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Abstract. There is an urgent need to develop sustainable
agricultural land use schemes. Intensive crop production has
induced increased greenhouse gas emissions and enhanced
nutrient and pesticide leaching to groundwater and streams.
Climate change is also expected to increase drought risk as5

well as the frequency of extreme precipitation events in many
regions. Consequently, sustainable management schemes re-
quire sound knowledge of site-specific soil water processes
that explicitly take into account the interplay between soil
heterogeneities and crops. In this study, we applied a princi-10

pal component analysis to a set of 64 soil moisture time se-
ries from a diversified cropping field featuring seven distinct
crops and two weeding management strategies.

Results showed that about 97 % of the spatial and tempo-
ral variance of the data set was explained by the first five15

principal components. Meteorological drivers accounted for
72.3 % of the variance and 17.0 % was attributed to different
seasonal behaviour of different crops. While the third (4.1 %)
and fourth (2.2 %) principal components were interpreted as
effects of soil texture and cropping schemes on soil mois-20

ture variance, respectively, the effect of soil depth was repre-
sented by the fifth component (1.7 %). However, neither to-
pography nor weed control had a significant effect on soil
moisture variance. Contrary to common expectations, soil
and rooting pattern heterogeneity seemed not to play a major25

role. Findings of this study highly depend on local condi-
tions. However, we consider the presented approach gener-
ally applicable to a large range of site conditions.

1 Introduction

Agriculture plays a major role in ensuring the provision 30

of food to a growing global population. At the same time,
climate change is putting yield stability at risk due to ex-
treme weather events, increasing the need for sustainable
management of resources such as water and soil (Trnka
et al., 2014). The transformation from large homogeneously 35

cropped fields towards diversified agricultural landscapes
has been identified as an opportunity that can contribute to
climate adaptation due to the positive effects on multiple
ecosystem services (Tamburini et al., 2020) and cropping
system resilience to climatic extremes (Birthal and Hazrana, 40

2019). Additionally, crop diversification is highly beneficial
by reducing soil erosion through permanent soil cover (Par-
oda et al., 2015) and by improving resource use efficiency
through wider crop rotations (Rodriguez et al., 2021).

In terms of soil water dynamics, crop and management 45

diversification can lead to improved water-stable macro-
aggregation, reduced soil compaction, and increased soil or-
ganic carbon, which can reduce soil water infiltration and im-
prove water retention (Alhameid et al., 2020; Fischer et al.,
2014; Karlen et al., 2006; Koudahe et al., 2022; Nunes et al., 50

2018). Korres et al. (2015) reported that spatial variability in
soil moisture was mainly driven by soil characteristics, fol-
lowed by crop cover and management. Soil moisture is also
affected by soil texture and pore size distribution (Krauss
et al., 2010; Rossini et al., 2021; Pan and Peters-Lidard, 55

2008). The quantification of the impact of these effects on
soil moisture variability is important, for instance for hy-
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drological applications and adopted management practices in
agriculture (Hupet and Vanclooster, 2002).

As the diversity of independent variables in agricultural
systems increases, demands for frequency and spacing of soil
moisture measurements and related data interpretation grow.5

Therefore, soil sensor networks are receiving increased atten-
tion, particularly in precision agriculture (PA; Bogena et al.,
2022; Salam and Raza, 2020), where the main goal is to
increase efficiency and productivity at the farm level while
minimizing the negative impacts on the environment (Taylor10

and Whelan, 2010). Soil sensor networks can meaningfully
contribute to PA as they can be used for various purposes,
including the delineation of management zones (Khan et al.,
2020; Salam and Raza, 2020). Still, one of the most impor-
tant demands to be fulfilled by soil sensor networks is soil15

moisture monitoring, as accurate measurement of soil water
content can play an important role in improving water man-
agement and, therefore, crop yields (Salam, 2020).

Wireless solutions, for instance based on long-range wide-
area network (LoRaWAN) technology, in combination with20

electromagnetic soil moisture sensors avoid labour-intensive
and destructive soil moisture measurements that disrupt field
traffic. The development of such wireless sensor networks
(WSNs) enables broad and affordable application also in ar-
eas with low cellular coverage (Cardell-Oliver et al., 2019;25

Lloret et al., 2021; Placidi et al., 2021; Prakosa et al., 2021).
The evolution of WSN not only has benefits for manage-

ment but is also of high relevance for fostering the under-
standing of hydrological dynamics in the vadose zone. High-
resolution data sets measured under real farming conditions30

can be used to characterize and analyse spatiotemporal dy-
namics of soil water. Due to the large size of data sets that are
recorded with WSN, sophisticated data analysis approaches
are required to detect hidden patterns and determine influ-
ence factors on soil moisture variability (Vereecken et al.,35

2014). With the introduction of multiple-point geostatistics
it became possible to not only analyse patterns but also con-
nect them with factors affecting soil moisture, such as topog-
raphy, texture, crop growth and water uptake, and land man-
agement (Brocca et al., 2010; Strebelle et al., 2003). Wavelet40

analysis can analyse both localized features and spatial trends
through which non-stationary variation in soil properties can
be considered (Si, 2008). Cross-correlation analysis allows
linking soil moisture variability to climatic variables (Mah-
mood et al., 2012). Furthermore, temporal stability analyses45

detect spots in the investigated area which are consistently
wetter or drier than the mean soil moisture (Baroni et al.,
2013; Vachaud et al., 1985, Vanderlinden et al., 2012). This
method was already successfully used to detect soil moisture
patterns related to soil properties, vegetation, and topography50

(Zhao et al., 2010).
Principal component analysis (PCA) is another method

that was successfully applied for soil moisture variability
analysis at the field (Hohenbrink et al., 2016; Hohenbrink
and Lischeid, 2015; Martini et al., 2017), catchment (Ko-55

rres et al., 2010; Lischeid et al., 2017; Nied et al., 2013;
Graf et al., 2014), and regional (Joshi and Mohanty, 2010)
scales. These studies build on previous applications in clima-
tology where the term “empirical orthogonal functions” is
used (Bretherton et al., 1992) and are examples of how space 60

and time dimensions can be disentangled and assigned to in-
fluencing factors. Additionally, the propagation of hydrolog-
ical signals (e.g. precipitation events) over depth can be as-
sessed (Hohenbrink et al., 2016). This presents great oppor-
tunities to improve the knowledge of changing soil water dy- 65

namics in complex diversified agricultural systems with in-
creasing heterogeneity (e.g. soil texture) and site-specific ad-
justment of crop and field management, which, to our knowl-
edge, have hardly been studied so far.

The main objective of this study was to identify the drivers 70

of soil moisture variability in a diversified cropping field in
terms of soil texture, crop selection, and field management
by applying PCA. Special focus was put on the interpreta-
tion of spatial and temporal effects of crop diversification and
of soil heterogeneities on soil moisture dynamics. For this, 75

we analysed a high-resolution soil moisture data set mea-
sured by a novel underground LoRaWAN monitoring sys-
tem with soil moisture sensors in different depths of the va-
dose zone at a spatiotemporally diversified agricultural field
in northeastern Germany. The novelty of this WSN relies on 80

its unique on-farm installation environment. The deployment
of transmission units in 0.3 m soil depth and 180 sensors in
up to 0.9 m soil depth allows high-spatiotemporal-resolution
wireless data transmission and enables conventional farm-
ing practices like machinery traffic, tillage, and mechanical 85

weeding.

2 Materials and methods

2.1 Study site

The study site (52°26′51.8′′ N, 14°08′37.7′′ E; 66–83 ma.s.l.)
is located near the city of Müncheberg in the federal state of 90

Brandenburg in northeastern Germany. The landscape is clas-
sified as a hummocky ground moraine that formed during the
last glacial period. Glacial and interglacial processes, as well
as subsequent erosion, resulted in highly heterogeneous soils
(Deumlich et al., 2018) classified as Dystric Podzoluvisols 95

according to the FAO scheme (Fischer et al., 2008). In the
top 0.3 m soil layer, total organic carbon was 0.94 %, total
nitrogen content was 0.07 %, and pH was 6.12. Between Jan-
uary 1991 and December 2020, the mean annual temperature
in Müncheberg was 9.6 °C and the mean annual sum of pre- 100

cipitation was 509 mm (DWD Climate Data Center (CDC),
2021).

2.2 Experimental setup

The data collection was carried out from December 2020 un-
til the middle of August 2021 in the patchCROP experiment 105
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Table 1. Overview of crop rotation, sand content in the top 0.25 m soil depth, and weed control for selected patches at the patchCROP
landscape experiment, Tempelberg, Brandenburg, Germany.

Crop in winter Crop in summer Crop group Sand content (in 1 m buffer Weed control Patch ID
season season zone around sensors) in %

Winter barley A 78.3 Conventional 81
Winter oats A 80.7 Conventional 95
Winter oats A 80.6 Reduced 115
Winter rye A 80.5 Conventional 89

Fallow Lupine B 80.6 Conventional 90
Fallow Lupine B 80.3 Reduced 110
Phacelia Maize C 80.8 Reduced 51
Phacelia Maize C 80.6 Conventional 102
Phacelia Soy C 78.5 Reduced 12
Phacelia Soy C 77.9 Conventional 66
Phacelia Sunflower C 80.6 Conventional 96
Phacelia Sunflower C 80.5 Reduced 105

Figure 1. Sand content (in %) in the top 0.25 m soil depth, location of the analysed patches, soil moisture sensors (triangles), and LoRa nodes
(squares) under different crop rotations at the patchCROP landscape experiment, Tempelberg, Brandenburg, Germany.

(Grahmann et al., 2024; Donat et al., 2022). This landscape
experiment has been set up to study the multiple effects of
cropping system diversification on productivity, crop health,
soil quality, and biodiversity. To that end, a cluster analysis
was carried out based on soil maps and multi-year (2010–5

2019) yield data to identify high- and low-yield-potential
zones in the 70 ha field (Donat et al., 2022). Afterwards, sin-
gle experimental units comprising 30 patches with an indi-
vidual size of 0.52 ha (72× 72 m) each were implemented
in both high- and low-yield-potential zones where each of10

those zones is characterized by varying soil conditions and a
site-specific, 5-year, legume-based crop rotation (Grahmann
et al., 2024). The remaining area outside of the 30 patches
was planted with winter rye. For the current study, 12 out of
30 patches were considered (Fig. 1; Table 1). Specific patches15

were selected to capture the soil heterogeneities in terms of
soil texture but also the seasonal patterns of the crop rota-

tion that may have important effects on the soil water dy-
namics such as crop types, presence of cover crops, or fallow
periods. In the cropping season 2020–2021, seven different 20

main crops were grown. For subsequent data interpretation,
crops have been grouped into (A) winter crops, (B) fallow
followed by summer crops, and (C) cover crops followed by
summer crops. In 7 out of 12 considered patches, weed con-
trol was carried out with herbicide application, referred to 25

as “conventional” pesticide application, while in the remain-
ing 5 patches, “reduced” pesticide management was carried
out by mainly using mechanical weeding by harrowing, blind
harrowing, and hoeing. Only in the case of high weed pres-
sure were herbicides applied.CE1 Due to the potential im- 30

pact of mechanical weeding, i.e. on rainwater infiltration,
soil evaporation, and topsoil rooting intensity, we differen-
tiate between these modes of weed control.



4 H. Scholz et al.: Differentiating between crop and soil effects on soil moisture dynamics

Figure 2. Input soil moisture time series per depth, differentiated between crop groups, and average soil moisture of all time series per depth
from 1 December 2020 until 15 August 2021 at the patchCROP landscape experiment, Tempelberg, Brandenburg, Germany.



H. Scholz et al.: Differentiating between crop and soil effects on soil moisture dynamics 5

2.3 Data collection

2.3.1 Soil moisture data

Soil moisture was recorded by a long-range wide-area net-
work (LoRaWAN)-based WSN. In each patch, one Dribox
box equipped with an SDI-12 distributor (serial data inter-5

face at 1200 baud rate; model TBS04; TekBox, Ho Chi Minh
CityCE2 , Vietnam) connected to six TDR sensors (model
TDR310H; Acclima, Meridian, MS, USA) and attached to
an outdoor remote terminal unit (RTU) fully LoRaWAN-
compliant (4+ 1 channel analogue to SDI-12 interface for10

24 Bit A/D conversion of sensor signals; model TBS12B;
TekBox, Ho Chi Minh City, Vietnam) was installed as a
LoRa node. It was deployed at least 0.3 m below ground to
allow field traffic and soil tillage. The sensors and boxes were
installed between August and November 2020. At two geo-15

referenced locations within each patch, soil moisture sensors
were installed in 0.3, 0.6, and 0.9 m depth. Sensors were ap-
proximately 2 m from the LoRa node at angles between 45
and 60° (Fig. 1). Soil moisture sensors at 0.3 m were placed
horizontally, while sensors at 0.6 and 0.9 m depth were20

placed vertically using auger-made boreholes and extension
tubes for soil insertion. Communication of LoRa nodes was
wireless and autarkic in energy supply. Thus, no electric ca-
bling, except from connections between sensors and LoRa
nodes, was needed. Under optimum conditions, the battery25

running time of the LoRa nodes can be up to 12 months but
can be reduced to 8 months when radio transmission is at-
tenuated (e.g. due to nearly water-saturated soil), which then
increases power consumption (Bogena et al., 2009). Data
were recorded every 20 min by the LoRa nodes through a30

LoRa-WAN Gateway DLOS8 (UP GmbH, Ibbenbüren, Ger-
many), which was equipped with the modem TL-WA7510N
(TP Link, Hong Kong SAR, China) to transfer the data to a
cloud from which collected data could be accessed directly
after the measurement. The time series included in this study35

covered the period from 1 December 2020 until 14 August
2021 (Fig. 2).

2.3.2 Weather data

Precipitation and temperature data (Fig. 3) with a 15 min
temporal resolution were obtained from two weather sta-40

tions located in the eastern and western ends of the main
patchCROP field. Climatic water balance was calculated
from precipitation and potential evapotranspiration, both
measured at the climate station by the German Weather Ser-
vice in Müncheberg (DWD Climate Data Center (CDC),45

2021). This station was chosen due to its proximity to the
study site.

2.3.3 Remote sensing data for vegetation dynamics

Drone imagery from 20 May 2021, 31 May 2021, and 6 July
2021 was used for vegetation assessment. The drone fixed-50

wing UAV-based RS eBee platform (SenseFly, Cheseaux–
Lausanne, Switzerland) was operated at noon and recorded
multispectral imagery with a Parrot Sequoia+ camera (green,
red, near-infrared, and red edge bands; spatial resolution of
0.105 m) and thermal imagery of the surface (only on 31 May 55

2021) with a SenseFly Duet T camera with a spatial resolu-
tion of 0.091 m (Table 2). The multispectral imagery was pro-
cessed with Pix4D to obtain the normalized difference vege-
tation index (NDVI) following Eq. (1):

NDVI=
NIR−Red
NIR+Red

, (1) 60

in which NIR is the intensity of reflected near-infrared light
(reflected by vegetation) and Red the intensity of reflected
red light (absorbed by vegetation). A digital elevation model
with a spatial resolution of 1 m (GeoBasis-DE and LGB,
2021) was used to calculate the slope (ArcGIS 10.7.0; ESRI, 65

2011) (Table 2).

2.3.4 Soil information

Soil texture by layer

Manual classification of soil texture by layer was carried out
by collecting 140 samples in 8 of 12 analysed patches. Sam- 70

ples were taken with a 1 m long Pürckhauer soil auger. Soil
textural class was manually determined at the field scale by
applying the protocol “Finger test to determine soil texture
according to DIN 19682-2 and KA5” (Sponagel et al., 2005).
Additionally, representative soil samples were collected and 75

analysed at the laboratory to determine particle size distribu-
tion for sand, silt, and clay (soil texture based on the German
particle classification). Soil texture was analysed following
the DIN ISO 11277 (2002) reference method by wet sieving
and sedimentation using the Sedimat 4-12 (Umwelt-Geräte- 80

Technik, Müncheberg, Germany). The sand fraction in this
method is defined between 2 and 0.063 mm, according to
IUSS Working Group WRB (2015).

To extrapolate the laboratory-based soil particle distribu-
tion to the soil textural classes manually determined at the 85

field scale, the high- and low-yield-potential laboratory sam-
ples were pooled separately. The average soil particle dis-
tribution was calculated for each soil textural class and as-
signed to the respective soil layer with that specific soil tex-
tural class. The soil texture analysis showed that soil tex- 90

ture variability increased with depth. In the third layer (aver-
age bottom depth= 0.92 m), the sand and clay content across
133 sampling points varied between 53 % and 94 % and be-
tween 2 % and 22 %, respectively. Soil sampling points were
located 0.8 and 2.5 m away from the soil moisture sensors to 95

minimize damage risk.

Topsoil proximally sensed data

In October 2019, the Geophilus soil scanner system (Lueck
and Ruehlmann, 2013) was used in the entire field to map
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Figure 3. Measured daily precipitation, mean temperature, and cultivated crops – differentiated between winter crops (blue bars), summer
crops (green bars), and cover crops (magenta bars) – from 1 December 2020 until 15 August 2021 at the patchCROP landscape experiment,
Tempelberg, Brandenburg, Germany. Specific crops for the studied time frame are stated on the left side of the horizontal bars.

Table 2. Overview of normalized difference vegetation index (NDVI), surface temperature, and slope at the locations of analysed sensors in
the patchCROP experiment in Tempelberg, Brandenburg, Germany.

Crop Patch ID Sensor NDVI NDVI NDVI Surface temperature Slope
position 20 May 2021 [–] 31 May 2021 [–] 6 Jul 2021 [–] 31 May 2021 in °C in °

Winter barley 81 West 0.874 0.182 0.926 20.57 2.01
Winter barley 81 East 0.875 0.180 0.927 20.43 1.94
Winter oats 95 East 0.838 0.208 0.834 27.25 1.36
Winter oats 95 West 0.838 0.213 0.840 27.85 1.15
Winter oats 115 West 0.756 0.278 0.845 23.70 1.28
Winter oats 115 East 0.783 0.281 0.863 25.12 0.43
Winter rye 89 West 0.796 0.263 0.856 22.39 1.74
Winter rye 89 East 0.787 0.206 0.822 24.95 1.67
Lupine 90 West 0.185 0.395 0.710 26.31 1.40
Lupine 90 East 0.203 0.391 0.733 24.96 1.27
Lupine 110 West 0.090 0.563 0.635 26.98 1.88
Lupine 110 East 0.090 0.567 0.639 26.76 2.50
Maize 51 West −0.099 0.654 0.181 35.44 0.82
Maize 51 East −0.096 0.638 0.217 35.29 0.93
Maize 102 West −0.077 0.714 0.175 37.88 0.88
Maize 102 East −0.058 0.728 0.178 38.03 0.90
Soy 12 West −0.107 0.748 0.166 34.87 1.71
Soy 12 East −0.108 0.723 0.162 34.44 1.11
Soy 66 West −0.115 0.730 0.144 35.09 2.40
Soy 66 East −0.114 0.661 0.147 34.39 2.13
Sunflower 96 West −0.109 0.816 0.211 33.76 0.59
Sunflower 96 East −0.101 0.827 0.229 34.70 0.69
Sunflower 105 West 0.178 0.610 0.564 29.79 1.04
Sunflower 105 East 0.030 0.696 0.399 34.53 1.00



H. Scholz et al.: Differentiating between crop and soil effects on soil moisture dynamics 7

soil electrical resistivity (ERa) as a proxy for texture for the
topsoil using reference soil samples to calibrate the readings.
A total of four georeferenced reference soil samples were
taken until 0.25 m soil depth, and locations were selected
based on the proximal soil sensor data (sensor-guided sam-5

pling; Bönecke et al., 2021). The Geophilus system is based
on a sensor fusion in which ERa sensors are coupled with
a gamma-ray detector. Apparent electrical conductivity was
measured by pulling one or more sensor pairs mounted on
wheels across the field where each pair of sensors measured10

a different soil depth. Amplitude and phase were measured
simultaneously using frequencies from 1 MHz to 1 kHz. Ref-
erence soil samples were analysed via soil particle size anal-
ysis according to DIN ISO 11277 (2002) and served as cal-
ibration information in order to estimate sand, silt, and clay15

content in the top 0.25 m soil for the entire field. A non-linear
regression model was applied. The RMSE of sand content
(5.7 %) was considerably smaller than the standard deviation
of the sand content in the first layer from the manual soil
texture analysis (11.9 %), indicating a satisfactory prediction20

performance. The gamma sensor was used to minimize un-
certainties, being less sensitive to soil moisture than the ERa
readings (Bönecke et al., 2021). The estimated sand content
in the upper 0.25 m at the study site varied between 69.1 %
and 81.2 % and averaged 79.0 % (Fig. 1; Table 1).25

2.4 Data processing

Soil moisture data were available at 20 min intervals. Trans-
mission failures due to discharged batteries, signal distur-
bances after rainfall, high density of biomass in some patches
(e.g. maize),CE3 and theft of parts of the WSN led to data30

gaps that affected in some cases all sensors of the WSN and
amounted to 81 out of 257 d of the measuring period. The af-
fected days were therefore skipped for the analysis. Whereas
time series of eight sensors were excluded due to a higher
frequency of transmission failures, in total, 64 time series35

were used for the analysis, and additional data gaps for single
sensors were interpolated linearly. Of all 20 668 interpolated
gaps, 96 % were shorter than 2 h, 3 % between 2 and 6 h, and
1 % longer than 6 h. In 26 cases, gaps exceeded the duration
of 1 d. The interpolation was justified, as the differences be-40

tween the values before and after the gaps were within the
measuring accuracy of 1 vol %CE4 of the soil moisture sen-
sors (Acclima Inc., 2023). As indicated by the retailer, sen-
sors might suddenly jump to a soil moisture value of 28.6 %
and go back to normal again after one or a few time steps.45

Thus, a data deletion procedure of abrupt jumps to 28.6 was
created. To ensure equal weighting for the subsequent anal-
ysis, all soil moisture time series were z-transformed to unit
variance and zero mean each (see Hohenbrink and Lischeid,
2015). As a consequence, differences in absolute values were50

not considered by the further analysis.

2.5 Statistical analysis

To identify common temporal patterns among single time se-
ries, the soil moisture data set was analysed by a principal
component analysis (PCA). In a first step, PCA decomposes 55

the total variance of a multivariate data set into independent
fractions called principal components (PCs). The number of
PCs is the same as the number of time series in the input data
set. Each PC consists of eigenvectors (loadings), scores, and
eigenvalues. The scores reflect the temporal dynamics. The 60

importance of single principal components for single sites
is represented by the loadings of each PC (Jolliffe, 2002;
Lehr and Lischeid, 2020). Loadings are the Pearson corre-
lation coefficients of the single time series of the input data
set with the scores of each PC, respectively. The eigenvalues 65

of the single PC are proportional to the variance that they ex-
plain. The PCs are sorted in descending order of eigenvalues.
Eigenvalues greater than 1 indicate that a PC explains more
variance than a single input time series could contribute to the
total variance of the entire input data set (Kaiser, 1960). More 70

details on principal component analysis for time series anal-
ysis are found in Jolliffe (2002). The PCA was performed us-
ing the prcomp function in R version 4.1.0 (R Development
Core Team, 2021).

The scores of the principal components constitute time se- 75

ries. Every observed soil moisture z-transformed time series
can be presented at arbitrary precision as a combination of
various principal components. When the data set consists of
time series of the same observable measured at different lo-
cations, the first principal component describes the mean be- 80

haviour inherent in the data set. Subsequent principal com-
ponents reflect typical modifications of that mean behaviour
at single locations due to different effects. Thus, generating
synthetic time series as linear combinations of the first PC
and another additional PC helps to assign this additional PC 85

to a specific effect. To that end, scores of that component
have either been added to or subtracted from those of the
first component using arbitrarily selected factors. The two re-
sulting graphs show how the respective PC causes deviations
from the mean behaviour of the data set. 90

The relations to soil and vegetation parameters were tested
by computing the Pearson correlation coefficients between
the scores and arithmetic mean values of all input time se-
ries as well as the Pearson correlation coefficients between
loadings and sand content until 0.25 m depth, sensor depth, 95

antecedent z-transformed soil moisture, slope, and drone im-
agery products (NDVI and surface temperature). Eventu-
ally, the Wilcoxon–Mann–Whitney test was applied to check
whether loadings could be grouped by management param-
eters (i.e. crops, cover crops, and weeding management). 100

All statistical analyses were conducted with R version 4.1.0
(R Development Core Team, 2021).

grahmann
Comment on Text
After revising the Data sheet of those sensors as indictated in the reference Acclima Inc., 2023, we recognized that the reported accuracy is +/- 3 vol%, and not as previously stated 1%



8 H. Scholz et al.: Differentiating between crop and soil effects on soil moisture dynamics

3 Results

3.1 Manual soil texture analysis

The transferability of texture information from the sampling
point to the soil moisture sensor location was not ensured due
to high nugget effects. Furthermore, manual soil texture anal-5

ysis data were not available for all analysed patches. Conse-
quently, they were not included in further analysis.

3.2 Principal component analysis

The principal component analysis yielded five components
with eigenvalues exceeding 1, which accounted for > 97 %10

of the total variance of the data set (Table 3).

3.2.1 First principal component

The first principal component explained 72.3 % of the spa-
tiotemporal variance in the data set. All loadings on the first
PC were negative (see Appendix A). The Pearson correlation15

coefficient of the scores of the first principal component with
the mean values of all input time series was less than−0.999
(p < 0.01), and the correlation between the scores and the
cumulative climatic water balance (P −ETp) was −0.969
(p < 0.01). Thus, the time series of the negative scores of20

this component represented the mean behaviour of soil mois-
ture driven by external factors such as precipitation, temper-
ature, and seasons in general which affected all time series in
the same way, although to different degrees (see Hohenbrink
et al., 2016; Lischeid et al., 2021).25

3.2.2 Second principal component

The second principal component explained 17.0 % of the
total variance. The loadings ranged from −0.801 to 0.760
with a median of −0.030 (Fig. 4). The loadings showed a
crop-group-specific pattern. All winter crops (barley, oats,30

and rye) had positive loadings with only one exception in
0.9 m depth. The summer crops maize, soy, and sunflower
exhibited negative loadings. In contrast, the summer crop
lupine exhibited mostly positive loadings, similar to the win-
ter crops, although of slightly smaller magnitude. According35

to the Wilcoxon–Mann test, the group of barley, oats, rye,
and lupine differed significantly from the group of maize,
soy, and sunflower.

As described in the “Materials and methods” section, syn-
thetic time series were generated as a linear combination of40

PC1 and PC2 as shown in Fig. 5. The graph resulting from
applying a positive factor for PC2 represents a typical de-
viation from mean behaviour for sites that exhibit positive
loadings, e.g. winter crops (blue line). The opposite holds
for the summer crops which load negatively on PC2 (orange45

line). Both lines plot very close to each other in February and
March. In contrast, the orange line shows lower values than
the blue line in December and January, indicating lower soil

moisture at the summer crop patches. The inverse holds for
the subsequent summer period starting in early June, point- 50

ing to earlier and more rapid water uptake of the winter crops.
In July and August, the approximately constant level of the
blue curve indicates that only summer crops continue to con-
sume water, while winter crops are in their ripening phase
and eventually harvested. 55

Lupine and sunflower were the summer crops which were
sown first (30 March 2021 and 21 April 2021, respectively).
Maize was sown on 16 April 2021 and soy on 15 May 2021.
The loadings of lupine, which performed like winter crops
rather than summer crops, indicated that lupine showed an 60

early onset of intensive evapotranspiration compared with
other summer crops, especially sunflower, which was sown
at the same time.

For further investigation of the vegetation effect on PCs,
drone imagery taken at the end of May, when sowing has 65

been completed in all patches, and imagery taken at the be-
ginning of July, when winter crops are in the ripening phase,
were analysed. The second PC’s loadings of the time series
from different sensors were compared with the normalized
difference vegetation index (NDVI; available for three dates) 70

and surface temperature (only available for 31 May 2021) of
the respective sensor location as a proxy for actual evapo-
transpiration. At the end of May, the NDVI, as a proxy for
photosynthesis potential, was positively correlated with the
loadings (Table 4). Surface temperature exhibited a negative 75

correlation. The spatial pattern of surface temperature is as-
sumed to be inversely related to that of actual evapotranspi-
ration. Thus, both proxies, NDVI and surface temperature,
support the inference that in this study positive loadings on
this principal component represent sites with above-average 80

plant activity and root water uptake at the end of May. This
holds for sensors from all depths but was the closest for
0.9 m depth (Pearson correlation of r =−0.916 for surface
temperature and r = 0.946 for NDVI on 31 May). The results
in July compared with those in May support the observation. 85

At the time when the winter crops are already in the ripening
phase and the summer crops reach high levels of evapotran-
spiration, the correlations are reversed and negative loadings
indicate above-average plant activity for summer crops. On
6 July, the highest Pearson correlations for NDVI are found 90

for 0.6 m depth (r =−0.917).

3.2.3 Third principal component

The third PC explained 4.1 % of the total data set’s vari-
ance. Loadings ranged between −0.787 and 0.244 with a
median of 0.006. Extreme loadings (<−0.25) were found 95

only for sensors in 0.9 m depth in patches 66, 89, 95, and
102 (Fig. 6). The locations of these patches show a certain
spatial pattern, with the patches roughly following an east–
west direction rather than being distributed randomly within
the field. This may point to topography or soil structure caus- 100

ing deviations from mean soil moisture behaviour for patches
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Table 3. Statistical characteristics and interpretations of principal components 1–5 for soil moisture dynamics of selected patches at the
patchCROP landscape experiment in Tempelberg, Brandenburg, Germany.

PC1 PC2 PC3 PC4 PC5

Eigenvalue 46.25 10.89 2.60 1.43 1.06

Proportion of variance in % 72.27 17.01 4.06 2.23 1.65

Proportion of variance
(cumulative) in %

72.27 89.28 93.34 95.57 97.22

Interpretation Mean behaviour Winter vs.
summer crops

Subsoil texture Winter vegetation
cover and influence
of cover crops on soil

Damping of the
input signal

Prevailing driver Weather Crop Soil Crop and soil Soil

Figure 4. Time series loadings on the second principal component at the patchCROP landscape experiment in Tempelberg, Brandenburg,
Germany, showing a crop-group-related pattern. Bars represent individual time series grouped by patch ID and sorted by crop.

located near this gradient. However, this pattern cannot be
assigned to topography or structures apparent on the topsoil
map (Fig. 1). Loadings were closely related to the minima of
the z-transformed soil moisture in the period from December
to February (r = 0.70, p < 0.001; Fig. 7). What distinguishes5

the orange line (negative loading on PC3) from the blue line
(positive loading on PC3) in Fig. 8 is the higher temporal
variability and the delayed reaching of maxima in the first
half of the study period.

3.2.4 Fourth principal component10

The fourth PC explained 2.2 % of the total data set’s vari-
ance. The loadings were clustered by crop groups. All fal-
low patches showed consistent positive loadings, while the

patches which were covered by winter crops showed mainly
negative loadings except in patch 95 where the loadings of 15

the two sensors in 0.3 m depth were slightly above zero
(Fig. 9). According to the Wilcoxon–Mann test, treatment
group B (fallow followed by summer crops) differed sig-
nificantly from group A (winter crops) and C (cover crops
followed by summer crops), whereas there was no signifi- 20

cant difference between groups A and C. In contrast to crop
groups A and B, patches that were covered by the cover
crop Phacelia during the winter months did not show one-
directional loadings.

Figure 10 illustrates the effect of the fourth PC on time se- 25

ries. The blue line (positive loading) shows hydrological be-
haviour which would be typical for more sandy soils, while
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Figure 5. Effect of the second principal component on modification of the general mean behaviour presented by the first principal component
at the patchCROP landscape experiment in Tempelberg, Brandenburg, Germany. The blue line represents deviations from mean soil moisture
for time series with positive loadings on PC2 (winter crops), while the orange line represents deviations from mean soil moisture for time
series with negative loadings on PC2 (summer crops).

Table 4. Pearson correlation coefficients between surface temperature and normalized difference vegetation index (NDVI) at the patchCROP
landscape experiment (Tempelberg, Brandenburg, Germany) and loadings of sensors in all depths or at single depths, respectively, on the
second principal component. All correlations were highly significant (p < 0.01).

Variable Sensors in all depths 0.3 m 0.6 m 0.9 m

Surface temperature −0.853 −0.881 −0.909 −0.916
NDVI 2021-05-20 0.836 0.904 0.837 0.907
NDVI 2021-05-31 0.899 0.945 0.944 0.946
NDVI 2021-07-06 −0.860 −0.898 −0.917 −0.913

the orange line (negative loading) depicts behaviour that one
would expect in more loamy soils due to its delayed re-
sponses to rainstorms and subsequent less steep recovery.
The patterns in the loadings thus show a differentiation be-
tween patches with winter crops and fallow patches in the5

winter months (Fig. 9). However, it is not clear how winter
crops on the one side and fallow patches on the other side
could induce such different soil water behaviour as shown in
Fig. 10.

3.2.5 Fifth principal component10

The fifth PC explained 1.7 % of the data set’s variance. The
loadings showed a depth-related pattern. All time series from
0.3 m depth exhibited negative loadings with two minor ex-
ceptions in patch 105. Except for patch 95, all time series
from 0.9 m depth showed positive loadings.CE5 Loadings in15

0.6 m depth and 0.9 m depth were mostly more similar to
each other than to the loadings in 0.3 m depth (Fig. 11). The
Pearson correlation coefficient between loadings and depth
was r = 0.710 (p < 0.05). Thus, it can be concluded that the
fifth PC reflected the effect of soil depth on soil moisture20

variance. This effect differed between crops, with the three
most negative loadings found in maize patches and the three
most positive loadings found in lupine patches. In Fig. 12

the soil water dynamics show a damping effect with increas-
ing depth from little damping for sensors in the upper depth 25

(orange line) to higher damping for sensors in greater depth
(blue line).

Patterns in neither topography nor weeding management
modes were reflected in the loadings of PC1–PC5. Due to
the lack of subsurface soil data, no additional findings could 30

be derived from the Geophilus texture analysis.

4 Discussion

A PCA was conducted to identify the drivers of soil moisture
variability in a diversified cropping field. Data consisted of
observed time series from 64 soil moisture probes. Results 35

showed that the first five principal components described
about 97 % of the variance of the data set and revealed var-
ious effects of weather, soil texture, soil depth, crops, and
management schemes (Table 3). The first principal compo-
nent captured 72 % of the total variance. Consequently, 72 % 40

of the observed dynamics could be described by a lumped
model that would not consider any within-field heterogene-
ity. These results are in the range of similar studies. Martini
et al. (2017) found that the first PC explained 58 % of the
variance in a data set that comprised both agricultural fields 45
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Figure 6. Loadings of time series on the third principal component at the patchCROP landscape experiment (Tempelberg, Brandenburg,
Germany) with some of the sensors in deeper layers showing noticeably negative loadings. Bars represent individual time series grouped by
patch ID and sorted by crop.

Figure 7. Relation between minima of the z-transformed soil moisture in the first months of the study period and loadings of the third
principal component showing that sensors with noticeably negative loadings showed distinctly negative z-transformed minima.
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Figure 8. Effect of the third principal component on modification of the general mean behaviour presented by the first principal component
at the patchCROP landscape experiment in Tempelberg, Brandenburg, Germany. The blue line represents deviations from mean soil moisture
for time series with positive loadings on PC3 (majority of the time series), while the orange line represents deviations from mean soil moisture
for time series with negative loadings on PC3 (some of the sensors in 0.9 m depth).

Figure 9. Loadings of time series on the fourth principal component at the patchCROP landscape experiment (Tempelberg, Brandenburg,
Germany) showing mainly negative loadings for crop group A, positive loadings for crop group B, and loadings with no clear pattern for
crop group C. Bars represent individual time series grouped by patch ID and sorted by treatment group.

and grassland transects. Similarly, Lischeid et al. (2017) as-
cribed 70 % of the variance in a forest soil moisture data set
to a single component. In the study by Hohenbrink et al.
(2016), 85 % of the variance in soil moisture data in a set
of arable field experiments with two different crop rotation5

schemes was attributed to the first principal component. The
strong influence of weather conditions as shown in our study
is confirmed by Choi et al. (2007), who showed that rainfall,
next to topography, explained most of the surface soil mois-
ture variability.10

4.1 Crop effects

As Korres et al. (2015) stated, vegetation and management
(e.g. planting and harvesting dates) are among the main
causes for spatial variability in soil moisture in agricultural
fields. In this study, around 17 % of the total variance at the 15

field scale was attributed to the vegetation effect. When not
considering the temporal component reflected by PC1 and
thus only looking at the spatial variability, 61 % of the re-
maining variance is caused by the vegetation effect reflected
by PC2. Korres et al. (2010) also used PCA to identify the 20
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Figure 10. Effect of the fourth principal component on modification of the general mean behaviour presented by the first principal component
at the patchCROP landscape experiment. The blue line represents deviations from mean soil moisture for time series with positive loadings
on PC4 (single sensors of crop group A, all sensors of crop group B, and part of crop group C), while the orange line represents deviations
from mean soil moisture for time series with negative loadings on PC4 (most sensors of crop group A and part of the sensors of crop group C).

Figure 11. Loadings of time series on the fifth principal component at the patchCROP landscape experiment showing a depth-related pattern.
Bars represent individual time series grouped by patch ID and sorted by crop.

drivers of spatial variability in soil moisture within a cropped
area but did not find such a pronounced vegetation effect.
In their study, more than two-thirds of the spatial variability
was related to soil parameters and topography. In contrast,
the strong influence of vegetation in our study may be due5

to the high level of crop diversification. Within single crop
fields, vegetation effects are observable due to heterogeneous
biomass or root development (Brown et al., 2021; Korres
et al., 2010) but may be of a lower magnitude compared with
fragmented field arrangements with different crops. The high10

impact of crop diversification on soil moisture variability is
also visible when comparing our results with the results of
a field under comparable conditions in the same region with

only two crop rotations in which only 3.8 % was explained by
the different crop rotations (Hohenbrink et al., 2016). Joshi 15

and Mohanty (2010) also assessed the effect of vegetation in
their study in which they investigated spatial soil moisture
variability at the field to regional scale in the southern Great
Plains regions in the USA by means of PCA. With none of
the first seven PCs showing strong correlation with vegeta- 20

tion parameters, the effect of vegetation was limited in con-
trast to our study.

It needs to be considered that the proportion of the vege-
tation effect on soil moisture variability varies not only spa-
tially and over depth, but also over time. Under dry condi- 25

tions, soil–plant interactions prevail, while under moist con-
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Figure 12. Effect of the fifth principal component on modification of the general mean behaviour presented by the first principal component
at the patchCROP landscape experiment, Tempelberg. The blue line represents deviations from mean soil moisture for time series with
positive loadings on PC5 (sensors in greater depth), while the orange line represents deviations from mean soil moisture for time series with
negative loadings on PC5 (sensors in shallow depth).

ditions, percolation behaviour is predominant (Baroni et al.,
2013). The scores are time series and reflect the effect size of
a particular process represented by the respective PC. The
more the scores of a certain PC deviate from zero during
specific periods, the stronger the respective effect is. Conse-5

quently, the time series of PC2 scores indicates that the effect
of vegetation on total variability varies with time. In accor-
dance with the literature, the absolute values of the scores of
PC2, representing differences between the contrasting sea-
sonality of crops, are highest in the dry months, May to Au-10

gust. This is mostly explained by the high water demand of
summer crops, which are in their vegetative growth stage
from May to August, whereas winter crops are already in
their reproductive growth stage, including maturity, senes-
cence, and harvest where water uptake by crops is minimal15

or absent (Zhao et al., 2018). In the moist winter months of
January to March, as well as during the heavy rainfall event
in July, the scores of PC2 are relatively small, showing that
spatial variability at that time is caused by other factors.

The second principal component clearly differentiated be-20

tween winter and summer crops and was driven by the dif-
ferent seasonal patterns of root water uptake (Fig. 4). In
contrast, the fourth component differentiated between fal-
low patches followed by summer crops and winter crops,
whereas Phacelia followed by summer crops did not show25

a clear pattern (Fig. 9). Phacelia is grown as a cover crop
and usually dies off in frost periods. Due to rather mild win-
ter temperatures during 2020–2021, Phacelia was not termi-
nated efficiently and kept growing until spring, until it was
terminated mechanically. It was recently shown that the tim-30

ing of removal of winter cover crops is key to providing soil
water recharge for the subsequent crops, as the depletion
of soil water in autumn is significant (Selzer and Schubert,
2023). Thus, some Phacelia patches exhibited negative load-
ings, similarly to the winter crop patches, while other patches35

with most likely different termination dates exhibited posi-
tive loadings.

Hence, the fourth component obviously reflected the ef-
fect of the active root system in the winter period. According
to this component, soil water dynamics in the fallow patches 40

mostly resembled the typical behaviour expected for sandy
soils and winter crop patches showed a more damped be-
haviour that is usually observed in more loamy soils. (Note
that the term “fallow” refers to crop cover in autumn and
winter only.) Acharya et al. (2019) found that winter cover 45

crops increased soil moisture from 3 % to 5 % in the top 0.3 m
soil layer; this is in line with the findings in Fig. 10, which
shows a higher water-holding capacity for winter crops (or-
ange line) in winter. However, it has also been observed that
roots from winter crops can increase soil porosity and there- 50

fore water mobility in the soil (Lange et al., 2013; Scholl
et al., 2014).

Further soil–vegetation interactions might play a role for
the delayed seepage fluxes of winter crop and part of cover
crop patches, such as soil organic content increase through 55

the presence of cover crops and plant residues (Manns et al.,
2014; Rossini et al., 2021). Usually, such effects are assumed
to occur only at larger timescales, which is closely related to
problems of detecting changes in soil organic carbon (SOC)
quantity or quality. So far, there is only anecdotal evidence 60

for rather short-term SOC quality changes affecting soil hy-
draulic properties even at smaller timescales. Although this
effect constituted only a minor share of soil moisture vari-
ance (Table 3), it was clearly discernible as a separate prin-
cipal component. This effect would be worth testing in more 65

detailed future studies.

4.2 Soil texture and soil depth effects

Loadings on the third principal component were not related
to crop types. In contrast, a spatial pattern emerged: only sen-
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sors from 0.9 m depth from six adjacent patches exhibited
strongly negative loadings (Fig. 6), whereas all other sensors
showed minor positive or negative loadings. This points to
an effect of subsoil substrates: that is, higher clay content
and consequently higher water-holding capacity. That would5

be consistent with delayed response to seepage fluxes and
reduced desiccation in the vegetation period (Fig. 8). The
strong relation between z-transformed soil moisture minima
at the beginning of the study period (Fig. 7), which might
originate from a delayed response to a prior rainfall, and the10

regional pattern of the location of the patches following a
west–east direction within the experiment might be an indi-
cator of underlying soil structures causing this effect. Data
on texture at soil moisture sensor locations in deeper layers
would be of high value to confirm the assumptions.15

Whereas the third principal component seems to reflect
a local peculiarity, the fifth component obviously grasps a
more generic feature. Loadings on this component are clearly
related to depth (Fig. 11). Strong positive loadings indicate a
strongly damped behaviour of soil moisture time series: in20

Fig. 12, the blue line, representing sites with positive load-
ings on PC5 which is typical for sensors at greater depth,
exhibits clearly reduced amplitudes compared with the or-
ange line, which represents sensors at shallow depth. Hohen-
brink and Lischeid (2015) combined a hydrological model25

and principal component analysis to study the effect of soil
depth and soil texture on damping of the input signal in more
detail. A subsequent field study proved the relevance of that
effect in a real-world setting (Hohenbrink et al., 2016). More-
over, Thomas et al. (2012) found that damping accounted for30

a large share of variance in a set of hydrographs from a region
of 30 000 km2. Damping was also the most relevant driver of
spatial variance in a set of time series of groundwater head at
about the same scale (Lischeid et al., 2021).

4.3 Limitations35

Data gaps during the studied period occurred due to multiple
technical and environmental factors. Data gaps in soil mois-
ture time series were caused by repeated temporary failure of
the WSN. There was a failure of one sensor that was replaced
and one LoRa node was damaged by intruding water. More40

relevant, however, were failures of data transmission. Yildiz
et al. (2015) point to the problem of optimizing transmission
power for data and acknowledgement packets depending on
energy dissipation under the given conditions. For example,
saturated soil conditions and dense biomass stands reduce45

the transmission signal from the node to the gateway (Bo-
gena et al., 2009). The installation of a second gateway in
September 2021 increased higher transmission coverage in
the field. Another obstacle was snow cover on the gateways’
solar panels. Finally, solar panels were subject to theft. How-50

ever, a higher level of maintenance and supervision helped to
reduce the number and the length of data gaps.

PCA requires gapless time series. Gaps in single time se-
ries either need to be filled at the risk of introducing arte-
facts or the respective time period cannot be considered at 55

all for analysis. This can be seen as a weakness of PCA. On
the other hand, and in contrast to other time series analysis
approaches, the time series need not be equidistant. Assign-
ing PCs to processes and effects is not straightforward and
might be a subject for debate. For example, in this study soil 60

samples were taken at least 0.8 m from the sensors to avoid
disturbance in the measurements. Due to pronounced small-
scale soil variability, these samples are not fully representa-
tive of the measurement sites. In spite of these limitations,
the PCA results clearly point to various effects worth further 65

study in more detail in subsequent work.

5 Conclusion

The use of PCA is quite valuable for application in environ-
mental sciences, as it contributes to process understanding of
soil water dynamics by disentangling the different effects of 70

complex spatially and temporally diversified cropping sys-
tems. In this study, more than 97 % of the observed spatial
and temporal variance was assigned to five different effects.
Meteorological drivers explained 72.3 % of the total variance
(PC1). Different seasonal patterns of root water uptake of 75

winter crops compared with summer crops accounted for an-
other 17.0 % of variance (PC2). An additional share of 2.2 %
of variance seemed to be related to the effects of different
vegetation cover and its interplay with soil hydraulic prop-
erties (PC4). Heterogeneity of subsoil substrates explained 80

4.1 % of variance (PC3) and the damping effect of input sig-
nals over depth another 1.7 % (PC5). To summarize, plant-
related direct and indirect effects accounted for 19.2 % of
the variance (PC2 and PC4), and soil-related effects for only
5.8 % (PC3 and PC5). In particular, the plant-induced effects 85

on soil hydraulic properties would be worth studying in more
detail.

Findings of this study highly depend on local conditions.
However, the methodology itself is generally applicable to
other site conditions and can lead to improved management 90

practices through improved knowledge about soil water dy-
namics. Furthermore, information from this study can also
help in developing both parsimonious and tailored mecha-
nistic models for model upscaling. In this regard, principal
component analysis of large soil moisture data sets from real- 95

world monitoring setups can be performed as a meaningful
diagnostic tool for complex cropping systems.
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Appendix A

Figure A1. Loadings of time series on the first principal component at the patchCROP landscape experiment, Tempelberg, Brandenburg,
Germany. Bars represent individual time series grouped by patch ID and sorted by crop.
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