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Abstract. There is urgent need for developing sustainable agricultural land use schemes. On the one side, climate change is 

expected to increase drought risk as well as the frequency of extreme precipitation events in many regions. On the other side 10 

crop production has induced increased greenhouse gas emissions and enhanced nutrient and pesticide leaching to groundwater 

and receiving streams. Consequently, sustainable management schemes require sound knowledge of site-specific soil 

hydrological processes, accounting explicitly for the interplay between soil heterogeneities and crops. Here we present a 

powerful diagnostic tool applied to a highly diversified arable field with seven different crops and two management schemes. 

A principal component analysis was applied to a set of 64 soil moisture time series.  15 

About 97% of the spatial and temporal variance of the data set was explained by the first five principal components. 

Meteorological drivers accounted for 72% of the variance. Another 17% was attributed to different seasonal behaviour of 

different crops. The effect of very low soil moisture in deeper layers at the onset of the growing season explained another 

4.1%, and soil texture 2.2%. The fifth component represented the effect of soil depth (1.7%). In contrast, neither topography 

nor weed control had a significant effect on soil moisture. Contrary to common expectations, soil and rooting pattern 20 

heterogeneity seemed not to play a major role in this case study.   

1 Introduction 

Agriculture plays a major role to ensure food for a growing global population. At the same time, climate change is putting 

yield stability at risk due to extreme weather events and is increasing the need for sustainable management of resources, such 

as water and soil (Trnka et al., 2014). As part of the adaptation to more challenging conditions, the transformation from large 25 

homogeneously cropped fields towards diversified agricultural landscape was identified not only to have positive effects on 

multiple ecosystem services (Tamburini et al., 2020), but also on the system’s resilience to climatic extremes (Birthal and 

Hazrana, 2019). Additionally, crop diversification is highly beneficial by reducing soil erosion through permanent soil cover 

(Paroda et al., 2015), and by improving resource use efficiency through wider crop rotations (Rodriguez et al., 2021). In terms 

of soil water dynamics, diversification can lead to improved water-stable macro-aggregation, reduced soil compaction and 30 
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increased soil organic carbon (Karlen et al., 2006) from which soil water infiltration and retention can be positively affected 

(Alhameid et al., 2020). 

However, as the complexity of the system increases due to diversification measures, so does the complexity of the assessment 

and monitoring what makes the use of digital technologies indispensable. Therefore, soil sensing networks received much 

attention as a crucial tool in Precision Agriculture (PA) (Salam and Raza, 2020). The main goal of PA is to increase efficiency 35 

and productivity at the farm level and at the same time minimizing negative impacts on the environment (Taylor and Whelan, 

2010). Soil sensor networks play a vital role in achieving that and are used for various purposes, such as for supporting  the 

delineation of management zones (Khan et al., 2020; Salam and Raza, 2020). One of the most important demands to be fulfilled 

by soil sensing networks, however, is soil moisture monitoring. Accurate measurement of soil water content will play an 

important role in improving crop yields and water management (Salam, 2020).  40 

Wireless solutions, for instance based on LoRaWAN (Long Range Wide Area Network) technology, in combination with 

Time-Domain-Reflectometry (TDR) sensors avoid labour-intensive and destructive soil moisture measurements that disrupt 

field traffic. The development of such wireless soil monitoring networks enables broad and affordable application also in areas 

with low cellular coverage (Cardell-Oliver et al., 2019; Lloret et al., 2021; Placidi et al., 2021; Prakosa et al., 2021).  

The evolvement of such systems does not only have benefits for management but is also of high relevance for fostering the 45 

understanding of hydrological dynamics in the vadose zone. High-resolution datasets measured under real farming conditions 

can be used to characterize and analyse spatio-temporal dynamics of soil water. Due to the large size of data sets that are 

recorded with novel sensor networks, sophisticated data analysis approaches are required to detect hidden patterns and 

determine influence factors on soil moisture variability (Vereecken et al., 2014). Methods include geostatistical analysis 

approaches, such as soil moisture variograms (Vereecken et al., 2014). With the introduction of multiple-points geostatistics, 50 

it became possible to not only analyse patterns but also connect them with factors affecting soil moisture, such as topography, 

texture, crop growth and water uptake, and land management (Brocca et al., 2010; Strebelle et al., 2003). Wavelet analysis can 

analyse both localized features as well as spatial trends through which non-stationary variation of soil properties can be 

considered (Si, 2008). Cross-correlation analysis allowed linking soil moisture variability to climatic variables (Mahmood et 

al., 2012). Furthermore, temporal stability analyses detect spots in the investigated area which are consistently wetter or drier 55 

than the mean soil moisture (Baroni et al., 2013). This method was already successfully used to detect soil moisture patterns 

related to soil properties, vegetation, and topography (Zhao et al., 2010).  

Principal component analysis (PCA) is another method that was successfully applied for soil moisture variability analysis at 

the field (Hohenbrink et al., 2016; Hohenbrink and Lischeid, 2015; Martini et al., 2017), catchment (Korres et al., 2010; 

Lischeid et al., 2017; Nied et al., 2013), and regional (Joshi and Mohanty, 2010) scale. These studies build on previous 60 

applications in climatology where the term “Empirical Orthogonal Functions” is used (Bretherton et al., 1992). Space and time 

dimensions can be disentangled and be assigned to influencing factors. Additionally, the propagation of hydrological signals 

(e.g. precipitation events) over depth can be assessed (Hohenbrink et al., 2016). This opens up great opportunities for 
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contributing to the knowledge of soil-hydrological dynamics in agriculture, especially of highly diversified fields that have 

hardly been studied so far.  65 

We analysed a high-resolution soil moisture data set measured by a novel underground LoRaWAN monitoring system with 

TDR sensors in different depths of the vadose zone at a spatial-temporally diversified agricultural field in Northeast Germany. 

The main objective of this study was to identify and quantify the drivers of soil moisture variability within the diversified field 

by applying PCA. Special focus was put on the spatial and temporal effects of crop diversification and of soil heterogeneities 

on soil moisture. 70 

2 Materials and methods 

2.1 Study site 

The study site (52°26'51.8"N 14°08'37.7"E, 66-83 m.a.s.l) is located near the city of Müncheberg in the federal state of 

Brandenburg in Northeastern Germany. It is located in a hummocky ground moraine landscape that formed during the last 

glacial periods. Glacial and interglacial processes as well as subsequent erosion resulted in highly heterogeneous soils 75 

(Deumlich et al., 2018), being classified as Dystric Podzoluvisols according to the FAO scheme (Fischer et al., 2008).  Average 

total organic carbon content was 0.94% and average total nitrogen content was 0.07% in 0 to 0.3 m soil depth, and average 

soil pH was 6.12. Between January 1991 and December 2020, the mean annual temperature in Müncheberg was 9.6°C, and 

the mean annual sum of precipitation was 509 mm (DWD Climate Data Center (CDC), 2021).  

2.2 Experimental setup 80 

The data collection was carried out from December 2021 until mid of August 2021 in the patchCROP experiment. It has been 

set up to study the effect of diversification of cropping schemes on yield, weed, pests and diseases and biodiversity. To that 

end,  single experimental units comprising 30 patches with a size of 0.52 ha (72 m x 72 m) each, following two different yield 

potential zones with varying soil conditions and site-specific five-year crop rotations (Donat et al., 2022; Grahmann et al., 

2021) have been established within a 70 ha large field. For this study, twelve of 30 patches were considered (Table 1). In the 85 

cropping season 2020/2021, seven different main crops were grown in these patches. They can be grouped into A) winter 

crops, B) fallow, followed by summer crops and C) cover crops, followed by summer crops. The remaining area outside of the 

30 patches was planted with winter rye. In seven of the twelve considered patches, weed control was carried out with herbicide 

application, which is in the following entitled as “conventional”. In the remaining five patches, primary weed control was 

conducted mechanically by harrowing, blind harrowing, and hoeing, and only in the case of high weed pressure, herbicides 90 

were applied. This control pattern is in the following entitled as “reduced”.  
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2.3 Data collection 

Soil moisture was recorded by a long-range-wide-area network (LoRaWAN) based monitoring system. In each patch, one 

LoRaWAN node box (DriBox, Lancashire, UK) was deployed at least 0.3 m below ground to allow normal field traffic and 95 

soil tillage. The boxes were installed between August and November 2020. At two georeferenced locations, approximately 2 

m from the node boxes TDR-sensors (Acclima TDR310H) were installed in 0.3, 0.6 and 0.9 m depth, respectively, in angles 

between 45° and 60°.  

The data were sent every 20 minutes from the LoRa nodes through a LoRa-WAN Gateway DLOS8 (UP GmbH, Ibbenbüren, 

Germany) which was equipped with the modem TL-WA7510N (TP Link, Hong Kong) to transfer the data to a cloud from 100 

where collected data could be accessed directly after the measurement. The time series included in this study covered the 

period from December 01, 2020, until August 14, 2021.  Figure 1 shows precipitation and temperature at the study site for the 

study period.  

Furthermore, drone imagery from May 31, 2021, was used for vegetation assessment. The drone fixed-wing UAV-based RS 

eBee platform (SenseFly Ltd., Cheseaux-Lausanne, Switzerland) was operated at noon time and recorded multispectral 105 

imagery with a Parrot Sequoia+ camera (green, red, NIR, and red edge bands, spatial resolution of 0.105 m) and thermal 

imagery of the surface with a senseFly Duet T camera with a spatial resolution of 0.091 m (Table 2). The multispectral imagery 

was processed with Pix4D to obtain the Normalized Difference Vegetation Index (NDVI), following Eq. (1): 

 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 

             (1) 110 

in which NIR is the near-infrared and Red the red band of the drone imagery. A digital elevation model with a spatial resolution 

of 1 m (GeoBasis-DE and LGB, 2021) was used to calculate the slope (ArcGIS 10.7.0; ESRI, 2011) (Table 2).  

In October 2019, the soil was scanned with the “Geophilus”- system (Lueck and Ruehlmann, 2013) to map electrical bulk 

resistivity of the soil as a proxy for soil texture, using reference soil samples to calibrate the readings. Apparent electrical 

conductivity was measured by pulling one or more sensor pairs mounted on wheels across the field where each pair of sensors 115 

measured a different soil depth. Amplitude and phase were measured simultaneously using frequencies from 1 MHz to 1 kHz. 

Reference soil samples were taken in several points and served as calibration information in order to estimate sand, silt and 

clay content in the top 0.25 m of soil. A gamma sensor was used to minimize uncertainties but distortion by soil compaction 

and high water content could not fully be ruled out. The estimated sand content in the upper 0.25 m at the study site varied 

between 69.1 % and 81.2 % and averaged 79.0 % (Table 1, Figure 2).  120 

 

2.4 Data processing 

Soil moisture data were available at 20-minute intervals. Data gaps due to technical problems or theft of parts of the monitoring 

system data amounted to 81 out of 257 days of the measuring period. These gaps were not filled. In total, 64 time series could 
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be used for the analysis, whereas time series of eight sensors were excluded due to frequent malfunctioning. Additional short 125 

data gaps for single sensors were interpolated linearly. Ten gaps exceeded the duration of three days with the longest one of 5 

days and 3 hours duration. The interpolation was justified as the differences between the values before and after the gaps were 

within the measuring accuracy of 1 vol-% of the TDR sensors (Acclima Inc., 2019). To ensure equal weighting for the 

subsequent analysis all soil moisture time series were z-transformed to unit variance and zero mean each (cf. Hohenbrink and 

Lischeid, 2015). 130 

 

2.4 Statistical analysis 

To identify common temporal patterns among single time series, the soil moisture data set was analysed by a principal 

component analysis (PCA). In a first step, PCA decomposes the total variance of a multivariate data set into independent 

fractions called principal components (PCs). The number of PCs is the same as the number of time series in the input data set. 135 

Each PC consists of eigenvectors (loadings), scores, and eigenvalues. The scores reflect the temporal dynamics. The 

importance of single principal components for single sites is represented by the loadings of each PC (Jolliffe, 2002; Lehr and 

Lischeid, 2020). Loadings are the Pearson correlation coefficients of the single time series of the input data set with the scores 

of each PC, respectively. The eigenvalues of the single PC are proportional to the variance that they explain. The PCs are 

sorted in descending order of eigenvalues. Since the input data have been z-transformed, eigenvalues greater than one indicate 140 

that the respective PC represents pattern which are relevant for more than one of the observed time series (Kaiser, 1960). More 

details on principal component analysis for time series analysis are found in Joliffe (2002). The PCA was performed using the 

prcomp function in R (R Development Core Team, 2021). To filter out local effects or the effect of selected PCs from z-

transformed observed time series at a specific location, a multiple linear regression was applied between the respective time 

series and the remaining PCs (Lehr and Lischeid, 2020).  145 

The relations to soil and vegetation parameters were tested by computing the Pearson correlation coefficients between the 

scores and arithmetic mean values of all input time series as well as the Pearson correlation coefficients between loadings and 

sand content, sensor depth, antecedent z-transformed water contents, slope, and the drone imagery products from May 31, 

2021 (NDVI and surface temperature). Eventually, the Wilcoxon-Mann-Whitney test was applied to check whether loadings 

can be grouped by management parameters (crops, cover crops, weeding management).  150 

All statistical analyses were conducted with R (R Development Core Team, 2021). 

3 Results 

The principal component analysis yielded five components with Eigenvalues exceeding one. They accounted for more than 

97% of the variance of the total data set (Table 4). 
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3.1 First principal component 155 

The first principal component explained 72.3% of the data set’s spatial and temporal variance. All loadings on the first PC 

were negative. The Pearson correlation coefficient of the scores of the first principal component with the mean values of all 

input time series was less than - 0.999 (p < 0.01). Thus the time series of the scores of this component with reversed sign 

represented the mean behaviour of soil moisture driven by external factors such as precipitation, temperature, and seasons in 

general which affected all time series in the same way, although to different degrees (cf., Hohenbrink et al., 2016; Lischeid et 160 

al., 2021). 

3.2 Second principal component 

The second principal component explained 17.0% of the total variance. The loadings ranged from -0.801 to 0.760 with a 

median of -0.030 (Figure 3). The loadings showed a crop type specific pattern. All winter crops (barley, oats, rye) had positive 

loadings with only one exception in 0.9 m depth. The summer crops maize, soy, and sunflower exhibited negative loadings. In 165 

contrast, the summer crop lupine exhibited mostly positive loadings, similar to the winter crops, although of slightly smaller 

magnitude. According to the Wilcoxon-Mann test the group of barley, oats, rye, and lupine differed significantly from the 

group of maize, soy, and sunflower. 

The scores of the principal components constitute time series. Every observed time series can be presented at arbitrary precision 

as a combination of various principal components. Moreover, generating synthetic time series as linear combinations of the 170 

first and the second principal components helps to assign the second principal component to a specific effect. To that end 

scores of that component have either been added to or subtracted from those of the first component using arbitrarily selected 

factors (Figure 4). A positive factor would be typical for winter crops (blue line) which load positively on that component. The 

opposite holds for the summer crops (orange line). Both lines plot very close to each other in February and March. In contrast, 

the orange line is underneath the blue line in December and January, indicating lower soil moisture at the summer crop patches. 175 

The inverse holds for the subsequent summer period starting in early June, pointing to earlier and more rapid water uptake of 

the winter crops. 

 

Lupine and sunflower were the summer crops which were sown first (March 30, 2021, and April 2, 2021, respectively). Maize 

was sown on April 16, 2021, and soy on May 15, 2021. The loadings of lupine which were rather performing like winter crops 180 

than summer crops indicated that lupine showed an early onset of intensive evapotranspiration, compared to other summer 

crops, especially sunflower which was sown at the same time.  

For further investigation of the vegetation effect in PCs, the loadings of PC2 were compared to drone imagery taken on May 

31, 2021, when all patches were covered by crops. The second PC’s loadings of the time series from different sensors were 

compared to the Normalized Difference Vegetation Index (NDVI) and surface temperature of the respective sensor location 185 

as a proxy for actual evapotranspiration. As shown in Table 3, the NDVI was positively correlated with the loadings while 
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surface temperature exhibited negative correlations, indicating higher evapotranspiration. This holds for sensors from all 

depths but was the closest for 0.9 m depth (Pearson correlation of r = -0.916 for surface temperature and of r = 0.940 for 

NDVI). 

3.3 Third principal component 190 

The third PC explained 4.1% of the total data set’s variance. Loadings ranged between -0.787 and 0.244 with a median of 

0.006. Extreme loadings (<-0.25) were found only for sensors in 0.9 m depth in patches 66, 89, 95 and 102 (Figure 5). These 

patches are located along a line that roughly follows a west-to-east direction (Figure 2). Loadings were closely related to the 

minima of the z-transformed soil moisture in the period from December to February (r = 0.70).  Strong negative loadings on 

the third principal component imply delayed response to rainstorms and reduced subsequent dehydration (Figure 6).  195 

3.4 Fourth principal component 

The fourth PC explained 2.2% of the total data set’s variance. The loadings were clustered by treatment groups. All fallow 

patches showed consistent positive loadings while the patches which were covered by winter crops (treatment group A) showed 

mainly negative loadings except in patch 95 where the loadings of the two sensors in 0.3 m depth were slightly above zero 

(Figure 7). According to the Wilcoxon-Mann test treatment group B differed significantly from group A and C whereas there 200 

was no significant difference between group A and C. In contrast to treatment groups A and B, patches that were covered by 

the cover crop phacelia during the winter months, did not show one-directional loadings.  

Besides showing a treatment group pattern, the loadings of PC4 also correlated with the sand content in a 1 m radius around 

the sensor locations in the upper 0.25 m (r = 0.67). Due to a lack of sand content data for deeper layers, only data from the 

sensor depth of 0.3 m were analysed. The second-best correlation coefficient is found for PC3 with -0.36.  205 

Figure 8 illustrates the effect of the fourth PC on time series. A positive factor would be typical for more sandy soils and for 

patches with fallow in autumn and winter (blue line). In contrast the orange line depicts behaviour in more loamy soils and for 

winter crops. The latter line exhibits slightly more delayed responses to rainstorms and subsequent less steep recovery. This 

pattern would be consistent with a lower sand content.  

3.5 Fifth principal component 210 

The fifth PC explained 1.67 % of the data set’s variance. The loadings showed a depth-related pattern. All time series from 0.3 

m exhibited negative loadings with two minor exceptions whereas all time series from 0.9 m depth showed positive loadings 

throughout, and time series from 0.6 m depth plot in between. Loadings in 0.6 m depth and 0.9 m depth were mostly more 

similar to each other than to the loadings of 0.3 m depth (Figure 9). The Pearson correlation coefficient between loadings and 

depth was r = 0.710 (p < 0.05). Thus it can be concluded that the fifth PC reflected the effect of soil depth. Note that this effect 215 

differed between crops. The three most negative loadings were found in maize patches while the three most positive loadings 

were found in sunflower patches. 
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The hydrological signal after rainfall events exhibits damping over depth (blue line) while sensors in the upper layer react with 

a higher sensitivity (orange line) to weather conditions (Figure 10).  

4 Discussion 220 

The first five principal components described about 97% of the variance of the data set, which consisted of observed time 

series from 64 soil moisture probes. That results pointed to considerable redundancies between the effects of soil 

heterogeneities and of twelve different crops and management schemes (Table 1). Thereof the first principal component 

captured 72% of the total variance. Consequently, 72% of the observed dynamics could be described by a lumped model that 

would not consider any within-field heterogeneity. This figure is in the range of similar studies. In the study of Martini et al. 225 

(2017) the first PC explained 58% of the variance of a data set that comprised both agricultural fields as well as grassland 

transects. Lischeid et al. (2017) ascribed 70% of the variance of a forest soil hydrological data set to a single component. In 

the study by Hohenbrink et al. (2016) 85% of the variance of soil hydrological data in a set of arable field experiments with 

two different crop rotation schemes was assigned to a common dynamic. 

4.1 Crop effects 230 

As Korres et al. (2015) stated, the main causes for spatial variability of soil moisture in agricultural fields besides soil 

parameters are vegetation and management (e.g. planting and harvesting dates). The quantification of these effects is highly 

important, for instance for hydrological applications and adopted management practices in agriculture (Hupet and Vanclooster, 

2002). Joshi and Mohanty (2010) investigated the spatial soil moisture variability on the field to regional scale in the Southern 

Great Plains regions in the US by means of PCA and assessed the effect of vegetation as limited since none of the first seven 235 

PC showed strong correlations with vegetation parameters. In Western China, Wang et al. (2019) used a non-linear Granger 

causality framework and quantified the vegetation effect on soil moisture variability with up to 8.2%.  

In this study, conducted at the field scale, around 17% of the total variance was attributed to the vegetation effect. When not 

considering the temporal component reflected by PC1 and thus only looking at the spatial variability, 61% of the variance is 

caused by the vegetation effect reflected by PC2. Korres et al. (2010) also used PCA to quantify spatial variabilities of soil 240 

moisture within a cropped area but did not find such a pronounced vegetation effect. In their study more than two thirds of the 

spatial variability was related to soil parameters and topography. In contrast, the strong influence of vegetation in our study 

may be due to the high level of crop diversification. Within single crop fields vegetation effects are observable due to 

heterogeneous biomass or root development (Brown et al., 2021; Korres et al., 2010), but may be of a lower magnitude 

compared to fragmented field arrangements with different crops. The high impact of the crop diversification on soil moisture 245 

variability is also visible when comparing our results to the results of a field under comparable conditions in the same region 

with only two crop rotations in which only 3.8 % was explained by different crop rotations (Hohenbrink et al., 2016). Yang et 

al. (2015) remarked that the differences in soil moisture between vegetation types with different biomass is profound especially 
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in deeper layers. In this study, however, the decreasing gradient of the explained variance over depth was indicating the 

opposite. In the first layer, the effect of vegetation caused the highest variance in soil moisture. 250 

It needs to be considered that the proportion of the vegetation effect on soil moisture variability does not only vary spatially 

and over depth, but also over time. Under dry conditions, soil-plant interactions prevail while under moist conditions, 

percolation behaviour is predominant (Baroni et al., 2013). In our study, the variability of the vegetation effect over time is 

observable in the temporal development of the scores. In accordance with literature, the absolute values of the scores of PC2, 

representing differences between the contrasting seasonality of crops, are highest in the dry months May to August. In the 255 

moist winter months January to March, as well as during the heavy rainfall event in July, the scores of PC2 are relatively small, 

showing that spatial variability at that time is caused by other factors.  

The second principal component clearly differentiated between winter and summer crops which was driven by the different 

seasonal patterns of root water uptake (Figure 3). In contrast, the fourth component separated winter crops and fallow (Figure 

7). Note that the term “fallow” refers to crop cover in autumn and winter only. Phacelia is grown as a cover crop and usually 260 

dies off in frost periods. However, due to rather mild winter temperature this did only partly happen in the study period. Thus 

some Phacelia patches exhibited negative loadings, similarly to the winter crop patches. Hence the fourth component obviously 

reflected the effect of plant cover in the winter period which can hardly be ascribed to different patterns of root water uptake. 

According to this component, soil moisture at the fallow patches resembled more that of sandy soils, and that of winter crop 

patches more that of loamy soils. That feature could point to a soil carbon effect on the soil’s water holding capacity: Only at 265 

the winter crop sites organic carbon in soil increased continuously due to root growth and root exudation, whereas 

mineralisation reduced the organic carbon stock at the fallow sites. Effects of dense living root networks on soil hydraulic 

conductivity have been reported, e.g., by Scholl et al., (2014), Zhang et al. (2021) and Lange et al. (2013). Further soil-

vegetation interactions might play a role, such as soil organic matter from cover crops and plant residues (Manns et al., 2014; 

Rossini et al., 2021). Although this effect constituted only a minor share of soil moisture variance (Table 4), it was clearly 270 

discernible as a separate principal component. This effect would be worth to be tested in more detailed studies. If it were to be 

confirmed, it would be a good example for how plants shape their environment. 

4.2 Soil texture effects 

Texture is another highly important spatial variable that affects soil moisture. The pore size distribution which is directly linked 

to texture has great influence on wetting processes as well as on the water retention capacity of soil (Krauss et al., 2010; Rossini 275 

et al., 2021). Furthermore, texture influences the evapotranspiration which is another main factor controlling soil moisture 

(Pan and Peters-Lidard, 2008). For coarse grained soils as they are present in this case study, the water retention capacity is 

small, resulting in enhanced seepage fluxes (Scheffer and Schachtschabel, 2002;  Krauss et al. 2010).  

Loadings on the third principal component were not related to crop types. In contrast, a spatial pattern emerged: Only sensors 

from 0.9 m depth from six adjacent patches exhibited strongly negative loadings (Figure 2) whereas all other sensors showed 280 

minor positive or negative loadings. This points to an effect of subsoil substrates, that is higher loam content and consequently 
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higher water holding capacity. That would be consistent with delayed response to seepage fluxes and reduced desiccation in 

the vegetation period (Figure 6).  

Whereas the third principal component seems to reflect a local peculiarity, the fifth component obviously grasps a more generic 

feature. Loadings on this component are clearly related with depth (Figure 6). Strong positive loadings indicate a strongly 285 

damped behaviour of soil moisture time series (Figure 10). Hohenbrink and Lischeid (2015) combined a hydrological model 

and principal component analysis to study the effect of soil depth and soil texture on damping of the input signal in more detail. 

A subsequent field study proved the relevance of that effect in a real world setting (Hohenbrink et al., 2016). Moreover, 

Thomas et al. (2012) found that damping accounted for a large share of variance in a set of hydrographs from a region of 

30,000 km2. Damping was also the most relevant driver of spatial variance in a set of time series of groundwater head at about 290 

the same scale (Lischeid et al., 2021). 

5 Conclusion 

To disentangle and to quantify different effects of environmental processes in complex settings is a key challenge of 

agricultural and environmental research. It is an indispensable prerequisite for tailored field and crop management. Mechanistic 

models are a way to upscale findings from numerous single cause-single effect studies. But there is urgent need to further 295 

validate model results and to study interactions between various effects in a systematic way. This study focuses on the interplay 

between crops and soil heterogeneities in terms of soil moisture dynamics based on a comprehensive real-world data set. More 

than 97% of the observed spatial and temporal variance was assigned to five different effects. Meteorological drivers explained 

72.3% of the total variance. Different seasonal patterns of root water uptake of winter crops compared to summer crops 

accounted for another 17.0% of variance. An additional share of 2.2% of variance seemed to be related to the effects of a living 300 

rooting system on soil hydraulic properties. Heterogeneity of subsoil substrates explained 4.1 % of variance, and the damping 

effect of input signals in the soil another 1.7%. To summarize, plant-related direct and indirect effects accounted for 19.2% of 

the variance, and soil-related effects only for 5.8%. In particular, the plant-induced effects on soil hydraulic properties would 

be worthwhile to be studied in more detail. Adequate crop selection could be a management option to encounter the increasing 

drought risk in the study region. 305 

 

This information will contribute to elucidate management effects as well as to develop both parsimonious and tailored 

mechanistic models. In this regard, principal component analysis of soil moisture time series performed as a powerful 

diagnostic tool and is highly recommended. 
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 450 

Figures and Tables  

 

Figure 1: Daily precipitation and daily mean temperature from 2020-12-01 until 2021-08-15 measured at the field experiment. 

 

 455 

Figure 2: Sand content down to 0.25 m depth and location of the analysed patches including soil sensors under different crop 

rotations in the landscape laboratory patchCROP. The inset shows sensor and box location within one of the patches. 
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Figure 3: Loadings of time series on the second principal component. Bars represent individual time series grouped by patch ID 

and sorted and coloured by crop. Bars of the same colour are sorted by sensor depth, increasing from left to right (0.3 m, 0.6 m, 460 
0.9 m). 

 

 

Figure 4: Effect of the second principal component on modification of the general mean behaviour which is presented by the first 

principal component. 465 
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Figure 5: Loadings of time series on the third principal component. Bars represent individual time series grouped by patch ID, 

sorted by crop. 

 470 

 

Figure 6: Effect of the third principal component on modification of the general mean behaviour which is presented by the first 

principal component. 
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Figure 7: Loadings of time series on the fourth principal component. Bars represent individual time series grouped by patch ID, 475 
sorted and coloured by treatment group. Bars of the same colour are sorted by sensor depth, increasing from left to right. 

 

Figure 8: Effect of the fourth principal component on modification of the general mean behaviour which is presented by the first 

principal component. 

 480 
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Figure 9: Loadings of time series on the fifth principal component. Bars represent individual time series grouped by patch ID, 

sorted by crop. Within each patch, time series are sorted by sensor depth, increasing from left to right. 

 

 485 

Figure 10: Effect of the fifth principal component on modification of the general mean behaviour which is presented by the first 

principal component. 

 

Table 1: Overview of crop rotation, sand content down to 0.25m depth and weed control of analyzed patches. 

Patch ID Crop in 

winter season 

Crop in 

growing 

season 

Treatment Sand content (in 1 

m buffer zone 

around sensors) 

[%] 

Weed 

control 
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81 Winter barley A 78.3 conventional 

89 Winter rye A 80.5 conventional 

95 Winter oats A 80.7 conventional 

115 Winter oats A 80.6 reduced 

90 Fallow Lupine B 80.6 conventional 

110 Fallow Lupine B 80.3 reduced 

51 Phacelia Maize C 80.8 reduced 

102 Phacelia Maize C 80.6 conventional 

12 Phacelia Soy C 78.5 reduced 

66 Phacelia Soy C 77.9 conventional 

96 Phacelia Sunflower C 80.6 conventional 

105 Phacelia Sunflower C 80.5 reduced 

 490 

Table 2: Overview of NDVI, surface temperature, both taken on May 31, 2021, and slope at the locations of analysed sensors. 

Crop Patch ID Sensor 

Position 

NDVI [-] Surface 

Temperature 

[°C] 

Slope [°] 

Barley 81 West 0.93 20.57 2.01 

Barley 81 East 0.93 20.43 1.94 

Rye 89 West 0.85 22.39 1.74 

Rye 89 East 0.82 24.95 1.67 

Oats 95 East 0.83 27.25 1.36 

Oats 95 West 0.85 27.85 1.15 

Oats 115 West 0.88 23.70 1.28 

Oats 115 East 0.84 25.12 0.43 

Sunflower 96 West 0.20 33.76 0.59 

Sunflower 96 East 0.20 34.70 0.69 

Sunflower 105 West 0.65 29.79 1.04 

Sunflower 105 East 0.34 34.53 1.00 

Lupine 90 West 0.71 26.31 1.40 

Lupine 90 East 0.72 24.96 1.27 

Lupine 110 West 0.73 26.98 1.88 

Lupine 110 East 0.65 26.76 2.50 
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Maize 51 West 0.20 35.44 0.82 

Maize 51 East 0.27 35.29 0.93 

Maize 102 West 0.19 37.88 0.88 

Maize 102 East 0.18 38.03 0.90 

Soy 12 West 0.18 34.87 1.71 

Soy 12 East 0.16 34.44 1.11 

Soy 66 West 0.15 35.09 2.40 

Soy 66 East 0.15 34.39 2.13 

 

Table 3: Pearson correlation coefficients between drone imagery products taken on May 31, 2021, and loadings of sensors in all 

depths or at single depths, respectively, on the second principal component. All correlations are highly significant  (p<0.01). 

 Sensors in all 

depths 

0.3 m 0.6 m 0.9 m 

Surface 

temperature 
-0.853 -0.881 -0.909 -0.916 

NDVI 
0.887 0.9278 0.934 0.940 

 495 

Table 4: Principal components 1 to 5. 

 PC1 PC2 PC3 PC4 PC5 

Eigenvalue 46.25 10.89 2.60 1.43 1.06 

Proportion of 

variance [%] 

72.27 17.01 4.06 2.23 1.65 

Proportion of 

variance 

(cumulative)[%]  

72.27 89.28 93.34 95.57 97.22 

Interpretation Mean 

behaviour 

Winter 

vs. 

summer 

crops 

Subsoil 

texture 

Soil 

organic 

carbon 

Damping 

of the 

input 

signal 

Prevailing driver weather crop soil crop 

and soil 

soil 
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