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Abstract. There is urgent need for developing sustainable agricultural land use schemes. On the one side, climate change is 9 

expected to increase drought risk as well as the frequency of extreme precipitation events in many regions. On the other side, 10 

crop production has induced increased greenhouse gas emissions and enhanced nutrient and pesticide leaching to groundwater 11 

and receiving streams. Consequently, sustainable management schemes require sound knowledge of site-specific soil 12 

hydrological processes, accounting explicitly for the interplay between soil heterogeneities and crops. In this study, we apply 13 

a principal component analysis to a set of 64 soil moisture time series from a diversified cropping field featuring seven distinct 14 

crops and two weeding management strategies. 15 

About 97% of the spatial and temporal variance of the data set was explained by the first five principal components. 16 

Meteorological drivers accounted for 72.3% of the variance, 17.0% was attributed to different seasonal behaviour of different 17 

crops. While the third (4.1%) and fourth (2.2%) principal component explained effects of soil texture and cropping schemes 18 

on soil moisture variance, respectively, the effect of soil depth was represented by the fifth component (1.7%). However, 19 

neither topography nor weed control had a significant effect on soil moisture variance. Contrary to common expectations, soil 20 

and rooting pattern heterogeneity seemed not to play a major role. Findings of this study highly depend on local conditions. 21 

However, we consider the presented approach generally applicable to a large range of site conditions. 22 

1 Introduction 23 

Agriculture plays a major role to ensure the provision of food to a growing global population. At the same time, climate change 24 

is putting yield stability at risk due to extreme weather events, rising the need for sustainable management of resources, such 25 

as water and soil (Trnka et al., 2014). As part of the adaptation to more challenging conditions, the transformation from large 26 

homogeneously cropped fields towards diversified agricultural landscape was identified not only to have positive effects on 27 

multiple ecosystem services (Tamburini et al., 2020), but also on the system’s resilience to climatic extremes (Birthal and 28 

Hazrana, 2019). Additionally, crop diversification is highly beneficial by reducing soil erosion through permanent soil cover 29 

(Paroda et al., 2015), and by improving resource use efficiency through wider crop rotations (Rodriguez et al., 2021). In terms 30 

of soil water dynamics, crop and management diversification can lead to improved water-stable macro-aggregation, reduced 31 
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soil compaction and increased soil organic carbon  from which soil water infiltration and retention can be positively affected 32 

(Alhameid et al., 2020; Fischer et al., 2014; Karlen et al., 2006; Koudahe et al., 2022; Nunes et al., 2018). 33 

However, as the diversity of independent variables in agricultural systems increases, demands for frequency and spacing of 34 

soil moisture measurements and related data interpretation grow. Therefore, soil sensing networks are receiving increased 35 

attention, particularly in Precision Agriculture (PA) (Bogena et al., 2022; Salam and Raza, 2020), where the main goal is to 36 

increase efficiency and productivity at the farm level, while minimizing the negative impacts on the environment (Taylor and 37 

Whelan, 2010). Soil sensor networks can meaningfully contribute to PA as they can be used for various purposes, including 38 

the delineation of management zones (Khan et al., 2020; Salam and Raza, 2020). Still, one of the most important demands to 39 

be fulfilled by soil sensing networks is soil moisture monitoring, as accurate measurement of soil water content can play an 40 

important role in improving water management and therefore, crop yields (Salam, 2020).  41 

Wireless solutions, for instance based on LoRaWAN (Long Range Wide Area Network) technology, in combination with 42 

electromagnetic soil moisture sensors avoid labour-intensive and destructive soil moisture measurements that disrupt field 43 

traffic. The development of such wireless soil monitoring networks enables broad and affordable application also in areas with 44 

low cellular coverage (Cardell-Oliver et al., 2019; Lloret et al., 2021; Placidi et al., 2021; Prakosa et al., 2021).  45 

The evolvement of such systems does not only have benefits for management but is also of high relevance for fostering the 46 

understanding of hydrological dynamics in the vadose zone. High-resolution datasets measured under real farming conditions 47 

can be used to characterize and analyse spatio-temporal dynamics of soil water. Due to the large size of data sets that are 48 

recorded with wireless sensor networks, sophisticated data analysis approaches are required to detect hidden patterns and 49 

determine influence factors on soil moisture variability (Vereecken et al., 2014). Methods include geostatistical analysis 50 

(Vereecken et al., 2014) or data driven approaches (Hong et al., 2016). With the introduction of multiple-points geostatistics, 51 

it became possible to not only analyse patterns but also connect them with factors affecting soil moisture, such as topography, 52 

texture, crop growth and water uptake, and land management (Brocca et al., 2010; Strebelle et al., 2003). Wavelet analysis can 53 

analyse both localized features as well as spatial trends through which non-stationary variation of soil properties can be 54 

considered (Si, 2008). Cross-correlation analysis allowed linking soil moisture variability to climatic variables (Mahmood et 55 

al., 2012). Furthermore, temporal stability analyses detect spots in the investigated area which are consistently wetter or drier 56 

than the mean soil moisture (Baroni et al., 2013; Vachaud et al., 1985, Vanderlinden et al., 2012). This method was already 57 

successfully used to detect soil moisture patterns related to soil properties, vegetation, and topography (Zhao et al., 2010).  58 

Principal component analysis (PCA) is another method that was successfully applied for soil moisture variability analysis at 59 

the field (Hohenbrink et al., 2016; Hohenbrink and Lischeid, 2015; Martini et al., 2017), catchment (Korres et al., 2010; 60 

Lischeid et al., 2017; Nied et al., 2013), and regional (Joshi and Mohanty, 2010) scale. These studies build on previous 61 

applications in climatology where the term “Empirical Orthogonal Functions” is used (Bretherton et al., 1992). Space and time 62 

dimensions can be disentangled and be assigned to influencing factors. Additionally, the propagation of hydrological signals 63 

(e.g. precipitation events) over depth can be assessed (Hohenbrink et al., 2016). This opens up great opportunities for 64 

contributing to the knowledge of changing soil-hydrological dynamics in complex diversified agricultural systems with 65 
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increasing heterogeneity and site-specific adjustment of crops, soil types and field management which, to our knowledge, have 66 

hardly been studied so far.  67 

We analysed a high-resolution soil moisture data set measured by a novel underground LoRaWAN monitoring system with 68 

TDR sensors in different depths of the vadose zone at a spatial-temporally diversified agricultural field in Northeast Germany. 69 

The novelty of this Internet of underground Things (IouT) soil moisture monitoring network is characterized by its unique on-70 

farm installation environment and the deployment of 180 sensors in up to 0.9 m soil depth, allowing high spatio-temporal 71 

resolution wireless data transmission, and enabling conventional farming practices like machinery traffic, tillage and 72 

mechanical weeding. The main objective of this study was to identify the drivers of soil moisture variability in a diversified 73 

cropping field in terms of crop selection, soil type and field management by applying PCA. Special focus was put on the 74 

interpretation of spatial and temporal effects of crop diversification and of soil heterogeneities on soil moisture dynamics. 75 

2 Materials and methods 76 

2.1 Study site 77 

The study site (52°26'51.8"N 14°08'37.7"E, 66-83 m.a.s.l.) is located near the city of Müncheberg in the federal state of 78 

Brandenburg in Northeastern Germany. The landscape is classified as a hummocky ground moraine that formed during the 79 

last glacial periods. Glacial and interglacial processes as well as subsequent erosion resulted in highly heterogeneous soils 80 

(Deumlich et al., 2018), being classified as Dystric Podzoluvisols according to the FAO scheme (Fischer et al., 2008). In the 81 

top 0.3 m soil layer, total organic carbon was 0.94% and total nitrogen content was 0.07%, and pH was 6.12. Between January 82 

1991 and December 2020, the mean annual temperature in Müncheberg was 9.6°C, and the mean annual sum of precipitation 83 

was 509 mm (DWD Climate Data Center (CDC), 2021).  84 

2.2 Experimental setup 85 

The data collection was carried out from December 2020 until mid of August 2021 in the patchCROP experiment (Grahmann 86 

et al, 2021; Donat et al., 2022). This landscape experiment has been set up to study the multiple effects of cropping system 87 

diversification on productivity, crop health, soil quality, and biodiversity. To that end, a cluster analysis was carried out based 88 

on soil maps and multi-year (2010 to 2019) yield data to identify high and low yield potential zones in the 70-ha large field 89 

(Donat et al., 2022). Afterwards, single experimental units comprising 30 patches with an individual size of 0.52 ha (72 m × 90 

72 m) each, have been implemented in both, high and low yield potential zones where each of those zones is characterized by 91 

varying soil conditions and a site-specific five-year, legume-based crop rotation (Grahmann et al., 2021). The remaining area 92 

outside of the 30 patches was planted with winter rye. For the current study, twelve out of 30 patches were considered (Table 93 

1). In the cropping season 2020/2021, seven different main crops were grown. For subsequent data interpretation, crops have 94 

been grouped into A) winter crops, B) fallow, followed by summer crops and C) cover crops, followed by summer crops. In 95 

seven out of twelve considered patches, weed control was carried out with herbicide application, referred as “conventional” 96 
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pesticide application, while in the remaining five patches, “reduced” pesticide management was carried out by mainly using 97 

mechanical weeding, by harrowing, blind harrowing, and hoeing. Only in the case of high weed pressure herbicides were 98 

applied.  Due to the potential impact of mechanical weeding, i.e., on rainwater infiltration, soil evaporation and topsoil rooting 99 

intensity, we differentiate between these modes of weed control. 100 

2.3 Data collection 101 

Soil moisture was recorded by a long-range-wide-area network (LoRaWAN) based monitoring system. In each patch, one  102 

Dribox box equipped with a SDI-12 distributer (serial data interface at 1200 baud rate, TBS04, TekBox, Saigon, Vietnam) 103 

connected to six TDR-sensors (TDR310H, Acclima, Meridian, USA) and attached to an outdoor remote terminal unit (RTU) 104 

fully LoRaWAN compliant (TBS12B: 4+1 channel analogue to SDI-12 interface for 24 Bit A/D conversion of sensor signals,  105 

TekBox, Saigon, Vietnam) was installed. The Dribox was deployed at least 0.3 m below ground to allow normal field traffic 106 

and soil tillage. The sensors and boxes were installed between August and November 2020. At two georeferenced locations, 107 

TDR-sensors were installed in 0.3, 0.6 and 0.9 m depth, respectively, approximately 2 m apart from the Driboxes in angles 108 

between 45° and 60°. Soil sensors at 0.3 m were placed horizontally, while sensors at 0.6 and 0.9 m depth were placed vertically 109 

using auger-made tunnels and extension tubes for soil insertion. Driboxes were autarkic in terms of energy supply, and 110 

communication was wireless throughout. Thus no electric cabling except from connections between sensors and Driboxes was 111 

needed. 112 

The data were recorded every 20 minutes by the LoRa nodes through a LoRa-WAN Gateway DLOS8 (UP GmbH, Ibbenbüren, 113 

Germany) which was equipped with the modem TL-WA7510N (TP Link, Hong Kong, China) to transfer the data to a cloud 114 

from where collected data could be accessed directly after the measurement. The time series included in this study covered the 115 

period from December 01, 2020, until August 14, 2021 (Appendix A). Precipitation and temperature data (Fig. 1) were obtained 116 

from two weather stations located in the Eastern and Western end of the main patchCROP field with a 15 min temporal 117 

resolution. Climatic water balance was calculated from precipitation and potential evapotranspiration, both measured at the 118 

climate station by the German Weather Service in Müncheberg (DWD Climate Data Center (CDC), 2021). 119 

 120 

Furthermore, drone imagery from May 20, 2021, May 31, 2021, and July 06, 2021, was used for vegetation assessment. The 121 

drone fixed-wing UAV-based RS eBee platform (SenseFly Ltd., Cheseaux-Lausanne, Switzerland) was operated at noon time 122 

and recorded multispectral imagery with a Parrot Sequoia+ camera (green, red, NIR, and red edge bands, spatial resolution of 123 

0.105 m) and thermal imagery of the surface (only on May 31, 2021) with a senseFly Duet T camera with a spatial resolution 124 

of 0.091 m (Table 2). The multispectral imagery was processed with Pix4D to obtain the Normalized Difference Vegetation 125 

Index (NDVI), following Eq. (1): 126 

 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 127 

             (1) 128 
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in which NIR is the intensity of reflected near-infrared light (reflected by vegetation) and Red the intensity of reflected red 129 

light (absorbed by vegetation). A digital elevation model with a spatial resolution of 1 m (GeoBasis-DE and LGB, 2021) was 130 

used to calculate the slope (ArcGIS 10.7.0; ESRI, 2011) (Table 2).  131 

 132 

Manual soil texture analysis by layer was carried out for part of the sensors by using a Pürckhauer soil auger of 1 m length in 133 

eight of twelve analysed patches.  Manual soil textural class was estimated at the field by applying the protocol “Finger test to 134 

determine soil types according to DIN 19682-2 and KA5” (Sponagel et al., 2005). Additionally, representative soil samples 135 

were collected and analysed at the laboratory to determine particle size distribution (based on the German particle 136 

classification) by using the traditional gravimetric sieving method. To extrapolate the soil particle distribution from the 137 

laboratory to the manual soil textural classes, the high and low yield potential laboratory samples were pooled separately and 138 

the average soil particle distribution by soil textural class was calculated and assigned to the respective soil layer with that 139 

particular soil textural class. The soil texture analysis showed that soil texture variability increased with depth. In the third 140 

layer (average bottom depth = 92 cm), the sand and clay share across 133 sampling points varied between 53% to 94% and 141 

2% to 22%, respectively. Soil sample points were between approximately 0.8m and 2.5m far from sensors. The transferability 142 

of texture information from the sampling point to the sensor location was not ensured due to high nugget effects. Furthermore, 143 

manual soil texture analysis data were not available for all analysed patches. Consequently, they were not included into further 144 

correlation analysis. 145 

In October 2019, the “Geophilus” soil scanner system (Lueck and Ruehlmann, 2013) was used in the entire field to map 146 

electrical resistivity (ERa) of the soil as a proxy for soil texture for the top soil, using reference soil samples to calibrate the 147 

readings. The “Geophilus” system is based on sensor fusion of with ERa sensors coupled with a gamma (γ) sensor. Apparent 148 

electrical conductivity was measured by pulling one or more sensor pairs mounted on wheels across the field where each pair 149 

of sensors measured a different soil depth. Amplitude and phase were measured simultaneously using frequencies from 1 MHz 150 

to 1 kHz. Reference soil samples were taken in several points and served as calibration information in order to estimate sand, 151 

silt and clay content in the top 0.25 m of soil. A non-linear regression model was applied. The RMSE of sand content (5.7%) 152 

was considerably smaller than the standard deviation of the sand content in the first layer from the manual soil texture analysis 153 

(11.9%), indicating a satisfactory prediction performance. The γ-sensor was used to minimize uncertainties, being less sensitive 154 

to soil moisture than the ERa readings (Bönecke et al., 2021). The estimated sand content in the upper 0.25 m at the study site 155 

varied between 69.1% and 81.2% and averaged 79.0% (Table 1, Figure 2).  156 

2.4 Data processing 157 

Soil moisture data were available at 20-minute intervals. Transmission failures due to discharged batteries, signal disturbances 158 

in sinks after rainfall, patches with a high density of biomass (e.g. maize), and theft of parts of the monitoring system led to 159 

data gaps that amounted to 81 out of 257 days of the measuring period, which were therefore skipped for the analysis. Whereas 160 

time series of eight sensors were excluded due to a higher frequency of transmission failures, in total, 64 time series were used 161 
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for the analysis, and additional data gaps for single sensors were interpolated linearly. Of all 20,668 interpolated gaps, 96% 162 

were shorter than two hours, 3% between two and six hours and 1% longer than six hours. In 26 cases, gaps exceeded the 163 

duration of one day. The interpolation was justified as the differences between the values before and after the gaps were within 164 

the measuring accuracy of 1 vol-% of the TDR sensors (Acclima Inc., 2019). To ensure equal weighting for the subsequent 165 

analysis all soil moisture time series were z-transformed to unit variance and zero mean each (cf. Hohenbrink and Lischeid, 166 

2015). As a consequence, differences of absolute values were not considered by the further analysis. 167 

2.4 Statistical analysis 168 

To identify common temporal patterns among single time series, the soil moisture data set was analysed by a principal 169 

component analysis (PCA). In a first step, PCA decomposes the total variance of a multivariate data set into independent 170 

fractions called principal components (PCs). The number of PCs is the same as the number of time series in the input data set. 171 

Each PC consists of eigenvectors (loadings), scores, and eigenvalues. The scores reflect the temporal dynamics. The 172 

importance of single principal components for single sites is represented by the loadings of each PC (Jolliffe, 2002; Lehr and 173 

Lischeid, 2020). Loadings are the Pearson correlation coefficients of the single time series of the input data set with the scores 174 

of each PC, respectively. The eigenvalues of the single PC are proportional to the variance that they explain. The PCs are 175 

sorted in descending order of eigenvalues. Eigenvalues greater than one indicate that a PC explains more variance than  a 176 

single input time series could contribute to the total variance of the entire input data set (Kaiser, 1960). More details on principal 177 

component analysis for time series analysis are found in Joliffe (2002). The PCA was performed using the prcomp function in 178 

R version 4.1.0 (R Development Core Team, 2021).   179 

The scores of the principal components constitute time series. Every observed time series can be presented at arbitrary precision 180 

as a combination of various principal components. When the data set consists of time series of the same observable measured 181 

at different locations, the first principal component describes the mean behaviour inherent in the data set. Subsequent principal 182 

components reflect typical modifications of that mean behaviour at single locations due to different effects. Thus generating 183 

synthetic time series as linear combinations of the first PC and another additional PC helps to assign this additional PC to a 184 

specific effect. To that end, scores of that component have either been added to or subtracted from those of the first component 185 

using arbitrarily selected factors. The two resulting graphs show how the respective PC causes deviations from the mean 186 

behaviour of the data set.    187 

The relations to soil and vegetation parameters were tested by computing the Pearson correlation coefficients between the 188 

scores and arithmetic mean values of all input time series as well as the Pearson correlation coefficients between loadings and 189 

sand content, sensor depth, antecedent z-transformed water contents, slope, and drone imagery products  (NDVI and surface 190 

temperature). Eventually, the Wilcoxon-Mann-Whitney test was applied to check whether loadings can be grouped by 191 

management parameters (crops, cover crops, weeding management). All statistical analyses were conducted with R version 192 

4.1.0 (R Development Core Team, 2021). 193 
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3 Results 194 

The principal component analysis yielded five components with Eigenvalues exceeding one, which accounted for >97% of the 195 

total variance of the data set (Table 4). 196 

3.1 First principal component 197 

The first principal component explained 72.3% spatiotemporal variance of the data set. All loadings on the first PC were 198 

negative (Appendix B). The Pearson correlation coefficient of the scores of the first principal component with the mean values 199 

of all input time series was less than - 0.999 (p < 0.01), the correlation between the scores and the cumulative climatic water 200 

balance (P – ETp) was -0.969 (p < 0.01). Thus, the time series of the negative scores of this component represented the mean 201 

behaviour of soil moisture driven by external factors such as precipitation, temperature, and seasons in general which affected 202 

time series in the same way, although to different degrees (cf., Hohenbrink et al., 2016; Lischeid et al., 2021).  203 

3.2 Second principal component 204 

The second principal component explained 17.0% of the total variance. The loadings ranged from -0.801 to 0.760 with a 205 

median of -0.030 (Figure 3). The loadings showed a crop type specific pattern. All winter crops (barley, oats, rye) had positive 206 

loadings with only one exception in 0.9 m depth. The summer crops maize, soy, and sunflower exhibited negative loadings. In 207 

contrast, the summer crop lupine exhibited mostly positive loadings, similar to the winter crops, although of slightly smaller 208 

magnitude. According to the Wilcoxon-Mann test, the group of barley, oats, rye, and lupine differed significantly from the 209 

group of maize, soy, and sunflower. 210 

As described in the Methods section, synthetic time series were generated as a linear combination of PC1 and PC2 (Figure 4). 211 

The graph resulting from applying a positive factor for PC2 represents a typical deviation from mean behaviour for sites that 212 

exhibit positive loadings, e.g., winter crops (blue line). The opposite holds for the summer crops which load negatively with 213 

PC2 (orange line). Both lines plot very close to each other in February and March. In contrast, the orange line shows lower 214 

values than the blue line in December and January, indicating lower soil moisture at the summer crop patches. The inverse 215 

holds for the subsequent summer period starting in early June, pointing to earlier and more rapid water uptake of the winter 216 

crops. In July and August, the approximately constant level of the blue curve indicates that only summer crops continue to 217 

consume water while winter crops are in their ripening phase and eventually harvested. 218 

Lupine and sunflower were the summer crops which were sown first (March 30, 2021, and April 2, 2021, respectively). Maize 219 

was sown on April 16, 2021, and soy on May 15, 2021. The loadings of lupine, which were rather performing like winter crops 220 

than summer crops, indicated that lupine showed an early onset of intensive evapotranspiration, compared to other summer 221 

crops, especially sunflower which was sown at the same time.  222 

For further investigation of the vegetation effect on PCs, the loadings of PC2 were compared to drone imagery taken at the 223 

end of May, when sowing has been completed on all patches, and images taken at the beginning of July during winter crops’ 224 
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ripening phase. The second PC’s loadings of the time series from different sensors were compared to the Normalized 225 

Difference Vegetation Index (NDVI) and surface temperature (only available for May 31, 2021) of the respective sensor 226 

location as a proxy for actual evapotranspiration (Table 3). At the end of May, the NDVI, as a proxy for photosynthesis 227 

potential, was positively correlated with the loadings. Surface temperature exhibited a negative correlation. The spatial pattern 228 

of surface temperature is assumed to be inversely related to that of actual evapotranspiration. Thus, both proxies, NDVI and 229 

surface temperature, support the inference that positive loadings on this principal component represent sites with above-230 

average plant activity and root water uptake at the end of May. This holds for sensors from all depths but was the closest for 231 

0.9 m depth (Pearson correlation of r = -0.916 for surface temperature and of r = 0.946 for NDVI on May 31). The results in 232 

July compared to those in May support the observation. At the time when the winter crops are already in the ripening phase 233 

and the summer crops reach high levels of evapotranspiration, the correlations are being reversed and negative loadings 234 

indicate above-average plant activity for summer crops. On July 06, highest Pearson correlations for NDVI are found for 0.6 235 

m depth (r = -0.917). 236 

3.3 Third principal component 237 

The third PC explained 4.1% of the total data set’s variance. Loadings ranged between -0.787 and 0.244 with a median of 238 

0.006. Extreme loadings (<-0.25) were found only for sensors in 0.9 m depth in patches 66, 89, 95 and 102 (Figure 5). The 239 

location of the patches roughly follows an east-west direction , which, however, cannot be assigned to topography or structures 240 

apparent on the topsoil map (Figure 2). Loadings were closely related to the minima of the z-transformed soil moisture in the 241 

period from December to February (r = 0.70). The most obvious difference between the orange line (negative loading on PC3) 242 

and the blue line (positive loading on PC3) during the first half of the study period is that the latter reaches a maximum of soil 243 

moisture after rainfall much earlier compared to the former (Figure 6).  244 

3.4 Fourth principal component 245 

The fourth PC explained 2.2% of the total data set’s variance. The loadings were clustered by crop groups. All fallow patches 246 

showed consistent positive loadings while the patches which were covered by winter crops, showed mainly negative loadings 247 

except in patch 95 where the loadings of the two sensors in 0.3 m depth were slightly above zero (Figure 7). According to the 248 

Wilcoxon-Mann test treatment group B (fallow, followed by summer crops) differed significantly from group A (winter crops) 249 

and C (cover crops, followed by summer crops) whereas there was no significant difference between group A and C. In contrast 250 

to crop groups A and B, patches that were covered by the cover crop phacelia during the winter months, did not show one-251 

directional loadings.  252 

Figure 8 illustrates the effect of the fourth PC on time series. A positive factor would be typical for more sandy soils and for 253 

patches with fallow in autumn and winter (blue line). In contrast the orange line depicts behaviour in more loamy soils and for 254 

winter crops. The latter line exhibits slightly more delayed responses to rainstorms and subsequent less steep recovery as it 255 
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would be expected for more loamy soils. However, it is not clear how winter crops on the one side and fallow on the other side 256 

could induce such a different behaviour.  257 

3.5 Fifth principal component 258 

The fifth PC explained 1.7% of the data set’s variance. The loadings showed a depth-related pattern. All time series from the 259 

0.3 m depth exhibited negative loadings with two minor exceptions. Whereas all time series from 0.9 m depth showed positive 260 

loadings throughout, and time series from 0.6 m depth plot in between. Loadings in 0.6 m depth and 0.9 m depth were mostly 261 

more similar to each other than to the loadings of 0.3 m depth (Figure 9). The Pearson correlation coefficient between loadings 262 

and depth was r = 0.710 (p < 0.05). Thus it can be concluded that the fifth PC reflected the effect of soil depth on soil moisture 263 

variance. This effect differed between crops, with the three most negative loadings found in maize patches while the three 264 

most positive loadings were found in lupine patches. 265 

The hydrological signal after rainfall events exhibits damping over depth (blue line) while sensors in the upper layer react with 266 

a higher sensitivity (orange line) to weather conditions (Figure 10).  267 

Neither patterns in topography nor in weeding management modes were reflected in the loadings of PC1-PC5. Due to the lack 268 

of subsurface soil data, no additional findings could be derived from the Geophilus texture analysis.  269 

4 Discussion 270 

The first five principal components described about 97% of the variance of the data set, which consisted of observed time 271 

series from 64 soil moisture probes and revealed various effects of weather, soil texture, soil depth, crops and management 272 

schemes (Table 1). The first principal component captured 72% of the total variance. Consequently, 72% of the observed 273 

dynamics could be described by a lumped model that would not consider any within-field heterogeneity. This figure is in the 274 

range of similar studies. In the study of Martini et al. (2017), the first PC explained 58% of the variance of a data set that 275 

comprised both agricultural fields as well as grassland transects. Lischeid et al. (2017) ascribed 70% of the variance of a forest 276 

soil hydrological data set to a single component. In the study by Hohenbrink et al. (2016), 85% of the variance of soil 277 

hydrological data in a set of arable field experiments with two different crop rotation schemes was attributed to the first 278 

principal component.  279 

4.1 Crop effects 280 

As Korres et al. (2015) stated, the main causes for spatial variability of soil moisture in agricultural fields besides soil 281 

parameters are vegetation and management (e.g. planting and harvesting dates). The quantification of the impact of these 282 

effects on soil moisture variability is highly important, for instance for hydrological applications and adopted management 283 

practices in agriculture (Hupet and Vanclooster, 2002). Joshi and Mohanty (2010) investigated the spatial soil moisture 284 

variability on the field to regional scale in the Southern Great Plains regions in the US by means of PCA and assessed the 285 
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effect of vegetation as limited since none of the first seven PC showed strong correlations with vegetation parameters. In 286 

Western China, Wang et al. (2019) used a non-linear Granger causality framework and quantified the vegetation effect on soil 287 

moisture variability with up to 8.2%.  288 

In this study, conducted at the field scale, around 17% of the total variance was attributed to the vegetation effect. When not 289 

considering the temporal component reflected by PC1 and thus only looking at the spatial variability, 61% of the remaining 290 

variance (attributed to PC2 to PC64) is caused by the vegetation effect reflected by PC2. Korres et al. (2010) also used PCA 291 

to identify the drivers of spatial variability of soil moisture within a cropped area but did not find such a pronounced vegetation 292 

effect. In their study more than two thirds of the spatial variability was related to soil parameters and topography. In contrast, 293 

the strong influence of vegetation in our study may be due to the high level of crop diversification. Within single crop fields, 294 

vegetation effects are observable due to heterogeneous biomass or root development (Brown et al., 2021; Korres et al., 2010), 295 

but may be of a lower magnitude compared to fragmented field arrangements with different crops. The high impact of crop 296 

diversification on soil moisture variability is also visible when comparing our results to the results of a field under comparable 297 

conditions in the same region with only two crop rotations in which only 3.8% was explained by the different crop rotations 298 

(Hohenbrink et al., 2016).  299 

It needs to be considered that the proportion of the vegetation effect on soil moisture variability does not only vary spatially 300 

and over depth, but also over time. Under dry conditions, soil-plant interactions prevail while under moist conditions, 301 

percolation behaviour is predominant (Baroni et al., 2013). The scores are time series and reflect the effect size of a particular 302 

process represented by the respective PC. The more the scores of a certain PC deviate from zero during specific periods, the 303 

stronger the respective effect is. Consequently, the time series of PC2 scores indicates that the effect of vegetation on total 304 

variability varies by time. In accordance with literature, the absolute values of the scores of PC2, representing differences 305 

between the contrasting seasonality of crops, are highest in the dry months May to August. In the moist winter months January 306 

to March, as well as during the heavy rainfall event in July, the scores of PC2 are relatively small, showing that spatial 307 

variability at that time is caused by other factors.  308 

The second principal component clearly differentiated between winter and summer crops, which was driven by the different 309 

seasonal patterns of root water uptake (Figure 3). In contrast, the fourth component separated winter crops and fallow (Figure 310 

7). Note that the term “fallow” refers to crop cover in autumn and winter only. Phacelia is grown as a cover crop and usually 311 

dies off in frost periods. However, due to rather mild winter temperature this did only partly happen in the study period. Thus 312 

some Phacelia patches exhibited negative loadings, similarly to the winter crop patches. Hence the fourth component obviously 313 

reflected the effect of plant cover in the winter period, which can hardly be ascribed to different patterns of root water uptake. 314 

According to this component, soil moisture dynamics at the fallow patches resembled more the typical behaviour one would 315 

expect for sandy soils, and that of winter crop patches a more damped behaviour typical of more loamy soils. That feature 316 

could point to a soil carbon effect on the soil’s water holding capacity: Only at the winter crop sites organic carbon in soil 317 

increased continuously due to root growth and root exudation, whereas mineralisation reduced the organic carbon stock at the 318 

fallow sites. Effects of dense living root networks on soil hydraulic conductivity have been reported, e.g., Scholl et al. (2014), 319 
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Zhang et al. (2021) and Lange et al. (2013). Further soil-vegetation interactions might play a role, such as soil organic matter 320 

from cover crops and plant residues (Manns et al., 2014; Rossini et al., 2021). Usually, such effects are assumed to occur only 321 

at larger time scales, which is closely related to problems of detecting changes soil organic carbon quantity or quality. So far 322 

there is only anecdotal evidence for rather short-term soil organic carbon quality affecting soil hydraulic properties even at 323 

smaller time scales. Although this effect constituted only a minor share of soil moisture variance (Table 4), it was clearly 324 

discernible as a separate principal component. This effect would be worth to be tested in more detailed studies. If it were to be 325 

confirmed, it would be a good example for how crop management shapes soil properties. 326 

4.2 Soil texture effects 327 

Texture is another highly important spatial variable that affects soil moisture. The pore size distribution, which is directly 328 

linked to texture has great influence on wetting processes as well as on the water retention capacity of soil (Krauss et al., 2010; 329 

Rossini et al., 2021). Furthermore, texture influences the evapotranspiration which is another main factor controlling soil 330 

moisture (Pan and Peters-Lidard, 2008). For coarse grained soils as they are present in this case study, the water retention 331 

capacity is small, resulting in enhanced seepage fluxes (Scheffer and Schachtschabel, 2002;  Krauss et al. 2010).  332 

Loadings on the third principal component were not related to crop types. In contrast, a spatial pattern emerged: Only sensors 333 

from 0.9 m depth from six adjacent patches exhibited strongly negative loadings (Figure 2), whereas all other sensors showed 334 

minor positive or negative loadings. This points to an effect of subsoil substrates, that is, higher clay content and consequently 335 

higher water holding capacity. That would be consistent with delayed response to seepage fluxes and reduced desiccation in 336 

the vegetation period (Figure 6). Data on the texture at the sensor location in deeper layers would be of high value to confirm 337 

the assumptions. 338 

Whereas the third principal component seems to reflect a local peculiarity, the fifth component obviously grasps a more generic 339 

feature. Loadings on this component are clearly related with depth (Figure 9). Strong positive loadings indicate a strongly 340 

damped behaviour of soil moisture time series: The blue line, representing sites with positive loadings on PC5 which is typical 341 

for sensors at greater depth (Figure 9), exhibits clearly reduced amplitudes compared to the orange line, that is, sensors at 342 

shallow depth (Figure 9, Figure 10). Hohenbrink and Lischeid (2015) combined a hydrological model and principal component 343 

analysis to study the effect of soil depth and soil texture on damping of the input signal in more detail. A subsequent field 344 

study proved the relevance of that effect in a real-world setting (Hohenbrink et al., 2016). Moreover, Thomas et al. (2012) 345 

found that damping accounted for a large share of variance in a set of hydrographs from a region of 30,000 km2. Damping was 346 

also the most relevant driver of spatial variance in a set of time series of groundwater head at about the same scale (Lischeid 347 

et al., 2021).  348 
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5 Conclusion 349 

To disentangle and to quantify different effects of environmental processes in complex settings is a key challenge of 350 

agricultural and environmental research. It is an indispensable prerequisite for tailored field and crop management. Mechanistic 351 

models are a way to upscale findings from numerous single cause-single effect studies. But there is urgent need to further 352 

validate model results and to study interactions between various effects in a systematic way. Principal component analysis is 353 

a step further to meet these challenges although not entirely without problems. In this study which focuses on the interplay 354 

between crops and soil heterogeneities in terms of soil moisture dynamics, the strength of the methodology in contributing to 355 

disentangling different effects of complex spatially and temporally diversified cropping systems based on a comprehensive 356 

real-world data set is presented. More than 97% of the observed spatial and temporal variance was assigned to five different 357 

effects. Meteorological drivers explained 72.3% of the total variance. Different seasonal patterns of root water uptake of winter 358 

crops compared to summer crops accounted for another 17.0% of variance. An additional share of 2.2% of variance seemed 359 

to be related to the effects of a living rooting system on soil hydraulic properties. Heterogeneity of subsoil substrates explained 360 

4.1 % of variance, and the damping effect of input signals in the soil another 1.7%. To summarize, plant-related direct and 361 

indirect effects accounted for 19.2% of the variance, and soil-related effects only for 5.8%. In particular, the plant-induced 362 

effects on soil hydraulic properties would be worthwhile to be studied in more detail.  363 

Knowledge from data-driven approaches can support adequate crop selection as a management option to encounter the 364 

increasing drought risk in the study region. It has been shown that principal component analysis has a high value for the 365 

application in environmental sciences, as it allows to draw conclusions about variabilities in large data sets from real-world 366 

monitoring setups despite gaps in time series. Information from this study will contribute to elucidate management effects as 367 

well as to develop both parsimonious and tailored mechanistic models. Findings of this study highly depend on local 368 

conditions. However, we consider the presented approach generally applicable to a large range of site conditions. In this regard, 369 

principal component analysis of soil moisture time series performed as a powerful diagnostic tool and is highly recommended. 370 
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Figure 1: Measured daily precipitation and mean temperature and crops grown from 2020-12-01 until 2021-08-15 at the 537 
experimental site in Tempelberg, Brandenburg, Germany. 538 
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 540 

Figure 2: Sand content in the top 0.25 m soil depth and location of the analysed patches including soil sensors under different crop 541 
rotations in the landscape laboratory patchCROP, Tempelberg, Brandenburg, Germany. The inset shows sensor and box location 542 
within one of the patches. 543 

 544 

Figure 3: Loadings of time series on the second principal component. Bars represent individual time series grouped by patch ID 545 
and sorted by crop.  546 
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 547 

 548 

Figure 4: Effect of the second principal component on modification of the general mean behaviour which is presented by the first 549 
principal component. 550 

 551 

 552 

Figure 5: Loadings of time series on the third principal component. Bars represent individual time series grouped by patch ID, 553 
sorted by crop. 554 

 555 
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 556 

Figure 6: Effect of the third principal component on modification of the general mean behaviour which is presented by the first 557 
principal component. 558 

 559 

Figure 7: Loadings of time series on the fourth principal component. Bars represent individual time series grouped by patch ID, 560 
sorted by treatment group.  561 
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 562 

Figure 8: Effect of the fourth principal component on modification of the general mean behaviour which is presented by the first 563 
principal component. 564 

 565 

 566 

Figure 9: Loadings of time series on the fifth principal component. Bars represent individual time series grouped by patch ID, 567 
sorted by crop.  568 

 569 
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 570 

Figure 10: Effect of the fifth principal component on modification of the general mean behaviour which is presented by the first 571 
principal component. 572 

Table 1: Overview of crop rotation, sand content in the top 0.25 m soil depth and weed control of analysed patches. 573 

Patch ID Crop in 

winter season 

Crop in 

summer 

season 

Crop group Sand content (in 

1 m buffer zone 

around sensors) 

[%] 

Weed 

control 

     

95 Winter oats A 80.7 conventional 

115 Winter oats A 80.6 reduced 

89 Winter rye A  80.5  conventional 

90 Fallow Lupine B 80.6 conventional 

110 Fallow Lupine B 80.3 reduced 

51 Phacelia Maize C 80.8 reduced 

102 Phacelia Maize C 80.6 conventional 

12 Phacelia Soy C 78.5 reduced 

66 Phacelia Soy C 77.9 conventional 

96 Phacelia Sunflower C 80.6 conventional 

105 Phacelia Sunflower C 80.5 reduced 

 574 

Table 2: Overview of NDVI, surface temperature, and slope at the locations of analysed sensors. 575 

Crop Patch ID Sensor 

Position 

NDVI 

2021-05-20 

[-] 

NDVI 

2021-05-31 

[-] 

NDVI 

2021-07-06 

[-] 

Surface 

Temperature 

[°C] 

Slope [°] 

 Barley 81 West 0.874 0.182 0.926 20.57 2.01 
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Barley 81 East 0.875 0.180 0.927 20.43 1.94 

 Oats 95 East 0.838 0.208 0.834 27.25 1.36 

Oats 95 West 0.838 0.213 0.840 27.85 1.15 

Oats 115 West 0.756 0.278 0.845 23.70 1.28 

Oats 115 East 0.783 0.281 0.863 25.12 0.43 

Rye 89 West 0.796 0.263 0.856 22.39 1.74 

Rye 89 East 0.787 0.206 0.822 24.95 1.67 

 Lupine 90 West 0.185 0.395 0.710 26.31 1.40 

Lupine 90 East 0.203 0.391 0.733 24.96 1.27 

Lupine 110 West 0.090 0.563 0.635 26.98 1.88 

Lupine 110 East 0.090 0.567 0.639 26.76 2.50 

 Maize 51 West -0.099 0.654 0.181 35.44 0.82 

Maize 51 East -0.096 0.638 0.217 35.29 0.93 

Maize 102 West -0.077 0.714 0.175 37.88 0.88 

Maize 102 East -0.058 0.728 0.178 38.03 0.90 

Soy 12 West -0.107 0.748 0.166 34.87 1.71 

Soy 12 East -0.108 0.723 0.162 34.44 1.11 

Soy 66 West -0.115 0.730 0.144 35.09 2.40 

Soy 66 East -0.114 0.661 0.147 34.39 2.13 

Sunflower 96 West -0.109 0.816 0.211 33.76 0.59 

Sunflower 96 East -0.101 0.827 0.229 34.70 0.69 

Sunflower 105 West 0.178 0.610 0.564 29.79 1.04 

Sunflower 105 East 0.030 0.696 0.399 34.53 1.00 

 576 

Table 3: Pearson correlation coefficients between drone imagery products taken on May 31st, 2021, and loadings of sensors in all 577 
depths or at single depths, respectively, on the second principal component. All correlations are highly significant (p <0.01). 578 

 Sensors in all 

depths 

0.3 m 0.6 m 0.9 m 

Surface 

temperature 
-0.853 -0.881 -0.909 -0.916 

NDVI 2021-

05-20 
0.836 0.904 0.837 0.907 

NDVI 2021-

05-31 
0.899 0.945 0.944 0.946 

NDVI 2021-

07-06 
-0.860 -0.898 -0.917 -0.913 
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 579 

Table 4: Principal components 1 to 5. 580 

 PC1 PC2 PC3 PC4 PC5 

Eigenvalue 46.25 10.89 2.60 1.43 1.06 

Proportion of 

variance [%] 

72.27 17.01 4.06 2.23 1.65 

Proportion of 

variance (cumulative) 

[%]  

72.27 89.28 93.34 95.57 97.22 

Interpretation Mean 

behaviour 

Winter 

vs. 

summer 

crops 

Subsoil 

texture 

Soil 

organic 

carbon 

Damping 

of the 

input 

signal 

Prevailing driver weather crop soil crop 

and soil 

soil 

 581 

APPENDIX A  582 

583 
Figure 11: Soil moisture data from 64 sensors in different depths as input data set.  584 

APPENDIX B 585 

 586 
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 587 

Figure 12: Loadings of time series on the first principal component. Bars represent individual time series grouped by patch ID, 588 
sorted by crop.  589 

 590 


