
Response to comments by reviewer #1

Comment 1.1 Line 55: Since persistence needs a timescale for the definition this question is

somehow circular: ”At which timescale(s) does the persistence occur?” There could be reference
to Section 3.4.

Answer: We reformulate this sentence as ”What are the persistent timescales in the data?”

Comment 1.2 Line 124, Eq (x(t))t ∈ Rm what is the meaning of the subscript t together with

the argument t? This should be explained.

Answer: Thanks for pointing this out. We are simply referring to the dynamical system here,
and wanted to point out that it was indexed by time, but this notation is unnecessarily compli-
cated. We replaced by x(t).

Comment 1.3 Line 126, I recommend to use ‘state space’ instead of phase space (the often

used notion phase space is reserved for Hamiltonian systems).

Answer: We adopted this suggestion throughout the revision, thanks.

Comment 1.4 Line 136: To characterize the difference between precipitation and temperature

an autocorrelation time would be appropriate here. This is better than ”inertia” since it is
difficult to associate precipitation with an inertia, while temperature, on the other hand, has
something like an inertia due to the heat capacity.

Answer: This example is meant as an illustration of the concept of global persistence (before
introducing it a few lines later). Autocorrelation would indeed be very relevant to characterise
the difference between temperature and precipitation (and it is one of the common ”global
persistence” methods). The term ”inertia” is used here in a more general way than in the
context of the temperature/precipitation example, to highlight the fact that global persistence
of a dynamical system describes how ”fast” it tends to evolve, in other words it refers to its
inertia.

Comment 1.5 Lines 143, 155 in Section 3.1 Global, state and episodic persistence. It seems

that global and state persistence are different concepts. Global persistence appears nothing
else than stationarity which includes recurrence. Why is global persistence ”strongly related to
intrinsic system predictability”? Maybe these definitions could be useful: Does persistence of a
state x(t) mean dx(t)/dt = 0. And could global persistence be defined in terms of integrals or
averages like d < x(t) > /dt = 0? And are conservation laws useful?

Answer: Global and state persistence are indeed two different concepts. Global persistence
refers to the average behaviour of the system, while state persistence refers to the behaviour of
specific states of the system. Global persistence translates either into very little change from
one time step to the next (for stationarity) or in a tendency to the recurrence of system states
across the trajectory. Global persistence is thus strongly related to system predictability since
current values of the system strongly constrain its future values.
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In mathematical terms, global stationarity doesn’t necessarily translate into dx(t)/dt ≈ 0, but

instead into
〈∣∣dx(t)

dt

∣∣〉 ≪ σx
T where < · > is a time average, σx is the standard deviation of the

series x(t) and T its typical timescale of evolution. This means that variability of the system at
small timescales ((x(t+ dt)− x(t))/dt) is small compared to its variability at long timescales.
State persistence can simply be understood as the tendency for the system to stagnate in certain
parts of the phase space. Whether conservation laws are useful in general is hard to say. It is
quite possible that persistent system states or persistent periods are characterised by the (quasi)-
conservation of some global quantity, but the answer really depends on the system under analysis.
We slightly expanded the corresponding section by adding ”Global stationarity translates into
the tendency for the system to change little at small timescales (successive values being close to

each other). In mathematical terms, this translates into
〈∣∣dx(t)

dt

∣∣〉 ≪ σx
T where < · > is a time

average, σx is the standard deviation of the series x(t) and T its typical timescale of evolution.”,
and further: ”Global persistence is, however, strongly related to intrinsic system predictability,
since present values of the system largely constrain its future values.”

Comment 1.6 Line 184: What is a ‘symmetrically, persistent state’?

Answer: This is a misunderstanding, ”symmetrically” does not refer to the state but is used
to highlight the connection to the previous sentence. We replaced ”symmetrically” with ”corre-
spondingly”.

Comment 1.7 Line 188: How can this sentence be understood: ‘However, state persistence

only characterizes the average behavior of system states.’

Answer: Following our initial reply, we reformulated the sentence as follows: ”However, state
persistence only characterises the average behaviour of system states – it does not imply that all
occurrences of a persistent state will necessarily be persistent.”

Comment 1.8 Line 201: Section 3.2 Here is a good opportunity to define Lagrangian station-

arity of a quantity ψ(x, t) along a flow u, by ∂ψ/∂t+u · ∇ψ = 0, in comparison to the Eulerian
stationarity with ∂ψ/∂t = 0.

Answer: Thanks for this excellent suggestion. We added the following sentence in the revision:
”The Eulerian stationarity of a quantity ψ(x, t) translates into ∂ψ/∂t = 0 while the Lagrangian
stationarity implies ∂ψ/∂t+ u · ∇ψ = 0 where u is the background flow.”

Comment 1.9 Line 216: The authors write ”self-similarity of system values x(t) with a metric”

but this notion can be confused with geometric self-similarity used in the definition of fractal
objects for example. Or is that what the authors intend?

Answer: Following our earlier reply, we added the following to avoid any confusion: ”By self-
similarity, we refer to the tendency for successive values of x(t) to be similar to each other,
according to some metric. This is not to be confused with the concept of geometric self-similarity
in fractal geometry.”

Comment 1.10 Line 300: write what the symbol E(. . . ) denotes.
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Answer: We added ”E denotes the expectancy with respect to the distribution of Xt.”

Comment 1.11 Line 348: On Long-range memory: mention the absence of a timescale.

Answer: We mention this at l.355 when discussing the limitations of this approach.

Comment 1.12 Line 360: Write that the Hurst exponent H and d are related by H=2d+1, see

the Table 1 in Franzke et al. (2020).

Answer: We modified the last sentence of the paragraph as follows: ”H is also theoretically
related to the dependency parameter (as H = 2d + 1) and the power spectrum exponent (see
below) (Franzke et al., 2020)”.

Comment 1.13 Line 382: Written is: ”If temporal dependence is present”. This is unclear.

Eq. (10) is the result a power-law in of ρ (Eq.(6)), line 350.

Answer: We are not sure what you mean by this comment. What we wanted to say is that for
pure random noise, the spectral density is constant, while for series with non-zero autocorrelation
(at least at small lags), the power spectrum will often (but not necessarily) exhibit a power-law
dependence as a function of frequency.

Comment 1.14 Line 490: Section 4.2.4. The role of the extremal index θ is difficult here. In

extreme value statistics the extremal index is the inverse time scale with co-occurring extreme
events, used to eliminate short term variability and to combine events. Why is this index a
measure of stationarity? Is it correct that short term excursions are allowed with θ in Eq (13)?

Answer: Building on our initial reply, we added the following sentence to the paragraph to make
the link bewteeen extreme value statistics and the dynamical systems approach: ”In extreme
value statistics, θ is the inverse average duration of consecutive sequences of extreme events,
and is used to cluster events (Ferro and Segers, 2003). A large θ therefore indicates that event
occurrences tend to be isolated, while a low θ indicates that events occur as part of a larger
group.”

Comment 1.15 Line 569: Please write that RX0 is the residence time for state x0.

Answer: Thanks, corrected.
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Response to comments by reviewer #2

Comment 2.1 The authors have put great effort in an attempt to bring together all the different

blocs of persistence. Persistence is a loose concept as there is no definite definition for it, and the
authors propose to bring together its different facets. I had to go more than once to get a clear
picture of the different bits and pieces. For example, in the 6 sections there are 13 subsections
(excluding subsub-subsections). Perhaps to aid readers, especially early career researchers, an
extra figure showing a tree-like diagram linking the different concepts of persistence would be
welcome.

Answer: Thank you for your comment. This is an excellent suggestion which we included in
the revised version (see Figure R1 in this reply).

PERSISTENCE

STATIONARITY
(section 4)

RECURRENCE
(section 5)

Global State Episodic Global State Episodic

Autocorrelation (4.1.1)
Dependence

parameter (4.1.2)
Hurst exponent (4.1.2)
Power spectrum (4.1.2)
Residence times (4.2.5)

Weather regimes (4.2.1)
Quasi-stationary

states (4.2.2)
Optimally persistent

patterns (4.2.3)
Dynamical systems

theory (4.2.4)
Residence times (4.2.5)

Transition
probabilities (4.2.6)
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Running window methods
Residence times (4.2.5)

Recurrence plots (5.2.2) Diagnostic methods
Window counts (5.1.1)
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Recurrence plots (5.2.2)

Recurrence plots (5.2.2)

Figure R1: Overview of the persistence methods discussed in this paper. Section numbers
relative to each methods are indicated in bold between brackets.

Comment 2.2 Some related papers are missing from this review. Two particular references re-

lated to persistence and therefore predictability: predictive oscillation patterns (Kooperberg and
O’Sullivan 1996), and a related paper: optimally interpolated patterns (Hannachi 2008), making
use of the power spectra (i.e. autocorrelation.) In global stationarity, third-order statistics based,
e.g. on bispectrum (Pires and Hannachi 2021) would complement the persistence description.
In relation to extremes and persistence archetypal analysis (Hannachi and Trendafilov 2017,
Chapman et al. 2022) also identifies ’quasi-stationary’ states or regimes.

Answer: Thank you for pointing out to us these additional papers, which we included in the
revision. We added a reference to Predictive Oscillation Patterns and Optimally Interpolated
Patterns in section 4.2.3., and a reference to archetypal analysis in section 4.2.1. We also
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mentioned the bicorrelation and bispectrum in the global stationarity section (4.1.1 and last
paragraph of 4.1.2).

Comment 2.3 Pg. 1, abstract: delete acronym S2S. It is abbreviated in section 1.

Answer: If the abstract needs to stand on its own, then the acronym should remain. So far
as we know, the rule is that if an acronym is used in the abstract, it must be defined in the
abstract, and then defined again the first time it is used in the main text.

Comment 2.4 Pg 3, l75: you mean Fig. 1c.

Answer: Thanks, corrected.

Comment 2.5 Pg7, l175: delete ’of’

Answer: Thanks, corrected.

Comment 2.6 Pg 13, eq (15): may be use 0 < |α| < 1 to include the case of anti-persistence.

Answer: Thanks, adopted.

Comment 2.7 l358: add the following reference on short timescale of precipitation (Hannachi

2014).

Answer: Reference added, thanks.

Comment 2.8 l367, 369: may be ’persistence’ is more convenient here than ’stationary’.

Answer: We changed to ”persistent”.

Comment 2.9 Pg 14, last paragraph 4.1.2: Fig.3 does not seem to have been mentioned.

Answer: We added the reference to Fig. 3 at l. 389 when mentioning the Fraedrich and Larnder
study.

Comment 2.10 Pg 15, l407: consider adding an earlier reference of Baur (1951) on Grosswet-

terlagen.

Answer: Reference added, thanks.

Comment 2.11 Pg18, l461: add ”by projecting simplified dynamics (eg quasi-geostrophy) onto

the leading modes of variability of the GCM simulation” after ”January conditions”.

Answer: We modified the sentence as follows: ”Haines and Hannachi (1995) and Hannachi
(1997) estimated quasi-stationary states over the North Pacific in the output from a global cli-
mate forced by perpetual January conditions, by projecting simplified dynamics (e.g., quasi-
geostrophy) onto the leading modes of variability of the GCM simulation.”
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Comment 2.12 Pg 20, eq (13): x is not specified, and I think there is some confusion in the

original reference (Faranda et al.) I think x represents the log of the distance between state at
time tx(t) and tx0 .

Answer: You are right (and there is indeed a confusion in the original reference). The distri-
bution is fitted to the distance values, and we modified the corresponding equation as follows:

P (d(x(t),x0) ≤ ϵ) ≃ exp

{
−θ(x0)

d(x(t),x0)− µ(x0)

σ(x0)

}
(1)

Comment 2.13 Pg 23, eq(21): my understanding is that α is a probability (P (x0) = P (xt+1 =

x0|xt = x0)), therefore eq(21) < 0, and also log(α) < 0, please clarify.

Answer: You are right, we made a mistake in this equation... We have

P (Rx0 ≥ n) = β × αn−1

and therefore

P (Rx0 = n) = P (Rx0 ≥ n)− P (Rx0 ≥ n+ 1) = βαn−1(1− α) > 0

The slope is indeed negative with respect to n since the probability of the residence time being
equal to n decreases with n.

Comment 2.14 Pg 31, l646: Ripley’s K function was considered in Stephenson et al. (2004),

and Hannachi (2010).

Answer: Thanks for pointing out these two references, we added the following sentence to the
section: ”Stephenson et al. (2004) and Hannachi (2010) also used Ripley’s K to characterise
the clustering of climate modes in the state space.”

Comment 2.15 Pg 31, l686: ” ... as the variance of successive event counts over an interval of

...”

Answer: We modified the sentence as follows: ”Similarly, the Allan Factor (AF) is defined as
the variance of successive event counts over an interval of length τ divided by twice the average
event count in τ steps”.

Comment 2.16 Pg 37, l791: full stop before ’Note’

Answer: Corrected, thanks.

Comment 2.17 l793: ’too’

Answer: Corrected, thanks.

Comment 2.18 l801: use ’measures’ instead of ’metrics’
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Answer: Corrected, thanks.

Comment 2.19 Fig. 15: are a, b, c 1-day apart?

Answer: Correct, we specified it in the caption (”Note that successive panels (a, b, c, and d, e,
f) are 1-day apart.”).

Comment 2.20 Section 5: I suggest renumbering/relabelling the subsections as:

5.1 Diagnostic methods
5.1.1 Window counts
5.1.2 Dispersion metrics
5.1.3 Ripley’s K function
5.1.4 Distribution of inter-event times

5.2 Stochastic modeling of recurrence
5.2.1 Events series
5.2.2 Recurrence plots

Answer: This is an excellent suggestion which we adopted in the revision.
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