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Abstract.

Precipitation nowcasting (forecasting locally for 0–6h) serves both public security and industries, facilitating the mitigation

of losses incurred due to e.g. flash floods, and is usually done by predicting weather radar echoes, which provides better

performance than NWP at that scale. Probabilistic nowcasts are especially useful as they provide a desirable framework for

operational decision-making. Many extrapolation-based statistical nowcasting methods exist, but they all suffer from a limited5

ability to capture the nonlinear growth and decay of precipitation, leading to a recent paradigm shift towards deep learning

methods ,
:::::
which

:::
are

:
more capable of representing these patterns.

Despite of its potential advantages, the application of deep learning in probabilistic nowcasting has only recently started

to be explored. Here we develop a novel probabilistic precipitation nowcasting method, based on Bayesian neural networks

with variational inference and the U-Net architecture, named DEUCE. The method estimates the total predictive uncertainty10

of precipitation by combining estimates of the epistemic (knowledge-related, reducible) and heteroscedastic aleatoric (data-

dependent, irreducible) uncertainties, and produces an ensemble of development scenarios for the following 60 minutes.

DEUCE is trained and verified using Finnish Meteorological Institute radar composites against established classical models.

Our model is found to produce both skillful and reliable probabilistic nowcasts based on various evaluation criteria. It improves

ROC Area Under the Curve scores 1–5% over STEPS and LINDA-P baselines, and comes close to the best-performer STEPS15

on a CRPS metric. The reliability of DEUCE is demonstrated with, e.g., having the lowest Expected Calibration Error at 20 and

25 dBZ reflectivity thresholds, and coming second at 35 dBZ. On the other hand, deterministic performance of ensemble means

is found to be worse than that of extrapolation and LINDA-D baselines. Lastly, the composition of the predictive uncertainty

is analysed and described, with the conclusion that aleatoric uncertainty is more significant and informative than epistemic

uncertainty in the DEUCE model.20
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1 Introduction

Predicting the amount and location of precipitation at local scales of a few kilometres for lead times ranging from minutes to

hours, i.e., precipitation nowcasting has recently grown into an important component of severe weather early warning systems,

particularly those focused on predicting flash floods. Because of the intensification coupled with increased frequency of ex-25

treme precipitation events brought by climate change, accurate estimates of future precipitation have increased in importance.

However, the capacity of any nowcasting model to produce accurate estimates is limited, and thus having additionally an idea

of the reliability of the nowcast is operationally important. This can be addressed with ensemble nowcasts, which generate a

set of possible scenarios, with which it is possible to estimate the probability of certain events.

Numerical Weather Prediction (NWP) is widely used for forecasts at longer timescales and with coarser grids (Bauer et al.,30

2015), with regional high-resolution models model generally having a grid resolution of a few kilometres and a refresh rate of

typically one hour. For example, the High Resolution Rapid Refresh (HRRR) model developed by the United States National

Oceanic and Atmospheric Administration (NOAA) has a grid resolution of 3km and a refresh rate of one hour (Alexander

et al., 2020). However, NWP does not achieve sufficient performance at the spatio-temporal scales typical of nowcasts, due

to not yet having achieved numerical stability in these first few hours, and due to the computational complexity of resolving35

atmospheric equations at sub-hour temporal resolutions and grid resolutions approaching the micro-scale (≤ 1km) (Sun et al.,

2014; Radhakrishnan and Chandrasekar, 2020). Specialized nowcasting methods for precipitation have been developed in

parallel of NWP and may be used in order to circumvent its problems in the domain. These mainly rely on forecasting the
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evolution of radar echo image sequences, that act as a good proxy for ground-level precipitation, and usually have a spatial

resolution of ∼ 1 km and a temporal resolution of ∼ 5 min, which are characteristic of weather radar observations.40

1.1 Extrapolation-based precipitation nowcasting

The most important class of precipitation nowcasting models is based on the extrapolation of radar echoes along the background

advection field. These models first estimate the advection field from a sequence of past radar images, with methods such as

Variational Echo Tracking (Laroche and Zawadzki, 1995) or optical flow-based methods like the Lucas-Kanade method (Lucas

and Kanade, 1981; Bouguet et al., 2001). In the classical case of the pure extrapolation nowcast, the most recently observed45

frame is simply extrapolated along the estimated advection field, often using a Semi-Lagrangian Scheme (Staniforth and Côté,

1991). Extrapolation nowcasting doesn’t model the growth and decay of precipitation, so many extensions attempting to make

up for that have been developed. One important method is Spectral Prognosis (S-PROG) by Seed (2003). S-PROG is based on

the scale-dependence of the lifetime and evolution of features, decomposing the field into additive components corresponding

to different spatial scales and evolving each of them separately using an autoregressive (AR2) model in Lagrangian (flow frame50

of reference) coordinates, enabling modeling the scale-dependent behavior of precipitation.

STEPS (Short-Term Ensemble Prediction System) by Bowler et al. (2006), is an influential ensemble nowcasting model

based on S-PROG. In STEPS, stochastic perturbations are added to the motion field in order to model its uncertainty. Just like

with S-PROG, the growth and decay of the precipitation field is modeled by decomposing it using a cascade of scales with the

autoregressive model applied to each of these scales separately in Lagrangian coordinates. Unlike in S-PROG, stochastic noise55

is injected at each scale, concurrently with the AR modeling. Over time, various models have expanded upon STEPS; one recent

example being LINDA (Lagrangian INtegro-Difference equation model with autoregression) (Pulkkinen et al., 2021), which

uses an integro-difference equation model with rain cell detection and convolutions for modeling the loss of predictability at

small scales. LINDA produces nowcasts particularly well-suited to the prediction of strong localized rainfall.

1.2 Deep Learning approaches to precipitation nowcasting60

With significant recent advances in deep learning, the interest in its use for precipitation nowcasting has increased. One of the

first deep learning model to have been used explicitly for precipitation nowcasting is the Convolutional LSTM (ConvLSTM)

model (Shi et al., 2015), which combines the temporal prediction capacity of the Long Short-Term Memory (LSTM) neural

networks with 3D convolutions modeling spatiotemporal features in one model for spatiotemporal nowcasting. ConvLSTM

has later been improved by the TrajGRU model (Shi et al., 2017), that replaces the heavy LSTM structure with a lighter GRU65

(Gated Recurrent Unit) structure and is capable of learning an active location variant structure for the recurrent connections.

Apart from doing the temporal modeling using recurrent units, a popular approach has been to use fully convolutional neural

networks, often two-dimensional, thus avoiding the modeling of explicit temporal dependencies. These networks have often

been based on U-Net-type architectures, one early example of which is the model by Agrawal et al. (2019), which predicts

the exceedance of rainfall over three distinct intensity thresholds for a one hour lead time. A more useful model is RainNet by70

Ayzel et al. (2020). RainNet nowcasts rainfall continuously one timestep at a time, inserting the predicted frames back into the
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network in order to make multiple lead time predictions. Similarly FureNET by Pan et al. (2021) nowcasts rainfall one hour at

a time using polarimetric input variables in addition to observed rain rates, via multiple encoder branches and late fusion in the

decoder of a residual U-Net architecture and brings improvement compared to using plain rain rates.

The principal problem of using discriminative
:::
the

:::::
above

:
deep learning models for deterministic precipitation nowcasting75

is that of the increasing blurring of nowcasts with increasing lead time. This is the natural consequence of attempting to

minimize the pixel-wise forecasting error in the presence of uncertainties inherent to the task of predicting precipitation. Such

loss functions thus behave in the same fashion as S-PROG and STEPS explicitly filtering out scales through their loss of

predictability. One way to resolve the problem is to use generative modeling, which is the one taken by Ravuri et al. (2021)

with their Deep Generative Model of Radar (DGMR). DGMR is an adversarially trained convGRU-based generative model,80

capable of generating realistic time series of future radar observations, that outperform both classical and deep learning baseline

models. In addition to deterministic nowcasts, DGMR is also capable of making ensemble-based probabilistic nowcasts.

Making probabilistic precipitation nowcasts using deep learning has been explored less than deterministic nowcasts, despite

of the clear benefit of the probabilistic approach in operational use. In addition to DGMR, other existing probabilistic models

are MetNet (Sønderby et al., 2020) and its successor MetNet-2 (Espeholt et al., 2022). MetNet aggregates weather radar,85

satellite, and orographic information over a large area to predict a probability distribution of rain rate per pixel in one forward

pass for a single lead time, with an architecture consisting of a spatial aggregator of inputs, a convLSTM spatial encoder, and a

spatial decoder with axial attention. The model is shown to outperform the HRRR NWP model on an F1 metric for lead times

up to 8 hours. MetNet-2 improves upon its predecessor by adding data assimilation context as an input and aggregating data

over a larger area. This enables it to outperform or at worst rival HRRR and HREF models in CRPS and CSI metrics for lead90

times up to 12 hours.

1.3 Uncertainty quantification and Bayesian deep learning

In addition to playing an important role in precipitation nowcasting, the importance of uncertainty quantification (UQ) has

also been recognized in deep learning (Abdar et al., 2021). In the field of machine learning, the uncertainty of predictions

can be divided into two separate components: epistemic and aleatoric uncertainty. Epistemic uncertainty represents the lack95

of knowledge in the model, and it is reducible through improving the model or bringing in more training data. Aleatoric

uncertainty on the other hand is inherent to the input data, and no amount of additional training data or model improvement

will reduce it. Aleatoric uncertainty that varies over the input data is said to be heteroscedastic; a constant uncertainty is called

homoscedastic.

Many approaches to the quantification of uncertainty have been developed on the deep learning side. One particularly100

important theme driving the development in this realm has been operational safety and countering overconfident predictions

made by black box models overfitting the training data. Bayesian neural networks (BNN) have emerged as a candidate for

addressing that issue. They work by placing probability distributions over the weights, which are estimated via the means of

Bayesian inference and yield a predictive distribution for data through their marginalization.
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Although exact Bayesian inference is intractable for large neural networks, suitable approximations exist. These are com-105

monly divided into Markov Chain Monte Carlo (MCMC) and variational inference (VI) based methods (Jospin et al., 2022).

MCMC methods predict better weight distributions but are more computationally expensive and thus often reserved for small-

scale problems, where performance is key. VI on the other hand is more scalable and has been applied to larger neural networks.

The idea behind variational inference is to approximate the true posterior of weights with a simpler analytic one (the variational

posterior), and to estimate the variational posterior which is the closest to the true one. Thanks to advances by Graves (2011)110

and subsequently Blundell et al. (2015) with the Bayes-By-Backprop (BBB) algorithm, it is now possible to use mini-batch

optimization for mean-field VI (i.e., assuming fully factorizable variational posteriors) on large networks, opening up possi-

bilities for the use of VI in problems such as precipitation nowcasting, that require large amounts of input data and numerous

model parameters.

Later, Monte Carlo Dropout (Gal and Ghahramani, 2016) techniques among other variants have been identified as being115

equivalent to approximate Bayesian inference, losing some model expressivity but gaining ease of implementation. Based on

this, Kendall and Gal (2017) have developed a technique for estimating the epistemic and heteroscedastic aleatoric variance

components separately in deep learning regression tasks. They estimate the epistemic uncertainty with the variance of predic-

tions made via Monte Carlo Dropout, and add a separate component to their network for predicting the aleatoric component.

The predictions are modeled as having Gaussian likelihoods, with means equal to the prediction point estimates and variances120

equal to the aleatoric term described. These terms are then learned by minimizing a Gaussian Negative Log likelihood loss

function taking them and observations as inputs. This approach has recently started to be applied to problems such as the seg-

mentation of satellite images (Dechesne et al., 2021), remaining useful life prognostics (Caceres et al., 2021), and long-term

synoptic scale precipitation forecasts (Xu et al., 2022).

1.4 Model idea and research questions125

We propose the Deep Ensemble-based Uncertainty Combining radar Echo nowcasting (DEUCE) model for probabilistic

precipitation nowcasting. The idea of the model is to apply the aleatoric and epistemic decomposition of uncertainty by Kendall

and Gal (2017) to a Bayesian Convolutional neural network with mean-field variational inference for producing ensemble

nowcasts of weather radar echo images, which represent the reflected power to the radar, often indicative of precipitation. The

research questions to which we will attempt to answer are the following:130

1. Can we produce both powerful and reliable ensemble precipitation nowcasts using Bayesian neural networks with un-

certainty decomposition? Specifically, is such a model competitive against classical baseline models when assessed with

a variety of quantitative probabilistic prediction skill metrics as well as based on a qualitative assessment?

2. What are the characteristics of the aleatoric/epistemic decomposition? We are interested in the evolution of uncertain-

ties with prediction lead time, and whether they capture different and complementary features of the total predictive135

uncertainty.

5



3. Can the model additionally be useful in producing deterministic precipitation nowcasts by means of averaging multiple

predictions, leveraging the regulatory effect of probability distributions placed on weights? Do such predictions perform

competitively when assessed against classical baseline models using quantitative verification metrics? Also, what can

those metrics tell about the nature of the predictions?140

2 Model description

DEUCE builds upon a U-Net-based convolutional neural network (CNN) model of deterministic precipitation nowcasting, and

turns it into a Bayesian neural network with variational inference for making the predictions stochastic, enabling us to model

the uncertainty of this U-Net model. As mentioned, we build upon the work of Kendall and Gal (2017) for quantifying the

uncertainty of the nowcasting task. Particularly, DEUCE attempts to decompose predictive uncertainty into aleatoric uncer-145

tainty (originating from data, irreducible) and epistemic uncertainty (induced by lacking knowledge, reducible) by predicting

reflectivity fields along with the aleatoric uncertainty associated with them explicitly. Epistemic uncertainty in turn is estimated

from the variance of the reflectivity fields sampled, and it is combined with aleatoric uncertainty at inference time in order to

yield an approximation of the total predictive uncertainty.

2.1 Functional model150

A neural network fθθθ(xxx) = ŷ̂ŷy is a universal function approximator, which can be used for regression tasks, mapping an in-

put quantity
:::::
tensor

:
xxx to an output value

:
a

::::::::
predicted

::::::
output

:::::
tensor

:
ŷ̂ŷy approximating the real value

:
a
:::::::::::
ground-truth

::::::
output

:::::
tensor

:
yyy using its

::::::
learned

::::::::
network parameters θθθ,

::::::::::
represented

:::
as

::
a

:::
list

::
of

:::::::
tensors. In the case of radar-based precipitation

nowcasting with neural networks, we approximate a function mapping the spatio-temporal time series of past radar obser-

vation images xxx= xxx1,xxx2, . . . ,xxxLin , where Lin corresponds to the number of input timesteps, to future radar observation images155

yyy = yyy1,yyy2, . . . ,yyyLout , where Lout corresponds to the number of input timesteps. In the DEUCE model, both xxx and yyy repre-

sent processed radar reflectivity data, and the network fθθθ(xxx) = ŷ̂ŷy,σσσ2 outputs a tuple of predicted reflectivity field time series

ŷ̂ŷy = ŷ̂ŷy1, ŷ̂ŷy2, . . . , ŷ̂ŷyLout along with fields estimating the aleatoric uncertainties σσσ2 = σσσ2
1,σσσ

2
2, . . . ,σσσ

2
Lout

corresponding to each of the

pixels of ŷ̂ŷy.

For the task of precipitation nowcasting, the neural network has to be capable of outputting predictions for multiple lead160

times, i.e., discrete time steps in the future, corresponding to future radar observations. DEUCE achieves this by using a variant

of U-Net as its functional architecture, taking in a sequence of 12 radar reflectivity fields xxx, predicting ŷ̂ŷy,σσσ2 corresponding to

the nowcast for the next 12 timesteps in a single forward pass.

A schematic representation of the the main components of DEUCE and how they are connected is presented in Fig. 1. The

architecture consists of a single encoder branch, extracting features from xxx at different spatial scales and semantic levels. The165

feature maps from these different scales are preserved for later use through skip-connections. The (largest scale) latent state

produced by the encoder, as well as intermediate feature maps mediated by skip-connections, are then fed to two independent

6



Figure 1. The DEUCE encoder and decoder architectural components depicted on the left, along with the architectural diagram making

use of those components on the right. Feature maps at different scales are extracted in the encoder branch, before being passed to decoder

branches, providing the outputs of the network.

decoders: one outputting ŷ̂ŷy and the other outputting logσσσ2
al. Using separate decoders for the outputs is preferable over a single

combined decoder to avoid the blending of adjacent features, which would be detrimental to the expressivity of the model.

The network contains two-dimensional (spatial) convolutions. These are represented by conv2d 3x3 and conv2d 1x1170

labels denoting layers with filter sizes 3 and 1, respectively. By using 2D convolutions, temporal dependencies are only present

implicitly. This approximation casts the nowcasting task as a simple image sequence-to-sequence translation problem, which

reduces the computational resources needed compared to explicit modeling of the temporal aspect. The convolutional layers

use partial convolutions (Liu et al., 2018), in which missing values are masked and only valid values are used to normalize

the convolutions. Although we do not work with missing data, this design choice helps in providing better quality predictions175

near image borders by reducing, e.g., various artifacts related to them. ReLU denotes the activation function of the same

name, concat concatenation along the channel dimension, upsample nearest-neighbor upsampling by a scale of 2, and

Max Pooling maximum pooling by a scale of 2.

2.2 Stochastic model

Conventional neural networks are deterministic in their nature, meaning that they only ever yield the same output ŷ̂ŷy for a given180

input xxx and parameters θθθ. Our goal is to produce a reliable estimate of the uncertainty associated with the approximation

produced by the neural network. Because this approximation is merely a function of the input data and the functional model

including parameters, considering the uncertainty of these sources separately should allow the approximation of the total

predictive uncertainty of nowcasts.

Hence, epistemic uncertainty is modeled by placing probability distributions on functional model parameters θθθ, effectively185

turning the model stochastic. A Bayesian approach is taken in this regard, placing a prior distribution upon the weights, and
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estimating the most likely posterior distribution given that prior and the training data. The estimation of the true posterior

is an intractable task for a large-scale neural network, which is why variational inference (VI) is used to learn approximate

posterior estimates for weights. VI limits the space of acceptable posterior distributions to a parameterized family, whose

learned parameters replace the point estimates of classical neural network weights. Here, we aim to minimize the Kullback-190

Leibler (KL) divergence (Kullback and Leibler, 1951)
::::
DKL between the true and variational posteriors, which is a measure of

the similarity between two probability distributions. As such, the objective is stated as

θθθ∗ = argmin
θθθ
DKL[q(www | θθθ)‖p(www | D)]= argmin

θθθ

∫
q(

::::::::::::

www|θθθ) log q(w
ww | θθθ)

p(www | D)
d

::::::::::::

www (1)

where θθθ denotes the variational posterior parameters, θθθ∗ the optimal parameters, www the sampled network weights, D = (xxx,yyy)

the problem data, q(www | θθθ) the variational posterior, and p(www | D) the exact posterior of network weights. In practice, this is not195

directly solvable, so the optimization is accomplished through the maximization of an evidence lower bound (ELBO) proxy

objective. The objective is defined as

ELBO(D,θθθ) =Eq(www|θθθ)[logp(www,D)]−Eq(www|θθθ)[logq(www | θθθ)] (2)

=

likelihood︷ ︸︸ ︷
Eq(www|θθθ)[logp(D |www)]+

prior︷ ︸︸ ︷
Eq(www|θθθ)[logp(www)]−

posterior︷ ︸︸ ︷
Eq(www|θθθ)[logq(www | θθθ)]︸ ︷︷ ︸

=−Eq(www|θθθ)DKL[q(www|θθθ)‖p(www)],i.e., the complexity term

, (3)

consisting of the log-likelihood, log-prior, and log-posteriors, with the last two terms commonly grouped together as the200

complexity term. Here Eq(www|θθθ) denotes the expected value of the probability density of interest over the variational posteriors.

According to Blundell et al. (2015), in Bayesian neural networks and using mini-batch optimization, the ELBO objective as

stated in Eq. 3 can be approximated as

ELBOπi (Di,θθθ)≈
1

N

N∑
n=1

(
logp(Di |wwwi,n)+πi logp(wwwi,n)−πi logq(wwwi,n | θθθ)

)
, (4)

which acts as an unbiased Monte Carlo estimator of the ELBO, and is our final loss function. Here, the cost is calculated205

for each i:th of the M mini-batches in an epoch, each time drawing N Monte Carlo samples of the variational posteriors of

weights. πi denotes an arbitrary weighting of the complexity term, using in this work the same rule as in Blundell et al. (2015),

which is πi = 2M−i/(2M − 1). This serves to make the regularization effect of the prior stronger earlier, allowing data to be

more important later in the training. In DEUCE, the variational posterior distributions q are modeled as diagonal Gaussian

distributions, and the Bayes-By-Backprop (BBB) algorithm using the re-parametrization trick by Blundell et al. (2015) is210

employed for their optimization. The prior distribution p(www) on the contrary is fixed as a hyperparameter, and is identically

as well as independently distributed for each parameter as a normal distribution with zero-mean and a variance of 0.1. This

allows us to potentially calculate the complexity cost in closed form (Hershey and Olsen, 2007), rather than with the Monte

Carlo estimate of Eq. 4, hence reducing the computational cost of training.
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The likelihood cost of Eq. 4, similarly to Kendall and Gal (2017), is modeled for the i:th mini-batch and the n:th Monte215

Carlo sample as the Gaussian log likelihood

logP (D |www) =− 1

P

P∑
p=1

1

2
e−sssp(yyyp− ŷ̂ŷyp)2 +

1

2
sssp, (5)

where the cost is averaged over p= 1 . . .P pixels of the Lout×W ×H spatio-temporal time series sss, yyy and ŷ̂ŷy; Lout refering

to the length of the time series, W to the width of the images, and H to the height of the images. i and n indices of fields

are omitted here for clarity. Here, yyy denotes the observed reflectivity fields, ŷ̂ŷy the predicted reflectivity fields using the n:th220

weights sampled from the network, and sss := logσσσ2 refers to the corresponding logarithm of the aleatoric variances predicted

by the network with those weights. The logarithm of the aleatoric variances estimate is taken because optimizing using it is

more computationally stable, and was found to work better than simply using variance constrained to be positive with a ReLU

output activation function, especially dealing with variances approaching zero.

2.3 Generation of ensemble nowcasts225

Figure 2. The prediction procedure for the primary outputs of the DEUCE model illustrated. Each sampled output is computed separately

with a forward pass through the network, yielding a time series of the predictions and the logarithmic aleatoric variances, which are converted

back to variances. After agglomeration into a pair of raw ’ensembles’, the prediction mean ŷ̂ŷymean, as well as the two types of uncertainties,

the epistemic variances σσσ2
ep and aleatoric variances σσσ2

al are computed from the pair. These three quantities are the ones used for producing the

final prediction ensemble.

The procedure for producing the primary outputs of DEUCE for making probabilistic nowcasts is presented in Fig. 2. First,

N raw network outputs are produced, which are stochastic pairs of reflectivity field sequences ŷ̂ŷyn and logarithmic aleatoric

variance field sequences σσσn. Each n:th of those sampled outputs draws different weights from the learned variational posterior

distributions, which is reflected in the output distribution. The σσσn are converted to their non-logarithmic version σσσ2
n, and
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individual stochastic runs are stacked into a pair of raw ’ensembles’ ŷ̂ŷy,σσσ2. At this point, the epistemic uncertainty is embedded230

in ŷ̂ŷy, but the aleatoric uncertainty is separate, only present in σσσ2
al. Hence, in order to allow for the combination of these

uncertainties, ŷ̂ŷy is divided into the prediction mean ŷ̂ŷymean and the epistemic variance σσσ2
ep by taking the mean and variance over

ŷ̂ŷy respectively. Additionally, the aleatoric variance σσσ2 is summarized by taking its mean, denoted σσσ2
al. These three outputs:

ŷ̂ŷymean, σσσ2
ep, and σσσ2

al form the base from which probabilistic nowcasts are computed.

The total mean and uncertainty of the prediction can thus be estimated as235

ŷ̂ŷymean =
1

N

N∑
n=1

ŷ̂ŷyn, σσσ2
pred ≈

σσσ2
ep︷ ︸︸ ︷

1

N

N∑
n=1

ŷ̂ŷy2n− (
1

N

N∑
n=1

ŷ̂ŷyn)
2+

σσσ2
al︷ ︸︸ ︷

1

N

N∑
n=1

σσσ2
n, (6)

where σσσ2
pred denotes the predictive variance. This means that the predictive variance can be estimated as the sum of the variance

of the predicted reflectivity fields, which is the epistemic variance, and of the mean of the predicted aleatoric variance fields.

These quantities are sufficient for making probabilistic nowcasts such as calculating exceedance probabilities for precipitation

intensity, as we
::::
future

:::::
radar

:::::::::
reflectivity

::::::
values,

::::::::
allowing

::
us

::
to model the predictive distribution of precipitation

:::
this

:::::::::
reflectivity240

as normally distributed with mean ŷ̂ŷymean and variance σσσ2
pred.

::::
This

::::::::::
formulation

::
is

:::::::::
admissible

::
as

:::::::::
reflectivity

:::
of

:::::::::::
precipitation

::
in

::::
dBZ

::::
units

::
is

::::::
known

::
to

::::
have

::
a
::::::
normal

::::::::::
distribution,

::::::
which

::::::
follows

:::::
from

:::
the

::::::::::
distribution

::
of

:::::::::::
precipitation

:::
rate

:::::
being

::::::::::
log-normal

::::::::::::::::::::
(Kedem and Chiu, 1987).

:

Nevertheless, some applications of probabilistic precipitation nowcasting — such as flood modeling — assume ensemble-

based nowcasts where each member of the ensemble represents a physically plausible precipitation scenario. One could of245

course randomly sample the predictive distribution to generate an ensemble, which would correctly approximate pixel-wise

statistics, but the spatio-temporal structure of the fields would be lost. In an attempt to remedy to this, we post-process outputs

to generate ensemble members respecting the spatial covariance structure of the input field xxx as

ŷ̂ŷyens
n = ŷ̂ŷymean +

√
σσσ2

pred⊗ εεεcorr,n, (7)

where ŷ̂ŷyens
n = ŷ̂ŷyens

n,1, ŷ̂ŷy
ens
n,2, . . . , ŷ̂ŷy

ens
n,Lout

denotes the newly generated ensemble member,⊗ an element-wise multiplication broadcast250

over Lout frames, and εεεcorr,n is a correlated Gaussian random field of shape W ×H . εεεcorr,n is generated to match the average

spatial correlation structure of xxx using Fast Fourier Transform (FFT) filtering. The structure is obtained non-parametrically

from the power spectrum of xxx (Seed et al., 2013). The technique is equivalent to that used to generate perturbation fields in

STEPS (Pulkkinen et al., 2019). Even though this method accounts for the spatial structure of the precipitation time series, it is

not capable of modeling its temporal structure, which is assumed constant. The ensembles produced this way shall be denoted255

ŷ̂ŷyens, in contrast to the raw predicted reflectivity fields denoted ŷ̂ŷy.
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Figure 3. The Finnish Meteorological Institute radar network with its 11 radars and the bounding box used. Each radar is described by its

three-letter code, with their 120km coverage radii for snowfall in gray and the intersection of 250km coverage radii for rainfall as the black

outline. An example radar composite crop from a precipitation event (15 August 2019 at 15:00:00 UTC) is visualized in the zoom onto the

bounding box in the right.

3 Experimental details

This section presents the experiments performed. First, in Sect. 3.1, we present the dataset used, followed by the details related

to the training of DEUCE in Sect. 3.2, and the verification experiments in Sect. 3.3. Additional technical details can on the

other hand be found in Sect. A.260

3.1 Data

The dataset used for this work comes from the Finnish Meteorological Institute radar network. It consists of cropped lowest-

altitude radar reflectivity composites, chosen from rainy days during the summer period of years 2019–2021. The dataset is

identical to that used by Ritvanen et al. (2023), only using longer time series. The composites are built from the two lowest

elevation angle scans, interpolated into an 1x1 km Cartesian grid. The chosen area covers southern Finland, with the bottom265

left corner at coordinates (59.01◦N, 20.55◦E) and the top right corner at coordinates (63.62◦N, 30.27◦E). The spatial extent of

this crop is 512x512 km, corresponding to 512x512 pixel square images, suitable for training a neural network. The composites

are available with a temporal resolution of five minutes. The extent of the bounding box is additionally illustrated in Figure

:::
Fig.

:
3 along with the coverage of Finnish Meteorological Institute radars. From this, we see that the advantage of the crop is

that it has a higher density radar cover than its surroundings.270

The data was selected on a day-by-day basis, selecting the 100 days with the most pixels having reflectivity values over

35 dBZ. The days were then divided into six hour long blocks, from which blocks with less than one percent of pixels with
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reflectivity values over 20 dBZ were removed. These remaining blocks were then randomly split into training, validation, and

verification datasets with a ratio of 6:1:1. The division into blocks was done in order to limit the number of successive time

series present in different splits, as they exhibit high correlation, and not using any blocks would make the training, validation,275

and verification sets dependent as the same events would be present in all of them. Six hours was deemed a sufficient time

for temporal correlations to mostly disappear. Lastly, two-hour long time series, corresponding to 24 images each, were then

extracted from these blocks using a sliding window principle, with a stride of one, omitting those time series with missing data.

The final training, validation, and verification datasets ended up containing 10780, 1813, and 1666 time series respectively.

The input time series were read from HDF5 files, stored there with an 8-bit scale-offset lossy compression scheme, ranging280

from -32 to 96 dBZ at a resolution of 0.5 dBZ. The images were then converted to floating point values and a threshold of 8 dBZ

was applied, replacing values below the threshold with -10 dBZ. This served as a simple way to remove non-meteorological

targets and other clutter that could interfere with the training and prediction, while maintaining most of the relevant precipitation

echoes. Finally, the reflectivity values were normalized between zero and one. Computed predictions were converted back into

reflectivity values by applying the inverse of the transformation, before saving them using the same scheme as with the input285

data.
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Figure 4.
::::::
Finnish

:::::::::::
Meteorological

:::::::
Institute

::::::::
composite

:::
crop

::::::
dataset

:::::::::
distribution

::
of

::::::::
reflectivity.

:::
The

::::::::
threshold

:::::
chosen

:::::
below

:::::
which

:::
the

:::
data

::
is

::
set

::
to

:::
-10

::::
dBZ

::
is

:::::
shown

::::
with

:
a
:::::
dashed

::::
line.

::::::::::
Additionally,

::
a

:::::::
Gaussian

::::
PDF

::
fit

::
on

:::
the

:::
data

:::::
above

:::
20

:::
dBZ

::
is
:::::
shown

::
in
::::

red,
:::::
which

:::::
serves

::
to

::::::
illustrate

:::
the

:::::::
Gaussian

:::::::::
distribution

::
of

:::::::::
precipitation

::::::::
reflectivity.

:::
The

::::::
dataset

:::::::::
reflectivity

::::::::::
distribution

::
is

:::::::
depicted

:::
in

:::
Fig.

::
4,
:::::

with
:::
the

:::
-32

::::
dBZ

::::::::
minimum

:::::
value

::::::
pixels

:::
left

:::
out

::
of

:::
the

:::::::::
histogram

::
for

::::::
clarity.

::::
The

::::::::
threshold

::
is

::::::
shown

::
to

:::::
divide

:::
the

::::
data

::::
into

:::::::
retained

::::
and

::::::::
discarded

:::::
parts,

:::
and

::
a
::::::::
Gaussian

::::::
density

::
is

:::::
fitted

::
to

:::
the

:::
part

::::
most

::::::
likely

::
to

:::::
purely

::::::
consist

::
of

:::::::::::
precipitation,

:::::::::
exceeding

:::
20

::::
dBZ.

::::::
Below

:::
the

::::::::
threshold,

:::::
there

:::::
seems

::
to

::
be

::::::::
multiple

:::::
peaks

::
in

::::::
density,

:::::
likely

::::::::
involving

:::::::
insects,

:::::
birds,

::::::::::::
miscellaneous

::::::
clutter

::
as

::::
well

::
as

:::::::::
increasing

:::::
noise

:::
the

:::::
lower

:::
we

:::
go

::
on

:::
the

:::::
scale.

::::::
While290

::
the

:::::::
highest

:::::::::
reflectivity

::::::
density

::::::
values

:::::
seems

::
to

:::::
follow

::::
well

:::
the

::::::::
Gaussian

:::
fit,

:::
part

::
of

:::
the

:::::::
density

:::::::
between

::
10

:::
and

:::
20

::::
dBZ

:::::::
remains

::::::::::
unexplained,

::::
and

:::
this

:::::
range

::
is
:::::
likely

::
to
:::::::

contain
:
a
:::::::
mixture

::
of

:::::::::::
precipitation

::::
and

::::::
clutter.

::::
Still,

::::
this

::
is

:::
not

:
a
:::::
major

:::::
issue

:::::
since

:::
the

::::
most

:::::::::
interesting

::::::::::
precipitation

::
to
:::::::
predict

::::::::::
corresponds

::
to

:::::::::
reflectivity

:::::
values

::::
well

::::::
above

::
20

:::::
dBZ.
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3.2 Training

For the training of the network, the Adam optimizer (Kingma and Ba, 2015) was used with an initial learning rate of 1e-4 and295

other parameters set to their PyTorch default values. The network was trained with that learning rate for 20 epochs, after which

the learning rate was lowered to 1e-5 for 8 more epochs, and finally further lowered to 1e-6 for one final epoch. A validation

epoch was carried out after each epoch, in which Equivalent Threat Score (ETS) (Hogan et al., 2010) metrics were calculated

for converted precipitation estimates (Sect. A1) of predictions, and summed over thresholds of 0.5, 1.0, 5.0, 10.0, 20.0, and

30.0 mmh−1 as well as each lead time. This validation score showed improvement over the whole training process.300

The training procedure for DEUCE is presented in Fig. 5 for a single epoch. Both input sequence lengths Lin as well as

output sequence lengths Lout were 12, corresponding to one hour each. Both for the training and validation epochs, the batch

size was set to two and the number of produced Monte Carlo samples of posteriors N to two as well, which was the most that

our GPU could fit during training. In order to increase the variance between the gradients of mini-batch members, Flipout re-

parametrization (Wen et al., 2018) was applied to the sampled weights, multiplying the random sampling coefficient of weights305

with a random sign matrix, effectively adding randomness inside batches for a low computational cost. The closed-form of the

KL divergence between two Gaussian distributions was used for the calculations of the ELBO complexity term instead of

Monte Carlo estimates in the final model training.

                                

2020-06-30 00:05:00
2020-06-30 00:10:00
2020-06-30 00:15:00

Figure 5. A training epoch for DEUCE illustrated. One loop corresponds to a single training sequence, which can be substituted for a single

training mini-batch, taking multiple sequences in one batch. The DEUCE prediction process refers to that illustrated in Fig. 2, without the

post-processing. The blue box labeled DKL(q‖p) corresponds to the complexity term of the negative ELBO loss (to minimize), πi to its

weighting coefficient, and the red box labeled − logp(Di |www) to the likelihood term of the negative ELBO loss. Monte Carlo estimates of

the complexity term use sampled weightswwwi, whereas the closed-form expression that we use is a function of parameters θθθ.

The input time series Xi was pre-processed first as described in Section 3.1, and in the case of training data, was then

augmented by applying in succession a random horizontal flip, a random vertical flip, and a rotation by an angle randomly310
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chosen between 0, 90, 180, and 270 degrees. This was done to improve the variety of the training dataset and consequently

improve the generalization performance of the trained network.

3.3 Verification

The performance of the DEUCE model is verified against the pySTEPS (Pulkkinen et al., 2019) implementation of multiple

extrapolation-based precipitation methods. The verification is divided into the qualitative inspection of ensembles produced in315

a case study
:::
two

::::
case

::::::
studies, into an analysis of DEUCE uncertainty composition, into the verification of the (probabilistic)

performance of the whole ensemble, and the verification of the (deterministic) performance of the ensemble mean, i.e., its

fidelity in representing the true variation of the radar images. The four types of verification performed, along with the relevant

DEUCE product, the baseline models used, and the evaluation criteria are summarized in Table 1.

DEUCE product Baseline models (Sect. A2) Evaluation criteria

Case study
::::::
studies (Sect. 3.3.1) ŷ̂ŷyens STEPS, LINDA-P Ensemble mean/STD, exceedance probabilities

Uncertainty composition (Sect. 3.3.2) ŷ̂ŷy,σσσ2 - case decomposed mean/STD & statistics

Probabilistic perf. (Sect. 3.3.3) ŷ̂ŷyens STEPS, LINDA-P CRPS, Reliability diagram, ROC AUC, Rank hist.

Deterministic perf. (Sect. 3.3.4) ŷ̂ŷymean Extrapolation, LINDA-D ME, ETS, RAPSD

Table 1. The four components of the verification process for DEUCE summarized.

In probabilistic verification experiments, N = 48 ensemble members are used both for producing the raw outputs ŷ̂ŷy,σσσ2320

and for drawing the post-processed ensemble ŷ̂ŷyens, as well as for making the baseline ensemble model predictions. All of the

predictions made for the verification of DEUCE are made until 60 minute lead time and thresholded at 8 dBZ, serving as an

estimate for minimum observable precipitation. Four precipitation thresholds are considered where the verification involves

evaluating the quality of a prediction exceeding a particular reflectivity value. Converted using the Z-R relationship presented

in Sect. A1, these are 20 dBZ (≈ 0.5 mmh−1), 25 dBZ (≈ 1.3 mmh−1), 35 dBZ (≈ 5.7 mmh−1), and 45 dBZ (≈ 25.5 mmh−1),325

which correspond to very light, light, moderate, and heavy rain respectively.

3.3.1 Case study
::::::
studies

A challenging rainfall event is chosen as a case study
::::
Two

::::::
distinct

:::::::
rainfall

::::::
events

:::
are

::::::
chosen

:::
as

::::
case

::::::
studies

:
to provide a

qualitative assessment, as well as a comparison, of DEUCE nowcasts against the baseline probabilistic methods. The case

study focuses
::::::
studies

::::
each

:::::
focus

:
on an ensemble nowcast at a particular timestep during the precipitation event, chosen such330

as to include both large-scale weaker precipitation, characteristic of stratiform rainfall, and
:
or

:
localized heavy precipitation,

characteristic of convective rainfall. The latter has a shorter lifetime and has been traditionally harder to predict, but it is of

interest to observe the performance of the model with both types. In addition, we choose a case allowing us to observe instances

of both weakening and
::::::
include

::::
both

::::::::
instances

::
of

:::::::::
weakening

::::
and

::
of

:
intensification of echoes . The case is

:
in

:::
the

::::
case

:::::::
studies.
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:::
The

:::::
cases

:::
are

:
chosen from radar composite crops with the area described in Sect. 3.1 over the

:::::::::
verification

:::::
split,

::
as

::::
well

:::
as335

::
the

:
summer of the year 2022, which is separate from the dataset used for training, validation, and quantitative verification.

The timestamp of the chosen case is the 9 July
:::
first

::::
case

::::::
chosen

::
is

::::
July

::
9 2022 at 15:00:00 UTC.

:::
This

::::
case

::::::::
contains

::::::
mostly

::::::::
convective

:::::::
rainfall,

::::
with

:::::
some

::::::::
localized

::::
high

::::
rain

:::::
rates.

::::
The

::::::
second

::::
case

::::::
chosen

::
is

::::::
August

:::
17

::::
2021

::
at
::::::::

16:50:00
:::::
UTC,

::::::
which

::::::::
represents

::
a

::::
very

:::::::
different

:::::::
scenario

::::
with

:::::
large

:::::
scale,

::::::
mostly

::::::::
stratiform

:::::::
rainfall.

:
The radar images of the hour leading at 15:00

UTC
:::

upto
:::
the

:::::::::::
timestamps are used as inputs and the following hour is

:::
one

::::
hour

:::
of

::::
radar

::::::
images

:::
are

:
predicted.340

Three different visualizations of the case
::::
cases

:
are made at 5, 15, 30, and 60 minute lead times, using the post-processed

DEUCE ensembles ŷ̂ŷyens, and the probabilistic baseline models STEPS and LINDA-P described in Sect. A2 when appropriate.

The first visualization is that of predictive means and standard deviations of the ensembles in dBZ units. Here, DEUCE, STEPS,

and LINDA-P are compared side-by-side. The second visualization is that of exceedance probabilities of DEUCE, STEPS, and

LINDA-P ensemble nowcasts at a 25 dBZ reflectivity threshold. The third and last of the visualizations depicts the exceedance345

probability of DEUCE in predicting reflectivity above 20, 25, 35, and 45 dBZ thresholds.

3.3.2 Uncertainty composition analysis

The composition of the DEUCE predictive uncertainty is analyzed both using the prediction of the
:::
first

:
case study, and using

statistics aggregated over the verification dataset. For the case study prediction, the aleatoric and epistemic components of

the predictive standard deviation are visualized next to the combined predictive uncertainty, the mean predictions, and the350

observations, at lead times of 5, 15, 30, and 60 minutes. The statistics collected are average magnitude of the aleatoric and

epistemic standard deviation components under different conditions. These magnitudes are divided into bins corresponding to

the prediction lead time and the observed reflectivity matching the pixel in question (5 dBZ bin width from 5 to 60 dBZ), and

are collected for each prediction timestamp. The resulting statistics are visualized in the form of a histogram aggregated over

the whole dataset, and as bar plots showing the contribution of the uncertainties against lead time and observed reflectivity.355

3.3.3 Probabilistic performance verification

Probabilistic verification serves to assess the probabilistic predictive power of DEUCE ensembles, mostly in terms of prediction

reliability and discrimination ability. In other words, it determines the quality and the variety of produced ensembles with regard

to the true distribution of different future scenarios. Here, the DEUCE prediction is represented by the post-processed ensemble

ŷ̂ŷyens. Probabilistic baseline models used are STEPS (Bowler et al., 2006; Seed et al., 2013) and LINDA-P (Pulkkinen et al.,360

2021). The description and configuration of those models are given in Sect. A2.

The probabilistic performance metrics used are the Continuous Ranked Probability score (CRPS) (Hersbach, 2000; Wilks,

2011), which generalizes the Mean Absolute Error of deterministic forecasts to probability distributions, and is calculated

for lead times until 60 minutes. Next, the Receiver Operating Characteristic (ROC) curve (Mason, 1982; Wilks, 2011) along

with the area under it (AUC) quantify the discriminative power of the ensembles for predicting reflectivity values exceeding a365

certain threshold. ROC AUC is computed for reflectivity thresholds of 20, 25, 35, and 45 dBZ at lead times of 5, 15, 30, and 60

minutes. For measuring forecast reliability and sharpness, we used the reliability diagram along with its sharpness histogram
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(Wilks, 2011) as well as the Expected Calibration Error (ECE) score (Naeini et al., 2015), which we all computed for the

same threshold and lead times as ROC curves. Finally, rank histograms (Wilks, 2011) were calculated for measuring the bias

and spread of ensembles at lead times of 5, 15, 30, and 60 minutes. A detailed description of these metrics along with the370

configurations used is found in Sect. A3.

3.3.4 Deterministic performance verification

Deterministic verification serves to assess whether DEUCE ensemble means are useful themselves. It also gives insight into

many interesting aspects of predictions, such as systematic biases and the possible loss of small-scale variability. Here, the

DEUCE prediction is represented by the ensemble mean ŷ̂ŷymean. Deterministic baselines used are an extrapolation nowcast and375

LINDA-D (Pulkkinen et al., 2021). The description and configuration of those models is again described in Sect. A2.

Three deterministic metrics are used to assess DEUCE ensemble means. The first is the Mean Error (ME) (Wilks, 2011),

measuring the bias of nowcasts produced. The Equitable Threat Score (ETS) (Hogan et al., 2010; Wilks, 2011) then provides

an estimate of the deterministic skill in forecasting precipitation
::::::::
reflectivity

:
above a certain intensity threshold. It is calculated

for lead times up to 60 minutes and thresholds of 20, 25, 35, and 45 dBZ. Finally, the Radially-Averaged Power Spectral380

Density (RAPSD) (Ruzanski and Chandrasekar, 2011; Ulichney, 1988) measures how well the power spectrum of precipitation

:::::::::
reflectivity is maintained. It is summarized with a relative MAE score. We compute RAPSD for prediction lead times of 5, 15,

30, and 60 minutes. RAPSD is also calculated for individual ŷ̂ŷyens members to analyse the possible contribution of the spatially

correlated noise to maintaining the power spectrum. A detailed description of these metrics along with the configurations used

is found in Sect. A4.385

4 Results

The results of the quantitative and qualitative analyses of model performance and fitness to the task indicate that DEUCE

succeeds in its primary task of providing reasonably reliable probabilistic precipitation nowcasts, but not in that of producing

skillful deterministic nowcasts. This is illustrated by the summary of quantitative verification results is provided in Table

2. These results will then be elaborated in detail and presented as figures in the following four subsections. Starting by the390

qualitative case study results in Sect. 4.1, we then present the composition of the uncertainty in Sect. 4.2, before continuing

with the probabilistic performance metric results in Sect. 4.3, and finally presenting the deterministic performance metric

results in Sect. 4.4.

4.1 Case Study
::::::
Studies

The results of the
:::
first

:
case study in Fig. 6, 7, and 8 suggest that DEUCE ensemble nowcasts are able to give reasonable395

uncertainty and exceedence
::::::::::
exceedance probability estimates at multiple thresholds and lead times, and that DEUCE nowcasts

look similar to those given by STEPS, albeit being less grainy.
:::
The

::::::
results

::
of

:::
the

::::::
second

::::
case

:::::
study

::::
are

::::::
detailed

:::
in

::::
Sect.

:::
B.

Figure C1 shows an example of what individual ensemble members look like at different prediction lead times
::
for

:::
the

::::
first
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Probabilistic models Deterministic models
DEUCE (ours) STEPS LINDA-P DEUCE mean (ours) Extrapolation LINDA-D

CRPS ↓ 1.29 1.27 1.43 AME ↓ 1.31 (-) 0.35 (-) 0.53 (+)

ECE 20 (×103) ↓ 6.88 9.45 13.36 ETS 20 ↑ 0.442 0.435 0.454

ECE 25 (×103) ↓ 5.36 6.64 8.44 ETS 25 ↑ 0.299 0.341 0.371

ECE 35 (×103) ↓ 1.97 1.13 2.04 ETS 35 ↑ 0.047 0.134 0.162

ECE 45 (×104) ↓ - - - ETS 45 ↑ 0.006 0.049 0.056

ROC AUC 20 ↑ 0.968 0.957 0.943 RAPSD rel. MAE 5 ↓ 0.55 0.08 0.39

ROC AUC 25 ↑ 0.960 0.938 0.926 RAPSD rel. MAE 15 ↓ 0.74 0.08 0.52

ROC AUC 35 ↑ 0.885 0.784 0.840 RAPSD rel. MAE 30 ↓ 0.84 0.07 0.58

ROC AUC 45 ↑ 0.706 0.610 0.689 RAPSD rel. MAE 60 ↓ 0.90 0.11 0.65

Table 2. Quantitative verification metrics summarized. ↑ indicates that a higher score is better, while ↓ indicates that a lower score is better.

The best score amongst models is marked using a bold font. ECE scores indicate the Expected Calibration Error, an aggregate measure of

reliability. AME stands for Absolute Mean Error and RAPSD rel. MAE score summary values indicate the relative Mean Absolute Error

between the PSD of observation and predictions. For AME, the sign of the mean error is reported in parentheses. Scores are averaged over

lead times for which they were calculated, except for RAPSD rel. MAE scores, in which they are averaged over frequencies. Numerical

values in ECE, ROC AUC, and ETS score names indicate dBZ threshold values, and in RAPSD lead time in minutes. ECE 45 results are

omitted because results are not comparable for cause of missing data in some of the bins of the DEUCE reliability diagrams.

:::
case. The predictions all start quite similar, but they eventually diverge, driven by the increasing predictive uncertainty and

different patterns of correlated noise. The ensemble members exhibit variety while preserving a moderate amount of realism,400

nevertheless limited by the increasing smoothing of the predictive mean and variance fields with lead time.

4.1.1 Ensemble mean and breadth

Ensemble mean and breadth as units of standard deviation is shown in Figure
:::
for

:::
the

:::
first

::::
case

::
in
::::

Fig.
:
6. Here, we can see in

all models a trend towards
:
a loss of predicted reflectivity intensity and

:
a disappearance of heavily localized echoes. However,

these are in all models compensated by an increase in the spatial extent and the magnitude of the ensemble standard deviation.405

In LINDA-P, the effect of predicting in rain rate units (mmh−1) is seen as the uncertainty of cell borders emphasized. LINDA-P

also generally exhibits smaller and more uniform standard deviation than the other models. For a one hour lead time, DEUCE

seems to have a generally an ensemble breadth a bit smaller than STEPS but higher than LINDA-P, with the most heterogeneity

in standard deviation values.

4.1.2 Reflectivity exceedance probabilities410

Reflectivity probabilities of exceeding 25 dBZ for the case predicted by the different models
::
for

:::
the

::::
first

::::
case are shown in Fig.

7. Overall, DEUCE seems to provide balanced exceedance probabilities, not missing any significant areas even after one hour,
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Observations y DEUCE ymean DEUCE pred STEPS ymean STEPS pred LINDA-P ymean LINDA-P pred
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Figure 6. Ensemble
::
The

::::
first

:::
case

::::
study

::::::::
ensemble means and breadths of DEUCE compared against STEPS and LINDA-P model predictions

and observations for multiple lead times. The area covers southern Finland, starting at 15:00:00 UTC on the 9 July 2022. The rows represent

lead time and columns different instances of observations, model mean and standard deviations. Missing values are indicated by a dark gray

color.

but not covering excessively large areas. Comparatively, STEPS tends to completely miss some significant portions such as in

the area highlighted in the south-west of Finland at one hour, and generally seems to predict eventually smaller probabilities for

the evolution of smaller cells. LINDA-P on the other hand suffers from overconfidence and misplaces the evolution of multiple415

precipitation areas after one hour. On a general level for all models compared, the advection field is well captured, while the

growth and decay of echoes is often not very effectively forecast. The anisotropic structure of the uncertainty shown through

exceedance probabilities is also much better captured by DEUCE and LINDA-P than STEPS. In addition, because it is not

based on the extrapolation of radar echoes, there are no "dead zones" filled with NaN values (dark gray color) and DEUCE

is able to provide nowcasts to varying success in border regions where STEPS and LINDA-P predictions are not necessarily420

defined.

Lastly, The exceedance probabilities of DEUCE nowcasts for 15, 25, 35, and 45 dBZ reflectivity thresholds for the present

:::
first

:
case are shown in Fig. 8. We can see that DEUCE is able to nowcast an exceedance probability at all thresholds (which are

indeed all exceeded at some place and point in the observations). Higher thresholds exhibit lower values and some misplace-

ment of exceedance probabilities, as precipitation exceeding those are more difficult to predict and have smaller areas.425
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Figure 7. Reflectivity
:::
The

:::
first

::::
case

::::
study

:::::::::
reflectivity exceedance probabilities of 25 dBZ for DEUCE against STEPS and LINDA-P model

predictions and observations for multiple lead times. The area covers southern Finland, starting at 15:00:00 UTC on 9 July 2022. The rows

represent lead time. In the leftmost column, actual threshold-exceeding precipitation is
:::::
echoes

:::
are shown in colors, with non-exceeding

precipitation
::::

echoes
:
additionally shown faintly in light gray in the background. In other columns, threshold exceeding precipitation is

:::::
echoes

::
are

:
again shown overlayed with exceedance probabilities of models in shades of red. Missing values are indicated by a dark gray color. The

circles labeled 1 highlight a case of DEUCE model improvement over baselines.

4.2 Analysis of the aleatoric and epistemic uncertainty dichotomy

The relative contribution of aleatoric and epistemic uncertainty for the case outlined previously
:::
first

::::
case

:::::
study is presented in

Fig. 9. We can see that most of the predictive uncertainty in fact comes from the aleatoric part. Epistemic uncertainty is of much

smaller magnitude, and its contribution is further reduced when working in terms of variance in the calculation of predictive

uncertainty. We can see that epistemic uncertainty does not extend as much away from the core of predicted reflectivity as430

aleatoric uncertainty, which reflects a small variance in the raw ŷ̂ŷy ensemble.

A more detailed view into the contribution of aleatoric and epistemic components is provided in Fig. 10, with statistics over

the whole verification dataset. A histogram of the uncertainties aggregated over all lead times and observed reflectivity values

is shown on the left of Fig. 10. Epistemic uncertainty has a very narrow distribution mostly between 0–5 dBZ, which means

that its average value could not have varied much in different cases, lead times, and observed reflectivity values, pointing to435

small model uncertainty response to these factors. Aleatoric uncertainty on the other hand has a long-tail distribution, centered
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Figure 8. Reflectivity
:::
The

:::
first

::::
case

::::
study

:::::::::
reflectivity exceedance probabilities of DEUCE against observations for multiple lead times and

precipitation intensity
::::::::
reflectivity thresholds. The area covers southern Finland, starting at 15:00:00 UTC on 9 July 2022. The rows represent

lead time. The leftmost column is observations, and the rest are exceedance probabilities at different thresholds. As in Fig. 7, observations

exceeding the threshold in question are plotted in shades of gray, overlayed with probabilities in shades of red.

around 10 dBZ, but going up until values over 30 dBZ, which keeps open the possibility for
:::::
means

::::
that

:::
we

::::::
cannot

::::::
exclude

:
a

dependence on these external factors.

The suspicions
::::
Such

:::::::::::
dependencies

:
are confirmed when inspecting the bar plots on the right of of Fig. 10, where mean

aleatoric uncertainty shows a clear dependence on prediction lead time and to some degree on observed reflectivity. Aleatoric440

uncertainty seems to clearly increase with lead time and to first slightly decrease, before increasing again in relation to observed

reflectivity. One possible explanation to
::
for

:
this last observation is that reflectivity values below 20 dBZ often correspond to

the edges of precipitation cells, which are difficult to predict, and that reflectivity values over 35 dBZ often correspond to

heavy precipitation with short lifetime and thus bad predictability. In between those, there is more predictable precipitation

patterns, such as the interior of stratiform precipitation cells. Epistemic uncertainty on the other hand does not seem to show445

any particular dependence on prediction lead time, which might have to do with the fact that the model predicts all lead times

at once, making it possibly more difficult for the predictions to vary depending on lead time. There is on the other hand some

very
:
a slight increase of epistemic uncertainty with observed reflectivity, which might be an accurate reflection of the relatively

smaller amount of training data available for high observed reflectivity values.
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Figure 9. Composition of the predictive uncertainty for the
:::
first

:
case study. The area covers southern Finland, starting at 15:00:00 UTC on

9 July 2022. The rows represent lead time and columns observations (ground truth), the mean prediction, aleatoric and epistemic standard

deviation components, and the combined predictive standard deviation.

4.3 Probabilistic skill verification450

The reliability diagrams and sharpness histograms for probabilistic nowcasts are depicted in Fig. 11. It can first be noted that

in general, DEUCE nowcasts are very close to the dashed black line indicating a perfectly reliable forecast. Sometimes, this is

to a similar degree as baseline models, but in some cases, such as a long lead time and a high threshold, DEUCE is closer to

the diagonal than baselines. This is however not reflected in the ECE scores at 35 dBZ, shown in Table 2, as smaller forecast

probabilities are weighted much higher due to their sample count here, making STEPS the most reliable model at 35 dBZ455

by this metric. An important pattern is that compared to baseline models, DEUCE is prone to slight under-forecasting of the

exceedance probabilities. This is particularly the case for a short lead time (5 min), where the effect is the most pronounced.

As lead times grow longer and thresholds get higher, nowcasting gets harder and there is an overall tendency in all models, but

particularly LINDA-P, to over-forecast threshold exceedance.

From the sharpness histogram, it is seen that the distribution of forecast probabilities is more or less uniform at low thresh-460

olds, but more biased towards small exceedance probabilities at higher thresholds. These higher thresholds are where the

difference between DEUCE and baselines are visible, there being a considerably lower number of cases of high forecast prob-

ability in DEUCE than in baselines.
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Figure 10. Visualization of the statistics on the composition of predictive uncertainty over the verification dataset. On the left, a histogram

of aleatoric and epistemic standard deviation (SD) aggregated over all lead times and observed reflectivity values is shown. On the right, we

arrange the same data into bar plots to show the relationship of the type of the uncertainty SD with prediction lead time (top) and observed

ground truth radar reflectivity (bottom).

The rank histogram of nowcasts is shown in Figure
:::
Fig.

:
12. It is apparent here that DEUCE is constantly slightly biased

towards predicting too low reflectivity values, and that the spread is large at short lead times, but less significant later on.465

STEPS exhibits a very balanced flat histogram, but LINDA on the other hand has a U-shaped histogram, characteristic of a too

small ensemble breadth in general.

The results for the ROC area under the curve probabilistic nowcast metric are shown in Fig. 13. In this benchmark DEUCE

achieves the best results at all thresholds. We can notice that STEPS has good discriminative power at low thresholds but that it

does not scale well to higher ones, and that LINDA-P is not competitive at lower thresholds but excels as the threshold grows.470

Nevertheless, DEUCE manages to perform better than both in their skillful areas.

Lastly, the CRPS verification metric is depicted in Fig. 14. It can be seen that the lowest and best score is achieved by STEPS

at all lead times. DEUCE comes then second, slightly above STEPS, and LINDA-P lags far behind. Overall with CRPS, it can

be seen that DEUCE achieves adequate results in the order of baseline models.

From the quantitative probabilistic verification, it can be summarized that DEUCE achieves satisfactory and well-rounded475

performance. The model does not significantly lack in any category in particular, and offers a good trade-off between forecast

reliability and discriminatory power.
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Figure 11. The reliability diagrams and sharpness histograms for DEUCE (yellow), STEPS (blue), and LINDA-P (red) model nowcasts at

exceedance probability thresholds of 20, 25, 35, and 45 dBZ at lead times of 5, 15, 30, and 60 minutes. Rows indicate lead time and columns

the exceedance probability threshold. The diagonal dashed black lines indicate perfect reliability.
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Figure 12. Rank histograms of ensemble nowcasts, including DEUCE, STEPS, and LINDA-P, at lead times of 5, 15, 30, and 60 minutes

over the verification set.
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Figure 13. The ROC Area under the Curve (AUC) values at lead times until 60 minutes for DEUCE (yellow), STEPS (blue), and LINDA-P

(red) model nowcasts at exceedance probability thresholds of 20, 25, 35, and 45 dBZ.
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Figure 14. The CRPS score of DEUCE (yellow) against the ensemble baselines STEPS (blue) and LINDA-P (red) is shown on the left.

The Mean Error (ME) score for non-augmented ensemble mean predictions of DEUCE (yellow) against deterministic baseline extrapolation

(green) and LINDA-D (red) nowcasts is shown on the right.

4.4 Deterministic skill verification

Here, we analyse the results of the comparison of the deterministic nowcast skill between DEUCE non-augmented mean

predictions ŷ̂ŷymean and baseline predictions. First off, a depiction of the mean nowcasting error (ME) until a 60 minute lead time480

is presented in Fig. 14. While extrapolation nowcasts have on average a ME slightly below zero, DEUCE is more strongly

negatively biased, while LINDA-D is strongly positively biased.

Further, the equivalent threat score (ETS) results for precipitation
::::::::
reflectivity

:
thresholds of 20, 25, and 35 dBZ are shown in

Fig. 15. The ETS score of DEUCE is competitive for the 20 dBZ threshold, but at 25 dBZ its progression at lead times longer

than 30 minutes is already worse than baselines. At 35 and 45 dBZ, DEUCE already performs worse than baselines at any lead485

time examined. The reason for this weakness is the compound effect of intrinsic CNN prediction smoothing and the averaging

of ensemble members. This smoothing effect is also visible in the Radially-averaged power spectral density (RAPSD) results

for nowcasts, presented in Fig. 16. Average RAPSD is computed for nowcasts at lead times of 5, 15, 30, and 60 minutes. It can

clearly be seen that compared to baselines, the fields predicted by DEUCE lose more power at small spatial scales, and that

this effect is heavily amplified at longer lead times, which again illustrates the above compound effect. However, this effect490
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Figure 15. Equivalent Threat Scores (ETS) as a function of lead time for non-augmented DEUCE ensemble means (yellow) compared

against those of extrapolation (green) and LINDA-D (red) deterministic baseline models for reflectivity thresholds of 20, 25, 35, and 45 dBZ

at lead times until 60 minutes. DEUCE ensemble means perform competitively for predicting precipitation over
::::::::
reflectivity

:::::::
exceeding

:
20

dBZ, but see their relative performance drop at higher reflectivity thresholds.

seems to be damped by augmenting the mean prediction with uncertainty-weighted correlated noise following the structure of

the input field, especially at longer lead times.
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Figure 16. Radially averaged power spectral density (RAPSD) for non-augmented DEUCE ensemble means (yellow solid), individual

augmented DEUCE ensemble members (yellow dashed) compared against those of extrapolation (green) and LINDA-D (red) deterministic

baseline models at lead times of 5, 15, 30, and 60 minutes. The observation RAPSD is shown as a black dashed line.

5 Discussion

DEUCE probabilistic ensemble nowcasts proved to be both relatively reliable and skillful compared to STEPS and LINDA.

Nevertheless when analysing the reliability diagram, it is apparent that DEUCE is under-confident especially at short lead495

times. Further inspection of rank histograms (Fig. 12)— showing the distribution of the rank of observations among ensemble

members— indicated that this under-confidence is expressed by 1) a too large ensemble spread, and 2) a slight bias towards

ensembles producing too weak estimates, as was also visible in the ensemble mean Mean Error score. The too large ensemble

spread may be a byproduct of attempting to predict the ensemble mean and aleatoric variances all at once, with the prior placed
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on weights placing a limit on the complexity of the model, in effect privileging the learning of longer lead times where the500

average errors are of bigger magnitude.

We can also observe that most of the uncertainty is of aleatoric nature, and that the contribution of epistemic variance is

universally low. In addition to having trained with a large amount of data, low epistemic variance is probably related to the

variational inference mechanism, as the combination of Bayes-By-Backprop and Flipout reparametrization have been shown

to yield too small epistemic uncertainty estimates by Valdenegro-Toro and Mori (2022), when compared to MC Dropout,505

Deep Ensembles, and Markov Chain Monte Carlo. Another factor that might have played a role in this is again predicting all

lead times at once, because adopting the iterative approach of RainNet (Ayzel et al., 2020) would have propagated previous

epistemic uncertainties to subsequent lead times, possibly balancing out the contributions, also allowing making predictions

for an arbitrary number of timesteps. On the other hand, abandoning the recursive prediction scheme of RainNet significantly

reduces the time complexity of computing ŷ̂ŷy,σσσ2 from O(NL) to O(N) where N is the sample size and L is the number of510

prediction lead times.

Contrary to the preliminary iteration of the model focusing only on modeling epistemic uncertainty (Harnist, 2022), the

current model better captures the increased spread of the predictive distribution with lead time through the aleatoric component.

An alternative model — without a separate decoder branch for σσσ2 and only allocating a separate output channel to it — was

not successful because the ŷ̂ŷy and σσσ2 that it learned were highly correlated, more blurry, and lacked expressivity. It is for this515

reason that the two-branch version was adopted.

In DEUCE, small-scale variability is steadily lost with increasing lead time. This is a problem for the production of realistic

nowcasts, as loss of small-scale variability is synonymous to loss of information. However, it
::::::
limiting

:::
the

::::::::::
expressivity

:::
of

:::
the

::::::
model.

:::::::::
However,

:::
the

:::::::::
smoothing

::
of

::::
radar

::::::
image

:::::::::
predictions

:
can be justified in the case of a probabilistic model, assuming that

the variety
::::::
breadth

:
of the ensemble is preserved despite of the loss of high frequencies. In

::::
This

::
is

:::::::
because

::::::::::
information

::::
will520

::::::::
invariably

:::
be

:::
lost

::::
with

::::
time

:::
as

:::
we

::::::
attempt

:::
to

::::::
predict

:::
the

::::::::
evolution

::
of

::
a
::::::
chaotic

:::::::
system

::::::
through

:::::::::
imperfect

::::::::::::
measurements.

:::
In

::
the

:::::::
present

::::
case

::
of DEUCE, the predictive distribution is modeled explicitly,

:::::
giving

::
us

:::
the

::::::
ability

::
to

::::::::
arbitrarily

::::::
sample

:::::
from

::
it,

so this loss
::
of

:::::::::::::
high-frequency

::::::::::
components

:
is not a major problem for us. In

:::::
issue.

:::
For

:
the preliminary version of the DEUCE

model (Harnist, 2022) however, this loss
:::::
losing

:::::::::
small-scale

::::::
details

:
had adverse effectsas .

::::
This

::::
was

:::::::
because

:
the model was

trained with homoscedastic (fixed as a hyperparameter) aleatoric uncertainty modeling,
:
which was not taken into account when525

making predictions, resulting in a too small ensemble spread . Hence, despite the retention of small-scale variation not being

completely necessary, better conservation of those components may help retain expressivity in a deep learning nowcasting

model, as has been seen through the success of generative modeling, showcased by the DGMR results of Ravuri et al. (2021).

Although limited, the
::
of

::::::
smooth

::::::::::
predictions

::::::
leading

::
to

:::::
vastly

:::::::::::::
underestimated

::::::::::
exceedance

:::::::::::
probabilities.

:::
The

:
spatially correlated

noise scheme for sampling the predictive uncertainty may help integrate DEUCE into applications where physically plausible530

ensemble members are necessary. Still, the lack of temporal correlation modeling inside of post-processed ensemble members

and the smoothing of the predictive means and variances themselves limit realism, pointing to the limits of the taken approach.

:::
One

::::::::
grounded

:::::::
method

:::
for

::::::::
resolving

:::
this

::::::::
problem

::
is

::
to

:::::
either

::::::::
implicitly

:::
or

::::::::
explicitly

::::::::
constrain

:::
the

:::::::::
predictions

::
to

::::::::
replicate

:::
the

:::::
power

::::::::
spectrum

::
of

:::::::::::
observations.

:::::::::
Generative

::::::
models

::::
such

:::
as

:::::
GANs

:::
fall

::::
into

:::
the

:::::::
category

::
of

:::::::
implicit

:::::::::::
constraining.

:::
For

::::::::
example,
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::
the

:::::::
DGMR

::::::
model

::
by

:::::::::::::::::
(Ravuri et al., 2021)

:::::
learns

::
to

::::::
model

:::::::
realistic

:::::
spatial

::::
and

::::::::
temporal

::::::::::
correlations

::
by

:::::::::::
adversarially

:::::::
training535

::
the

::::::::
generator

:::::
with

:::
two

::::::::::::
discriminators

::::::::
designed

::
to

::::::
discern

:::::
those

::::::
aspects.

:

:::
We

:::
see

:::
that

:::
the

:::::
issues

:::
of

::::::::::::::
underforecasting

::
at

::::
short

::::
lead

:::::
times

:::
and

:::::::
lacking

::::
small

:::::
scale

:::::::::
variability

::::
could

:::
be

:::::
linked

::::
and

::::::
related

::
to

:::
the

:::::
model

:::::::
training

::::::
settling

:::
to

::::::::::::::
underperforming

::::
local

:::::::
optima.

:::::::
Avenues

::
to

:::::::
mitigate

::::
this

::::::
include

::::::
longer

:::::::
training

:::
and

::::::::
different

::::::
training

:::::::::
strategies,

:::::
using

:
a
::::::
bigger

:::
and

::::
more

::::::
varied

::::::
dataset,

::::::::
adapting

:::
the

:::
loss

::::::::
function,

:::
and

:::::::::
improving

:::
the

::::::
model

:::::
itself.

:::::::
DEUCE

:::
was

::::::
trained

::::
with

:::::
only

::
29

:::::::
epochs,

::::::
which

::
is

:
a
::::::::
relatively

:::::
small

:::::::
number.

::::
We

::::::::
attempted

::
to
:::::

train
:::
for

:
a
::::::
higher

:::::::
number

::
of

:::::::
epochs,540

:::
but

:::
this

::::
did

:::
not

:::::
result

::
in
:::::::::

consistent
::::::::::::
improvement

::
in

::::::
model

::::::::
validation

:::::::::::
performance

:::::::
metrics.

:::::::::
However,

::::
this

:::::::
behavior

::::::
might

::::
have

::::
been

::::::
related

:::
to

:::
our

::::::
choice

::
of

::::::::
learning

:::
rate

::::::::::
scheduling.

::::
On

:::
the

:::::
other

:::::
hand,

::
it

:::::
might

::::
also

:::
be

:::::::::
worthwhile

:::
to

::::::
attempt

:::
to

:::::::::
implement

:
a
:::::::::
curriculum

::::::::
learning

::::::
strategy

::::::
where

:::::
easier

::
to

:::::
learn,

::::::
earlier

::::
lead

:::::
times

:::::
would

:::
be

::::::
learned

::::
first,

::::::
before

::::::::
allowing

:::
the

:::::::
network

::
to

:::::
learn

::
to

::::::
predict

::::::
longer

::::
lead

::::::
times.

::::
The

::::::
dataset

::::
size

:::::
itself

::::
may

::
be

:::::::::
increased

::
by

::::::::
covering

::
a
::::::
variety

::
of

:::::::::
bounding

:::::
boxes

::
in

:::
the

::::::::
composite

:::::
area,

:::
and

:::
by

::::::::
including

::::::::::
precipitation

::::::
events

::::
from

:::::::
outside

:::
the

:::::::
summer

::::::
period.

:::
The

:::::::::
likelihood

::::
part

::
of

:::
the545

:::
loss

:::::::
function

::::
may

:::
be

:::::::
adapted

::::
such

::::
that

:::::
higher

::::::
weight

::
is
:::::
given

::
to
::::::
higher

:::::::::
reflectivity

::::::
pixels.

:::
We

:::::::::::
nevertheless

:::::
found

:::
this

::::::
tricky

::
to

:::
get

:::::
right,

::
as

:::::::::::
experiments

:::
that

:::
we

:::::::::
performed

:::::
with

::::::::
weighting

:::::::::::
proportional

::
to

:::
the

:::::::
inverse

::
of

:::
the

:::::::
density

::
of

:::
the

::::::::::
reflectivity

::
in

:::
the

::::::
dataset

::::::::::
distribution

:::::
failed

::
to
::::::::

produce
:::::::::
reasonable

::::::::
nowcasts.

:::::
From

:::
the

::::::::::
perspective

:::
of

:::
the

::::::
model,

::::::::::::::
underforecasting

::::
and

:::
lack

:::
of

:::::::::
small-scale

::::::
details

:::::
could

:::
be

:::::::
reduced

:::
by

::::::::
including

::::::
spatial

:::
and

:::::::
channel

:::::::::
(temporal

:::
for

:::
us)

:::::::
attention

:::::::::::
mechanisms,

:::::
such

::
as

:::
the

::::::::::::
Convolutional

:::::
Block

::::::::
Attention

:::::::
Module

:::::::
(CBAM)

:::::::::::::::
(Woo et al., 2018)

:
,
:::::
which

:::
has

:::::
been

::::::
applied

::
to

:::::::
improve

:::::::::::::
(deterministic)550

::::::::::
precipitation

::::::::::
nowcasting

::::::::::
performance

::::::::::::::::::
(Trebing et al., 2021).

::::::
CBAM

:::::
might

::::::
enable,

::::
e.g.,

:::::::
sharper

:::::::
forecasts

::::
with

::::::
smaller

::::::::
aleatoric

::::::::::
uncertainties

::
at

:::::
short

:::
lead

::::::
times,

::::::
without

::::::::
affecting

:::
the

::::::::
reliability

::
at

::::::
longer

::::
lead

:::::
times.

With regard to the model development in general, some amount of hyper-parameter optimization was performed. Those

hyper-parameters related to the functional model as well as the optimizer are mainly inherited from RainNet (Ayzel et al.,

2020), and those related to variational inference mostly originate from the preliminary version of the model (Harnist, 2022).555

There, the VI related parameters specifically demanded non-trivial tuning for model converge and acceptable result production,

which might limit the immediate applicability of the model in its default state. Also, the local optimality of the current hyper-

parameters is not assured. Despite of this, VI and epistemic uncertainty are not decisive factors in the model performance,

and swapping out those components is a potential way forward. Moreover, 60 minutes (12 frames) of input data and the same

length for predictions was picked without optimization in an attempt to preserve some symmetry between the network inputs560

and outputs. Although there is yet no consensus on how many frames are needed, as little as four input frames have be enough

to saturate model performance in some conditions (Ravuri et al., 2021), so tuning the ratio of input to output frames could be

a viable thing to try.

Regarding the verification process, it is a pertinent question to ask whether the used baseline models were sufficient to vali-

date the performance of DEUCE. Particularly, the lack of deep learning ensemble baselines is one weakness of the performed565

verification. It would have been particularly interesting to use the Deep Generative Model of Radar (DGMR) by Ravuri et al.

(2021) as a baseline, as it represents the current state-of-the-art in deep learning based precipitation nowcasting, and is capa-

ble of producing ensemble nowcasts. Unfortunately, we were not able to successfully train DGMR on our dataset using the

resources that we had allocated for the task. Other models of interest that were not included in the verification are MetNet

27



by Sønderby et al. (2020) and its successor MetNet-2 by Espeholt et al. (2022), which use, e.g., orographic and satellite data570

in addition to radar data. We hope that further work will make possible the comparison of DEUCE probabilistic nowcasting

performance to other deep learning based models.

One last point of concern is in the validity of the verification metrics used. The potential issues here mostly relate to the

summarizing quantitative metrics of Table 2. Firstly, the relative RAPSD MAE metric for measuring power-spectrum fidelity

of predictions uses a tighter sampling of points towards wavelengths representing small spatial scales, which biases it to give a575

higher weight to those scales. Although we are indeed mostly interested in small-scale variations, this property means that even

big discrepancies in the power of large spatial scales will be under-represented. Next, the ECE metric used to summarize the

reliability of ensemble models is very sensitive to variations in the order of magnitude of the number of samples per bin. This

behaviour is significant especially at higher exceedance thresholds, where almost all prediction probabilities are concentrated

in the smallest probability bin, giving almost no weight to even mildly successful nowcasting of rare but significant events580

of high heavy precipitation probability. This means that ECE doesn’t necessarily provide a complete assessment of model

reliability in the context of probabilistic precipitation nowcasting.

6 Conclusions

We developed a probabilistic precipitation nowcasting model named DEUCE, based on a Bayesian neural network with varia-

tional inference, and featuring the combination of epistemic and aleatoric uncertainty estimates in an attempt to yield reliable585

yet powerful probabilistic predictions. The model succeeded at this primary task, performing competitively against the baseline

STEPS and LINDA-P models, judged both using qualitative and quantitative evaluation.

It was found that DEUCE had issues with the representation of epistemic uncertainty, leading to most of the uncertainty

ending up appearing as aleatoric uncertainty, maybe due to the variational inference used. The aleatoric uncertainty exhibited a

clear dependence on lead time and corresponding observed reflectivity, which are factors heavily influencing the predictability.590

The epistemic uncertainty on the other hand showed little dependence on these factors, with the exception of a slight increase

with observed reflectivity, which might reflect the distribution of the training data. Based on this, aleatoric and epistemic

uncertainties do indeed seem to capture complementary features of the predictive uncertainty. Finally, the ensemble means

were found to perform worse compared to extrapolation and LINDA-D baselines, showing that the model in its current state is

not useful in the deterministic case due to the excessive smoothing of predictions.595

Looking into future research directions, DEUCE has a number of different facets upon which its performance could be

improved. First, the underlying U-Net could potentially be replaced by an more powerful architecture capable of modeling ex-

plicit temporal dependencies. The spatio-temporal extent could be enlarged, and additional orographic, polarimetric, or satellite

input channels could improve parts of the nowcasts. It is possible to additionally try to leverage other patterns for increasing

predictability, such as operating in Lagrangian coordinates as shown by Ritvanen et al. (2023), for increasing prediction perfor-600

mance. From a probabilistic aspect, certain alternative inference methods, such as Radial Bayesian Neural Networks (Farquhar

et al., 2020) or Deep Ensembles look promising as a potential way to ease the training and improve the representation of epis-
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temic uncertainty.
:::
We

:::::
could

::::
also

::::
think

:::
of

::::::
directly

:::::::::
appending

:::
the

::::::::::::::
post-processing

::::::::
sampling

:::::
with

:::::::
spatially

:::::::::
correlated

:::::
noise

::
to

::
the

::::::
neural

::::::::
network,

::
or

::::
even

:::::::
learning

:::::::::::::::
context-dependent

:::::::::::::
spatiotemporal

:::::::::
correlation

:::::::::
structures.

:::
The

:::::::
sampled

:::::::
outputs

:::::
could

::::
then

::
be,

::::
e.g.,

:::
fed

::
to

::
a
::::::::
GAN-like

:::::::::::
discriminator

:::::::
module,

::::::
which

:::::
would

:::::
drive

:::
the

::::::::
processed

::::::
outputs

::
to
:::
be

::::
more

:::::::
realistic

:::::
while

::::::::
retaining605

::
the

::::::::::
uncertainty

:::::::::::::
decomposition.

Regardless of its shortcomings, DEUCE is a first step in ensemble-based probabilistic precipitation nowcasting using

Bayesian neural networks. The concurrent modeling of aleatoric and epistemic uncertainties has the potential to be useful

for operational forecasters, and the model in its current state forms a strong yet relatively lightweight baseline for future

developments in deep learning based probabilistic precipitation nowcasting.610

Code and data availability. The data used for the production of the results is available online (Harnist et al., 2023) at https://doi.org/10.

23728/fmi-b2share.3efcfc9080fe4871bd756c45373e7c11. This data includes the input data used for the training of DEUCE, prediction

generation, and observations for the verification. Pre-trained model checkpoints, the script used to gather neural network inputs into an

HDF5 file, as well as computed metric data are also included.

The source code with instructions for the reproduction of results is available online (Harnist, 2023) at https://doi.org/10.5281/zenodo.615

7961954 and on Github at https://github.com/fmidev/deuce-nowcasting. This code is used for the training and nowcast generation of DEUCE,

the production of baseline nowcasts, the computation of metrics, and the creation of figures presenting these metrics.

Appendix A: Additional technical details

A1 Ground precipitation estimates from reflectivity

The formula R= (10z/10/223)1/1.53 was used in cases where an estimate of ground precipitation corresponding to lowest620

level radar reflectivity composites was needed. Here R denotes precipitation estimates in mmh−1 units, and z denotes radar

reflectivity in dBZ units. The parameters of the Z–R relationship employed in the formula come from the work of Leinonen et al.

(2012) and aim to estimate the amount of rainfall corresponding to radar reflectivity measurements from Finnish Meteorological

Institute polarimetric C-band radars in Finland.

A2 Baseline models625

There are two deterministic baseline models: a simple extrapolation nowcast and the deterministic variant of LINDA (LINDA-

D). The extrapolation nowcast extrapolates the last input reflectivity field along a motion field calculated from the last four

elements of the input time series. In the extrapolation nowcast and all other baseline methods, we use the dense Lucas-Kanade

optical flow method with its default pySTEPS parameters for the computation of the motion field. In addition, all baseline

nowcasting methods use the semi-Lagrangian integration scheme from pySTEPS for performing the extrapolation, with cubic630

interpolation and other parameters left to their default values.
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LINDA, being a more advanced extrapolation-based method capable of predicting high-intensity rainfall more accurately,

serves as a natural benchmark both in the deterministic and probabilistic cases, for the ability of the model to capture convective

rainfall evolution. LINDA predictions are made using reflectivity fields converted to rain rate using the method described in

Sect. A1, as it is required for the model to work. The LINDA models here use the last three input rain rate fields as input in635

addition to the motion field. They do not use feature detection in order to reduce the prediction computation time over the

verification set to more practical durations. The ensemble-producing version of LINDA: LINDA-P is used as a probabilistic

baseline model. While LINDA-D deterministic nowcasts do not add any perturbations, LINDA-P does add them, as well as

BPS velocity perturbations with lucaskanade/fmi+mch parameters (Pulkkinen et al., 2019). Other parameters are set to

be data specific or to their default values.640

The STEPS model is used in addition to LINDA-P as a probabilistic baseline. While being a bit older and having lower

discriminative power, it is a popular method for making reliable probabilistic precipitation nowcasts to this day. STEPS is

applied to dBZ reflectivity fields, also taking in the last three input images in addition to the motion field. Field perturbations

as well as motion field perturbations are applied with the same parameters as with LINDA-P. Six cascade levels are used for

the cascade decomposition, and the precipitation threshold of 8 dBZ is given as the lowest observable precipitation intensity.645

A3 Details on probabilistic verification metrics

A3.1 Continuous Ranked Probability Score (CRPS)

The CRPS generalizes the Mean Absolute Error to probability distributions by calculating the sum of the difference between

the cumulative density function (CDF) of the nowcast and the empirical CDF of observations. It is defined as

CRPS(F,y) =

∞∫
−∞

(F (ŷ)−1(y ≥ ŷ))2dŷ, (A1)650

where ŷ denote possible forecast values, F (ŷ) the forecast CDF, and 1(y ≥ ŷ)) the empirical CDF of observations y.

A3.2 Receiver Operating Characteristic (ROC) curve

The Receiver Operating Characteristic (ROC) curve (Mason, 1982; Wilks, 2011) quantifies the discriminative power of an

ensemble for predicting over a certain threshold, by keeping track of the False Alarm Rate (FAR), i.e.,

FAR =
FP

FP+TN
, (A2)655

where the rate of false positives is indicated by FP, and the rate of true negatives is indicated by TN, against the the Probability

of Detection (POD), i.e.,

POD =
TP

TP+FN
, (A3)

where TP is the rate of true positives and FN is the rate of false negatives. POD is regularly binned, and FAR is averaged over

those bins, making a curve, the area under which (AUC, Area Under the Curve) summarizes the overall discriminative power660
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of the nowcasting method. An ROC AUC of 0.5 indicates zero skill, whereas a value of 1.0 indicates a perfect forecast. For

ROC curve computations, we use 10 bins.

A3.3 Reliability diagram

The reliability diagram (Wilks, 2011) measures the reliability of the forecast by presenting the observed relative frequencies of

dBZ threshold exceedance events against the forecast probability of those events. Having these two values strongly correlate665

makes the forecast reliable. Reliability diagrams are built by dividing the forecast probabilities into bins (we choose 10),

and incrementing them with associated binary indicators of whether the event happened. Sharpness histograms represent the

number of events recorded in each forecast probability bin. They measure the relative "decisiveness" of the forecast, where a

high decisiveness is associated with a convex histogram shape. A low decisiveness on the other hand can be discerned from a

more uniform, or in the extreme case, a concave histogram shape.670

A3.4 Expected Calibration Error (ECE)

The Expected Calibration Error (ECE) (Naeini et al., 2015) quantitatively summarizes the reliability of a model indicated by a

reliability diagram. It is defined as

ECE =
1

N

B∑
b=1

nb | fb− ob |, (A4)

with a total of N pairs of forecast probability and observation, forecast probabilities divided into B bins, with nb observations675

per bin, fb mean bin forecast probability, and ob corresponding observation frequency in the bin. ECE corresponds to the MAE

of the reliability diagram to the diagonal, weighted by the number of observations per bin.

A3.5 Rank histogram

Rank histograms (Wilks, 2011) measure the bias and spread of ensemble nowcasts. They present a histogram of the rank of the

true observed echo reflectivity among all ensemble members, where a convex histogram indicates a small spread and a concave680

histogram indicates a small spread. On the other hand, a skew towards the left indicates a positive bias of predictions, and a

skew towards the right indicates a negative bias.

A4 Details on deterministic verification metrics

A4.1 Mean Error (ME)

The mean Error (ME) (Wilks, 2011) measures the bias of deterministic predictions. It is defined as685

ME=
1

P

P∑
p=1

yyyp− ŷ̂ŷyp. (A5)
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for images or time series of them with P pixels. This metric tells us about the mean bias of nowcasts produced. The absolute

value of ME is used to give a quantitative summary of the bias of predictions made.

A4.2 Equitable Threat Score (ETS)

The Equitable Threat Score (ETS) (Hogan et al., 2010; Wilks, 2011) is an extension of the Threat Score, also known as the690

critical success index (Schaefer, 1990). ETS aims to provide an estimate of deterministic skill in forecasting precipitation above

a certain intensity threshold. This extension takes into account the effect of randomly occurring true positives. ETS is defined

as

ETS =
TP− rnd

TP+FN+FP− rnd
,

where rnd =
(TP+FN)(TP+FP)
TP+FN+FP+TN

, (A6)

where the rnd term estimates the influence of random true positives.695

A4.3 Radially-Averaged Power Spectrum Density (RAPSD)

The Radially-Averaged Power Spectrum Density (RAPSD) (Ruzanski and Chandrasekar, 2011; Ulichney, 1988) measures how

well the power spectrum of precipitation is maintained, when calculated for nowcasts at different lead times. RAPSD fidelity

is summarized as

RAPSD rel. MAE =
1

F

F∑
f=1

| P obs
f −P

pred
f |

P obs
f

(A7)700

which is the absolute error between the observed and predicted PSD, relative to observed PSD, averaged over frequencies.

Here, F denotes the number of frequencies of the power spectrum, P obs
f the power of the observed field at the f :th frequency,

and P pred
f the power of the predicted field at the f :th frequency. Taking the relative values allows comparing spectral densities

on multiple scales. In the present case, PSD frequencies are sampled linearly, weighting corresponding wavelengths towards

smaller scales, effectively biasing small-scale errors to be more important. This is however not necessarily a problem, as705

prediction fidelity at small scales is the most important question we seek to answer with RAPSD.

A5 Hardware and software packages used

The DEUCE model was built on PyTorch (version 1.12.1). PyTorch Lightning (version 1.7.7) was used to organize the

neural network training and prediction workflow, and the TyXe library (version 0.0.1) was used to turn DEUCE Bayesian,

making use of the Pyro (version 1.4.0) probabilistic programming language as its back-end for variational inference. The710

DEUCE training and prediction were performed using the Finnish IT Center for Science (CSC) supercomputer Puhti, using

one NVIDIA V100 GPU with 32GB of VRAM, 64GB of RAM, and 10 cores from a 2.1 GHz Intel Xeon Gold 6230 CPU.

For the evaluation of the model performance, we used the pySTEPS library (version 1.6.1). It served to produce baseline

extrapolation-based model nowcasts, to calculate verification metrics, and to help with their visualization. The pySTEPS-based
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verification pipeline was run on a computational server of the Finnish Meteorological Institute, equipped with two Intel Xeon715

Gold 6138 2.0 GHz CPUs with each 20 cores and two threads by core, as well as with 192GB of RAM.

Appendix B:
::::::
Results

::
of

:::
the

:::::::
second

::::
case

:::::
study

:::
The

::::::
results

:::
of

:::
the

::::::
second

::::
case

:::::
study

:::::
show

::
a
::::::
similar

::::::::
behavior

::
as

:::::
with

:::
the

::::
first

::::
case

:::::
study

::::::
(Sect.

::::
4.1),

:::
but

::::::::
generally

::::::
lower

:::::::::
uncertainty

::::::
values,

:::::::::
especially

::
on

:::
the

:::::
inside

::
of

:::
the

:::::
areas

:::::::::
containing

:::::::::::
precipitation.

:

B1
:::::::::
Ensemble

:::::
mean

::::
and

:::::::
breadth720

::::::::
Ensemble

:::::
mean

:::
and

::::::
breadth

::
as

:::::
units

::
of

:::::::
standard

::::::::
deviation

::
is

:::::
shown

:::
for

:::
the

::::::
second

::::
case

::
in

:::
Fig.

:::
B1.

:::::
Here,

:::
we

:::::::
observe

:
a
::::::::
generally

::::::
similar

::::
trend

::
as

::::
with

:::
the

::::
first

::::
case

:::::
(Sect.

::::
4.1),

::::
with

:::
the

:::::::::
difference

::::
that

:::
the

::::::::
ensemble

::::::
breadth

::
of

:::::::
STEPS

::
is

::::
only

:::::
higher

::::
than

::::
that

::
of

:::::::
DEUCE

:::::::
towards

:::
the

:::::
center

:::
of

:::
the

::::::
rainfall

:::::
areas,

:::
as

:
it
:::::
tends

::
to

:::
be

::::::
similar

::
at

:::
the

::::::::
outskirts

::
of

:::::
those

:::::
larger

:::::
areas.

:::::::
Among

:::
the

:::::::
different

:::::::
models,

::
we

::::
can

:::
also

::::
here

:::::::
observe

:::
the

::::
most

::::::::::::
heterogeneity

:::
and

:::::::::
anisotropy

::
in

:::
the

:::::::::
predictive

:::::::::
distribution

::
of

::::::::
DEUCE.

:
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Figure B1.
::

The
::::::
second

:::
case

:::::
study

:::::::
ensemble

:::::
means

:::
and

:::::::
breadths

:
of
:::::::

DEUCE
:::::::
compared

::::::
against

::::::
STEPS

:::
and

:::::::
LINDA-P

:::::
model

:::::::::
predictions

:::
and

:::::::::
observations

:::
for

::::::
multiple

::::
lead

:::::
times.

:::
The

::::
area

:::::
covers

:::::::
southern

::::::
Finland,

::::::
starting

::
at

:::::::
16:50:00

::::
UTC

::
on

::::::
August

:::
17

::::
2021.

::::
The

::::
rows

:::::::
represent

:::
lead

::::
time

:::
and

::::::
columns

:::::::
different

:::::::
instances

::
of

::::::::::
observations,

:::::
model

::::
mean

:::
and

:::::::
standard

::::::::
deviations.

::::::
Missing

:::::
values

:::
are

:::::::
indicated

::
by

:
a
::::
dark

::::
gray

::::
color.
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B2
::::::::::
Reflectivity

::::::::::
exceedance

:::::::::::
probabilities725

:::::::::
Reflectivity

:::::::::::
probabilities

::
of

:::::::::
exceeding

::
25

:::::
dBZ

::::::::
predicted

::
by

:::
the

::::::::
different

::::::
models

:::
for

:::
the

::::::
second

::::
case

:::
are

:::::::
depicted

:::
in

:::
Fig.

::::
B2,

:::
and

:::::
many

::
of

:::
the

:::::
same

::::::::
comments

::::
can

::
be

:::::
made

::
as

::::
with

:::
the

:::
first

::::
case

::::::
(Sect.

::::
4.1),

::::
with

:::::::
DEUCE

:::::::
seeming

::
to

::::
offer

:::
the

::::
best

:::::::
balance

:::::::
between

:::::::
accuracy

::::
and

::::::
lacking

:::
too

:::::
many

::::
false

::::::::
positives.

:
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Figure B2.
:::
The

::::::
second

::::
case

::::
study

:::::::::
reflectivity

:::::::::
exceedance

::::::::::
probabilities

::
of

:::
25

::::
dBZ

::
for

:::::::
DEUCE

::::::
against

::::::
STEPS

::::
and

:::::::
LINDA-P

::::::
model

::::::::
predictions

:::
and

::::::::::
observations

::
for

:::::::
multiple

:::
lead

:::::
times.

::::
The

:::
area

:::::
covers

:::::::
southern

:::::::
Finland,

::::::
starting

:
at
:::::::
16:50:00

::::
UTC

:::
on

:::::
August

:::
17

::::
2021.

::::
The

:::
rows

::::::::
represent

:::
lead

::::
time.

::
In

:::
the

::::::
leftmost

:::::::
column,

:::::
actual

:::::::::::::::
threshold-exceeding

:::::::::
precipitation

::::::
echoes

::
are

::::::
shown

::
in

:::::
colors,

::::
with

:::::::::::
non-exceeding

:::::
echoes

:::::::::
additionally

:::::
shown

::::::
faintly

::
in

::::
light

::::
gray

::
in

:::
the

:::::::::
background.

::
In

:::::
other

:::::::
columns,

:::::::
threshold

::::::::
exceeding

::::::::::
precipitation

:::::
echoes

:::
are

:::::
again

:::::
shown

:::::::
overlayed

::::
with

:::::::::
exceedance

:::::::::
probabilities

::
of

::::::
models

:
in
::::::
shades

::
of

:::
red.

::::::
Missing

:::::
values

:::
are

:::::::
indicated

::
by

:
a
::::
dark

::::
gray

::::
color.

:::
For

:::
this

::::::
second

::::
case

::::::
study,

:::
the

::::::::::
exceedance

::::::::::
probabilities

:::
of

:::::::
DEUCE

::
at

:::::::::
thresholds

::
of

:::
15,

:::
25,

:::
35,

::::
and

:::
45

::::
dBZ

:::
are

::::::
shown

::
in

:::
Fig.

::::
B3.

:
It
::
is
::::
here

::::::::::
noteworthy

::
to

::::
point

::::
that

:::::::
DEUCE

::::
was

:::
not

::::
able

::
to

::::::
predict

:::
the

::::::
growth

::
of

::
a

:::::::::
substantial

::::
new

::::::
rainfall

::::
area

::
in

:::
the730

::::::::
northwest

::
of

:::
the

::::::::::
composite,

::::::
despite

::
of

:::
the

:::::::::
predictive

::::::::::
uncertainty

:::::
being

:::::::::
significant

:::::
there,

::
as

::::::
shown

::
in

::::
Fig.

:::
B1,

::::::
which

:::
can

:::
be

:::::::::
understood

:::::::
because

:::
the

::::::::
predictive

::::::
means

:::::
under

:::
the

:
8
::::
dBZ

::::::::
threshold

:::::
were

::::::::
generally

:::::
closer

::
to

:::
the

::::::::
minimum

:::::
value

::
of

:::
-10

:::::
dBZ.
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Figure B3.
:::
The

:::::
second

::::
case

::::
study

::::::::
reflectivity

:::::::::
exceedance

:::::::::
probabilities

::
of

::::::
DEUCE

::::::
against

:::::::::
observations

:::
for

::::::
multiple

:::
lead

:::::
times

:::
and

::::::::
reflectivity

::::::::
thresholds.

:::
The

::::
area

:::::
covers

:::::::
southern

:::::::
Finland,

::::::
starting

::
at

:::::::
16:50:00

::::
UTC

::
on

::::::
August

::
17

:::::
2021.

::::
The

::::
rows

:::::::
represent

:::
lead

:::::
time.

:::
The

:::::::
leftmost

:::::
column

::
is
::::::::::
observations,

:::
and

:::
the

:::
rest

::
are

:::::::::
exceedance

::::::::::
probabilities

:
at
:::::::
different

::::::::
thresholds.

:::
As

:
in
::::
Fig.

:::
B2,

:::::::::
observations

::::::::
exceeding

:::
the

:::::::
threshold

:
in
:::::::
question

:::
are

:::::
plotted

::
in

:::::
shades

::
of

::::
gray,

::::::::
overlayed

:::
with

::::::::::
probabilities

::
in

:::::
shades

::
of

:::
red.
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Figure C1. Five randomly selected examples of post-processed DEUCE ensemble members on the
:::
first case studied, whose area covers

southern Finland, starting at 15:00:00 UTC on 9 July 2022. The prediction lead times illustrated are 5, 15, 30, and 60 minutes.
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