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Abstract. Downscaling remote sensing-based Land Surface Temperature (LST) datasets is of paramount importance for 

multiple research fields including urban heating, irrigation scheduling, volcanic monitoring, to name a few. Even with the 

constant development in technology, especially improvements in spatial, temporal and spectral resolutions of satellite 

sensors, global satellites are limited to a 60-m LST datasets at best. In this study, we use the massive computation power and 10 

large dataset directory found in the Google Earth Engine (GEE) platform to design a 1-m fully-automated, open-source and 

user-friendly LST downscaling system, named High Spatial Resolution-GEE or HSR-GEE. It has the ability to downscale 

Landsat-8 LST, combined with the National Agriculture Imagery Program (NAIP) images, into 1-m HSR LSTs over the 

CONUS and at Landsat-8 overpass time. Using only red, green, blue and near infrared bands, HSR-GEE implements 

multiple machine learning approaches, including, Robust Least Square (RLS), Random Forests (RF), and Support Vector 15 

Machine (SVM), along with comparison to two commonly-known and classical methods: the disaggregation procedure for 

radiometric surface temperature (DisTrad) and thermal sharpening (TsHARP). We validate HSR-GEE outputs against 

multiple airborne thermal images over the USA. We obtained a MAE of 1.92°C, 2.53°C, 1.33°C, 3.42°C and 3.4°C for the 

RLS, RF, SVM, DisTrad and TsHARP, respectively. With RF showing visually salt and pepper effect and SVM a Land 

Cover/Use form, the RLS appears to be most suited for 1-m LST downscaling. HSR-GEE is proposed as a high-potential 20 

system aiding researchers from different backgrounds to advance their research. HSR-GEE remains the only available 1-m 

GEE-based downscaling system that is able to derive the needed high resolution LST information in a matter of seconds and 

in five different approaches (i.e., RLS, RF, SVM, DisTrad and TsHARP). The research community is invited to implement 

this dynamic system over CONUS and enhance it if deemed necessary. 

1 Introduction 25 

Approaches aiming to increase the spatial resolution of a coarse image input based on better spatial resolution auxiliary 

datasets fall under downscaling or spatial sharpening techniques (Zakšek and Oštir, 2012; Gao et al., 2012; Essa et al., 2013; 

Jian and Wen, 2017; Wang et al., 2020). Land Surface Temperature (LST) is usually computed from satellite and airborne 

measurements and remains the most widely used variable at the fine and regional scales. Another important aspect of LST is 
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its ability to spatially represent, contrary to air temperature, the studied area. LST is also known for its inherited low spatial 30 

resolution, with the best raw spatial resolution of 60-m found in Landsat-7. Fine scale LST datasets are pivotal for multiple 

research disciplines, including urban heat fluxes and configuration (e.g., Bonafoni, 2016; Xue et al., 2020; Abunnasr et al.,  

2022), urban heat island (e.g., Stathopoulou and Cartalis, 2009; Dialesandro et al., 2019), wildfire and forest health (e.g., 

Mhawej et al., 2017; Cho et al., 2018; Maiti et al., 2018), water management and governance (e.g., Mhawej et al., 2020a; 

Allam et al., 2020), and aridity and drought (e.g., Allaw et al., 2015; Faour et al., 2015; Faour et al., 2016). 35 

LST downscaling approaches can be divided into the physical and the statistical methods. In the first type, a dual band 

method (e.g., Dozier, 1981; Giglio et al., 2003) and an emissivity-based approach (e.g., Liu and Pu, 2008; Zhan et al., 2013) 

are usually used. In the second, a statistical relationship between the coarse resolution LST and the improved spatial 

resolution auxiliary datasets is established. Among the most widely used auxiliary datasets, the Fraction of Vegetation Cover 

(FVC), which is generated from the Normalized Difference Vegetation Index (NDVI), remains the most adequate (Agam et 40 

al., 2007).  

Nonetheless, using only biophysical indices, such as NDVI and FVC, does not explain all variations in LST at the sub-pixel 

level, particularly over heterogeneous and complex landscapes (Gao et al., 2012). Even when successful, implementing these 

much-sophisticated statistical-based approaches (Hutengs and Vohland, 2016) along their transferability to other regions 

other than the research study cases (Pan et al., 2018) pose major issues. To overcome these limitations, several automated 45 

algorithms were proposed in the last two decades, perhaps the most widely used are the disaggregation procedure for 

radiometric surface temperature (DisTrad) (Kustas et al., 2003), thermal sharpening (TsHARP) (Agam et al., 2007), and data 

mining sharpener (DMS) (Gao et al., 2012). 

The applied approach in each of these previous models and systems may also differ. For instance, Kustas et al. (2003) with 

their widely known DisTrad model used a least-square fit method with a Root Mean Square Error (RMSE) of 1.35°C when 50 

disaggregating 768-m pixel resolution to 192-m and a RMSE of 1.61°C between 1536-m and 192-m disaggregation. 

TsHARP, described in Agam et al. (2007), used almost identical least square fit method but where the independent variable 

is the FVC instead of the NDVI used in DisTrad. A cross-evaluation of the 60-m generated product to the original coarse 

resolution 960-m image showed a Mean Absolute Error (MAE) of 0.91°C. On the other hand, Zakšek and Oštir (2012) used 

a Principal Component Analysis (PCA) to downscale ~5-km SEVIRI spatial resolution to 1-km spatial resolution with a 55 

RMSE of 2.5°C when inter-compared to MODIS LST level 2 product. In Bechtel et al. (2012), the Minimum Redundancy 

Maximal Relevance (MRMR) and the Forward selection approaches were used to downscale geostationary LST data 2000 

times arriving at 100-m spatial resolution. The cross-evaluation to the original coarse resolution product showed a RMSE of 

2.2°C. Machine learning Random Forest (RF) ensemble method is widely used lately for downscaling LST (e.g., Hutengs 

and Vohland, 2016, Yang et al., 2017, Xu et al., 2021) with a RMSE ranging between 0.84 and 2.52°C. All these models and 60 

systems produce downscaled LST images that are suitable for studies that focus on coarse scale landscapes. On the other 

hand, when considering environmental planning at finer scales such as urban neighbourhoods or local site scale, obtaining 
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fine scale LST mapping is needed to identify features that contribute to local climate variations that impact larger 

phenomenon such as the Urban Heat Island or outdoor thermal comfort.  

Our search of the literature has not identified any specific studies that address LST downscaling with very High Spatial 65 

Resolution (HSR) satellite images at a pixel size of around 1x1 meter. Furthermore, downscaling using easily available high-

resolution images with the four visible bands (i.e., Red, Green, Blue, Near infrared (RGBN)) is non-existent in the surveyed 

literature. This has resulted in a very limited number of LST-based space borne research conducted at the district- and 

neighborhood-scales (Demuzere et al., 2014). Using only RGBN bands is particularly very attractive as it is commonly 

available in many HSR free-to-access and commercial images. This presents an opportunity to increase downscaling 70 

applications to extremely fine resolutions without the use of hyper-spectral images or band widths that are only available at 

high cost. 

In this context, this research proposes a dynamic, open-access, fully-automated and user-friendly RGBN-only LST 

downscaling approach, named HSR-GEE. It is based on Landsat-8 bands along 1-m HSR images and is hosted over the 

Google Earth Engine (GEE) platform. The selected study area includes three regions in the Continental United States 75 

(CONUS) which are also used for validation using airborne thermal images. The following sections of the paper will 

describe the datasets used and the pre-processing techniques employed, introduce the HSR-GEE system and demonstrate its 

performance in each of the five approaches (i.e., Robust Least Square (RLS), RF, Support Vector Machine (SVM), DisTrad 

and TsHARP) embedded within HSR-GEE. It will be followed by a discussion of findings and main conclusions. 

2 Materials and Methods 80 

2.1 Data Background and Pre-processing 

The study areas (Figure 1) correspond to three regions in the CONUS that include Hat Creek, California; Elkhorn, Nebraska; 

and Claryville, New York. We use high thermal infrared (TIR) images captured on December 15th, 2017 over the lower 

ElKhorn River and the adjacent urban area in Nebraska, USA (Hobza and Strauch, 2019). The final processed image is a 0.5 

by 0.5 m grid of corrected surface temperatures, already computed by Hobza and Strauch (2019). The dataset encompasses a 85 

16 Km reach of the river, from 0.64 Km upstream from USGS streamflow-gaging station number 06800500, Elkhorn River 

at Waterloo, Nebraska, to 2.9 Km downstream from USGS site number 06800800, Elkhorn River at Q St Bridge near 

Venice, Nebraska. 

We also use high-resolution aerial LST images over the Hat Creek area in California, USA captured in the morning of 

August 25th, 2018 (Curtis et al., 2018). The high-resolution airborne TIR surveys were conducted using a helicopter. The 90 

TIR images contain corrected 0.5-m surface temperatures in degrees Celsius and encompass a 64.6-km reach of Hat Creek 

that extends from 50 m upstream of the confluence with Lost Creek to 50 m downstream of the confluence with the Pit 

River. 
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In addition, we use TIR images captured between December 8th and 10th, 2019 over the river corridor encompassing two 

U.S. Geological Survey Next Generation Water Observing Systems (NGWOS) stream gage locations near Claryville, NY, 95 

USA. One site is the West Branch Neversink River at Claryville, NY (USGS station number 01434498) and the second is 

Neversink River at Claryville, NY (USGS station number 01435000) (Briggs et al., 2020). The final unmanned aviation 

system-based visible-light imagery is already calibrated 0.12 by 0.12 m grid of corrected surface temperatures. 

Concerning the satellite-based inputs, HSR images were retrieved from the 1-m National Agriculture Imagery Program 

(NAIP) with four different visible bands (RGBN). NAIP acquires images every three years since 2009 aerial imagery during 100 

the agricultural growing seasons over the CONUS. Landsat-8 satellite is the second satellite-based dataset used in this 

research and provides 30-m images of the earth surface across different wavelengths every 16 days since operational date on 

February 11, 2013. Two 100-m resolution thermal band sensors are mounted on the satellite to assess the skin temperature of 

the Earth or the LST. In this study, the 30-m USGS Landsat 8 Level 2, Collection 2, Tier 1 product is used. The atmospheric 

correction used corresponds to the Land Surface Reflectance Code (LaSRC) algorithm. These datasets are accessible and 105 

already fully processed over the GEE at https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2. 

Following the best practices for satellite-derived LST product validation described in Guillevic et al. (2018), we validate the 

HSR-GEE outputs against the Hat Creek, ElKhorn and Claryville airborne thermal infrared images. To be able to do conduct 

the validation, a normalization approach was applied as described in Pu and Bonafoni (2021) to retrieve the dTHR to 110 

compensate for the different acquisition times (Table 1) and wavelengths between the TIR and Landsat 8 products. dTHR is 

generated by subtracting the upscaled 2-time airborne LST over ElKhorn and Hat Creek and 8-time over Claryville from the 

Landsat 8 LST products, to arrive at a spatial resolution of 1-m, followed by a spatial co-registration between the two 

products from NAIP and TIR. dTHR layer, computed once for each date and over each region, was later added to the HSR-

GEE outputs. A comparison is made between these latter, where the dTHR for each date and region is now included, and the 115 

1-m TIR LST images. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) can be then computed. 

2.2 HSR-GEE System Development 

The GEE platform, which the HSR-GEE system is based on, is a planetary-scale cloud system consisting of a multi-petabyte 

analysis-ready datasets along an unparalleled computation service. It enables any interested party to effectively and promptly 

address a variety of high-impact societal issues by monitoring and understanding local climatic events. By accessing its large 120 

available datasets, GEE aims towards accelerating the sharing of knowledge and more adequate mitigation plans and 

responses (Gorelick et al., 2017). 

The following steps were automatically produced within the HSR-GEE model. First, we prepare the required input data, 

namely Landsat 8 and NAIP. We apply a simple cloud masking approach to the Landsat 8 satellite images found over the 

GEE platform based on cloud detection/quality assessment band (i.e., qa_pixel) to eliminate any pixel classified as cloud or 125 

cloud shadow. This is followed by a bandpass adjustment process to calibrate NAIP RGBN and Landsat 8 cloud-free RGBN 
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bands as suggested in Claverie et al. (2018). The bandpass adjustment is based on a linear fit relationship between the red 

band from a NAIP image and the red band from the Landsat 8 image. The same applies to the other bands. This would 

generate the required slopes and intercepts to adjust each of the NAIP’s bands to Landsat 8 bands’ values. As a result, a new 

NAIP image with updated RGBN values is created. We then compute Landsat 8 LST data by applying a scale (i.e., 130 

0.00341802) along an offset (i.e., 149) to the cloud-free Landsat 8 thermal datasets previously generated and as indicated in 

the product manual. Furthermore, we aggregate Landsat 8 LST images with a cell factor of 30 to generate Very Low Spatial 

Resolution (VLSR) LST images with a spatial resolution of 900-m. This cell factor is particularly selected as being similar to 

the ratio between NAIP and Landsat 8 spatial resolutions (i.e., 1-m NAIP vs. 30-m Landsat 8 and 30-m Landsat 8 vs. 900-m 

VLSR LST) and therefore enabling consistent transferability across different resolutions. 135 

Second, we apply five different statistical based approaches (i.e., RLS, DisTrad, TsHARP, RF and SVM) to the inputs, 

including Landsat-8 RGBN bands, Landsat-8 LST, VLSR LST and adjusted NAIP RGBN bands. The best spatial resolution 

in each of the sub-processes is used. For instance, between 30-m Landsat 8 and 900-m VLSR LST, the end product is 30-m 

where 900 pixels of Landsat 8 have acquired the same VLSR LST value in the computation process. We implement these 

regressions and machine learning approaches again over each study area and at each selected date to ensure the portability of 140 

HSR-GEE to other spatial and temporal conditions. 

The first used approach concerns the Robust Least Squares (RLS) statistical test. It is used to estimate the unknown 

parameters in the linear regression model while overcoming several limitations of the standard parametric and non-

parametric methods (Davies, 1993). Landsat 8 RGBN bands along the VLSR LST are the independent variables, whereas the 

Landsat 8 LST is the dependent variable. At the end of the test, five generated coefficients (i.e., over 30-m red, green, blue, 145 

near infrared and 900-m LST) along the interception value are generated. The standard equation is as follows: 

Y = βx +  β’x’ +  β”x” + etc. +  ɛ    Equation (1) 

Where Y is the dependent variable; β, β’, β’’ are the independent variables; x, x’, x’’ are the generated weights; and ɛ is the 

interception value. 

We then apply the five generated coefficients along the interception value to 1-m NAIP RGBN and 30-m Landsat LST, 150 

respectively. By doing so, we were able to work on the same downscaling ratio (i.e., 30 times) either between 900-m to 30-m 

and a later stage between 30-m and 1-m, thus enabling the transferability of the generated RLS outputs across different 

resolutions. This also applies to the other downscaling approaches used in this study. 

The second approach used in HSR-GEE is the Random Forests (RF) supervised machine learning algorithm. The number of 

the used decision trees is 130. RF is a nonparametric “ensemble learning” method trademarked by Leo Breiman and Adele 155 

Cutler. It combines the output of multiple decision trees to reach a single result (Chen et al., 2020), handling both 

classification and regression issues (Breiman, 2001). Its wide adoption is based on his ease of use and flexibility. 

Moreover, the Support Vector Machine (SVM) is implemented in this research. It is one of the most popular supervised 

learning algorithms which was first developed by Vapnik (1995). SVM uses classification algorithms for two-group 

classification problems, usually for small-and high-dimensional samples (Chang and Lin, 2011). 160 
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Over the two RF and SVM machine learning methods, the four Landsat 8 RGBN bands as well as the VLSR LST and the 

30-m Landsat 8 LST were used to train RF and SVM classifiers. Later, we apply these generated classifiers over the RGBN 

bands of NAIP and the 30-m Landsat 8 LST, to compute two 1-m LST images, namely the RF 1-m LST and SVM 1-m LST.  

For the sake of comparison to other commonly known models, we include both DisTrad and TsHARP in HSR-GEE. DisTrad 

was first proposed by Kustas et al. (2003). It uses an OLS approach with the NDVI as the independent variable in the 165 

equation and was developed over homogenous vegetated areas. TsHARP can be considered as an improvement over DisTrad 

(Agam et al., 2007), where the more complex FVC is used instead of the NDVI. More information on these two models can 

be found in Kustas et al. (2003) and Agam et al. (2007). 

HSR-GEE system (Figure 2) is freely available on https://bit.ly/3T4HypN, where users can select any time frame and draw 

or import a study area within CONUS. Six main products will be generated in a matter of seconds, including the original 170 

Landsat 8 LST, named L8 LST, a 1-m LST based on RLS, named HSR RLS LST, a 1-m LST based on RF, named HSR RF 

LST, a 1-m LST based on SVM, named HSR SVM LST, a 1-m LST based on DisTrad, named HSR DisTrad LST and a 1-m 

LST based on TsHarp, named HSR TsHarp LST. 

3 Results 

3.1 Validations 175 

The validation process resulted in a promising accuracy. Table 2 shows the RMSE and MAE of the HSR LST outputs, 

namely RLS, RF, SVM DisTrad and TsHARP vis-à-vis the high spatial resolution TIR airborne images in three locations. 

SVM showed the best accuracy with a RMSE of 1.68°C and a MAE of 1.33°C, followed by RLS with a RMSE of 2.24°C 

and a MAE of 1.92°C. RF appears to be underperforming with a MAE of 2.53°C but shows an improved accuracy from 

DisTrad and TsHARP with a MAE of 3.42°C and 3.4°C, respectively. The RMSE frequency distribution histogram in 180 

Figures 3 and 4 illustrate the bell-shaped distribution of values over the studied regions, confirming that the random errors in 

the statistical process for all approaches except for RF can be assumed to be drawn from a Gaussian distribution. While in 

Hat Creek and Claryville the peak of the distribution is around 0, over the ElKhorn region, high values appear to exist in the 

category of [-3, -2]. 

3.2 HSR-GEE over ElKhorn, Hat Creek and Claryville 185 

In a visual comparison to Landsat 8 LST, the best detailed downscaling approaches used in HSR-GEE appear to be RLS and 

RF (Figure 5). Between these two, RF showed LST distributions similar to salt and pepper noise. RLS, on the other hand, 

was the most conforming to the Landsat 8 LST values. SVM has instead aggregated similar LST values and they can be 

visually compared to Land Cover/Use maps. For the sake of simplicity and as DisTrad and TsHARP outputs appear to be 

similar, only TsHARP is included in Figure 5. While over Claryville TsHARP LST appears to be visually identical to the 190 
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Landsat 8 LST, it converges in ElKhorn and more in Hat Creek, with most of the LST values appear to be inversed between 

these two products. 

4 Discussion and Conclusion 

When validating with the high spatial resolution TIR airborne images, HSR-GEE showed very acceptable accuracy in 

ElKhorn, Hat Creek and Claryville regions with a MAE below 2.5°C in most cases. This is aligned with other downscaling 195 

studies, reporting an error around 3°C, even when using additional bands and indices (e.g., Bonafoni, 2016; Bonafoni et al., 

2016; Govil et al., 2019). The lowest MAE was shown using the SVM machine learning approach. As SVM-based outputs 

showed LST distribution results corresponding to the Land Cover/Use maps, the integration of the Local Climate Zone 

(LCZ), as it was suggested in previous studies particularly over urban regions (e.g., Bechtel et al., 2012; Xia et al., 2022), 

might better represent the LST distribution at a 1-m scale. In contrast to previous studies (e.g., Liu et al., 2017; Talukdar et 200 

al., 2020) that were conducted at different spatial scales, RF had least performed at the 1-m spatial scale with a noticeable 

salt and pepper effect. When the most commonly used standard DisTrad and TsHARP downscaling models were applied, the 

MAE of ~3.42°C appears to be larger than the three used approaches (e.g., RLS, RF and SVM) and worse visually. DisTrad 

and TsHARP biases appear to be aligned with the number of considered pixels in the study area (i.e., MAE of ~1, ~2.6 an 

~6.6 in areas of ~70 000, ~900 000 and ~1 300 000 pixels, respectively). As a result, these two models appear to be not 205 

designed for large and heterogeneous areas. RLS remains then the most adequate downscaling approach at the 1-m spatial 

scale, providing detailed LST layers and at a promising accuracy. Anyhow, the bell-shaped curves of the RMSE frequency 

distribution histograms for RLS and SVM assume that the observed random errors are drawn from a normal distribution, and 

Therefore, HSR-GEE can be accurately implemented over the CONUS.  

It is important to note that the peak shift found in the RLS RMSE frequency distribution histogram can be related to the 210 

usage of a Landsat 8 image a month prior to the TIR image (i.e., December 15th, 2017 for TIR vs. November 11th, 2017 for 

Landsat 8) due to unavailability of images with a shorter time gap. What was interesting though is that both RF and SVM 

have automatically accounted for this difference and their RMSE frequency distribution histograms are centred around 0. 

Few limitations appear in HSR-GEE. The most prominent would be the usage of the three-year NAIP images, where 

monthly variations could not be fully captured. In this context, it is not advised to use HSR-GEE for crop assessment at 215 

different development stages or in the case of volcanic emissions, even though the system includes an internal calibration 

process (i.e., bandpass adjustment) to convert NAIP bands into real time Landsat 8 bands. Another limitation is the 

restriction of HSR-GEE over CONUS only, as NAIP is only available over that region. Still, future studies can attempt to 

implement HSR-GEE over multiple regions across the Globe when offline or cloud-based HSR images are available. 

Anyhow, the proposed HSR-GEE sets a novel direction in LST downscaling based on HSR RGBN images only. This system 220 

is simple, easy-to-use, freely-available, and automatically implementing five different downscaling approaches over the GEE 

platform. The HSR-GEE system is much needed as the LST parameter is considered in many studies and applications related 
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to the environment, agriculture, and cities. To our knowledge, the HSR-GEE system is the first to downscale LST values to a 

1-m spatial resolution, using only RGBN bands from HSR images. Furthermore, the usage of a minimal number of bands is 

a great asset since commercial HSR images come with a limited number of bands and in some cases the addition of bands to 225 

images would increase the cost of these images extravagantly. This algorithm will benefit researchers from different 

disciplines to conduct further applications and analysis at the city block and neighbourhood scales, but also to improve the 

understanding of LST value distribution at the 1-m scale. 

5 Computer code availability 

Name: HSR-GEE 230 

Developer: Mario Mhawej, Yaser Abunnasr 

E-mail: mm278@aub.edu.lb 

Year first available: 2022 

hardware required: GPU 

software required: none 235 

program language: JavaScript 

Source code: https://bit.ly/3T4HypN; https://code.earthengine.google.com/e5dd5f5f5265028e136928f10d07b114 

6 Author contribution 

Yaser Abunnasr: Conceptualization, Methodology, Analysis, Writing. Mario Mhawej: Conceptualization, Methodology, 

Data acquisition, Implementation, Analysis, Writing. 240 
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Figure 1: Location of the studied regions, including from left to right, (a) Hat Creek, (b) ElKhorn and (c) Claryville. 
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Figure 2: A snapshot of the HSR-GEE system showing the 1-m RLS LST product. 

 

 

Figure 3: A RMSE frequency distribution histogram showing the relationship between the 1-m LST products (i.e., RLS, RF, SVM, 370 
DisTrad and TsHARP) and the respective thermal images after applying the dT factor over the two study regions (Site 1: 

ElKhorn; Site 2: Hat Creek; n≈2 200 000). 
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Figure 4: A RSME frequency distribution histogram showing the relationship between the 1-m LST products (i.e., RLS, RF, SVM, 375 
DisTrad and TsHARP) and the respective thermal images after applying the dT factor over Claryville (n≈70 000). 

 

0

5000

10000

15000

20000

25000

30000

35000

[-6 - -5][-5 - -4][-4 - -3][-3 - -2][-2 - -1] [-1 - 0] [0 - 1] [1 - 2] [2 - 3] [3 - 4] [4 - 5] [5 - 6]

F
R

E
Q

U
E

N
C

Y

RMSE (°C)

Claryville RLS Claryville RF Claryville SVM Claryville DisTrad Claryville TsHARP

https://doi.org/10.5194/egusphere-2023-11
Preprint. Discussion started: 13 March 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

 

 

Figure 5: A comparison between Landsat 8 LST and HSR-GEE outputs (i.e., RLS, RF, SVM and TsHARP LSTs) over ElKhorn, 

Hat Creek and Claryville on 1:20 000 (top) and 1:2 000 (bottom) scales (Satellite images source from © Google Earth) 380 
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Table 1: Airborne TIR and Landsat 8 satellite images overpass time used for validations over ElKhorn, Hat Creek and Claryville. 

Location TIR overpass time Landsat 8 overpass time 

ElKhorn December 15th, 2017 November 11th, 2017 

Hat Creek August 25th, 2018 August 27th, 2018 

Claryville December 8th and 10th, 2019 October 11th, 2019 

 

Table 2: RMSE and MAE between the 1-m LST products (i.e., RLS, RF, SVM, DisTrad and TsHARP) and the respective thermal 

images after applying the dT factor over the three study regions. 385 

     RLS RF SVM DisTrad TsHARP 

Site Date 
Sample Size RMSE 

(°C) 

MAE 

(°C) 

RMSE 

(°C) 

MAE 

(°C) 

RMSE 

(°C) 

MAE 

(°C) 

MAE 

(°C) 

MAE 

(°C) 

ElKhorn 12/15/2017 ~900 000 2.65 2.53 1.71 1.41 1.26 1.04 2.62 2.6 

Hat Creek 8/25/2018 ~1 300 000 2.74 2.12 4.82 3.99 2.64 2.06 6.64 6.59 

Claryville 10/10/2019 ~70 000 1.33 1.1 2.49 2.18 1.15 0.89 1.02 1.01 

Average   2.24 1.92 3.01 2.53 1.68 1.33 3.42 3.4 
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