveston Island,

308 all three boats sampled this plume at 14:00-17:00, resulting in the second O₃ peak at the Red Eagle boat and the only

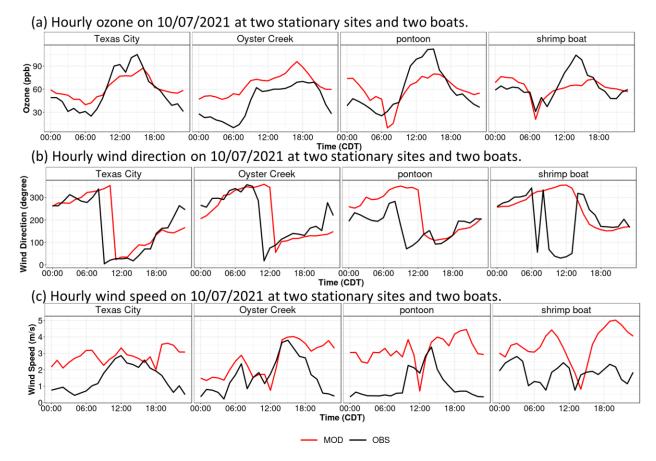
- 309 O₃ peak at the other two boats. The ozonesonde launched at 14:27 from the Red Eagle boat (Figure 9c) observed O₃
- reaching 118 ppb in the plume at ~370 m. This plume was continuously transported southwestward and reached the
- 311 Lake Jackson site at 19:00, producing a second O₃ peak. Due to the overestimated wind speed and the simulated
- 312 wind direction not completely veering to the east as observations (about 100° in Figure 10b), the model failed to
- 313 predict the timing and the magnitude of the O₃ peaks caused by the second plume. The process analysis on this day
- over the Gulf of Mexico (black box in Figure 2) shows ADV, in addition to CHEM, contributes to the enhanced O_3


- levels at 10:00 and 13:00 (Figure S9), which respectively corresponds to the two plumes under northerly and
- 316 easterly winds and highlights the importance of regional transport. This also demonstrates that the contributions
- from ADV to the increase of O₃ can be high on some specific cases, which can be averaged out in our composite
- analysis of Figure 5.
- 319

321 Figure 10. Hourly ozone (a), wind direction (b), and wind speed (c) on September 9 from observations at the Lake Jackson

- 322 CAMS site (square mark in Figure 8) and three boats (black) in comparison with model simulations (red).
- 323
- In summary, the wind direction changes from the north to the east on September 9 caused two O_3 peaks, as captured
- 325 by the Red Eagle boat and the Lake Jackson site. This corresponds to the two simulated ozone plumes shown in the
- maps. One plume is produced locally and the other is transported from the eastern boundary of the domain. The
- 327 model overestimates the wind speed, and the simulated wind direction does not change entirely to easterly, leading
- to lower or totally missed and temporally mismatched O₃ peaks relative to observations.

329 3.3.2 Case study of October 7, 2021


330

3⁶°W 95.5°W 95°W 94.5°W 96°W 95.5°W 95°W 94.5°W 96°W 95.5°W 95°S 94.5°W 96°W 95.5°W 95°S 94.5°W

Figure 11. Same as Figure 8 but on October 7 with the square and triangle marks representing the Oyster Creek and Texas City CAMS sites, respectively.

- 333 On October 7, the pontoon boat observed the highest one-minute O₃ concentration (135 ppb) throughout the entire campaign period. This day started with weak northwesterly winds in the morning under post-frontal conditions, 334 335 leading to high O₃ concentrations along the Gulf coast (Figure 11). The winds transitioned to northeasterly near 336 11:00 (Figure 12b), marking the onset of the Galveston Bay breeze at the pontoon and shrimp boat and the Texas 337 City site (triangle label in Figure 11) and the Gulf breeze at the Oyster Creek site (square label in Figure 11), both 338 accompanied by an increase of O₃ (Figure 12a) and wind speed (Figure 12c). By contrast, the model predicted a late 339 onset of the Bay/Gulf breezes by two to three hours with a generally higher wind speed than was observed. 340 Afterward, the wind directions further shifted to the east to southeast between 14:00 to 18:00 as the Gulf breezes 341 propagated to all four locations in Figure 12b, causing the highest O₃ mixing ratios therein. Similarly, the model 342 overestimated the Gulf breeze intensity, leading to the underestimation of O_3 at the three locations along Galveston 343 Bay. The model also continuously overestimated the moderate level of O₃ (60-70 ppb) at the Oyster Creek site under 344 the Gulf breeze from 11:00 to 20:00, implying that the lifetime of O_3 or its precursors over water was likely 345 overpredicted. Different from September 9, the process analysis on this local-scale event indicates CHEM is the
- major process leading to high O₃ concentrations over the Gulf of Mexico (Figure S10). ADV only contributes to the

increase of O_3 at 08:00-09:00, corresponding to the offshore transport of O_3 in the morning under northwesterly winds.

349

Figure 12. Same as Figure 10 but on October 7 with the Texas City (triangle mark in Figure 11) and Oyster Creek (square
 mark in Figure 11) CAMS sites and two boats.

352

- To sum up, the high O₃ event on October 7 was related to the mesoscale Galveston Bay and Gulf breeze
- recirculation. Two boats and the Texas City site captured the start of the Bay breeze at ~11:00 and the development
- of the Gulf breeze at 14:00 18:00, the latter of which leads to peak hourly O₃ by bringing the aged O₃ and
- emissions back to land. Affected continuously by the Gulf breeze from 11:00 to 20:00, O₃ at the Oyster Creek site
- stayed at 60 70 ppb. The model predicts the onset of the Bay and Gulf breezes two to three hours late with higher
- 358 wind speed, causing the delayed and lower O₃ peaks along Galveston Bay.

359 4 Conclusions

- 360 As part of the TRACER-AQ 2021 field campaign in the Houston area, three boats, a UH pontoon boat and two
- 361 commercial vessels, equipped with an automatic sampling system and ozonesonde launches were deployed in
- 362 Galveston Bay and the Gulf of Mexico from July to October. The resulting datasets, including the surface and

- 363 vertical O₃ concentrations and various meteorological parameters, provide a unique opportunity to evaluate the
- 364 performance of TCEQ's regulatory WRF-CAMx modeling system regarding its ability to capture the high offshore
- 365 O₃ events. Driven by the optimized WRF meteorological outputs, the CAMx model can satisfactorily capture the
- spatiotemporal variability of daytime O₃ for the three boats (R > 0.70) with an overall 4 8 ppb (9% 22%)
- 367 overestimation mainly caused by the high positive biases on clean days. During high-O₃ events, the model tends to
- 368 underestimate O_3 by 5 ppb near the surface and by 10 ppb up to 4 km aloft.
- 369 The reasonable model performance provides credibility for relying on the model's process analysis tool to
- investigate the factors responsible for the high- O_3 episodes over the Gulf of Mexico. The results show that O_3
- 371 chemistry is the major process leading to high O₃ concentrations relative to clean conditions. A region-wide increase
- of long-lived VOC species through advection, such as paraffin, formaldehyde, and acetaldehyde, accelerated O₃
- 373 production rates under a NO_x-limited regime. In the meantime, the enhanced VOCs can produce more O₃ near
- 374 western Galveston Bay and off the Gulf coast under high-NO_x concentrations brought by the northeasterly winds
- from the Houston Ship Channel. Thus, the higher O_3 chemical production over water can be from both NOx- and
- 376 VOC-limited regimes.
- Two cases, September 9 and October 7, were then selected to illustrate the development of high- O_3 events further.
- 378 Both cases involved north/northeast morning winds transporting the inland emissions toward the sea, shifting to the
- 379 east/southeast in the afternoon, and transporting the offshore O_3 and its precursors to the land. Therefore, well-
- 380 represented wind conditions are of great importance for air quality models to accurately capture the timing and
- 381 magnitude of elevated O₃ levels in these cases. However, the two cases differ in terms of atmospheric scale. The
- event on September 9 was influenced by a large-scale circulation with regionally homogeneous wind conditions.
- 383 The easterly winds in the afternoon brought a second air plume from the eastern boundary of the domain following
- the first locally produced plume, illustrating the contributions of regional advection, in addition to chemistry, to the
- high O₃ mixing ratios in this case. Conversely, the October 7 case was dominated by the mesoscale development of
- Bay and Gulf breezes, characterized by a generally lower wind speed and higher O_3 level. Double O_3 peaks can also
- 387 be observed near Galveston Bay, such as the Texas City site in this case, corresponding to the arrival of the Bay and
- 388 Gulf breezes, respectively. The model mispredicted the timing of the wind direction shift and overestimated the
- 389 wind speed in both cases, leading to the temporally mismatched and numerically buffered O_3 peaks.
- 390 This study reveals the important role of chemical O₃ production over Galveston Bay and the Gulf of Mexico from
- 391 precursors emitted from adjacent land and the Ship Channel or transported regionally from the northeastern states.
- 392 The high O_3 produced offshore can then be transported back to land and cause O_3 exceedances at the air quality
- 393 monitors. Therefore, local and regional emissions need to be stringently regulated to reduce the frequency of such
- 394 events. Additionally, wind conditions are critical meteorological factors leading to these high-O₃ episodes and thus
- need to be well represented in photochemical models to have an accurate air quality forecast in urban coastal
- 396 regions.

397 Acknowledgments

- 398 This research was supported by the Texas Commission for Environmental Quality (TCEQ, Grant Numbers 582-22-
- 399 31544-019) and the State of Texas Air Quality Research Program (AQRP, Project 20-008). The findings, opinions,
- 400 and conclusions are the work of the author(s) and do not necessarily represent the findings, opinions, or conclusions
- 401 of the TCEQ or AQRP. We acknowledge the individuals and groups who collected and shared the TRACER-AQ
- 402 2021 filed campaign datasets.

403 Data Availability

- 404 CAMx and WRF models are publicly available at https://www.camx.com/ (last access: 22 September 2023) and
- 405 <u>https://www2.mmm.ucar.edu/wrf/users/download/get_source.html (last access: 22 September 2023)</u>, respectively.
- 406 CAMS data can be downloaded from the TAMIS web interface
- 407 (https://www17.tceq.texas.gov/tamis/index.cfm?fuseaction=home.welcome, last access: 22 September 2023), and
- 408 other campaign data is archived in the TRACER-AQ website (<u>https://www-air.larc.nasa.gov/cgi-</u>
- 409 <u>bin/ArcView/traceraq.2021, last access: 22 September 2023</u>).

410 **Competing interests**

411 The authors declare that they have no conflict of interest.

412 Author contributions

- 413 YW conceived the research idea. WL, XL and ES conducted the model simulation. TG, JF and PW provided the
- field observations. WL performed the data analysis and drafted the initial manuscript. All authors contributed to the interpretation of the results and the preparation of the manuscript.

416 References

- 417 Abdi-Oskouei, M., Carmichael, G., Christiansen, M., Ferrada, G., Roozitalab, B., Sobhani, N., Wade, K.,
- 418 Czarnetzki, A., Pierce, R. B., Wagner, T., and Stanier, C.: Sensitivity of Meteorological Skill to Selection of WRF-
- 419 Chem Physical Parameterizations and Impact on Ozone Prediction During the Lake Michigan Ozone Study
- 420 (LMOS), J. Geophys. Res. Atmospheres, 125, e2019JD031971, https://doi.org/10.1029/2019JD031971, 2020.
- 421 Abdi-Oskouei, M., Roozitalab, B., Stanier, C. O., Christiansen, M., Pfister, G., Pierce, R. B., McDonald, B. C.,
- 422 Adelman, Z., Janseen, M., Dickens, A. F., and Carmichael, G. R.: The Impact of Volatile Chemical Products, Other
- 423 VOCs, and NOx on Peak Ozone in the Lake Michigan Region, J. Geophys. Res. Atmospheres, 127,
- 424 e2022JD037042, https://doi.org/10.1029/2022JD037042, 2022.
- 425 Baker, K. R., Liljegren, J., Valin, L., Judd, L., Szykman, J., Millet, D. B., Czarnetzki, A., Whitehill, A., Murphy, B.,
- and Stanier, C.: Photochemical model representation of ozone and precursors during the 2017 Lake Michigan ozone
- 427 study (LMOS), Atmos. Environ., 293, 119465, https://doi.org/10.1016/j.atmosenv.2022.119465, 2023.
- 428 Banta, R. M., Senff, C. J., Nielsen-Gammon, J., Darby, L. S., Ryerson, T. B., Alvarez, R. J., Sandberg, S. P.,
- 429 Williams, E. J., and Trainer, M.: A Bad Air Day in Houston, Bull. Am. Meteorol. Soc., 86, 657–670,
- 430 https://doi.org/10.1175/BAMS-86-5-657, 2005.

- 431 Bernier, C., Wang, Y., Gronoff, G., Berkoff, T., Knowland, K. E., Sullivan, J. T., Delgado, R., Caicedo, V., and
- 432 Carroll, B.: Cluster-based characterization of multi-dimensional tropospheric ozone variability in coastal regions: an
- 433 analysis of lidar measurements and model results, Atmospheric Chem. Phys., 22, 15313–15331,
- 434 https://doi.org/10.5194/acp-22-15313-2022, 2022.

435 Burkholder, J. B., Sander, S. P., Abbatt, J. P. D. A. D., Barker, J. R., Huie, R. E., Kolb, C. E., Iii, M. J. K., Orkin, V.

- L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies:
 Evaluation number 18, JPL Publ. 15-10, Jet Propulsion Laboratory, Pasadena, CA, 2019.
- 438 Caicedo, V., Rappenglueck, B., Cuchiara, G., Flynn, J., Ferrare, R., Scarino, A. J., Berkoff, T., Senff, C., Langford,
- 439 A., and Lefer, B.: Bay Breeze and Sea Breeze Circulation Impacts on the Planetary Boundary Layer and Air Quality
- 440 From an Observed and Modeled DISCOVER-AQ Texas Case Study, J. Geophys. Res. Atmospheres, 124, 7359–
- 441 7378, https://doi.org/10.1029/2019JD030523, 2019.
- 442 Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5
- 443 Modeling System. Part I: Model Implementation and Sensitivity, Mon. Weather Rev., 129, 569–585,
- 444 https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
- 445 Dacic, N., Sullivan, J. T., Knowland, K. E., Wolfe, G. M., Oman, L. D., Berkoff, T. A., and Gronoff, G. P.:
- 446 Evaluation of NASA's high-resolution global composition simulations: Understanding a pollution event in the
- 447 Chesapeake Bay during the summer 2017 OWLETS campaign, Atmos. Environ., 222, 117133,
- 448 https://doi.org/10.1016/j.atmosenv.2019.117133, 2020.
- Darby, L. S.: Cluster Analysis of Surface Winds in Houston, Texas, and the Impact of Wind Patterns on Ozone, J.
 Appl. Meteorol. Climatol., 44, 1788–1806, https://doi.org/10.1175/JAM2320.1, 2005.
- 451 Dreessen, J., Orozco, D., Boyle, J., Szymborski, J., Lee, P., Flores, A., and Sakai, R. K.: Observed ozone over the
- 452 Chesapeake Bay land-water interface: The Hart-Miller Island Pilot Project, J. Air Waste Manag. Assoc., 69, 1312–
- 453 1330, https://doi.org/10.1080/10962247.2019.1668497, 2019.
- 454 Dreessen, J., Ren, X., Gardner, D., Green, K., Stratton, P., Sullivan, J. T., Delgado, R., Dickerson, R. R., Woodman,
- 455 M., Berkoff, T., Gronoff, G., and Ring, A.: VOC and trace gas measurements and ozone chemistry over the
- 456 Chesapeake Bay during OWLETS-2, 2018, J. Air Waste Manag. Assoc., 73, 178–199,
- 457 https://doi.org/10.1080/10962247.2022.2136782, 2023.
- 458 Dye, T. S., Roberts, P. T., and Korc, M. E.: Observations of Transport Processes for Ozone and Ozone Precursors
- 459 during the 1991 Lake Michigan Ozone Study, J. Appl. Meteorol. Climatol., 34, 1877–1889,
- 460 https://doi.org/10.1175/1520-0450(1995)034<1877:OOTPFO>2.0.CO;2, 1995.
- 461 Nonattainment Areas for Criteria Pollutants (Green Book): https://www.epa.gov/green-book, last access: 6 January
 462 2023.
- Foken, T.: 50 Years of the Monin–Obukhov Similarity Theory, Bound.-Layer Meteorol., 119, 431–447,
 https://doi.org/10.1007/s10546-006-9048-6, 2006.
- Goldberg, D. L., Loughner, C. P., Tzortziou, M., Stehr, J. W., Pickering, K. E., Marufu, L. T., and Dickerson, R. R.:
- 466 Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: Observations and models
- 467 from the DISCOVER-AQ and CBODAQ campaigns, Atmos. Environ., 84, 9–19,
- 468 https://doi.org/10.1016/j.atmosenv.2013.11.008, 2014.
- Griggs, T., Flynn, J., Wang, Y., Alvarez, S., Comas, M., and Walter, P.: Characterizing Over-Water High Ozone
 Events in the Houston-Galveston-Brazoria Region During July-October 2021, Bull. Am. Meteorol. Soc., submitted.

- 471 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing
- 472 by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res.
- 473 Atmospheres, 113, https://doi.org/10.1029/2008JD009944, 2008.
- 474 Kommalapati, R. R., Liang, Z., and Huque, Z.: Photochemical model simulations of air quality for Houston-
- Galveston–Brazoria area and analysis of ozone–NOx–hydrocarbon sensitivity, Int. J. Environ. Sci. Technol., 13, 209–220, https://doi.org/10.1007/s13762-015-0862-6, 2016.
- Leuchner, M. and Rappenglück, B.: VOC source-receptor relationships in Houston during TexAQS-II, Atmos.
 Environ., 44, 4056–4067, https://doi.org/10.1016/j.atmosenv.2009.02.029, 2010.
- 479 Li, W., Wang, Y., Bernier, C., and Estes, M.: Identification of Sea Breeze Recirculation and Its Effects on Ozone in
- 480 Houston, TX, During DISCOVER-AQ 2013, J. Geophys. Res. Atmospheres, 125, e2020JD033165,
- 481 https://doi.org/10.1029/2020JD033165, 2020.
- Li, X. and Rappenglück, B.: A WRF–CMAQ study on spring time vertical ozone structure in Southeast Texas,
 Atmos. Environ., 97, 363–385, https://doi.org/10.1016/j.atmosenv.2014.08.036, 2014.
- Liu, X., Wang, Y., Wasti, S., Li, W., Soleimanian, E., Flynn, J., Griggs, T., Alvarez, S., Sullivan, J. T., Roots, M.,
- Twigg, L., Gronoff, G., Berkoff, T., Walter, P., Estes, M., Hair, J. W., Shingler, T., Scarino, A. J., Fenn, M., and
- 486 Judd, L.: Evaluating WRF-GC v2.0 predictions of boundary layer and vertical ozone profiles during the 2021
- 487 TRACER-AQ campaign in Houston, Texas, EGUsphere, 1–33, https://doi.org/10.5194/egusphere-2023-892, 2023.
- 488 Mazzuca, G. M., Ren, X., Loughner, C. P., Estes, M., Crawford, J. H., Pickering, K. E., Weinheimer, A. J., and
- 489 Dickerson, R. R.: Ozone production and its sensitivity to NO_x and VOCs: results from the DISCOVER-AQ field 490 experiment, Houston 2013, Atmospheric Chem. Phys., 16, 14463–14474, https://doi.org/10.5194/acp-16-14463-
- 491 2016, 2016.
- 492 Misenis, C. and Zhang, Y.: An examination of sensitivity of WRF/Chem predictions to physical parameterizations,
- 493 horizontal grid spacing, and nesting options, Atmospheric Res., 97, 315–334,
- 494 https://doi.org/10.1016/j.atmosres.2010.04.005, 2010.
- 495 Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on the Development of Trailing
- 496 Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes, Mon. Weather
- 497 Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.
- Nakanishi, M. and Niino, H.: Development of an Improved Turbulence Closure Model for the Atmospheric
 Boundary Layer, J. Meteorol. Soc. Jpn. Ser II, 87, 895–912, https://doi.org/10.2151/jmsj.87.895, 2009.
- 500 Ngan, F. and Byun, D.: Classification of Weather Patterns and Associated Trajectories of High-Ozone Episodes in
- the Houston–Galveston–Brazoria Area during the 2005/06 TexAQS-II, J. Appl. Meteorol. Climatol., 50, 485–499,
 https://doi.org/10.1175/2010JAMC2483.1, 2011.
- 503 Pan, S., Choi, Y., Roy, A., Li, X., Jeon, W., and Souri, A. H.: Modeling the uncertainty of several VOC and its
- 504 impact on simulated VOC and ozone in Houston, Texas, Atmos. Environ., 120, 404–416,
- 505 https://doi.org/10.1016/j.atmosenv.2015.09.029, 2015.
- 506 Pan, S., Choi, Y., Roy, A., and Jeon, W.: Allocating emissions to 4 km and 1 km horizontal spatial resolutions and
- 507 its impact on simulated NOx and O3 in Houston, TX, Atmos. Environ., 164, 398–415,
- 508 https://doi.org/10.1016/j.atmosenv.2017.06.026, 2017.
- 509 Rappenglück, B., Perna, R., Zhong, S., and Morris, G. A.: An analysis of the vertical structure of the atmosphere and
- 510 the upper-level meteorology and their impact on surface ozone levels in Houston, Texas, J. Geophys. Res.
- 511 Atmospheres, 113, https://doi.org/10.1029/2007JD009745, 2008.

- 512 Sillman, S.: The use of NO y , H2O2, and HNO3 as indicators for ozone-NO x -hydrocarbon sensitivity in urban 513 locations, J. Geophys. Res. Atmospheres, 100, 14175–14188, https://doi.org/10.1029/94JD02953, 1995.
- 514 Soleimanian, E., Wang, Y., and Estes, M.: Long-term trend in surface ozone in Houston-Galveston-Brazoria:
- 515 Sectoral contributions based on changes in volatile organic compounds, Environ. Pollut., 308, 119647,
- 516 https://doi.org/10.1016/j.envpol.2022.119647, 2022.
- 517 Soleimanian, E., Wang, Y., Li, W., Liu, X., Griggs, T., Flynn, J., Walter, P. J., and Estes, M. J.: Understanding
- 518 ozone episodes during the TRACER-AQ campaign in Houston, Texas: The role of transport and ozone production
- sensitivity to precursors, Sci. Total Environ., 900, 165881, https://doi.org/10.1016/j.scitotenv.2023.165881, 2023.
- 520 Sullivan, J. T., Berkoff, T., Gronoff, G., Knepp, T., Pippin, M., Allen, D., Twigg, L., Swap, R., Tzortziou, M.,
- 521 Thompson, A. M., Stauffer, R. M., Wolfe, G. M., Flynn, J., Pusede, S. E., Judd, L. M., Moore, W., Baker, B. D., Al-
- 522 Saadi, J., and McGee, T. J.: The Ozone Water–Land Environmental Transition Study: An Innovative Strategy for
- 523 Understanding Chesapeake Bay Pollution Events, Bull. Am. Meteorol. Soc., 100, 291–306,
- 524 https://doi.org/10.1175/BAMS-D-18-0025.1, 2019.
- Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical
 models, Atmos. Environ., 41, 52–63, https://doi.org/10.1016/j.atmosenv.2007.10.058, 1989.
- Xiao, X., Cohan, D. S., Byun, D. W., and Ngan, F.: Highly nonlinear ozone formation in the Houston region and
 implications for emission controls, J. Geophys. Res. Atmospheres, 115, https://doi.org/10.1029/2010JD014435,
 2010.
- 530 Yu, S., Mathur, R., Pleim, J., Pouliot, G., Wong, D., Eder, B., Schere, K., Gilliam, R., and Trivikrama Rao, S.:
- 531 Comparative evaluation of the impact of WRF–NMM and WRF–ARW meteorology on CMAQ simulations for O3
- and related species during the 2006 TexAQS/GoMACCS campaign, Atmospheric Pollut. Res., 3, 149–162,
 https://doi.org/10.5094/APR.2012.015, 2012.
- 534 Zhang, C., Wang, Y., and Hamilton, K.: Improved Representation of Boundary Layer Clouds over the Southeast
- 535 Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme, Mon. Weather Rev., 139, 536 3480 3513 https://doi.org/10.1175/MWP.D.10.050911.2011
- 536 3489–3513, https://doi.org/10.1175/MWR-D-10-05091.1, 2011.
- 537