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Abstract. There is urgent need to develop sustainable agricultural land use schemes. Intensive crop production has induced 9 

increased greenhouse gas emissions and enhanced nutrient and pesticide leaching to groundwater and streams. Climate change 10 

is also expected to increase drought risk as well as the frequency of extreme precipitation events in many regions. 11 

Consequently, sustainable management schemes require sound knowledge of site-specific soil water processes that explicitly 12 

take into account the interplay between soil heterogeneities and crops. In this study, we applied a principal component analysis 13 

to a set of 64 soil moisture time series from a diversified cropping field featuring seven distinct crops and two weeding 14 

management strategies. 15 

Results showed that about 97% of the spatial and temporal variance of the data set was explained by the first five principal 16 

components. Meteorological drivers accounted for 72.3% of the variance, 17.0% was attributed to different seasonal behaviour 17 

of different crops. While the third (4.1%) and fourth (2.2%) principal component were interpreted as effects of soil texture and 18 

cropping schemes on soil moisture variance, respectively, the effect of soil depth was represented by the fifth component 19 

(1.7%). However, neither topography nor weed control had a significant effect on soil moisture variance. Contrary to common 20 

expectations, soil and rooting pattern heterogeneity seemed not to play a major role. Findings of this study highly depend on 21 

local conditions. However, we consider the presented approach generally applicable to a large range of site conditions. 22 

1 Introduction 23 

Agriculture plays a major role to ensure the provision of food to a growing global population. At the same time, climate change 24 

is putting yield stability at risk due to extreme weather events, rising the need for sustainable management of resources, such 25 

as water and soil (Trnka et al., 2014). The transformation from large homogeneously cropped fields towards diversified 26 

agricultural landscapes has been identified as an opportunity that can contribute to climate adaptation due to the positive effects 27 

on multiple ecosystem services (Tamburini et al., 2020),  and cropping system resilience to climatic extremes (Birthal and 28 

Hazrana, 2019). Additionally, crop diversification is highly beneficial by reducing soil erosion through permanent soil cover 29 

(Paroda et al., 2015), and by improving resource use efficiency through wider crop rotations (Rodriguez et al., 2021).  30 
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In terms of soil water dynamics, crop and management diversification can lead to improved water-stable macro-aggregation, 31 

reduced soil compaction and increased soil organic carbon, which can reduce soil water infiltration and improve water retention 32 

(Alhameid et al., 2020; Fischer et al., 2014; Karlen et al., 2006; Koudahe et al., 2022; Nunes et al., 2018). Korres et al. (2015) 33 

reported that spatial variability of soil moisture was mainly driven by soil characteristics, followed by crop cover and 34 

management. Soil moisture is also affected by soil texture and pore size distribution (Krauss et al., 2010; Rossini et al., 2021; 35 

Pan and Peters-Lidard, 2008). The quantification of the impact of these effects on soil moisture variability is important, for 36 

instance for hydrological applications and adopted management practices in agriculture (Hupet and Vanclooster, 2002). 37 

As the diversity of independent variables in agricultural systems increases, demands for frequency and spacing of soil moisture 38 

measurements and related data interpretation grow. Therefore, soil sensor networks are receiving increased attention, 39 

particularly in Precision Agriculture (PA; Bogena et al., 2022; Salam and Raza, 2020), where the main goal is to increase 40 

efficiency and productivity at the farm level while minimizing the negative impacts on the environment (Taylor and Whelan, 41 

2010). Soil sensor networks can meaningfully contribute to PA as they can be used for various purposes, including the 42 

delineation of management zones (Khan et al., 2020; Salam and Raza, 2020). Still, one of the most important demands to be 43 

fulfilled by soil sensor networks is soil moisture monitoring, as accurate measurement of soil water content can play an 44 

important role in improving water management and therefore, crop yields (Salam, 2020).  45 

Wireless solutions, for instance based on LoRaWAN (Long Range Wide Area Network) technology, in combination with 46 

electromagnetic soil moisture sensors avoid labour-intensive and destructive soil moisture measurements that disrupt field 47 

traffic. The development of such wireless sensor networks (WSN) enables broad and affordable application also in areas with 48 

low cellular coverage (Cardell-Oliver et al., 2019; Lloret et al., 2021; Placidi et al., 2021; Prakosa et al., 2021).  49 

The evolvement of WSN does not only have benefits for management but is also of high relevance for fostering the 50 

understanding of hydrological dynamics in the vadose zone. High-resolution datasets measured under real farming conditions 51 

can be used to characterize and analyse spatio-temporal dynamics of soil water. Due to the large size of data sets that are 52 

recorded with WSN, sophisticated data analysis approaches are required to detect hidden patterns and determine influence 53 

factors on soil moisture variability (Vereecken et al., 2014). With the introduction of multiple-points geostatistics, it became 54 

possible to not only analyse patterns but also connect them with factors affecting soil moisture, such as topography, texture, 55 

crop growth and water uptake, and land management (Brocca et al., 2010; Strebelle et al., 2003). Wavelet analysis can analyse 56 

both localized features as well as spatial trends through which non-stationary variation of soil properties can be considered (Si, 57 

2008). Cross-correlation analysis allowed linking soil moisture variability to climatic variables (Mahmood et al., 2012). 58 

Furthermore, temporal stability analyses detect spots in the investigated area which are consistently wetter or drier than the 59 

mean soil moisture (Baroni et al., 2013; Vachaud et al., 1985, Vanderlinden et al., 2012). This method was already successfully 60 

used to detect soil moisture patterns related to soil properties, vegetation, and topography (Zhao et al., 2010).  61 

Principal component analysis (PCA) is another method that was successfully applied for soil moisture variability analysis at 62 

the field (Hohenbrink et al., 2016; Hohenbrink and Lischeid, 2015; Martini et al., 2017), catchment (Korres et al., 2010; 63 

Lischeid et al., 2017; Nied et al., 2013; Graf et al., 2014), and regional (Joshi and Mohanty, 2010) scale. These studies build 64 
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on previous applications in climatology where the term “Empirical Orthogonal Functions” is used (Bretherton et al., 1992) and 65 

are examples for how space and time dimensions can be disentangled and assigned to influencing factors. Additionally, the 66 

propagation of hydrological signals (e.g. precipitation events) over depth can be assessed (Hohenbrink et al., 2016). This opens 67 

up great opportunities to improve the knowledge of changing soil water dynamics in complex diversified agricultural systems 68 

with increasing heterogeneity (e. g. soil texture) and site-specific adjustment of crop and field management which, to our 69 

knowledge, have hardly been studied so far.  The main objective of this study was to identify the drivers of soil moisture 70 

variability in a diversified croppingagricultural field in terms of soil texture, crop selection and field management by applying 71 

PCA. Special focusemphasis was putgiven on the interpretation of spatial and temporal effects of crop diversification and of 72 

soil heterogeneities on soil moisture dynamics.  73 

For this, we analysed a high-resolution soil moisture data set measured by a novel underground LoRaWAN monitoring system 74 

with soil moisture sensors in different depths of the vadose zone at a spatial-temporally diversified agricultural field in 75 

Northeast Germany. The novelty of this WSN relies on its unique on-farm installation environment. The deployment of 76 

transmission units in 0.3 m soil depth and 180 sensors in up to 0.9 m soil depth, allows high spatio-temporal resolution wireless 77 

data transmission, and enables conventional farming practices like machinery traffic, tillage and mechanical weeding.  78 

2 Materials and methods 79 

2.1 Study site 80 

The study site (52°26'51.8"N 14°08'37.7"E, 66-83 m.a.s.l.) is located near the city of Müncheberg in the federal state of 81 

Brandenburg in Northeastern Germany. The landscape is classified as a hummocky ground moraine that formed during the 82 

last glacial periods. Glacial and interglacial processes as well as subsequent erosion resulted in highly heterogeneous soils 83 

(Deumlich et al., 2018), being classified as Dystric Podzoluvisols according to the FAO scheme (Fischer et al., 2008). In the 84 

top 0.3 m soil layer, total organic carbon was 0.94% and total nitrogen content was 0.07%, and pH was 6.12. Between January 85 

1991 and December 2020, the mean annual temperature in Müncheberg was 9.6°C, and the mean annual sum of precipitation 86 

was 509 mm (DWD Climate Data Center (CDC), 2021).  87 

2.2 Experimental setup 88 

The data collection was carried out from December 2020 until mid of August 2021 in the patchCROP experiment (Grahmann 89 

et al, 2021; Donat et al., 2022). This landscape experiment has been set up to study the multiple effects of cropping system 90 

diversification on productivity, crop health, soil quality, and biodiversity. To that end, a cluster analysis was carried out based 91 

on soil maps and multi-year (2010 to 2019) yield data to identify high and low yield potential zones in the 70-ha large field 92 

(Donat et al., 2022). Afterwards, single experimental units comprising 30 patches with an individual size of 0.52 ha (72 m × 93 

72 m) each, have been implemented in both, high and low yield potential zones where each of those zones is characterized by 94 

varying soil conditions and a site-specific five-year, legume-based crop rotation (Grahmann et al., 2021). The remaining area 95 
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outside of the 30 patches was planted with winter rye. For the current study, twelve out of 30 patches were considered (Table 96 

1, Figure 1). Specific patches were selected to capture the soil heterogeneities in terms of soil texture, but also the seasonal 97 

patterns of the crop rotation that may have important effects on the soil water dynamics such as crop types, presence of cover 98 

crops or fallow periods. In the cropping season 2020/2021, seven different main crops were grown. For subsequent data 99 

interpretation, crops have been grouped into A) winter crops, B) fallow, followed by summer crops and C) cover crops, 100 

followed by summer crops. In seven out of twelve considered patches, weed control was carried out with herbicide application, 101 

referred as “conventional” pesticide application, while in the remaining five patches, “reduced” pesticide management was 102 

carried out by mainly using mechanical weeding, by harrowing, blind harrowing, and hoeing. Only in the case of high weed 103 

pressure herbicides were applied.  Due to the potential impact of mechanical weeding, i.e., on rainwater infiltration, soil 104 

evaporation and topsoil rooting intensity, we differentiate between these modes of weed control. 105 

2.3 Data collection 106 

2.3.1 Soil moisture data 107 

Soil moisture was recorded by a long-range-wide-area network (LoRaWAN) based WSN. In each patch, one Dribox box 108 

equipped with a SDI-12 distributer (serial data interface at 1200 baud rate, TBS04, TekBox, Saigon, Vietnam) connected to 109 

six TDR-sensors (TDR310H, Acclima, Meridian, USA) and attached to an outdoor remote terminal unit (RTU) fully 110 

LoRaWAN compliant (TBS12B: 4+1 channel analogue to SDI-12 interface for 24 Bit A/D conversion of sensor signals,  111 

TekBox, Saigon, Vietnam) was installed as LoRa node. It was deployed at least 0.3 m below ground to allow field traffic and 112 

soil tillage. The sensors and boxes were installed between August and November 2020. At two georeferenced locations within 113 

each patch, soil moisture sensors were installed in 0.3, 0.6 and 0.9 m depth, respectively. Sensors were approximately 2 m 114 

apart from the LoRa node in angles between 45° and 60° (Figure 1). Soil moisture sensors at 0.3 m were placed horizontally, 115 

while sensors at 0.6 and 0.9 m depth were placed vertically using auger-made boreholes and extension tubes for soil insertion. 116 

Communication of LoRa nodes was wireless and autarkic in energy supply. Thus, no electric cabling except from connections 117 

between sensors and LoRa nodes was needed. Under optimum conditions, battery running time of the LoRa nodes can be up 118 

to 12 months but can be reduced to 8 months when radio transmission is attenuated (e.g. due to near water-saturated soil) 119 

which then increases power consumption (Bogena et al., 2009). Data was recorded every 20 minutes by the LoRa nodes 120 

through a LoRa-WAN Gateway DLOS8 (UP GmbH, Ibbenbüren, Germany) which was equipped with the modem TL-121 

WA7510N (TP Link, Hong Kong, China) to transfer the data to a cloud from where collected data could be accessed directly 122 

after the measurement. The time series included in this study covered the period from December 01, 2020, until August 14, 123 

2021 (Figure 2).  124 

2.3.2 Weather data 125 
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Precipitation and temperature data (Figure 3) with a 15 min temporal resolution were obtained from two weather stations 126 

located in the Eastern and Western end of the main patchCROP field. Climatic water balance was calculated from precipitation 127 

and potential evapotranspiration, both measured at the climate station by the German Weather Service in Müncheberg (DWD 128 

Climate Data Center (CDC), 2021). This station was chosen due to its proximity to the study site.  129 

2.3.3 Remotely senseds data for vegetation dynamics 130 

Furthermore, drone imagery from May 20, 2021, May 31, 2021, and July 06, 2021, was used for vegetation assessment. The 131 

drone fixed-wing UAV-based RS eBee platform (SenseFly Ltd., Cheseaux-Lausanne, Switzerland) was operated at noon time 132 

and recorded multispectral imagery with a Parrot Sequoia+ camera (green, red, NIR, and red edge bands, spatial resolution of 133 

0.105 m) and thermal imagery of the surface (only on May 31, 2021) with a senseFly Duet T camera with a spatial resolution 134 

of 0.091 m (Table 2). The multispectral imagery was processed with Pix4D to obtain the Normalized Difference Vegetation 135 

Index (NDVI), following Eq. (1): 136 

 𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
            (1) 137 

in which NIR is the intensity of reflected near-infrared light (reflected by vegetation) and Red the intensity of reflected red 138 

light (absorbed by vegetation). A digital elevation model with a spatial resolution of 1 m (GeoBasis-DE and LGB, 2021) was 139 

used to calculate the slope (ArcGIS 10.7.0; ESRI, 2011) (Table 2). 140 

2.3.4 Soil information 141 

Soil texture by layer 142 

Manual classification of soil texture by layer was carried out  by collecting 140 samples in eight of twelve analysed patches. 143 

Samples were taken with a 1 m-length Pürckhauer soil auger. Soil sampling points were located between 0.8 m and 2.5 m 144 

away from the soil moisture sensors to minimize damage risk. Soil textural class was manually determined at the field by 145 

applying the protocol “Finger test to determine soil texture according to DIN 19682-2 and KA5” (Sponagel et al., 2005). 146 

Additionally, representative soil samples were collected and analysed at the laboratory to determine particle size distribution 147 

for sand, silt, and clay (soil texture based on the German particle classification). Soil texture was analysed following the DIN 148 

ISO 11277 (2002) reference method by wet sieving and sedimentation, using the SEDIMAT 4-12 (Umwelt-Geräte-Technik 149 

GmbH, Germany). The sand fraction in this method is defined between 2 and 0.063 mm, according to IUSS Working Group 150 

WRB (2015).  151 

The laboratory soil texture analysis showed that soil texture variability increased with depth. In the third layer (average bottom 152 

depth = 0.92 m), the sand and clay content across 133 sampling points varied between 53% to 94% and from 2% to 22%, 153 

respectively. Also, soil texture was sandier in the low yield potential soil than in the high yield potential areas, even when 154 
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corresponding to the same soil textural class. Therefore, to extrapolate the laboratory-based soil particle distribution to the soil 155 

textural classes manually determined at the field, the high and low yield potential laboratory samples were pooled separately. 156 

The average soil particle distribution was calculated for each soil textural class within each yield potential. These values were 157 

then assigned to the soil layer that had the respective soil textural class in the manual readings.  158 

To extrapolate the laboratory-based soil particle distribution from the laboratory to the manual soil textural classes manually 159 

determined at the field, the high and low yield potential laboratory samples were pooled separately.  and Tthe average soil 160 

particle distribution was calculated by for each soil textural class was calculated and assigned to the respective soil layer with 161 

that specificparticular soil textural class. The soil texture analysis showed that soil texture variability increased with depth. In 162 

the third layer (average bottom depth = 92 cm0.92 m), the sand and clay share content across 133 sampling points varied 163 

between 53% to 94% and 2% to 22%, respectively. Soil samplesampling points were between located approximately 0.8 m 164 

and 2.5 m far away from the soil moisture sensors to minimize damage risk. The transferability of texture information from 165 

the sampling point to the sensor location was not ensured due to high nugget effects. Furthermore, manual soil texture analysis 166 

data were not available for all analysed patches. Consequently, they were not included into further correlation analysis. 167 

Topsoil proximally sensed data 168 

In October 2019, the “Geophilus” soil scanner system (Lueck and Ruehlmann, 2013) was used in the entire field to map soil 169 

electrical resistivity (ERa)  as a proxy for texture for the top soil, using reference soil samples to calibrate the readings. A total 170 

of four georeferenced reference soil samples were taken until 0.25 m soil depth, and locations were selected based on the 171 

proximal soil sensor data (sensor-guided sampling; Bönecke et al., 2021). The “Geophilus” system is based on sensor fusion 172 

in which ERa sensors are coupled with a gamma-ray detector. Apparent electrical conductivity was measured by pulling one 173 

or more sensor pairs mounted on wheels across the field where each pair of sensors measured a different soil depth. Amplitude 174 

and phase were measured simultaneously using frequencies from 1 MHz to 1 kHz. Reference soil samples were analysed via 175 

soil-particle size analysis according to DIN ISO  11277 (2002) and served as calibration information in order to estimate sand, 176 

silt and clay content in the top 0.25 m soil for the entire field. A non-linear regression model was applied. The RMSE of sand 177 

content (5.7%) was considerably smaller than the standard deviation of the sand content in the first layer from the manual soil 178 

texture analysis (11.9%), indicating a satisfactory prediction performance. The gamma-sensor was used to minimize 179 

uncertainties, being less sensitive to soil moisture than the ERa readings (Bönecke et al., 2021). The estimated sand content in 180 

the upper 0.25 m at the study site varied between 69.1% and 81.2% and averaged 79.0% (Table 1, Figure 1).  181 

2.4 Data processing 182 

Soil moisture data were available at 20-minute intervals. Transmission failures due to discharged batteries, signal disturbances 183 

after rainfall, in patches with a high density of biomass (e.g. maize), and theft of parts of the WSN led to data gaps that affected 184 

in some cases all sensors of the WSN and amounted to 81 out of 257 days of the measuring period. The affected days were 185 
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therefore skipped for the analysis. Whereas time series of eight sensors were excluded due to a higher frequency of transmission 186 

failures, in total, 64 time series were used for the analysis, and additional data gaps for single sensors were interpolated linearly. 187 

Of all 20,668 interpolated gaps, 96% were shorter than two hours, 3% between two and six hours and 1% longer than six hours. 188 

In 26 cases, gaps exceeded the duration of one day. The interpolation was justified as the differences between the values before 189 

and after the gaps were within the measuring accuracy of 1 vol-% of the soil moisture sensors (Acclima Inc., 2019). As 190 

indicated by the retailer, sensors might suddenly jump to a soil moisture value of 28.6% and go back to normal again after one 191 

or few time steps. Thus, a data deletion procedure of abrupt jumps to 28.6 was created. Further minor spikes were not removed 192 

since experience has shown that they do not significantly affect the results of PCA. To ensure equal weighting for the 193 

subsequent analysis, all soil moisture time series were z-transformed to unit variance and zero mean each (cf. Hohenbrink and 194 

Lischeid, 2015). As a consequence, differences of absolute values were not considered by the further analysis. 195 

2.54 Statistical analysis 196 

To identify common temporal patterns among single time series, the soil moisture data set was analysed by a principal 197 

component analysis (PCA). In a first step, PCA decomposes the total variance of a multivariate data set into independent 198 

fractions called principal components (PCs). The number of PCs is the same as the number of time series in the input data set. 199 

Each PC consists of eigenvectors (loadings), scores, and eigenvalues. The scores reflect the temporal dynamics. The 200 

importance of single principal components for single sites is represented by the loadings of each PC (Jolliffe, 2002; Lehr and 201 

Lischeid, 2020). Loadings are the Pearson correlation coefficients of the single time series of the input data set with the scores 202 

of each PC, respectively. The eigenvalues of the single PC are proportional to the variance that they explain. The PCs are 203 

sorted in descending order of eigenvalues. Eigenvalues greater than one indicate that a PC explains more variance than  a 204 

single input time series could contribute to the total variance of the entire input data set (Kaiser, 1960). More details on principal 205 

component analysis for time series analysis are found in Joliffe (2002). The PCA was performed using the prcomp function in 206 

R version 4.1.0 (R Development Core Team, 2021).   207 

The scores of the principal components constitute time series. Every observed soil moisture z-transformed time series can be 208 

presented at arbitrary precision as a combination of various principal components. When the data set consists of time series of 209 

the same observable measured at different locations, the first principal component describes the mean behaviour inherent in 210 

the data set. Subsequent principal components reflect typical modifications of that mean behaviour at single locations due to 211 

different effects. Thus, generating synthetic time series as linear combinations of the first PC and another additional PC helps 212 

to assign this additional PC to a specific effect. To that end, scores of that component have either been added to or subtracted 213 

from those of the first component using arbitrarily selected factors. The two resulting graphs show how the respective PC 214 

causes deviations from the mean behaviour of the data set.    215 

The relations to soil and vegetation parameters were tested by computing the Pearson correlation coefficients between the 216 

scores and arithmetic mean values of all input time series as well as the Pearson correlation coefficients between loadings and 217 

sand content until 0.25 m depth, sensor depth, antecedent z-transformed soil moisture, slope, and drone imagery products  218 
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(NDVI and surface temperature). Eventually, the Wilcoxon-Mann-Whitney test was applied to check whether loadings can be 219 

grouped by management parameters (crops, cover crops, weeding management). All statistical analyses were conducted with 220 

R version 4.1.0 (R Development Core Team, 2021). 221 

3 Results 222 

3.1 Manual soil texture analysis 223 

The transferability of texture information from the sampling point to the soil moisture sensor location was not ensured due to 224 

high nugget effects. Furthermore, manual soil texture analysis data were not available for all analysed patches. Consequently, 225 

they were not included into further analysis. 226 

3.2 Principal component analysis 227 

The principal component analysis yielded five components with Eigenvalues exceeding one, which accounted for >97% of the 228 

total variance of the data set (Table 3). 229 

3.2.1 First principal component 230 

The first principal component explained 72.3% spatiotemporal variance of the data set. All loadings on the first PC were 231 

negative (Appendix A). The Pearson correlation coefficient of the scores of the first principal component with the mean values 232 

of all input time series was less than - 0.999 (p < 0.01), the correlation between the scores and the cumulative climatic water 233 

balance (P – ETp) was -0.969 (p < 0.01). Thus, the time series of the negative scores of this component represented the mean 234 

behaviour of soil moisture driven by external factors such as precipitation, temperature, and seasons in general which affected 235 

time series in the same way, although to different degrees (cf., Hohenbrink et al., 2016; Lischeid et al., 2021).  236 

3.2.2 Second principal component 237 

The second principal component explained 17.0% of the total variance. The loadings ranged from -0.801 to 0.760 with a 238 

median of -0.030 (Figure 4). The loadings showed a crop group specific pattern. All winter crops (barley, oats, rye) had positive 239 

loadings with only one exception in 0.9 m depth. The summer crops maize, soy, and sunflower exhibited negative loadings. In 240 

contrast, the summer crop lupine exhibited mostly positive loadings, similar to the winter crops, although of slightly smaller 241 

magnitude. According to the Wilcoxon-Mann test, the group of barley, oats, rye, and lupine differed significantly from the 242 

group of maize, soy, and sunflower. 243 

As described in the Methods section, synthetic time series were generated as a linear combination of PC1 and PC2 (Figure 5). 244 

The graph resulting from applying a positive factor for PC2 represents a typical deviation from mean behaviour for sites that 245 

exhibit positive loadings, e.g., winter crops (blue line). The opposite holds for the summer crops which load negatively with 246 

PC2 (orange line). Both lines plot very close to each other in February and March. In contrast, the orange line shows lower 247 



9 

 

values than the blue line in December and January, indicating lower soil moisture at the summer crop patches. The inverse 248 

holds for the subsequent summer period starting in early June, pointing to earlier and more rapid water uptake of the winter 249 

crops. In July and August, the approximately constant level of the blue curve indicates that only summer crops continue to 250 

consume water while winter crops are in their ripening phase and eventually harvested. 251 

Lupine and sunflower were the summer crops which were sown first (March 30, 2021, and April 2, 2021, respectively). Maize 252 

was sown on April 16, 2021, and soy on May 15, 2021. The loadings of lupine, which were rather performing like winter crops 253 

than summer crops, indicated that lupine showed an early onset of intensive evapotranspiration, compared to other summer 254 

crops, especially sunflower which was sown at the same time.  255 

For further investigation of the vegetation effect on PCs, drone imagery taken at the end of May, when sowing has been 256 

completed in all patches, and imagery taken at the beginning of July, when winter crops are in the ripening phase, was analysed. 257 

The second PC’s loadings of the time series from different sensors were compared to the Normalized Difference Vegetation 258 

Index (NDVI; available for three dates) and surface temperature (only available for May 31, 2021) of the respective sensor 259 

location as a proxy for actual evapotranspiration. At the end of May, the NDVI, as a proxy for photosynthesis potential, was 260 

positively correlated with the loadings (Table 4). Surface temperature exhibited a negative correlation. The spatial pattern of 261 

surface temperature is assumed to be inversely related to that of actual evapotranspiration. Thus, both proxies, NDVI and 262 

surface temperature, support the inference that in this study positive loadings on this principal component represent sites with 263 

above-average plant activity and root water uptake at the end of May. This holds for sensors from all depths but was the closest 264 

for 0.9 m depth (Pearson correlation of r = -0.916 for surface temperature and of r = 0.946 for NDVI on May 31). The results 265 

in July compared to those in May support the observation. At the time when the winter crops are already in the ripening phase 266 

and the summer crops reach high levels of evapotranspiration, the correlations are being reversed and negative loadings 267 

indicate above-average plant activity for summer crops. On July 06, highest Pearson correlations for NDVI are found for 0.6 268 

m depth (r = -0.917). 269 

3.2.3 Third principal component 270 

The third PC explained 4.1% of the total data set’s variance. Loadings ranged between -0.787 and 0.244 with a median of 271 

0.006. Extreme loadings (<-0.25) were found only for sensors in 0.9 m depth in patches 66, 89, 95 and 102 (Figure 6). The 272 

location of these patches shows a certain regionalspatial pattern, with the patches roughly following an east-west direction 273 

rather than showing abeing distributed randomly location within the field. This may point to topography or soil structure 274 

causing deviations from mean soil moisture behaviour for patches located near this gradient. However, this pattern cannot be 275 

assigned to topography or structures apparent on the topsoil map (Figure 1). Loadings were closely related to the minima of 276 

the z-transformed soil moisture in the period from December to February (r = 0.70, p < 0.001, Figure 7). What distinguishes 277 

the orange line (negative loading on PC3) from the blue line (positive loading on PC3)  is the higher temporal variability and 278 

the delayed reaching of maxima in the first half of the study period (Figure 8).  279 
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3.2.4 Fourth principal component 280 

The fourth PC explained 2.2% of the total data set’s variance. The loadings were clustered by crop groups. All fallow patches 281 

showed consistent positive loadings while the patches which were covered by winter crops, showed mainly negative loadings 282 

except in patch 95 where the loadings of the two sensors in 0.3 m depth were slightly above zero (Figure 9). According to the 283 

Wilcoxon-Mann test treatment group B (fallow, followed by summer crops) differed significantly from group A (winter crops) 284 

and C (cover crops, followed by summer crops) whereas there was no significant difference between group A and C. In contrast 285 

to crop groups A and B, patches that were covered by the cover crop phacelia during the winter months, did not show one-286 

directional loadings.  287 

Figure 10 illustrates the effect of the fourth PC on time series. The blue line (positive loading) shows a hydrological behaviour 288 

which  would be typical for more sandy soils  while the orange line (negative loading) depicts behaviour that one would expect 289 

in more loamy soils due to its delayed responses to rainstorms and subsequent less steep recovery. The patterns in the loadings 290 

thus show a differentiation between patches with winter crops and fallow patches in the winter months (Figure 9). However, 291 

it is not clear how winter crops on the one side and fallow on the other side could induce such a different soil water behaviour 292 

shown in Figure 10.  293 

3.2.5 Fifth principal component 294 

The fifth PC explained 1.7% of the data set’s variance. The loadings showed a depth-related pattern. All time series from the 295 

0.3 m depth exhibited negative loadings with two minor exceptions. Whereas all time series from 0.9 m depth showed positive 296 

loadings throughout, and time series from 0.6 m depth plot in between. Loadings in 0.6 m depth and 0.9 m depth were mostly 297 

more similar to each other than to the loadings of 0.3 m depth (Figure 11). The Pearson correlation coefficient between loadings 298 

and depth was r = 0.710 (p < 0.05). Thus it can be concluded that the fifth PC reflected the effect of soil depth on soil moisture 299 

variance. This effect differed between crops, with the three most negative loadings found in maize patches while the three 300 

most positive loadings were found in lupine patches. The soil water dynamics show a damping effect with increasing depth 301 

(Figure 12) from little damping for sensors in the upper depth (orange line) to higher damping for sensors in greater depth 302 

(blue line). 303 

Neither patterns in topography nor in weeding management modes were reflected in the loadings of PC1-PC5. Due to the lack 304 

of subsurface soil data, no additional findings could be derived from the Geophilus texture analysis.  305 

4 Discussion 306 

A PCA was conducted to identify the drivers of soil moisture variability in a diversified cropping field. Data consisted of 307 

observed time series from 64 soil moisture probes. Results showed that the first five principal components described about 308 

97% of the variance of the data set,  and revealed various effects of weather, soil texture, soil depth, crops, and management 309 

schemes (Table 3). The first principal component captured 72% of the total variance. Consequently, 72% of the observed 310 
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dynamics could be described by a lumped model that would not consider any within-field heterogeneity. These results are in 311 

the range of similar studies. Martini et al. (2017) found that the first PC explained 58% of the variance of a data set that 312 

comprised both agricultural fields as well as grassland transects. Similarly, Lischeid et al. (2017) ascribed 70% of the variance 313 

of a forest soil moisture data set to a single component. In the study by Hohenbrink et al. (2016), 85% of the variance of soil 314 

moisture data in a set of arable field experiments with two different crop rotation schemes was attributed to the first principal 315 

component. The strong influence of weather conditions as it is shown in our study is confirmed by Choi et al. (2007) who 316 

showed that rainfall, next to topography, explained most of the surface soil moisture variability. 317 

4.1 Crop effects 318 

As Korres et al. (2015) stated that vegetation and management (e.g. planting and harvesting dates) are among the main causes 319 

for spatial variability of soil moisture in agricultural fields. In this study, around 17% of the total variance at the field scale 320 

was attributed to the vegetation effect. When not considering the temporal component reflected by PC1 and thus only looking 321 

at the spatial variability, 61% of the remaining variance is caused by the vegetation effect reflected by PC2. Korres et al. (2010) 322 

also used PCA to identify the drivers of spatial variability of soil moisture within a cropped area but did not find such a 323 

pronounced vegetation effect. In their study, more than two thirds of the spatial variability was related to soil parameters and 324 

topography. In contrast, the strong influence of vegetation in our study may be due to the high level of crop diversification. 325 

Within single crop fields, vegetation effects are observable due to heterogeneous biomass or root development (Brown et al., 326 

2021; Korres et al., 2010), but may be of a lower magnitude compared to fragmented field arrangements with different crops. 327 

The high impact of crop diversification on soil moisture variability is also visible when comparing our results to the results of 328 

a field under comparable conditions in the same region with only two crop rotations in which only 3.8% was explained by the 329 

different crop rotations (Hohenbrink et al., 2016). Joshi and Mohanty (2010) also assessed the effect of vegetation in their 330 

study in which they investigated spatial soil moisture variability at the field to regional scale in the Southern Great Plains 331 

regions in the US by means of PCA and assessed the effect of vegetation -. With none of the first seven PC showing strong 332 

correlation with vegetation parameters, n contrast to this study the effect of vegetation was- as limited in contrast to our study.  333 

since none of the first seven PC showed strong correlations with vegetation parameters.  334 

 335 

It needs to be considered that the proportion of the vegetation effect on soil moisture variability does not only vary spatially 336 

and over depth, but also over time. Under dry conditions, soil-plant interactions prevail while under moist conditions, 337 

percolation behaviour is predominant (Baroni et al., 2013). The scores are time series and reflect the effect size of a particular 338 

process represented by the respective PC. The more the scores of a certain PC deviate from zero during specific periods, the 339 

stronger the respective effect is. Consequently, the time series of PC2 scores indicates that the effect of vegetation on total 340 

variability varies by time. In accordance with literature, the absolute values of the scores of PC2, representing differences 341 

between the contrasting seasonality of crops, are highest in the dry months, May to August. This is mostly explained by the 342 

high water demand of summer crops, which are in their vegetative growth stage from May to August, whereas winter crops 343 
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are already in their reproductive growth stage, including maturity, senescence and harvest where water uptake by crops is 344 

minimal or absent (Zhao et al, 2018). In the moist winter months January to March, as well as during the heavy rainfall event 345 

in July, the scores of PC2 are relatively small, showing that spatial variability at that time is caused by other factors.  346 

The second principal component clearly differentiated between winter and summer crops, which was driven by the different 347 

seasonal patterns of root water uptake (Figure 4). In contrast, the fourth component differentiated between fallow followed by 348 

summer crops and winter crops, whereas phacelia followed by summer crop did not show a clear pattern (Figure 9). Phacelia 349 

is grown as a cover crop and usually dies off in frost periods. Due to rather mild winter temperatures 2020/21, Phacelia was 350 

not terminated efficiently and kept growing until spring, until it was terminated mechanically. It was recently shown that the 351 

timing of removal of winter cover crops is key to provide soil water recharge for the subsequent crop, as the depletion of soil 352 

water in autumn is significant (Selzer and Schubert, 2023). Thus, some Phacelia patches exhibited negative loadings, similarly 353 

to the winter crop patches, while other patches with most likely different termination dates exhibited positive loadings.  354 

Hence, the fourth component obviously reflected the effect of the active root system in the winter period. According to this 355 

component, soil water dynamics in the fallow patches mostly resembled the typical behaviour expected for sandy soils, and 356 

winter crop patches showed a more damped behaviour that is usually observed in more loamy soils. Note that the term “fallow” 357 

refers to crop cover in autumn and winter only. Acharya et al. (2019) found that winter cover crops improvedincreased soil 358 

moisture from 3% to 5% in the top 0.3 m soil layer which is in line with the findings fromof Figure 10 that shows a higher 359 

water holding capacity for winter crops (orange line) in winter. However, it has also been observed that roots from winter 360 

crops can increase soil porosity and therefore, water mobility in the soil (Lange et al., 2013; Scholl et al., 2014).  361 

The delay of percolating water in winter crop and some cover crop patches may also be caused by higher organic matter content 362 

in the top soil provided by cover crop roots and crop residues Further soil-vegetation interactions might play a role for the 363 

delayed seepage fluxes of winter crop and part of cover crop patches, such as soil organic matter from cover crops and plant 364 

residues (Manns et al., 2014; Koudahe et al., 2022Rossini et al., 2021). Usually, such effects are assumed to occur only at 365 

larger time scales, which is closely related to problems of detecting changes soil organic carbon (SOC) quantity or quality. So 366 

far, there is only anecdotal evidence for rather short-term SOC quality affecting soil hydraulic properties even at smaller time 367 

scales. Although this effect constituted only a minor share of soil moisture variance (Table 3), it was clearly discernible as a 368 

separate principal component. This effect would be worth to be tested in more detailed future studies. 369 

4.2 Soil texture and soil depth effects 370 

Loadings on the third principal component were not related to crop types. In contrast, a spatial pattern emerged: Only sensors 371 

from 0.9 m depth from six adjacent patches exhibited strongly negative loadings (Figure 6), whereas all other sensors showed 372 

minor positive or negative loadings. This points to an effect of subsoil substrates, that is, higher clay content and consequently 373 

higher water holding capacity. That would be consistent with delayed response to seepage fluxes and reduced desiccation in 374 

the vegetation period (Figure 8). The strong relation between z-transformed soil moisture minima at the beginning of the study 375 

period (Figure 7) which might originate from a delayed response to a prior rainfall, and the regional pattern of the location of 376 
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the patches following a west-east direction within the experiment might be an indicator of underlying soil structures causing 377 

this effect. Data on texture at soil moisture sensor locations in deeper layers would be of high value to confirm the assumptions. 378 

Whereas the third principal component seems to reflect a local peculiarity, the fifth component obviously grasps a more generic 379 

feature. Loadings on this component are clearly related with depth (Figure 11). Strong positive loadings indicate a strongly 380 

damped behaviour of soil moisture time series: The blue line, representing sites with positive loadings on PC5 which is typical 381 

for sensors at greater depth (Figure 12), exhibits clearly reduced amplitudes compared to the orange line, that is, sensors at 382 

shallow depth. Hohenbrink and Lischeid (2015) combined a hydrological model and principal component analysis to study the 383 

effect of soil depth and soil texture on damping of the input signal in more detail. A subsequent field study proved the relevance 384 

of that effect in a real-world setting (Hohenbrink et al., 2016). Moreover, Thomas et al. (2012) found that damping accounted 385 

for a large share of variance in a set of hydrographs from a region of 30,000 km2. Damping was also the most relevant driver 386 

of spatial variance in a set of time series of groundwater head at about the same scale (Lischeid et al., 2021).  387 

4.3 Limitations 388 

Data gaps during the studied period occurred due to multiple technical and environmental factors. Data gaps in soil moisture 389 

time series were caused by repeated temporary failure of the WSN. There was a failure of one sensor that was replaced and 390 

one LoRa node was damaged by intruding water. More relevant, however, were failures of data transmission. Yildiz et al. 391 

(2015) point to the problem of optimizing transmission power for data and acknowledgement packets depending on energy 392 

dissipation under the given conditions. E.g., saturated soil conditions and dense biomass stands reduce the transmission signal 393 

from the node to the gateway (Bogena et al., 2009). The installation of a second gateway in September 2021 increased higher 394 

transmission coverage in the field. Another obstacle was snow cover on the gateways’ solar panels. Finally, solar panels were 395 

subject to theft. However, higher level of maintenance and supervision helped to reduce the number and the length of data 396 

gaps.  397 

PCA requires gapless time series. Gaps in single time series need to be either filled at the risk of introducing artefacts or the 398 

respective time period cannot be considered at all for analysis. This can be seen as a weakness of PCA. On the other hand, and 399 

in contrast to other time series analysis approaches, the time series need not to be equidistant. Assigning PCs to processes and 400 

effects is not straightforward and might be subject for debate. For example, in this study soil samples were taken at least at 0.8 401 

m distance from the sensors to avoid disturbance of the measurements. Due to pronounced small-scale soil variability, these 402 

samples are not fully representative for the measurement sites. In spite of these limitations, the PCA results clearly point to 403 

various effects worth to be studied in more detail in subsequent studies. 404 

5 Conclusion 405 

The use of PCA has a high value for the application in environmental sciences, as it contributes to process understanding of 406 

soil water dynamics by disentangling the different effects of complex spatially and temporally diversified cropping systems. 407 
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In this study, more than 97% of the observed spatial and temporal variance was assigned to five different effects. 408 

Meteorological drivers explained 72.3% of the total variance (PC1). Different seasonal patterns of root water uptake of winter 409 

crops compared to summer crops accounted for another 17.0% of variance (PC2). An additional share of 2.2% of variance 410 

seemed to be related to the effects of different vegetation cover and its interplay with soil hydraulic properties (PC4). 411 

Heterogeneity of subsoil substrates explained 4.1 % of variance (PC3), and the damping effect of input signals over depth 412 

another 1.7% (PC5). To summarize, plant-related direct and indirect effects accounted for 19.2% of the variance (PC2 and 413 

PC4), and soil-related effects only for 5.8% (PC3 and PC5). In particular, the plant-induced effects on soil hydraulic properties 414 

would be worthwhile to be studied in more detail. 415 

Findings of this study highly depend on local conditions. However, the methodology itself is generally applicable to other site 416 

conditions and can lead to improved management practices through improved knowledge about soil water dynamics.  417 

Furthermore, information from this study can also help to develop both parsimonious and tailored mechanistic models for 418 

model upscaling. In this regard, principal component analysis of large soil moisture data sets from real-world monitoring setups 419 

performed a meaningful diagnostic tool for complex cropping systems.  420 
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 602 

Figure 1: Sand content in % in the top 0.25 m soil depth,  location of the analysed patches, soil sensors (triangle) and boxes 603 
(square) under different crop rotations at the patchCROP landscape laboratoryexperiment, Tempelberg, Brandenburg, Germany.   604 
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 605 

 606 

Figure 2: Input soil moisture time series per depth, differentiated between crop groups, and average soil moisture of all time series 607 
per depth from 2020-12-01 until 2021-08-15 at the patchCROP landscape laboratoryexperiment, Tempelberg, Brandenburg, 608 
Germany. 609 
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 610 

Figure 3: Measured daily precipitation, mean temperature and cultivated crops - differentiated between winter crops (light blue 611 
bars), summer crops (green bars) and cover crops (pink bars) - from 2020-12-01 until 2021-08-15 at the patchCROP landscape 612 
laboratoryexperiment, Tempelberg, Brandenburg, Germany. Specific crops for the studied timeframe stated at the left side of the 613 
horizontal bars. 614 

 615 

 616 

Figure 4: Time series loadings on the second principal component at the patchCROP landscape laboratoryexperiment, 617 
Tempelberg, Brandenburg, Germany, showing a crop group related pattern. Bars represent individual time series grouped by 618 
patch ID and sorted by crop.  619 
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 620 

 621 

Figure 5: Effect of the second principal component on modification of the general mean behaviour presented by the first principal 622 
component at the patchCROP landscape laboratoryexperiment, Tempelberg. The blue line represents deviations from mean soil 623 
moisture for time series with positive loadings on PC2 (winter crops) while the orange line represents deviations from mean soil 624 
moisture for time series with negative loadings on PC2 (summer crops).   625 

 626 

 627 

 628 

Figure 6: Loadings of time series on the third principal component at the patchCROP landscape laboratoryexperiment, 629 
Tempelberg, Brandenburg, Germany with some of the sensors in deeper layers showing noticeably negative loadings. Bars 630 
represent individual time series grouped by patch ID and sorted by crop. 631 
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 632 

Figure 7: Relation between minima of the z-transformed soil moisture in the first months of the study period with loadings of third 633 
principal component showing that sensors with noticeably negative loadings showed distinctly negative z-transformed minima.  634 

 635 

 636 

Figure 8: Effect of the third principal component on modification of the general mean behaviour presented by the first principal 637 
component at the patchCROP landscape laboratoryexperiment, Tempelberg. The blue line represents deviations from mean soil 638 
moisture for time series with positive loadings on PC3 (majority of the time series) while the orange line represents deviations from 639 
mean soil moisture for time series with negative loadings on PC3 (part of the sensors in 0.9 m depth).    640 
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 641 

 642 

Figure 9: Loadings of time series on the fourth principal component at the patchCROP landscape laboratoryexperiment, 643 
Tempelberg, Brandenburg, Germany showing mainly negative loadings for crop group A, positive loadings for crop group B and 644 
loadings with no clear pattern for crop group C. Bars represent individual time series grouped by patch ID, sorted by treatment 645 
group.  646 

 647 

 648 

Figure 10: Effect of the fourth principal component on modification of the general mean behaviour presented by the first principal 649 
component at the patchCROP landscape laboratoryexperiment, Tempelberg. The blue line represents deviations from mean soil 650 
moisture for time series with positive loadings on PC4 (single sensors of crop group A, all sensors of crop group B, and part of crop 651 
group C) while the orange line represents deviations from mean soil moisture for time series with negative loadings on PC4 (most 652 
sensors of crop group A and part of the sensors of crop group C). 653 
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 654 

 655 

Figure 11: Loadings of time series on the fifth principal component at the patchCROP landscape laboratoryexperiment showing a 656 
depth related pattern. Bars represent individual time series grouped by patch ID, sorted by crop.  657 

 658 

 659 

Figure 12: Effect of the fifth principal component on modification of the general mean behaviour presented by the first principal 660 
component at the patchCROP landscape laboratoryexperiment, Tempelberg. The blue line represents deviations from mean soil 661 
moisture for time series with positive loadings on PC5 (sensors in greater depth) while the orange line represents deviations from 662 
mean soil moisture for time series with negative loadings on PC5 (sensors in shallow depth). 663 

 664 

 665 
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Table 1: Overview of crop rotation, sand content in the top 0.25 m soil depth and weed control for selected patches at the patchCROP 666 
landscape laboratoryexperiment, Tempelberg, Brandenburg, Germany. 667 

Crop in winter 

season 

Crop in 

summer season 

Crop group Sand content (in 1 m 

buffer zone around 

sensors) in % 

Weed control Patch ID 

Winter barley A 78.3 conventional 81 

Winter oats A 80.7 conventional 95 

Winter oats A 80.6 reduced 115 

Winter rye A 80.5 conventional 89 

Fallow Lupine B 80.6 conventional 90 

Fallow Lupine B 80.3 reduced 110 

Phacelia Maize C 80.8 reduced 51 

Phacelia Maize C 80.6 conventional 102 

Phacelia Soy C 78.5 reduced 12 

Phacelia Soy C 77.9 conventional 66 

Phacelia Sunflower C 80.6 conventional 96 

Phacelia Sunflower C 80.5 reduced 105 

 668 

Table 2: Overview of normalized difference vegetation index (NDVI), surface temperature, and slope at the locations of analysed 669 
sensors at the patchCROP landscape experiment in Tempelberg, Brandenburg, Germany. 670 

Crop Patch ID Sensor 

Position 

NDVI 

2021-05-20 

[-] 

NDVI 

2021-05-31 

[-] 

NDVI 

2021-07-06 

[-] 

Surface 

Temperature 

2021-05-31   

in °C 

Slope  

in ° 

Winter barley 81 West 0.874 0.182 0.926 20.57 2.01 

Winter barley 81 East 0.875 0.180 0.927 20.43 1.94 

Winter oats 95 East 0.838 0.208 0.834 27.25 1.36 

Winter oats 95 West 0.838 0.213 0.840 27.85 1.15 

Winter oats 115 West 0.756 0.278 0.845 23.70 1.28 

Winter oats 115 East 0.783 0.281 0.863 25.12 0.43 

Winter rye 89 West 0.796 0.263 0.856 22.39 1.74 

Winter rye 89 East 0.787 0.206 0.822 24.95 1.67 

Lupine 90 West 0.185 0.395 0.710 26.31 1.40 

Lupine 90 East 0.203 0.391 0.733 24.96 1.27 

Lupine 110 West 0.090 0.563 0.635 26.98 1.88 

Lupine 110 East 0.090 0.567 0.639 26.76 2.50 
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Maize 51 West -0.099 0.654 0.181 35.44 0.82 

Maize 51 East -0.096 0.638 0.217 35.29 0.93 

Maize 102 West -0.077 0.714 0.175 37.88 0.88 

Maize 102 East -0.058 0.728 0.178 38.03 0.90 

Soy 12 West -0.107 0.748 0.166 34.87 1.71 

Soy 12 East -0.108 0.723 0.162 34.44 1.11 

Soy 66 West -0.115 0.730 0.144 35.09 2.40 

Soy 66 East -0.114 0.661 0.147 34.39 2.13 

Sunflower 96 West -0.109 0.816 0.211 33.76 0.59 

Sunflower 96 East -0.101 0.827 0.229 34.70 0.69 

Sunflower 105 West 0.178 0.610 0.564 29.79 1.04 

Sunflower 105 East 0.030 0.696 0.399 34.53 1.00 

 671 

Table 3: Statistical characteristics and interpretations of principal components 1 to 5 for soil moisture dynamics of selected patches 672 
at the patchCROP landscape laboratoryexperiment, Tempelberg, Brandenburg, Germany. 673 

 PC1 PC2 PC3 PC4 PC5 

Eigenvalue 46.25 10.89 2.60 1.43 1.06 

Proportion of 

variance in % 

72.27 17.01 4.06 2.23 1.65 

Proportion of 

variance (cumulative) 

in % 

72.27 89.28 93.34 95.57 97.22 

Interpretation Mean 

behaviour 

Winter vs. 

summer crops 

Subsoil texture winter 

vegetation 

cover and 

influence of 

cover crops on 

soil hydraulic 

properties 

Damping of the 

input signal 

Prevailing driver weather crop soil crop and soil soil 

 674 

Table 4: Pearson correlation coefficients between surface temperature and normalized difference vegetation index (NDVI) at the 675 
patchCROP landscape laboratoryexperiment, Tempelberg, Brandenburg, Germany, and loadings of sensors in all depths or at single 676 
depths, respectively, on the second principal component. All correlations were highly significant (p <0.01). 677 

Variable Sensors in all 

depths 

0.3 m 0.6 m 0.9 m 

Surface temperature -0.853 -0.881 -0.909 -0.916 

NDVI 2021-05-20 0.836 0.904 0.837 0.907 



28 

 

NDVI 2021-05-31 0.899 0.945 0.944 0.946 

NDVI 2021-07-06 -0.860 -0.898 -0.917 -0.913 

 678 

 679 

APPENDIX A  680 

 681 

Figure 13: Loadings of time series on the first principal component at the patchCROP landscape laboratoryexperiment, Tempelberg, 682 
Brandenburg, Germany. Bars represent individual time series grouped by patch ID and sorted by crop.  683 


