Author Response

This author response consists of three distinct parts:

Content and answer to the first reviewer comment (RC1)
Content and answer to the second reviewer comment (RC2)
The manuscript marked-up with changes made by the authors

Parts 1. and 2. will consist of a sequence of:
The next reviewer comment cited.

The corresponding author answer in blue.

The lines changed in the revised marked-up manuscript in italics, presented in order.
Reviewer comment 1

The authors consider a Bayesian neural network for precipitation nowcasting that is based
on the U-Net architecture (DEUCE). This method esmtiates the total predictive uncertainty
of precipition, subdividing the uncertainty into epistemic and aleatoric uncertainties. The
model provides development scenarios up to 60 minutes. DEUCE is trained and evaluated
for Finnish Meteoroloigcal Institute radar composites against established methods. First
results seem to be a promising approach improving precipitation nowcasting.

Dear reviewer,

We thank you for the valuable comments that you provided us. We have addressed the points
mentioned, and our response to each of them will be detailed below.

General comments:

The text is written very well and the illustrations are very good, and helpful. The evaluation
of the different uncertainties is valuable. The authors observe that most of the uncertainty is
of aleatoric nature, and that the contribution of epistemic variance is universally. A
challenging rainfall event is chosen as a case study. This is a good idea. But the reader
might also be interested in how well the model performs at a more frequently occurring
precipitation event.

The case study chosen at first indeed is a rather intense mostly convective rainfall event.
Despite the quantitative verification representing the average performance of the model
across a diverse corpus of events, we added a second case study, which concerns a rather
different stratiform large-scale precipitation event. There, we found many of the same features



that were found with the first case study, and we believe that the addition of this case study
gives a better general view of how the model performs in different scenarios to the reader.

L316, Table 1, L327-L.341, L395-L.399, L403, L411, Figure 6, L422-1423, Figure 7, L427,
Figure 8, Figure 9, L717-L735, Figure B1, Figure B2, Figure B3, Figure C1

The results are discussed carefully and in detail. There is some information about the data
preprocessing missing. How is the input data distributed? This is important in order to
understand the plausibility of the application of the used mathematical method.

To address the concerns about the data distribution, we added a histogram of the dataset
reflectivity, highlighting the fact that those reflectivity values that are the most likely to
represent precipitation are normally distributed, motivating the modeling method of the
predictive distribution.

Figure 4, L287-L.294
Small comments:

Notation in 2.1, first paragraph: Real value bold(y), do you mean real valued vector? Theta
is not defined, is it also vector valued? Could you give a hint, what (kind of) parameter theta
is?

We attempted to clarify the notation in subsection 2.1. What was meant by real was observed,
or ground-truth. Next, the symbols x, y, y were clarified to mean tensors, and 0 a list of
tensors . We hope that these changes will make the sentences concerned more clear and
understandable. .

L153-L154

Please explain with more detail: Line 190: How is D_KL defined?
We expanded the KL-divergence D_KL to its definition in Eq. 1.
L191, Equation 1

Line 280: You normalize the data between zero and one. Maybe | missed it, but how is the
input data distributed? Precipitation usually is skew symmetric, is the data transformed into
a normally distribution? Pleas check, if it is mathematically correct to apply all methods to
not-normally-distributed (?) data

It is correct to note that precipitation is not normally distributed (but log-normally). However, in
this work we are applying the model to reflectivity and not precipitation rates. Radar reflectivity
is known to follow a normal distribution because rain rate follows a log-normal distribution [1],
and we verified whether this is in addition the case for our input data specifically with
histograms of the data reflectivity of the dataset. We found that the part of the reflectivity
distribution corresponding most likely to precipitation and not clutter or noise has indeed a
Gaussian shape. Tangentially, we clarify the language used to make it clear that we are



approaching precipitation nowcasting through working with radar reflectivity values, which may
further be used to make actual quantitative precipitation rate or accumulation predictions.

L239-1.243, L379, L381-L382, Figure 7, Figure 8, L483, Figure 15

Reviewer comment 2

Overall, the manuscript is well-written and the main results are clearly highlighted
throughout the text. All the figures are appropriately labeled and capitoned; it's evident that
the authors have devoted significant effort to effectively communicating their results.
Consequently, | believe it absolutely deserves to be published in Geoscientific Model
Development.

However, | am flagging this manuscript as a minor revision because there are a couple of
important areas (see major comments below) that deserve a more careful examination
along with several minor grammatical and typographical errors. However, once these are
addressed, | will be happy to enthusiastically recommend the revised manuscript for
publication.

Dear reviewer,
We thank you for the valuable comments that you provided us. We have addressed the points
mentioned, and our response to each of them will be detailed below.

Major comments:

While the authors address both points below at some length in Section 5, | am still not fully
satisfied with their given explanations from a machine learning perspective.

The inability of DEUCE to accurately forecast precipitation at smaller scales (see Fig.
15) deserves additional discussion. For instance, how does the DGMR research for
Ravuri et al. (2021) address this issue? How do the authors plan to augment their
current model to improve their model expressivity at small scales?

A secondary area of concern for the 1. d by training the model on weighted input
samples with weights determined according to the observed precipitation distribution
guantiles?

A simple starting point could be to train the model for more epochs. From L285-286, | can
infer that the current training procedure is only ~30 epochs. Given that the batch size is
only N=2, this is lower than most neural networks of a similar size. Another potential area of
improvement could be to use normalize the MSE in the first term of eq. 5 with the forecast
output (see for example eq. 4 of hitps://arxiv.org/abs/2310.02994) to prevent the error from
larger scales to dominate the loss.

We addressed the comments by adding discussion relating to the two facets mentioned from a
machine learning perspective. Since what was asked is minor revisions, we did not include


https://arxiv.org/abs/2310.02994

any supplementary experiments in the manuscript. We still carried some experiments
exploring the suggestions made, and our findings are presented below.

1. We tried training for more epochs (60 in total) but did not find that increasing the number of
training epochs improves validation performance in the present case. However we cannot
exclude the potential effect of external factors such as our learning rate schedule.

2. We tried to weight the likelihood part of the loss according to the inverse of the density of
the pixel reflectivity value in the dataset distribution. Unfortunately, this did only result in
considerable over-forecasting and oddly-behaving aleatoric uncertainties. Despite of this type
of weighting being difficult to get right, we acknowledge the data imbalance problem in
precipitation nowcasting giving rise to the importance of weighting samples such that all, even
rare occurrences, can reasonably contribute to the gradients.
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lllustration of the predictive mean and standard deviation of a base DEUCE checkpoint, a checkpoint with longer training, and a
checkpoint trained with the loss weighting scheme described on a case taken from the prediction split (2019-05-25 13:00:00

uTC).

For this run, we slightly modified the training procedure as we found that the original DEUCE
checkpoint sometimes experienced instabilities (NaN loss) in training for longer. The base
DEUCE checkpoint here did not experience the same issues but had similar performance to
the original one and was trained for 37 epochs with a batch size of 8, a sample size of 4, using
256x256px random crops from the 512x512px area, with learning rate decay after 5 epochs of
non-improving validation loss (start at 1e-4). The "long" version started from the base
checkpoint but was trained until 60 epochs. In the visualization, we show it after 57 epochs, as
that was where its validation performance peaked. The "weighted" version was again trained
from scratch with the same hyper-parameters except for the loss function. It achieved its peak
validation performance after 28 epochs, which is the checkpoint shown in the figure.

The discussion section was modified such that the paragraph on small-scale variability was
reworked, and a new paragraph was added next to it describing potential ways to mitigate the



underforecasting and lack of small-scale variability problems together from a machine learning
perspective. We presented the two methods which you suggested together with some of our
own ideas.

L516-L552
Minor comments:

L7: Omit comma in "...deep learning methods, more capable..." and replace by "...deep
learning methods which are more capable..."

This was fixed.

L7

L75: Unclear what "discriminative deep learning models" refers to here since, as far as |
understand, all the models described in the previous paragraph have at least some
generative component to them.

To the extent of our knowledge, all of the models presented above L75 are discriminative, as
they only model the conditional probability of predicted outputs given input frames, maximizing
its likelihood through the MSE loss. In contrast, generative models such as GANs model the
joint probability distribution of the outputs and inputs. We have however removed the word
"discriminative” from the sentence such as to reduce possible confusion, because the same
point can be made without its explicit usage.

L75-L76

The post-processing procedure described in L240-252 for correctly approximating the
spatio-temporal structure of ensemble members is quite impressive. | was wondering if the
authors could add 1-2 lines in the Conclusion discussing how this step could be performed
within a neural network setup.

After some thought, we indeed came by a possible method to better incorporate the correlated
noise sampling procedure into the network, which was detailed in the conclusions section :

"We could also think of directly appending the post-processing sampling with spatially
correlated noise to the neural network, or even learning context-dependent
spatiotemporal correlation structures. The sampled outputs could then be, e.g., fed to a
GAN-like discriminator module, which would drive the processed outputs to be more
realistic while retaining the uncertainty decomposition. "

L603-L606

L324-325: Omit "the" in "...the 9 July 2022...;" add "upto” instead of "at" in "...leading at
15:00 UTC..."

We fixed that.



L337, L340
L353: Omit "all" in "...which we all computed..."

This has been fixed too.

L368
L421: Rephrase "...keeps open the possibility..."

"...keeps open the possibility for..." rephrased to "...means that we cannot exclude...

L437
L423: Rephrase "The suspicions are..."

Rephrased to "Such dependencies are..."

L439
L426: Replace "to" with "for" in "...explanation to this..."
This has been fixed.
L442
L431: Replace "some very" with "a" in "...some very slight increase..."
This has been fixed.
L447-1448
L503: What does "variety" mean in "variety of the ensemble"?

We meant "breadth of the ensemble” and replaced "variety" here, acknowledging the
ambiguity of the meaning of "variety" in this context.

L520

L507-509: Rephrase the sentence: "Hence, despite ... results of Ravuri et al. (2021)."
because it's unclear what the main point here is. See also major comment 1 above.

The paragraph containing was restructured in an attempt to separate and make clearer the
different points made. See major comment modifications.

L518-L536

The manuscript marked-up with changes made by the
authors
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DEUCE v1.0: A neural network for probabilistic precipitation
nowcasting with aleatoric and epistemic uncertainties

Bent Harnist', Seppo Pulkkinen', and Terhi M:kinen'
'Finnish Meteorological Institute, Erik Palménin aukio 1, FI-00560 Helsinki, Finland

Correspondence: Bent Harnist (bent.harnist@fmi.fi)

Abstract.

Precipitation nowcasting (forecasting locally for 0—6h) serves both public security and industries, facilitating the mitigation
of losses incurred due to e.g. flash floods, and is usually done by predicting weather radar echoes, which provides better
performance than NWP at that scale. Probabilistic nowcasts are especially useful as they provide a desirable framework for
operational decision-making. Many extrapolation-based statistical nowcasting methods exist, but they all suffer from a limited
ability to capture the nonlinear growth and decay of precipitation, leading to a recent paradigm shift towards deep learning
methods ;-which are more capable of representing these patterns.

Despite of its potential advantages, the application of deep learning in probabilistic nowcasting has only recently started
to be explored. Here we develop a novel probabilistic precipitation nowcasting method, based on Bayesian neural networks
with variational inference and the U-Net architecture, named DEUCE. The method estimates the total predictive uncertainty
of precipitation by combining estimates of the epistemic (knowledge-related, reducible) and heteroscedastic aleatoric (data-
dependent, irreducible) uncertainties, and produces an ensemble of development scenarios for the following 60 minutes.

DEUCE is trained and verified using Finnish Meteorological Institute radar composites against established classical models.
Our model is found to produce both skillful and reliable probabilistic nowcasts based on various evaluation criteria. It improves
ROC Area Under the Curve scores 1-5% over STEPS and LINDA-P baselines, and comes close to the best-performer STEPS
on a CRPS metric. The reliability of DEUCE is demonstrated with, e.g., having the lowest Expected Calibration Error at 20 and
25 dBZ reflectivity thresholds, and coming second at 35 dBZ. On the other hand, deterministic performance of ensemble means
is found to be worse than that of extrapolation and LINDA-D baselines. Lastly, the composition of the predictive uncertainty
is analysed and described, with the conclusion that aleatoric uncertainty is more significant and informative than epistemic

uncertainty in the DEUCE model.
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1 Introduction

Predicting the amount and location of precipitation at local scales of a few kilometres for lead times ranging from minutes to
hours, i.e., precipitation nowcasting has recently grown into an important component of severe weather early warning systems,
particularly those focused on predicting flash floods. Because of the intensification coupled with increased frequency of ex-
treme precipitation events brought by climate change, accurate estimates of future precipitation have increased in importance.
However, the capacity of any nowcasting model to produce accurate estimates is limited, and thus having additionally an idea
of the reliability of the nowcast is operationally important. This can be addressed with ensemble nowcasts, which generate a
set of possible scenarios, with which it is possible to estimate the probability of certain events.

Numerical Weather Prediction (NWP) is widely used for forecasts at longer timescales and with coarser grids (Bauer et al.,
2015), with regional high-resolution models model generally having a grid resolution of a few kilometres and a refresh rate of
typically one hour. For example, the High Resolution Rapid Refresh (HRRR) model developed by the United States National
Oceanic and Atmospheric Administration (NOAA) has a grid resolution of 3km and a refresh rate of one hour (Alexander
et al., 2020). However, NWP does not achieve sufficient performance at the spatio-temporal scales typical of nowcasts, due
to not yet having achieved numerical stability in these first few hours, and due to the computational complexity of resolving
atmospheric equations at sub-hour temporal resolutions and grid resolutions approaching the micro-scale (< 1km) (Sun et al.,
2014; Radhakrishnan and Chandrasekar, 2020). Specialized nowcasting methods for precipitation have been developed in

parallel of NWP and may be used in order to circumvent its problems in the domain. These mainly rely on forecasting the
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evolution of radar echo image sequences, that act as a good proxy for ground-level precipitation, and usually have a spatial

resolution of ~ 1 km and a temporal resolution of ~ 5 min, which are characteristic of weather radar observations.
1.1 Extrapolation-based precipitation nowcasting

The most important class of precipitation nowcasting models is based on the extrapolation of radar echoes along the background
advection field. These models first estimate the advection field from a sequence of past radar images, with methods such as
Variational Echo Tracking (Laroche and Zawadzki, 1995) or optical flow-based methods like the Lucas-Kanade method (Lucas
and Kanade, 1981; Bouguet et al., 2001). In the classical case of the pure extrapolation nowcast, the most recently observed
frame is simply extrapolated along the estimated advection field, often using a Semi-Lagrangian Scheme (Staniforth and Coté,
1991). Extrapolation nowcasting doesn’t model the growth and decay of precipitation, so many extensions attempting to make
up for that have been developed. One important method is Spectral Prognosis (S-PROG) by Seed (2003). S-PROG is based on
the scale-dependence of the lifetime and evolution of features, decomposing the field into additive components corresponding
to different spatial scales and evolving each of them separately using an autoregressive (AR2) model in Lagrangian (flow frame
of reference) coordinates, enabling modeling the scale-dependent behavior of precipitation.

STEPS (Short-Term Ensemble Prediction System) by Bowler et al. (2006), is an influential ensemble nowcasting model
based on S-PROG. In STEPS, stochastic perturbations are added to the motion field in order to model its uncertainty. Just like
with S-PROG, the growth and decay of the precipitation field is modeled by decomposing it using a cascade of scales with the
autoregressive model applied to each of these scales separately in Lagrangian coordinates. Unlike in S-PROG, stochastic noise
is injected at each scale, concurrently with the AR modeling. Over time, various models have expanded upon STEPS; one recent
example being LINDA (Lagrangian INtegro-Difference equation model with autoregression) (Pulkkinen et al., 2021), which
uses an integro-difference equation model with rain cell detection and convolutions for modeling the loss of predictability at

small scales. LINDA produces nowcasts particularly well-suited to the prediction of strong localized rainfall.
1.2 Deep Learning approaches to precipitation nowcasting

With significant recent advances in deep learning, the interest in its use for precipitation nowcasting has increased. One of the
first deep learning model to have been used explicitly for precipitation nowcasting is the Convolutional LSTM (ConvLSTM)
model (Shi et al., 2015), which combines the temporal prediction capacity of the Long Short-Term Memory (LSTM) neural
networks with 3D convolutions modeling spatiotemporal features in one model for spatiotemporal nowcasting. ConvLSTM
has later been improved by the TrajGRU model (Shi et al., 2017), that replaces the heavy LSTM structure with a lighter GRU
(Gated Recurrent Unit) structure and is capable of learning an active location variant structure for the recurrent connections.
Apart from doing the temporal modeling using recurrent units, a popular approach has been to use fully convolutional neural
networks, often two-dimensional, thus avoiding the modeling of explicit temporal dependencies. These networks have often
been based on U-Net-type architectures, one early example of which is the model by Agrawal et al. (2019), which predicts
the exceedance of rainfall over three distinct intensity thresholds for a one hour lead time. A more useful model is RainNet by

Ayzel et al. (2020). RainNet nowcasts rainfall continuously one timestep at a time, inserting the predicted frames back into the
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network in order to make multiple lead time predictions. Similarly FureNET by Pan et al. (2021) nowcasts rainfall one hour at
a time using polarimetric input variables in addition to observed rain rates, via multiple encoder branches and late fusion in the
decoder of a residual U-Net architecture and brings improvement compared to using plain rain rates.

The principal problem of using diseriminative-the above deep learning models for deterministic precipitation nowcasting
is that of the increasing blurring of nowcasts with inereasing-lead time. This is the natural consequence of attempting to
minimize the pixel-wise forecasting error in the presence of uncertainties inherent to the task of predicting precipitation. Such
loss functions thus behave in the same fashion as S-PROG and STEPS explicitly filtering out scales through their loss of
predictability. One way to resolve the problem is to use generative modeling, which is the one taken by Ravuri et al. (2021)
with their Deep Generative Model of Radar (DGMR). DGMR is an adversarially trained convGRU-based generative model,
capable of generating realistic time series of future radar observations, that outperform both classical and deep learning baseline
models. In addition to deterministic nowcasts, DGMR is also capable of making ensemble-based probabilistic nowcasts.

Making probabilistic precipitation nowcasts using deep learning has been explored less than deterministic nowcasts, despite
of the clear benefit of the probabilistic approach in operational use. In addition to DGMR, other existing probabilistic models
are MetNet (Sgnderby et al., 2020) and its successor MetNet-2 (Espeholt et al., 2022). MetNet aggregates weather radar,
satellite, and orographic information over a large area to predict a probability distribution of rain rate per pixel in one forward
pass for a single lead time, with an architecture consisting of a spatial aggregator of inputs, a convLSTM spatial encoder, and a
spatial decoder with axial attention. The model is shown to outperform the HRRR NWP model on an F1 metric for lead times
up to 8 hours. MetNet-2 improves upon its predecessor by adding data assimilation context as an input and aggregating data
over a larger area. This enables it to outperform or at worst rival HRRR and HREF models in CRPS and CSI metrics for lead

times up to 12 hours.
1.3 Uncertainty quantification and Bayesian deep learning

In addition to playing an important role in precipitation nowcasting, the importance of uncertainty quantification (UQ) has
also been recognized in deep learning (Abdar et al., 2021). In the field of machine learning, the uncertainty of predictions
can be divided into two separate components: epistemic and aleatoric uncertainty. Epistemic uncertainty represents the lack
of knowledge in the model, and it is reducible through improving the model or bringing in more training data. Aleatoric
uncertainty on the other hand is inherent to the input data, and no amount of additional training data or model improvement
will reduce it. Aleatoric uncertainty that varies over the input data is said to be heteroscedastic; a constant uncertainty is called
homoscedastic.

Many approaches to the quantification of uncertainty have been developed on the deep learning side. One particularly
important theme driving the development in this realm has been operational safety and countering overconfident predictions
made by black box models overfitting the training data. Bayesian neural networks (BNN) have emerged as a candidate for
addressing that issue. They work by placing probability distributions over the weights, which are estimated via the means of

Bayesian inference and yield a predictive distribution for data through their marginalization.
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Although exact Bayesian inference is intractable for large neural networks, suitable approximations exist. These are com-
monly divided into Markov Chain Monte Carlo (MCMC) and variational inference (VI) based methods (Jospin et al., 2022).
MCMC methods predict better weight distributions but are more computationally expensive and thus often reserved for small-
scale problems, where performance is key. VI on the other hand is more scalable and has been applied to larger neural networks.
The idea behind variational inference is to approximate the true posterior of weights with a simpler analytic one (the variational
posterior), and to estimate the variational posterior which is the closest to the true one. Thanks to advances by Graves (2011)
and subsequently Blundell et al. (2015) with the Bayes-By-Backprop (BBB) algorithm, it is now possible to use mini-batch
optimization for mean-field VI (i.e., assuming fully factorizable variational posteriors) on large networks, opening up possi-
bilities for the use of VI in problems such as precipitation nowcasting, that require large amounts of input data and numerous
model parameters.

Later, Monte Carlo Dropout (Gal and Ghahramani, 2016) techniques among other variants have been identified as being
equivalent to approximate Bayesian inference, losing some model expressivity but gaining ease of implementation. Based on
this, Kendall and Gal (2017) have developed a technique for estimating the epistemic and heteroscedastic aleatoric variance
components separately in deep learning regression tasks. They estimate the epistemic uncertainty with the variance of predic-
tions made via Monte Carlo Dropout, and add a separate component to their network for predicting the aleatoric component.
The predictions are modeled as having Gaussian likelihoods, with means equal to the prediction point estimates and variances
equal to the aleatoric term described. These terms are then learned by minimizing a Gaussian Negative Log likelihood loss
function taking them and observations as inputs. This approach has recently started to be applied to problems such as the seg-
mentation of satellite images (Dechesne et al., 2021), remaining useful life prognostics (Caceres et al., 2021), and long-term

synoptic scale precipitation forecasts (Xu et al., 2022).
1.4 Model idea and research questions

We propose the Deep Ensemble-based Uncertainty Combining radar Echo nowcasting (DEUCE) model for probabilistic
precipitation nowcasting. The idea of the model is to apply the aleatoric and epistemic decomposition of uncertainty by Kendall
and Gal (2017) to a Bayesian Convolutional neural network with mean-field variational inference for producing ensemble
nowcasts of weather radar echo images, which represent the reflected power to the radar, often indicative of precipitation. The

research questions to which we will attempt to answer are the following:

1. Can we produce both powerful and reliable ensemble precipitation nowcasts using Bayesian neural networks with un-
certainty decomposition? Specifically, is such a model competitive against classical baseline models when assessed with

a variety of quantitative probabilistic prediction skill metrics as well as based on a qualitative assessment?

2. What are the characteristics of the aleatoric/epistemic decomposition? We are interested in the evolution of uncertain-
ties with prediction lead time, and whether they capture different and complementary features of the total predictive

uncertainty.
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3. Can the model additionally be useful in producing deterministic precipitation nowcasts by means of averaging multiple
predictions, leveraging the regulatory effect of probability distributions placed on weights? Do such predictions perform
competitively when assessed against classical baseline models using quantitative verification metrics? Also, what can

those metrics tell about the nature of the predictions?

2 Model description

DEUCE builds upon a U-Net-based convolutional neural network (CNN) model of deterministic precipitation nowcasting, and
turns it into a Bayesian neural network with variational inference for making the predictions stochastic, enabling us to model
the uncertainty of this U-Net model. As mentioned, we build upon the work of Kendall and Gal (2017) for quantifying the
uncertainty of the nowcasting task. Particularly, DEUCE attempts to decompose predictive uncertainty into aleatoric uncer-
tainty (originating from data, irreducible) and epistemic uncertainty (induced by lacking knowledge, reducible) by predicting
reflectivity fields along with the aleatoric uncertainty associated with them explicitly. Epistemic uncertainty in turn is estimated
from the variance of the reflectivity fields sampled, and it is combined with aleatoric uncertainty at inference time in order to

yield an approximation of the total predictive uncertainty.
2.1 Functional model

A neural network fg(z) =9 is a universal function approximator, which can be used for regression tasks, mapping an in-
put gquantity-tensor x to an—output—value-a predicted output tensor § approximating the-real-value-a_ground-truth output
tensor y using its learned network parameters 8, represented as a list of tensors. In the case of radar-based precipitation
nowcasting with neural networks, we approximate a function mapping the spatio-temporal time series of past radar obser-
vation images * = Z1,Z2, ..., 1, , Where L, corresponds to the number of input timesteps, to future radar observation images
Y=Y1,Y2,..-,YL,.» Where Loy corresponds to the number of input timesteps. In the DEUCE model, both z and y repre-
sent processed radar reflectivity data, and the network fg(x) = §,02 outputs a tuple of predicted reflectivity field time series
9=191,92,...,9L,, along with fields estimating the aleatoric uncertainties 0> = 67,03, ... ,a%wt corresponding to each of the
pixels of 4.

For the task of precipitation nowcasting, the neural network has to be capable of outputting predictions for multiple lead
times, i.e., discrete time steps in the future, corresponding to future radar observations. DEUCE achieves this by using a variant
of U-Net as its functional architecture, taking in a sequence of 12 radar reflectivity fields z, predicting 4,6 corresponding to
the nowcast for the next 12 timesteps in a single forward pass.

A schematic representation of the the main components of DEUCE and how they are connected is presented in Fig. 1. The
architecture consists of a single encoder branch, extracting features from « at different spatial scales and semantic levels. The
feature maps from these different scales are preserved for later use through skip-connections. The (largest scale) latent state

produced by the encoder, as well as intermediate feature maps mediated by skip-connections, are then fed to two independent



170

175

180

185

Encoder block

T
v

g o’
Image dimensions Decoder Decoder
block block

P convad Ix1

v

conv2d 3x3, ReLU
concat, conv2d 3x3, ReLU

upsample 2x2

512 x 512
—
v
v
256 ¥ 256
v

.

> >;H>H>H>;D>D>D>5CIDSP—
& 2 56 510 5V 2@ 512 1024 1024

128 256 256 -

64 128 128

>

» Max Pooling 2x2
O Number of filters
‘0

--» Skip connection

= g &y 2 X o
<|e||e x| |4 xa| |4 |« xal |a < <IN -
@] H =+ G o
= b x 510 12 091 =] 1024 @
; 256 256 256 512
128 128 128256 )
122 61 61 64128 Decoder block DEUCE architecture

Figure 1. The DEUCE encoder and decoder architectural components depicted on the left, along with the architectural diagram making
use of those components on the right. Feature maps at different scales are extracted in the encoder branch, before being passed to decoder

branches, providing the outputs of the network.

decoders: one outputting § and the other outputting logail. Using separate decoders for the outputs is preferable over a single
combined decoder to avoid the blending of adjacent features, which would be detrimental to the expressivity of the model.
The network contains two-dimensional (spatial) convolutions. These are represented by conv2d 3x3 and conv2d 1x1
labels denoting layers with filter sizes 3 and 1, respectively. By using 2D convolutions, temporal dependencies are only present
implicitly. This approximation casts the nowcasting task as a simple image sequence-to-sequence translation problem, which
reduces the computational resources needed compared to explicit modeling of the temporal aspect. The convolutional layers
use partial convolutions (Liu et al., 2018), in which missing values are masked and only valid values are used to normalize
the convolutions. Although we do not work with missing data, this design choice helps in providing better quality predictions
near image borders by reducing, e.g., various artifacts related to them. ReLU denotes the activation function of the same
name, concat concatenation along the channel dimension, upsample nearest-neighbor upsampling by a scale of 2, and

Max Pooling maximum pooling by a scale of 2.
2.2 Stochastic model

Conventional neural networks are deterministic in their nature, meaning that they only ever yield the same output ¢ for a given
input £ and parameters 6. Our goal is to produce a reliable estimate of the uncertainty associated with the approximation
produced by the neural network. Because this approximation is merely a function of the input data and the functional model
including parameters, considering the uncertainty of these sources separately should allow the approximation of the total
predictive uncertainty of nowcasts.

Hence, epistemic uncertainty is modeled by placing probability distributions on functional model parameters 0, effectively

turning the model stochastic. A Bayesian approach is taken in this regard, placing a prior distribution upon the weights, and
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estimating the most likely posterior distribution given that prior and the training data. The estimation of the true posterior
is an intractable task for a large-scale neural network, which is why variational inference (VI) is used to learn approximate
posterior estimates for weights. VI limits the space of acceptable posterior distributions to a parameterized family, whose
learned parameters replace the point estimates of classical neural network weights. Here, we aim to minimize the Kullback-
Leibler (KL) divergence (Kullback and Leibler, 1951) Dgg, between the true and variational posteriors, which is a measure of

the similarity between two probability distributions. As such, the objective is stated as

6 = argmin Dic gt |0) (| D)]WwW%w M)

where 8 denotes the variational posterior parameters, 8* the optimal parameters, w the sampled network weights, D = (z,y)
the problem data, ¢(w | ) the variational posterior, and p(w | D) the exact posterior of network weights. In practice, this is not
directly solvable, so the optimization is accomplished through the maximization of an evidence lower bound (ELBO) proxy

objective. The objective is defined as

ELBO('D70) = Eq(w\@) [logp(va)] - Eq(wle) [IOgQ(w ‘ 0)] 2)
likelihood prior posterior
=E o) logp(D |w)]+ Eywe)[logp(w)] —Eqmw)e)logq(w | 0)] , 3)

=—Eg(w|0) DxL[q(w]|0)||p(w)],i.e., the complexity term

consisting of the log-likelihood, log-prior, and log-posteriors, with the last two terms commonly grouped together as the
complexity term. Here E,,,9) denotes the expected value of the probability density of interest over the variational posteriors.
According to Blundell et al. (2015), in Bayesian neural networks and using mini-batch optimization, the ELBO objective as

stated in Eq. 3 can be approximated as

N
1
ELBO] (D:,0) ~ - > (10gp(D; |wi.n) + milogp(wi,n) — miloga(wi,n |6) ) 6

n=1
which acts as an unbiased Monte Carlo estimator of the ELBO, and is our final loss function. Here, the cost is calculated
for each i:th of the M mini-batches in an epoch, each time drawing /N Monte Carlo samples of the variational posteriors of
weights. 7; denotes an arbitrary weighting of the complexity term, using in this work the same rule as in Blundell et al. (2015),
which is 7; = 2M~¢/(2M —1). This serves to make the regularization effect of the prior stronger earlier, allowing data to be
more important later in the training. In DEUCE, the variational posterior distributions ¢ are modeled as diagonal Gaussian
distributions, and the Bayes-By-Backprop (BBB) algorithm using the re-parametrization trick by Blundell et al. (2015) is
employed for their optimization. The prior distribution p(w) on the contrary is fixed as a hyperparameter, and is identically
as well as independently distributed for each parameter as a normal distribution with zero-mean and a variance of 0.1. This
allows us to potentially calculate the complexity cost in closed form (Hershey and Olsen, 2007), rather than with the Monte

Carlo estimate of Eq. 4, hence reducing the computational cost of training.
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The likelihood cost of Eq. 4, similarly to Kendall and Gal (2017), is modeled for the i:th mini-batch and the n:th Monte

Carlo sample as the Gaussian log likelihood
1 a1 1
— —Sp _ 4 )2 _
o8 P(D ) =~ 3 3¢ 0y —80)" + 59 5)

where the cost is averaged over p = 1... P pixels of the L,,; x W x H spatio-temporal time series s, y and §; L, refering
to the length of the time series, W to the width of the images, and H to the height of the images. ¢ and n indices of fields
are omitted here for clarity. Here, y denotes the observed reflectivity fields, g the predicted reflectivity fields using the n:th
weights sampled from the network, and s := loga? refers to the corresponding logarithm of the aleatoric variances predicted
by the network with those weights. The logarithm of the aleatoric variances estimate is taken because optimizing using it is
more computationally stable, and was found to work better than simply using variance constrained to be positive with a ReLU

output activation function, especially dealing with variances approaching zero.

225 2.3 Generation of ensemble nowcasts
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Figure 2. The prediction procedure for the primary outputs of the DEUCE model illustrated. Each sampled output is computed separately
with a forward pass through the network, yielding a time series of the predictions and the logarithmic aleatoric variances, which are converted
back to variances. After agglomeration into a pair of raw ’ensembles’, the prediction mean Ymean, as well as the two types of uncertainties,
the epistemic variances afp and aleatoric variances o2 are computed from the pair. These three quantities are the ones used for producing the

final prediction ensemble.

The procedure for producing the primary outputs of DEUCE for making probabilistic nowcasts is presented in Fig. 2. First,
N raw network outputs are produced, which are stochastic pairs of reflectivity field sequences %,, and logarithmic aleatoric
variance field sequences o,,. Each n:th of those sampled outputs draws different weights from the learned variational posterior

distributions, which is reflected in the output distribution. The &, are converted to their non-logarithmic version 0'31, and
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individual stochastic runs are stacked into a pair of raw “ensembles’ §J,a2. At this point, the epistemic uncertainty is embedded
in g, but the aleatoric uncertainty is separate, only present in o2. Hence, in order to allow for the combination of these

uncertainties, g is divided into the prediction mean ., and the epistemic variance afp by taking the mean and variance over

2

7 respectively. Additionally, the aleatoric variance o is summarized by taking its mean, denoted ¢%. These three outputs:

Ymean» Jgp, and o2 form the base from which probabilistic nowcasts are computed.

The total mean and uncertainty of the prediction can thus be estimated as

aezp ‘7?1
—_——
1Y 1Y 1Y 1Y
A _ - A 2 ~ A2 (= A~ 2 . 2
Ymean = 77 nzzly”’ Tored =y nzzly” (¥ nzzly”) N nzzl% ©

where agred denotes the predictive variance. This means that the predictive variance can be estimated as the sum of the variance
of the predicted reflectivity fields, which is the epistemic variance, and of the mean of the predicted aleatoric variance fields.

These quantities are sufficient for making probabilistic nowcasts such as calculating exceedance probabilities for precipitation
intensity,-as-we-future radar reflectivity values, allowing us to model the predictive distribution of preeipitation-this reflectivit
as normally distributed with mean §mean and variance agred. This formulation is admissible as reflectivity of precipitation in

dBZ units is known to have a normal distribution, which follows from the distribution of precipitation rate being log-normal

Kedem and Chiu, 1987).

Nevertheless, some applications of probabilistic precipitation nowcasting — such as flood modeling — assume ensemble-

based nowcasts where each member of the ensemble represents a physically plausible precipitation scenario. One could of
course randomly sample the predictive distribution to generate an ensemble, which would correctly approximate pixel-wise
statistics, but the spatio-temporal structure of the fields would be lost. In an attempt to remedy to this, we post-process outputs

to generate ensemble members respecting the spatial covariance structure of the input field x as

ACNS A 2

Yy, =Ymean + O red @ €corr,ns @)
HENS __ Bens  sens $ENS 1 1 M M

where §7,° = 93,53, 95 5, - -, Uy, 1, denotes the newly generated ensemble member, ® an element-wise multiplication broadcast

over Loy frames, and €cor,p, is a correlated Gaussian random field of shape W x H. €corr,r, is generated to match the average
spatial correlation structure of z using Fast Fourier Transform (FFT) filtering. The structure is obtained non-parametrically
from the power spectrum of z (Seed et al., 2013). The technique is equivalent to that used to generate perturbation fields in
STEPS (Pulkkinen et al., 2019). Even though this method accounts for the spatial structure of the precipitation time series, it is

not capable of modeling its temporal structure, which is assumed constant. The ensembles produced this way shall be denoted

Fyens

Y™, in contrast to the raw predicted reflectivity fields denoted .

10
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Figure 3. The Finnish Meteorological Institute radar network with its 11 radars and the bounding box used. Each radar is described by its
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three-letter code, with their 120km coverage radii for snowfall in gray and the intersection of 250km coverage radii for rainfall as the black
outline. An example radar composite crop from a precipitation event (15 August 2019 at 15:00:00 UTC) is visualized in the zoom onto the

bounding box in the right.

3 Experimental details

This section presents the experiments performed. First, in Sect. 3.1, we present the dataset used, followed by the details related
to the training of DEUCE in Sect. 3.2, and the verification experiments in Sect. 3.3. Additional technical details can on the

other hand be found in Sect. A.
3.1 Data

The dataset used for this work comes from the Finnish Meteorological Institute radar network. It consists of cropped lowest-
altitude radar reflectivity composites, chosen from rainy days during the summer period of years 2019-2021. The dataset is
identical to that used by Ritvanen et al. (2023), only using longer time series. The composites are built from the two lowest
elevation angle scans, interpolated into an 1x1 km Cartesian grid. The chosen area covers southern Finland, with the bottom
left corner at coordinates (59.01°N, 20.55°E) and the top right corner at coordinates (63.62°N, 30.27°E). The spatial extent of
this crop is 512x512 km, corresponding to 512x512 pixel square images, suitable for training a neural network. The composites
are available with a temporal resolution of five minutes. The extent of the bounding box is additionally illustrated in Figure
Fig. 3 along with the coverage of Finnish Meteorological Institute radars. From this, we see that the advantage of the crop is
that it has a higher density radar cover than its surroundings.

The data was selected on a day-by-day basis, selecting the 100 days with the most pixels having reflectivity values over

35 dBZ. The days were then divided into six hour long blocks, from which blocks with less than one percent of pixels with

11
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reflectivity values over 20 dBZ were removed. These remaining blocks were then randomly split into training, validation, and
verification datasets with a ratio of 6:1:1. The division into blocks was done in order to limit the number of successive time
series present in different splits, as they exhibit high correlation, and not using any blocks would make the training, validation,
and verification sets dependent as the same events would be present in all of them. Six hours was deemed a sufficient time
for temporal correlations to mostly disappear. Lastly, two-hour long time series, corresponding to 24 images each, were then
extracted from these blocks using a sliding window principle, with a stride of one, omitting those time series with missing data.
The final training, validation, and verification datasets ended up containing 10780, 1813, and 1666 time series respectively.
The input time series were read from HDF? files, stored there with an 8-bit scale-offset lossy compression scheme, ranging
from -32 to 96 dBZ at a resolution of 0.5 dBZ. The images were then converted to floating point values and a threshold of 8 dBZ
was applied, replacing values below the threshold with -10 dBZ. This served as a simple way to remove non-meteorological
targets and other clutter that could interfere with the training and prediction, while maintaining most of the relevant precipitation
echoes. Finally, the reflectivity values were normalized between zero and one. Computed predictions were converted back into
reflectivity values by applying the inverse of the transformation, before saving them using the same scheme as with the input

data.

FMI reflectivity dataset distribution
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Figure 4. Finnish Meteorological Institute composite crop dataset distribution of reflectivity. The threshold chosen below which the data is
set to -10 dBZ is shown with a dashed line. Additionally, a Gaussian PDF fit on the data above 20 dBZ is shown in red, which serves to
illustrate the Gaussian distribution of precipitation reflectivity.

The dataset reflectivity distribution is depicted in Fig, 4, with the -32 dBZ minimum value pixels left out of the histogram
for clarity. The threshold is shown to divide the data into retained and discarded parts, and a Gaussian density is fitted to the
part most likely to purely consist of precipitation, exceeding 20 dBZ. Below the threshold, there seems to be multiple peaks in
density, likely involving insects, birds, miscellaneous clutter as well as increasing noise the lower we go on the scale. While
the highest reflectivity density values seems to follow well the Gaussian fit, part of the density between 10 and 20 dBZ remains
unexplained, and this range is likely to contain a mixture of precipitation and clutter. Still, this is not a major issue since the
most interesting precipitation to predict corresponds to reflectivity values well above 20 dBZ.

12
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3.2 Training

For the training of the network, the Adam optimizer (Kingma and Ba, 2015) was used with an initial learning rate of le-4 and
other parameters set to their PyTorch default values. The network was trained with that learning rate for 20 epochs, after which
the learning rate was lowered to le-5 for 8§ more epochs, and finally further lowered to 1e-6 for one final epoch. A validation
epoch was carried out after each epoch, in which Equivalent Threat Score (ETS) (Hogan et al., 2010) metrics were calculated
for converted precipitation estimates (Sect. A1) of predictions, and summed over thresholds of 0.5, 1.0, 5.0, 10.0, 20.0, and
30.0 mmh~" as well as each lead time. This validation score showed improvement over the whole training process.

The training procedure for DEUCE is presented in Fig. 5 for a single epoch. Both input sequence lengths L;, as well as
output sequence lengths L, were 12, corresponding to one hour each. Both for the training and validation epochs, the batch
size was set to two and the number of produced Monte Carlo samples of posteriors N to two as well, which was the most that
our GPU could fit during training. In order to increase the variance between the gradients of mini-batch members, Flipout re-
parametrization (Wen et al., 2018) was applied to the sampled weights, multiplying the random sampling coefficient of weights
with a random sign matrix, effectively adding randomness inside batches for a low computational cost. The closed-form of the
KL divergence between two Gaussian distributions was used for the calculations of the ELBO complexity term instead of

Monte Carlo estimates in the final model training.
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Figure 5. A training epoch for DEUCE illustrated. One loop corresponds to a single training sequence, which can be substituted for a single
training mini-batch, taking multiple sequences in one batch. The DEUCE prediction process refers to that illustrated in Fig. 2, without the
post-processing. The blue box labeled Dkr.(q||p) corresponds to the complexity term of the negative ELBO loss (to minimize), 7; to its
weighting coefficient, and the red box labeled —logp(D; | w) to the likelihood term of the negative ELBO loss. Monte Carlo estimates of

the complexity term use sampled weights w;, whereas the closed-form expression that we use is a function of parameters 6.

The input time series X; was pre-processed first as described in Section 3.1, and in the case of training data, was then

augmented by applying in succession a random horizontal flip, a random vertical flip, and a rotation by an angle randomly

13



chosen between 0, 90, 180, and 270 degrees. This was done to improve the variety of the training dataset and consequently

improve the generalization performance of the trained network.
3.3 Verification

The performance of the DEUCE model is verified against the pySTEPS (Pulkkinen et al., 2019) implementation of multiple
315 extrapolation-based precipitation methods. The verification is divided into the qualitative inspection of ensembles produced in
acase-studytwo case studies, into an analysis of DEUCE uncertainty composition, into the verification of the (probabilistic)
performance of the whole ensemble, and the verification of the (deterministic) performance of the ensemble mean, i.e., its
fidelity in representing the true variation of the radar images. The four types of verification performed, along with the relevant

DEUCE product, the baseline models used, and the evaluation criteria are summarized in Table 1.

DEUCE product  Baseline models (Sect. A2)  Evaluation criteria

Case study-studies (Sect. 3.3.1) gee STEPS, LINDA-P Ensemble mean/STD, exceedance probabilities
Uncertainty composition (Sect. 3.3.2)  §,0° - case decomposed mean/STD & statistics
Probabilistic perf. (Sect. 3.3.3) g STEPS, LINDA-P CRPS, Reliability diagram, ROC AUC, Rank hist.
Deterministic perf. (Sect. 3.3.4) Ymean Extrapolation, LINDA-D ME, ETS, RAPSD

Table 1. The four components of the verification process for DEUCE summarized.

320 In probabilistic verification experiments, N = 48 ensemble members are used both for producing the raw outputs %,0>
and for drawing the post-processed ensemble 4", as well as for making the baseline ensemble model predictions. All of the
predictions made for the verification of DEUCE are made until 60 minute lead time and thresholded at 8 dBZ, serving as an
estimate for minimum observable precipitation. Four precipitation thresholds are considered where the verification involves
evaluating the quality of a prediction exceeding a particular reflectivity value. Converted using the Z-R relationship presented

325 in Sect. Al, these are 20 dBZ (=~ 0.5 mmh~1), 25 dBZ (=~ 1.3 mmh '), 35 dBZ (=~ 5.7 mmh '), and 45 dBZ (=~ 25.5 mmh 1),

which correspond to very light, light, moderate, and heavy rain respectively.

3.3.1 Case studystudies

A-challengingrainfall-event-is-chosen-as-a-ease-study-Two distinct rainfall events are chosen as case studies to provide a

qualitative assessment, as well as a comparison, of DEUCE nowcasts against the baseline probabilistic methods. The case
330 study-focuses-studies each focus on an ensemble nowcast at a particular timestep during the precipitation event, chosen such
as to include both large-scale weaker precipitation, characteristic of stratiform rainfall, and-or localized heavy precipitation,
characteristic of convective rainfall. The latter has a shorter lifetime and has been traditionally harder to predict, but it is of

interest to observe the performance of the model with both types. In addition, we

of-both-weakening-and-include both instances of weakening and of intensification of echoes —The-ease-is-in the case studies.

14
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The cases are chosen from radar composite crops with the area described in Sect. 3.1 over the verification split, as well as

the summer of the year 2022, which is separate from the dataset used for training, validation, and quantitative verification.
The timestamp of the ehosen—ease-is-the- O-Faly-first case chosen is July 9 2022 at 15:00:00 UTC. This case contains mostly

convective rainfall, with some localized high rain rates. The second case chosen is August 17 2021 at 16:50:00 UTC, which

represents a very different scenario with large scale, mostly stratiform rainfall. The radar images of the hour leading at15:00
YFCupto the timestamps are used as inputs and the following heur-is-one hour of radar images are predicted.

Three different visualizations of the ease-cases are made at 5, 15, 30, and 60 minute lead times, using the post-processed
DEUCE ensembles §"%, and the probabilistic baseline models STEPS and LINDA-P described in Sect. A2 when appropriate.
The first visualization is that of predictive means and standard deviations of the ensembles in dBZ units. Here, DEUCE, STEPS,
and LINDA-P are compared side-by-side. The second visualization is that of exceedance probabilities of DEUCE, STEPS, and
LINDA-P ensemble nowcasts at a 25 dBZ reflectivity threshold. The third and last of the visualizations depicts the exceedance
probability of DEUCE in predicting reflectivity above 20, 25, 35, and 45 dBZ thresholds.

3.3.2 Uncertainty composition analysis

The composition of the DEUCE predictive uncertainty is analyzed both using the prediction of the first case study, and using
statistics aggregated over the verification dataset. For the case study prediction, the aleatoric and epistemic components of
the predictive standard deviation are visualized next to the combined predictive uncertainty, the mean predictions, and the
observations, at lead times of 5, 15, 30, and 60 minutes. The statistics collected are average magnitude of the aleatoric and
epistemic standard deviation components under different conditions. These magnitudes are divided into bins corresponding to
the prediction lead time and the observed reflectivity matching the pixel in question (5 dBZ bin width from 5 to 60 dBZ), and
are collected for each prediction timestamp. The resulting statistics are visualized in the form of a histogram aggregated over

the whole dataset, and as bar plots showing the contribution of the uncertainties against lead time and observed reflectivity.
3.3.3 Probabilistic performance verification

Probabilistic verification serves to assess the probabilistic predictive power of DEUCE ensembles, mostly in terms of prediction
reliability and discrimination ability. In other words, it determines the quality and the variety of produced ensembles with regard
to the true distribution of different future scenarios. Here, the DEUCE prediction is represented by the post-processed ensemble
y°". Probabilistic baseline models used are STEPS (Bowler et al., 2006; Seed et al., 2013) and LINDA-P (Pulkkinen et al.,
2021). The description and configuration of those models are given in Sect. A2.

The probabilistic performance metrics used are the Continuous Ranked Probability score (CRPS) (Hersbach, 2000; Wilks,
2011), which generalizes the Mean Absolute Error of deterministic forecasts to probability distributions, and is calculated
for lead times until 60 minutes. Next, the Receiver Operating Characteristic (ROC) curve (Mason, 1982; Wilks, 2011) along
with the area under it (AUC) quantify the discriminative power of the ensembles for predicting reflectivity values exceeding a
certain threshold. ROC AUC is computed for reflectivity thresholds of 20, 25, 35, and 45 dBZ at lead times of 5, 15, 30, and 60

minutes. For measuring forecast reliability and sharpness, we used the reliability diagram along with its sharpness histogram
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(Wilks, 2011) as well as the Expected Calibration Error (ECE) score (Naeini et al., 2015), which we all-computed for the
same threshold and lead times as ROC curves. Finally, rank histograms (Wilks, 2011) were calculated for measuring the bias
and spread of ensembles at lead times of 5, 15, 30, and 60 minutes. A detailed description of these metrics along with the

configurations used is found in Sect. A3.
3.3.4 Deterministic performance verification

Deterministic verification serves to assess whether DEUCE ensemble means are useful themselves. It also gives insight into
many interesting aspects of predictions, such as systematic biases and the possible loss of small-scale variability. Here, the
DEUCE prediction is represented by the ensemble mean gy,e,,. Deterministic baselines used are an extrapolation nowcast and
LINDA-D (Pulkkinen et al., 2021). The description and configuration of those models is again described in Sect. A2.

Three deterministic metrics are used to assess DEUCE ensemble means. The first is the Mean Error (ME) (Wilks, 2011),
measuring the bias of nowcasts produced. The Equitable Threat Score (ETS) (Hogan et al., 2010; Wilks, 2011) then provides
an estimate of the deterministic skill in forecasting preeipitation-reflectivity above a certain intensity threshold. It is calculated
for lead times up to 60 minutes and thresholds of 20, 25, 35, and 45 dBZ. Finally, the Radially-Averaged Power Spectral
Density (RAPSD) (Ruzanski and Chandrasekar, 2011; Ulichney, 1988) measures how well the power spectrum of preeipitation
reflectivity is maintained. It is summarized with a relative MAE score. We compute RAPSD for prediction lead times of 5, 15,
30, and 60 minutes. RAPSD is also calculated for individual §°* members to analyse the possible contribution of the spatially
correlated noise to maintaining the power spectrum. A detailed description of these metrics along with the configurations used

is found in Sect. A4.

4 Results

The results of the quantitative and qualitative analyses of model performance and fitness to the task indicate that DEUCE
succeeds in its primary task of providing reasonably reliable probabilistic precipitation nowcasts, but not in that of producing
skillful deterministic nowcasts. This is illustrated by the summary of quantitative verification results is provided in Table
2. These results will then be elaborated in detail and presented as figures in the following four subsections. Starting by the
qualitative case study results in Sect. 4.1, we then present the composition of the uncertainty in Sect. 4.2, before continuing
with the probabilistic performance metric results in Sect. 4.3, and finally presenting the deterministic performance metric

results in Sect. 4.4.
4.1 Case StudyStudies

The results of the first case study in Fig. 6, 7, and 8 suggest that DEUCE ensemble nowcasts are able to give reasonable

uncertainty and exeeedenee-exceedance probability estimates at multiple thresholds and lead times, and that DEUCE nowcasts

look similar to those given by STEPS, albeit being less grainy. The results of the second case study are detailed in Sect. B.
Figure C1 shows an example of what individual ensemble members look like at different prediction lead times for the first

16



400

405

410

Probabilistic models Deterministic models

DEUCE (ours) STEPS LINDA-P DEUCE mean (ours) Extrapolation LINDA-D

CRPS | 1.29 1.27 1.43 AME | 1.31(-) 0.35(-) 0.53 (+)
ECE 20 (x10%)] 6.88 9.45 13.36 ETS 20 1 0.442 0.435 0.454
ECE 25 (x10%) ] 5.36 6.64 8.44 ETS 251 0.299 0.341 0.371
ECE 35 (x10%) | 1.97 1.13 2.04 ETS 351 0.047 0.134 0.162
ECE 45 (x10% | - - - ETS 45 1 0.006 0.049 0.056
ROC AUC 20 1 0.968 0.957 0.943 RAPSD rel. MAE 5 | 0.55 0.08 0.39

ROC AUC 25 1 0.960 0.938 0.926 RAPSDrel. MAE 15| 0.74 0.08 0.52

ROC AUC 35 1 0.885 0.784 0.840 RAPSD rel. MAE30| 0.84 0.07 0.58

ROC AUC 45 1 0.706 0.610 0.689 RAPSD rel. MAE 60|  0.90 0.11 0.65

Table 2. Quantitative verification metrics summarized. 1 indicates that a higher score is better, while | indicates that a lower score is better.
The best score amongst models is marked using a bold font. ECE scores indicate the Expected Calibration Error, an aggregate measure of
reliability. AME stands for Absolute Mean Error and RAPSD rel. MAE score summary values indicate the relative Mean Absolute Error
between the PSD of observation and predictions. For AME, the sign of the mean error is reported in parentheses. Scores are averaged over
lead times for which they were calculated, except for RAPSD rel. MAE scores, in which they are averaged over frequencies. Numerical
values in ECE, ROC AUC, and ETS score names indicate dBZ threshold values, and in RAPSD lead time in minutes. ECE 45 results are

omitted because results are not comparable for cause of missing data in some of the bins of the DEUCE reliability diagrams.

case. The predictions all start quite similar, but they eventually diverge, driven by the increasing predictive uncertainty and
different patterns of correlated noise. The ensemble members exhibit variety while preserving a moderate amount of realism,

nevertheless limited by the increasing smoothing of the predictive mean and variance fields with lead time.
4.1.1 Ensemble mean and breadth

Ensemble mean and breadth as units of standard deviation is shown inFigurefor the first case in Fig. 6. Here, we can see in
all models a trend towards a loss of predicted reflectivity intensity and a disappearance of heavily localized echoes. However,
these are in all models compensated by an increase in the spatial extent and the magnitude of the ensemble standard deviation.
In LINDA-P, the effect of predicting in rain rate units (mmh~1!) is seen as the uncertainty of cell borders emphasized. LINDA-P
also generally exhibits smaller and more uniform standard deviation than the other models. For a one hour lead time, DEUCE
seems to have a generally an ensemble breadth a bit smaller than STEPS but higher than LINDA-P, with the most heterogeneity

in standard deviation values.
4.1.2 Reflectivity exceedance probabilities
Reflectivity probabilities of exceeding 25 dBZ for-the-case-predicted by the different models for the first case are shown in Fig.

7. Overall, DEUCE seems to provide balanced exceedance probabilities, not missing any significant areas even after one hour,
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Figure 6. Ensembte-The first case study ensemble means and breadths of DEUCE compared against STEPS and LINDA-P model predictions
and observations for multiple lead times. The area covers southern Finland, starting at 15:00:00 UTC on the 9 July 2022. The rows represent
lead time and columns different instances of observations, model mean and standard deviations. Missing values are indicated by a dark gray

color.

but not covering excessively large areas. Comparatively, STEPS tends to completely miss some significant portions such as in
the area highlighted in the south-west of Finland at one hour, and generally seems to predict eventually smaller probabilities for
the evolution of smaller cells. LINDA-P on the other hand suffers from overconfidence and misplaces the evolution of multiple
precipitation areas after one hour. On a general level for all models compared, the advection field is well captured, while the
growth and decay of echoes is often not very effectively forecast. The anisotropic structure of the uncertainty shown through
exceedance probabilities is also much better captured by DEUCE and LINDA-P than STEPS. In addition, because it is not
based on the extrapolation of radar echoes, there are no "dead zones" filled with NaN values (dark gray color) and DEUCE
is able to provide nowcasts to varying success in border regions where STEPS and LINDA-P predictions are not necessarily
defined.

Lastly, The exceedance probabilities of DEUCE nowcasts for 15, 25, 35, and 45 dBZ reflectivity thresholds for the present
first case are shown in Fig. 8. We can see that DEUCE is able to nowcast an exceedance probability at all thresholds (which are
indeed all exceeded at some place and point in the observations). Higher thresholds exhibit lower values and some misplace-

ment of exceedance probabilities, as precipitation exceeding those are more difficult to predict and have smaller areas.
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Figure 7. Reflectivity-The first case study reflectivity exceedance probabilities of 25 dBZ for DEUCE against STEPS and LINDA-P model
predictions and observations for multiple lead times. The area covers southern Finland, starting at 15:00:00 UTC on 9 July 2022. The rows
represent lead time. In the leftmost column, actual threshold-exceeding precipitation is-echoes are shown in colors, with non-exceeding
preeipitation-echoes additionally shown faintly in light gray in the background. In other columns, threshold exceeding precipitation is-echoes
are again shown overlayed with exceedance probabilities of models in shades of red. Missing values are indicated by a dark gray color. The

circles labeled 1 highlight a case of DEUCE model improvement over baselines.

4.2 Analysis of the aleatoric and epistemic uncertainty dichotomy

The relative contribution of aleatoric and epistemic uncertainty for the ease-outlined-previousky-first case study is presented in
Fig. 9. We can see that most of the predictive uncertainty in fact comes from the aleatoric part. Epistemic uncertainty is of much
smaller magnitude, and its contribution is further reduced when working in terms of variance in the calculation of predictive
uncertainty. We can see that epistemic uncertainty does not extend as much away from the core of predicted reflectivity as
aleatoric uncertainty, which reflects a small variance in the raw ¢ ensemble.

A more detailed view into the contribution of aleatoric and epistemic components is provided in Fig. 10, with statistics over
the whole verification dataset. A histogram of the uncertainties aggregated over all lead times and observed reflectivity values
is shown on the left of Fig. 10. Epistemic uncertainty has a very narrow distribution mostly between 0—5 dBZ, which means
that its average value could not have varied much in different cases, lead times, and observed reflectivity values, pointing to

small model uncertainty response to these factors. Aleatoric uncertainty on the other hand has a long-tail distribution, centered
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Figure 8. Refleetivity-The first case study reflectivity exceedance probabilities of DEUCE against observations for multiple lead times and
preeipitation-intensity-reflectivity thresholds. The area covers southern Finland, starting at 15:00:00 UTC on 9 July 2022. The rows represent
lead time. The leftmost column is observations, and the rest are exceedance probabilities at different thresholds. As in Fig. 7, observations

exceeding the threshold in question are plotted in shades of gray, overlayed with probabilities in shades of red.

around 10 dBZ, but going up until values over 30 dBZ, which keeps-open-the-possibility-for-means that we cannot exclude a
dependence on these external factors.

The-suspietons-Such dependencies are confirmed when inspecting the bar plots on the right of of Fig. 10, where mean
aleatoric uncertainty shows a clear dependence on prediction lead time and to some degree on observed reflectivity. Aleatoric
uncertainty seems to clearly increase with lead time and to first slightly decrease, before increasing again in relation to observed
reflectivity. One possible explanation to-for this last observation is that reflectivity values below 20 dBZ often correspond to
the edges of precipitation cells, which are difficult to predict, and that reflectivity values over 35 dBZ often correspond to
heavy precipitation with short lifetime and thus bad predictability. In between those, there is more predictable precipitation
patterns, such as the interior of stratiform precipitation cells. Epistemic uncertainty on the other hand does not seem to show
any particular dependence on prediction lead time, which might have to do with the fact that the model predicts all lead times
at once, making it possibly more difficult for the predictions to vary depending on lead time. There is on the other hand seme
very-a slight increase of epistemic uncertainty with observed reflectivity, which might be an accurate reflection of the relatively

smaller amount of training data available for high observed reflectivity values.
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Figure 9. Composition of the predictive uncertainty for the first case study. The area covers southern Finland, starting at 15:00:00 UTC on
9 July 2022. The rows represent lead time and columns observations (ground truth), the mean prediction, aleatoric and epistemic standard

deviation components, and the combined predictive standard deviation.

4.3 Probabilistic skill verification

The reliability diagrams and sharpness histograms for probabilistic nowcasts are depicted in Fig. 11. It can first be noted that
in general, DEUCE nowcasts are very close to the dashed black line indicating a perfectly reliable forecast. Sometimes, this is
to a similar degree as baseline models, but in some cases, such as a long lead time and a high threshold, DEUCE is closer to
the diagonal than baselines. This is however not reflected in the ECE scores at 35 dBZ, shown in Table 2, as smaller forecast
probabilities are weighted much higher due to their sample count here, making STEPS the most reliable model at 35 dBZ
by this metric. An important pattern is that compared to baseline models, DEUCE is prone to slight under-forecasting of the
exceedance probabilities. This is particularly the case for a short lead time (5 min), where the effect is the most pronounced.
As lead times grow longer and thresholds get higher, nowcasting gets harder and there is an overall tendency in all models, but
particularly LINDA-P, to over-forecast threshold exceedance.

From the sharpness histogram, it is seen that the distribution of forecast probabilities is more or less uniform at low thresh-
olds, but more biased towards small exceedance probabilities at higher thresholds. These higher thresholds are where the
difference between DEUCE and baselines are visible, there being a considerably lower number of cases of high forecast prob-
ability in DEUCE than in baselines.
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Figure 10. Visualization of the statistics on the composition of predictive uncertainty over the verification dataset. On the left, a histogram
of aleatoric and epistemic standard deviation (SD) aggregated over all lead times and observed reflectivity values is shown. On the right, we
arrange the same data into bar plots to show the relationship of the type of the uncertainty SD with prediction lead time (top) and observed

ground truth radar reflectivity (bottom).

The rank histogram of nowcasts is shown in Figure-Fig. 12. It is apparent here that DEUCE is constantly slightly biased
towards predicting too low reflectivity values, and that the spread is large at short lead times, but less significant later on.
STEPS exhibits a very balanced flat histogram, but LINDA on the other hand has a U-shaped histogram, characteristic of a too
small ensemble breadth in general.

The results for the ROC area under the curve probabilistic nowcast metric are shown in Fig. 13. In this benchmark DEUCE
achieves the best results at all thresholds. We can notice that STEPS has good discriminative power at low thresholds but that it
does not scale well to higher ones, and that LINDA-P is not competitive at lower thresholds but excels as the threshold grows.
Nevertheless, DEUCE manages to perform better than both in their skillful areas.

Lastly, the CRPS verification metric is depicted in Fig. 14. It can be seen that the lowest and best score is achieved by STEPS
at all lead times. DEUCE comes then second, slightly above STEPS, and LINDA-P lags far behind. Overall with CRPS, it can
be seen that DEUCE achieves adequate results in the order of baseline models.

From the quantitative probabilistic verification, it can be summarized that DEUCE achieves satisfactory and well-rounded
performance. The model does not significantly lack in any category in particular, and offers a good trade-off between forecast

reliability and discriminatory power.
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Figure 11. The reliability diagrams and sharpness histograms for DEUCE (yellow), STEPS (blue), and LINDA-P (red) model nowcasts at

exceedance probability thresholds of 20, 25, 35, and 45 dBZ at lead times of 5, 15, 30, and 60 minutes. Rows indicate lead time and columns

the exceedance probability threshold. The diagonal dashed black lines indicate perfect reliability.
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The Mean Error (ME) score for non-augmented ensemble mean predictions of DEUCE (yellow) against deterministic baseline extrapolation

(green) and LINDA-D (red) nowcasts is shown on the right.

4.4 Deterministic skill verification

Here, we analyse the results of the comparison of the deterministic nowcast skill between DEUCE non-augmented mean
predictions gy,e.n, and baseline predictions. First off, a depiction of the mean nowcasting error (ME) until a 60 minute lead time
is presented in Fig. 14. While extrapolation nowcasts have on average a ME slightly below zero, DEUCE is more strongly
negatively biased, while LINDA-D is strongly positively biased.

Further, the equivalent threat score (ETS) results for preeipitationreflectivity thresholds of 20, 25, and 35 dBZ are shown in
Fig. 15. The ETS score of DEUCE is competitive for the 20 dBZ threshold, but at 25 dBZ its progression at lead times longer
than 30 minutes is already worse than baselines. At 35 and 45 dBZ, DEUCE already performs worse than baselines at any lead
time examined. The reason for this weakness is the compound effect of intrinsic CNN prediction smoothing and the averaging
of ensemble members. This smoothing effect is also visible in the Radially-averaged power spectral density (RAPSD) results
for nowcasts, presented in Fig. 16. Average RAPSD is computed for nowcasts at lead times of 5, 15, 30, and 60 minutes. It can
clearly be seen that compared to baselines, the fields predicted by DEUCE lose more power at small spatial scales, and that

this effect is heavily amplified at longer lead times, which again illustrates the above compound effect. However, this effect
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Figure 15. Equivalent Threat Scores (ETS) as a function of lead time for non-augmented DEUCE ensemble means (yellow) compared
against those of extrapolation (green) and LINDA-D (red) deterministic baseline models for reflectivity thresholds of 20, 25, 35, and 45 dBZ
at lead times until 60 minutes. DEUCE ensemble means perform competitively for predicting precipitation-overreflectivity exceeding 20

dBZ, but see their relative performance drop at higher reflectivity thresholds.

seems to be damped by augmenting the mean prediction with uncertainty-weighted correlated noise following the structure of

the input field, especially at longer lead times.
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Figure 16. Radially averaged power spectral density (RAPSD) for non-augmented DEUCE ensemble means (yellow solid), individual
augmented DEUCE ensemble members (yellow dashed) compared against those of extrapolation (green) and LINDA-D (red) deterministic

baseline models at lead times of 5, 15, 30, and 60 minutes. The observation RAPSD is shown as a black dashed line.

5 Discussion

DEUCE probabilistic ensemble nowcasts proved to be both relatively reliable and skillful compared to STEPS and LINDA.
Nevertheless when analysing the reliability diagram, it is apparent that DEUCE is under-confident especially at short lead
times. Further inspection of rank histograms (Fig. 12)— showing the distribution of the rank of observations among ensemble
members— indicated that this under-confidence is expressed by 1) a too large ensemble spread, and 2) a slight bias towards
ensembles producing too weak estimates, as was also visible in the ensemble mean Mean Error score. The too large ensemble

spread may be a byproduct of attempting to predict the ensemble mean and aleatoric variances all at once, with the prior placed
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on weights placing a limit on the complexity of the model, in effect privileging the learning of longer lead times where the
average errors are of bigger magnitude.

We can also observe that most of the uncertainty is of aleatoric nature, and that the contribution of epistemic variance is
universally low. In addition to having trained with a large amount of data, low epistemic variance is probably related to the
variational inference mechanism, as the combination of Bayes-By-Backprop and Flipout reparametrization have been shown
to yield too small epistemic uncertainty estimates by Valdenegro-Toro and Mori (2022), when compared to MC Dropout,
Deep Ensembles, and Markov Chain Monte Carlo. Another factor that might have played a role in this is again predicting all
lead times at once, because adopting the iterative approach of RainNet (Ayzel et al., 2020) would have propagated previous
epistemic uncertainties to subsequent lead times, possibly balancing out the contributions, also allowing making predictions
for an arbitrary number of timesteps. On the other hand, abandoning the recursive prediction scheme of RainNet significantly
reduces the time complexity of computing §,02 from O(NL) to O(N) where N is the sample size and L is the number of
prediction lead times.

Contrary to the preliminary iteration of the model focusing only on modeling epistemic uncertainty (Harnist, 2022), the
current model better captures the increased spread of the predictive distribution with lead time through the aleatoric component.
An alternative model — without a separate decoder branch for ¢ and only allocating a separate output channel to it — was
not successful because the § and o2 that it learned were highly correlated, more blurry, and lacked expressivity. It is for this
reason that the two-branch version was adopted.

In DEUCE, small-scale variability is steadily lost with increasing lead time. This is a problem for the production of realistic
nowecasts, as loss of small-scale variability is synonymous to loss of information—Hewever, t#t-limiting the expressivity of the
model, However, the smoothing of radar image predictions can be justified in the case of a probabilistic model, assuming that
the variety-breadth of the ensemble is preserved despite of the loss of high frequencies. fa-This is because information will

invariably be lost with time as we attempt to predict the evolution of a chaotic system through imperfect measurements, In
the present case of DEUCE, the predictive distribution is modeled explicitly, giving us the ability to arbitrarily sample from it

so this loss of high-frequency components is not a major preblem-for-us—In-issue. For the preliminary version of the BPEUCE
model (Harnist, 2022) however, thistess-losing small-scale details had adverse effectsas-, This was because the model was

trained with homoscedastic (fixed as a hyperparameter) aleatoric uncertainty modeling, which was not taken into account when

making predictions, resulting in a too small ensemble spread —Henee;-despite-theretention-of small-scale-variationnet-being

Althoughlimited;the-of smooth predictions leading to vastly underestimated exceedance probabilities. The spatially correlated

noise scheme for sampling the predictive uncertainty may help integrate DEUCE into applications where physically plausible

ensemble members are necessary. Still, the lack of temporal correlation modeling inside of post-processed ensemble members

and the smoothing of the predictive means and variances themselves limit realism, pointing to the limits of the taken approach.

One grounded method for resolving this problem is to either implicitly or explicitly constrain the predictions to replicate the
ower spectrum of observations. Generative models such as GANSs fall into the category of implicit constraining. For example
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the DGMR model by (Ravuri et al., 2021) learns to model realistic spatial and temporal correlations by adversarially training.
the generator with two discriminators designed to discern those aspects.

We see that the issues of underforecasting at short lead times and lacking small scale variability could be linked and related
to the model training settling to underperforming local optima. Avenues to mitigate this include longer training and different
training strategies, using a bigger and more varied dataset, adapting the loss function, and improving the model itself. DEUCE
was trained with only 29 epochs, which is a relatively small number. We attempted to train for a higher number of epochs,
but this did not result in consistent improvement in model validation performance metrics. However, this behavior might
have been related to our choice of learning rate scheduling. On the other hand, it might also be worthwhile to attempt to
implement a curriculum learning strategy where easier to learn, earlier lead times would be learned first, before allowing the
network to learn to predict longer lead times. The dataset size itself may be increased by covering a variety of bounding
boxes in the composite area, and by including precipitation events from outside the summer period. The likelihood part of the
loss function may be adapted such that higher weight is given to higher reflectivity pixels. We nevertheless found this tricky.
to_get right, as experiments that we performed with weighting proportional to the inverse of the density of the reflectivity.
in_the dataset distribution failed to produce reasonable nowcasts. From the perspective of the model, underforecasting and
lack of small-scale details could be reduced by including spatial and channel (temporal for us) attention mechanisms, such
as the Convolutional Block Attention Module (CBAM) (Woo et al., 2018), which has been applied to improve (deterministic)
precipitation nowcasting performance (Trebing et al., 2021). CBAM might enable, e.g., sharper forecasts with smaller aleatoric
uncertainties at short lead times, without affecting the reliability at longer lead times.

With regard to the model development in general, some amount of hyper-parameter optimization was performed. Those
hyper-parameters related to the functional model as well as the optimizer are mainly inherited from RainNet (Ayzel et al.,
2020), and those related to variational inference mostly originate from the preliminary version of the model (Harnist, 2022).
There, the VI related parameters specifically demanded non-trivial tuning for model converge and acceptable result production,
which might limit the immediate applicability of the model in its default state. Also, the local optimality of the current hyper-
parameters is not assured. Despite of this, VI and epistemic uncertainty are not decisive factors in the model performance,
and swapping out those components is a potential way forward. Moreover, 60 minutes (12 frames) of input data and the same
length for predictions was picked without optimization in an attempt to preserve some symmetry between the network inputs
and outputs. Although there is yet no consensus on how many frames are needed, as little as four input frames have be enough
to saturate model performance in some conditions (Ravuri et al., 2021), so tuning the ratio of input to output frames could be
a viable thing to try.

Regarding the verification process, it is a pertinent question to ask whether the used baseline models were sufficient to vali-
date the performance of DEUCE. Particularly, the lack of deep learning ensemble baselines is one weakness of the performed
verification. It would have been particularly interesting to use the Deep Generative Model of Radar (DGMR) by Ravuri et al.
(2021) as a baseline, as it represents the current state-of-the-art in deep learning based precipitation nowcasting, and is capa-
ble of producing ensemble nowcasts. Unfortunately, we were not able to successfully train DGMR on our dataset using the

resources that we had allocated for the task. Other models of interest that were not included in the verification are MetNet
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by Sgnderby et al. (2020) and its successor MetNet-2 by Espeholt et al. (2022), which use, e.g., orographic and satellite data
in addition to radar data. We hope that further work will make possible the comparison of DEUCE probabilistic nowcasting
performance to other deep learning based models.

One last point of concern is in the validity of the verification metrics used. The potential issues here mostly relate to the
summarizing quantitative metrics of Table 2. Firstly, the relative RAPSD MAE metric for measuring power-spectrum fidelity
of predictions uses a tighter sampling of points towards wavelengths representing small spatial scales, which biases it to give a
higher weight to those scales. Although we are indeed mostly interested in small-scale variations, this property means that even
big discrepancies in the power of large spatial scales will be under-represented. Next, the ECE metric used to summarize the
reliability of ensemble models is very sensitive to variations in the order of magnitude of the number of samples per bin. This
behaviour is significant especially at higher exceedance thresholds, where almost all prediction probabilities are concentrated
in the smallest probability bin, giving almost no weight to even mildly successful nowcasting of rare but significant events
of high heavy precipitation probability. This means that ECE doesn’t necessarily provide a complete assessment of model

reliability in the context of probabilistic precipitation nowcasting.

6 Conclusions

We developed a probabilistic precipitation nowcasting model named DEUCE, based on a Bayesian neural network with varia-
tional inference, and featuring the combination of epistemic and aleatoric uncertainty estimates in an attempt to yield reliable
yet powerful probabilistic predictions. The model succeeded at this primary task, performing competitively against the baseline
STEPS and LINDA-P models, judged both using qualitative and quantitative evaluation.

It was found that DEUCE had issues with the representation of epistemic uncertainty, leading to most of the uncertainty
ending up appearing as aleatoric uncertainty, maybe due to the variational inference used. The aleatoric uncertainty exhibited a
clear dependence on lead time and corresponding observed reflectivity, which are factors heavily influencing the predictability.
The epistemic uncertainty on the other hand showed little dependence on these factors, with the exception of a slight increase
with observed reflectivity, which might reflect the distribution of the training data. Based on this, aleatoric and epistemic
uncertainties do indeed seem to capture complementary features of the predictive uncertainty. Finally, the ensemble means
were found to perform worse compared to extrapolation and LINDA-D baselines, showing that the model in its current state is
not useful in the deterministic case due to the excessive smoothing of predictions.

Looking into future research directions, DEUCE has a number of different facets upon which its performance could be
improved. First, the underlying U-Net could potentially be replaced by an more powerful architecture capable of modeling ex-
plicit temporal dependencies. The spatio-temporal extent could be enlarged, and additional orographic, polarimetric, or satellite
input channels could improve parts of the nowcasts. It is possible to additionally try to leverage other patterns for increasing
predictability, such as operating in Lagrangian coordinates as shown by Ritvanen et al. (2023), for increasing prediction perfor-
mance. From a probabilistic aspect, certain alternative inference methods, such as Radial Bayesian Neural Networks (Farquhar

et al., 2020) or Deep Ensembles look promising as a potential way to ease the training and improve the representation of epis-
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temic uncertainty. We could also think of directly appending the post-processing sampling with spatially correlated noise to
the neural network;, or even learning context-dependent spatiotemporal correlation structures. The sampled outputs could then
be, e.g., fed to a GAN:like discriminator module, which would drive the processed outputs to be more realistic while retaining
the uncertainty decomposition.

Regardless of its shortcomings, DEUCE is a first step in ensemble-based probabilistic precipitation nowcasting using
Bayesian neural networks. The concurrent modeling of aleatoric and epistemic uncertainties has the potential to be useful
for operational forecasters, and the model in its current state forms a strong yet relatively lightweight baseline for future

developments in deep learning based probabilistic precipitation nowcasting.

Code and data availability. The data used for the production of the results is available online (Harnist et al., 2023) at https://doi.org/10.
23728/fmi-b2share.3efcfc9080fe4871bd756c45373¢e7c11. This data includes the input data used for the training of DEUCE, prediction
generation, and observations for the verification. Pre-trained model checkpoints, the script used to gather neural network inputs into an
HDFS5 file, as well as computed metric data are also included.

The source code with instructions for the reproduction of results is available online (Harnist, 2023) at https://doi.org/10.5281/zenodo.
7961954 and on Github at https://github.com/fmidev/deuce-nowcasting. This code is used for the training and nowcast generation of DEUCE,

the production of baseline nowcasts, the computation of metrics, and the creation of figures presenting these metrics.

Appendix A: Additional technical details
Al Ground precipitation estimates from reflectivity

The formula R = (10%/10/223)'/1-53 was used in cases where an estimate of ground precipitation corresponding to lowest
level radar reflectivity composites was needed. Here R denotes precipitation estimates in mmh~" units, and z denotes radar
reflectivity in dBZ units. The parameters of the Z-R relationship employed in the formula come from the work of Leinonen et al.
(2012) and aim to estimate the amount of rainfall corresponding to radar reflectivity measurements from Finnish Meteorological

Institute polarimetric C-band radars in Finland.
A2 Baseline models

There are two deterministic baseline models: a simple extrapolation nowcast and the deterministic variant of LINDA (LINDA-
D). The extrapolation nowcast extrapolates the last input reflectivity field along a motion field calculated from the last four
elements of the input time series. In the extrapolation nowcast and all other baseline methods, we use the dense Lucas-Kanade
optical flow method with its default pySTEPS parameters for the computation of the motion field. In addition, all baseline
nowcasting methods use the semi-Lagrangian integration scheme from pySTEPS for performing the extrapolation, with cubic

interpolation and other parameters left to their default values.
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LINDA, being a more advanced extrapolation-based method capable of predicting high-intensity rainfall more accurately,
serves as a natural benchmark both in the deterministic and probabilistic cases, for the ability of the model to capture convective
rainfall evolution. LINDA predictions are made using reflectivity fields converted to rain rate using the method described in
Sect. Al, as it is required for the model to work. The LINDA models here use the last three input rain rate fields as input in
addition to the motion field. They do not use feature detection in order to reduce the prediction computation time over the
verification set to more practical durations. The ensemble-producing version of LINDA: LINDA-P is used as a probabilistic
baseline model. While LINDA-D deterministic nowcasts do not add any perturbations, LINDA-P does add them, as well as
BPS velocity perturbations with lucaskanade/ fmi+mch parameters (Pulkkinen et al., 2019). Other parameters are set to
be data specific or to their default values.

The STEPS model is used in addition to LINDA-P as a probabilistic baseline. While being a bit older and having lower
discriminative power, it is a popular method for making reliable probabilistic precipitation nowcasts to this day. STEPS is
applied to dBZ reflectivity fields, also taking in the last three input images in addition to the motion field. Field perturbations
as well as motion field perturbations are applied with the same parameters as with LINDA-P. Six cascade levels are used for

the cascade decomposition, and the precipitation threshold of 8 dBZ is given as the lowest observable precipitation intensity.
A3 Details on probabilistic verification metrics
A3.1 Continuous Ranked Probability Score (CRPS)

The CRPS generalizes the Mean Absolute Error to probability distributions by calculating the sum of the difference between

the cumulative density function (CDF) of the nowcast and the empirical CDF of observations. It is defined as

oo

CRPS(F,y) = / (F(5) — 1(y > §))%d, (A1)

—00

where § denote possible forecast values, F'(3) the forecast CDF, and 1(y > §)) the empirical CDF of observations y.
A3.2 Receiver Operating Characteristic (ROC) curve

The Receiver Operating Characteristic (ROC) curve (Mason, 1982; Wilks, 2011) quantifies the discriminative power of an
ensemble for predicting over a certain threshold, by keeping track of the False Alarm Rate (FAR), i.e.,

FP

FAR= —
FP + TN

(A2)

where the rate of false positives is indicated by FP, and the rate of true negatives is indicated by TN, against the the Probability
of Detection (POD), i.e.,

TP

POD=—
TP +FEN

(A3)

where TP is the rate of true positives and FN is the rate of false negatives. POD is regularly binned, and FAR is averaged over

those bins, making a curve, the area under which (AUC, Area Under the Curve) summarizes the overall discriminative power
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of the nowcasting method. An ROC AUC of 0.5 indicates zero skill, whereas a value of 1.0 indicates a perfect forecast. For

ROC curve computations, we use 10 bins.
A3.3 Reliability diagram

The reliability diagram (Wilks, 2011) measures the reliability of the forecast by presenting the observed relative frequencies of
dBZ threshold exceedance events against the forecast probability of those events. Having these two values strongly correlate
makes the forecast reliable. Reliability diagrams are built by dividing the forecast probabilities into bins (we choose 10),
and incrementing them with associated binary indicators of whether the event happened. Sharpness histograms represent the
number of events recorded in each forecast probability bin. They measure the relative "decisiveness" of the forecast, where a
high decisiveness is associated with a convex histogram shape. A low decisiveness on the other hand can be discerned from a

more uniform, or in the extreme case, a concave histogram shape.
A3.4 Expected Calibration Error (ECE)

The Expected Calibration Error (ECE) (Naeini et al., 2015) quantitatively summarizes the reliability of a model indicated by a

reliability diagram. It is defined as

B
1
ECE:N;nb\fb—obL (A4)

with a total of N pairs of forecast probability and observation, forecast probabilities divided into B bins, with n; observations
per bin, f, mean bin forecast probability, and o, corresponding observation frequency in the bin. ECE corresponds to the MAE

of the reliability diagram to the diagonal, weighted by the number of observations per bin.
A3.5 Rank histogram

Rank histograms (Wilks, 2011) measure the bias and spread of ensemble nowcasts. They present a histogram of the rank of the
true observed echo reflectivity among all ensemble members, where a convex histogram indicates a small spread and a concave
histogram indicates a small spread. On the other hand, a skew towards the left indicates a positive bias of predictions, and a

skew towards the right indicates a negative bias.
A4 Details on deterministic verification metrics
A4.1 Mean Error (ME)

The mean Error (ME) (Wilks, 2011) measures the bias of deterministic predictions. It is defined as

P

1 )
ME= 5> 4~ (A5)

p=1
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for images or time series of them with P pixels. This metric tells us about the mean bias of nowcasts produced. The absolute

value of ME is used to give a quantitative summary of the bias of predictions made.
A4.2 Equitable Threat Score (ETS)

The Equitable Threat Score (ETS) (Hogan et al., 2010; Wilks, 2011) is an extension of the Threat Score, also known as the
critical success index (Schaefer, 1990). ETS aims to provide an estimate of deterministic skill in forecasting precipitation above

a certain intensity threshold. This extension takes into account the effect of randomly occurring true positives. ETS is defined

as
TP — rnd
ETS =
TP +FN +FP —rnd’
(TP + FN)(TP + FP)
here rnd = A6
W e = b T EN F FP+ TN’ (AS)

where the rnd term estimates the influence of random true positives.
A4.3 Radially-Averaged Power Spectrum Density (RAPSD)

The Radially-Averaged Power Spectrum Density (RAPSD) (Ruzanski and Chandrasekar, 2011; Ulichney, 1988) measures how
well the power spectrum of precipitation is maintained, when calculated for nowcasts at different lead times. RAPSD fidelity
is summarized as

) red
E| Py - P

P (A7)

RAPSD rel. MAE = %
f=1

which is the absolute error between the observed and predicted PSD, relative to observed PSD, averaged over frequencies.
Here, F' denotes the number of frequencies of the power spectrum, P}‘SbS the power of the observed field at the f:th frequency,
and P;’red the power of the predicted field at the f:th frequency. Taking the relative values allows comparing spectral densities
on multiple scales. In the present case, PSD frequencies are sampled linearly, weighting corresponding wavelengths towards
smaller scales, effectively biasing small-scale errors to be more important. This is however not necessarily a problem, as

prediction fidelity at small scales is the most important question we seek to answer with RAPSD.
A5 Hardware and software packages used

The DEUCE model was built on PyTorch (version 1.12.1). PyTorch Lightning (version 1.7.7) was used to organize the
neural network training and prediction workflow, and the TyXe library (version 0. 0. 1) was used to turn DEUCE Bayesian,
making use of the Pyro (version 1.4 . 0) probabilistic programming language as its back-end for variational inference. The
DEUCE training and prediction were performed using the Finnish IT Center for Science (CSC) supercomputer Puhti, using
one NVIDIA V100 GPU with 32GB of VRAM, 64GB of RAM, and 10 cores from a 2.1 GHz Intel Xeon Gold 6230 CPU.
For the evaluation of the model performance, we used the pySTEPS library (version 1.6.1). It served to produce baseline

extrapolation-based model nowcasts, to calculate verification metrics, and to help with their visualization. The pySTEPS-based
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verification pipeline was run on a computational server of the Finnish Meteorological Institute, equipped with two Intel Xeon
Gold 6138 2.0 GHz CPUs with each 20 cores and two threads by core, as well as with 192GB of RAM.

Appendix B: Results of the second case stud

The results of the second case study show a similar behavior as with the first case study (Sect. 4.1), but generally lower
uncertainty values, especially on the inside of the areas containing precipitation.

Bl Ensemble mean and breadth

Ensemble mean and breadth as units of standard deviation is shown for the second case in Fig. B1. Here, we observe a generall

similar trend as with the first case (Sect. 4.1), with the difference that the ensemble breadth of STEPS is only higher than that

of DEUCE towards the center of the rainfall areas, as it tends to be similar at the outskirts of those larger areas. Among the

different models, we can also here observe the most heterogeneity and anisotropy in the predictive distribution of DEUCE.

Observations y DEUCE Yean

_ DEUCE Opreq STEPS Yimean ___ STEPS Opreq LINDA-P Yncon _ LINDA-P Opreq
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Precipitation intensity (dBZ)

Standard deviation of precipitation intensity (dBZ)

+ 60 min

10
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Figure B1. The second case study ensemble means and breadths of DEUCE compared against STEPS and LINDA-P model predictions and

observations for multiple lead times. The area covers southern Finland, starting at 16:50:00 UTC on August 17 2021. The rows represent

lead time and columns different instances of observations, model mean and standard deviations. Missing values are indicated by a dark gra

color.
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725 B2 Reflectivity exceedance probabilities

Reflectivity probabilities of exceeding 25 dBZ predicted by the different models for the second case are depicted in Fig. B2

and many of the same comments can be made as with the first case (Sect. 4.1), with DEUCE seeming to offer the best balance

between accuracy and lacking too many false positives.
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Figure B2. The second case study reflectivity exceedance probabilities of 25 dBZ for DEUCE against STEPS and LINDA-P model

redictions and observations for multiple lead times. The area covers southern Finland, starting at 16:50:00 UTC on August 17 2021. The

rows represent lead time. In the leftmost column, actual threshold-exceeding precipitation echoes are shown in colors, with non-exceedin

echoes additionally shown faintly in light gray in the background. In other columns, threshold exceeding precipitation echoes are again

shown overlayed with exceedance probabilities of models in shades of red. Missing values are indicated by a dark gray color.

For this second case study, the exceedance probabilities of DEUCE at thresholds of 15, 25, 35, and 45 dBZ are shown in

730 Fig. B3. It is here noteworthy to point that DEUCE was not able to predict the growth of a substantial new rainfall area in the

northwest of the composite, despite of the predictive uncertainty being significant there, as shown in Fig. B1, which can be

understood because the predictive means under the 8 dBZ threshold were generally closer to the minimum value of -10 dBZ.
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Figure B3. The second case study reflectivity exceedance probabilities of DEUCE against observations for multiple lead times and reflectivit

thresholds. The area covers southern Finland, starting at 16:50:00 UTC on August 17 2021. The rows represent lead time. The leftmost

column is observations, and the rest are exceedance probabilities at different thresholds. As in Fig. B2, observations exceeding the threshold

in question are plotted in shades of gray, overlayed with probabilities in shades of red.

Appendix C: Additional figures
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Figure C1. Five randomly selected examples of post-processed DEUCE ensemble members on the first case studied, whose area covers

southern Finland, starting at 15:00:00 UTC on 9 July 2022. The prediction lead times illustrated are 5, 15, 30, and 60 minutes.
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