

1	The impact of coral reef ecosystems and upwelling events on the marine carbon
2	dynamics of Southern Taiwan
3	
4	Pei-Jie Meng ^{1-2*} , Chia-Ming Chang ¹ , Hung-Yen Hsieh ¹⁻² , Anderson B. Mayfield ²⁻³ ,
5	Chung-Chi Chen ^{4,1} *
6	
7	¹ Graduate Institute of Marine Biology, National Dong Hwa University, Checheng,
8	Pingtung 944, Taiwan
9	
10	² National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944,
11	laiwan
12	
13	³ Coral Reef Diagnostics, Miami, FL 33129, USA
14	4
15	⁴ Department of Life Science, National Taiwan Normal University
16	88, Sec. 4, Ting-Chou Road
17	Taipei 11677, Taiwan
18	
19	
20	
21	
22	
23	
24	
25	Running title: <i>p</i> CO ₂ in a coral reef ecosystem
26	* Corresponding authors: pjmeng@nmmba.gov.tw; ccchen@ntnu.edu.tw
27	Email: ccchen@ntnu.edu.tw
28	Phone: 886-2-2930-2275
29	Fax #: 886-2-2931-2904
30	

31	ABSTRACT
32	The ocean is the largest carbon reservoir and plays a crucial role in regulating
33	atmospheric CO ₂ levels, especially in the face of climate change. In coral reef
34	ecosystems, the complexity and importance of the carbonate system must be better
35	appreciated as atmospheric CO ₂ concentrations continue to rise. This study measured
36	pCO ₂ over space and time in Nanwan Bay, a coral reef ecosystem in Southern
37	Taiwan, to identify factors that influence its variation. The results showed that mean
38	pCO ₂ values varied seasonally, with values of 394, 406, 399, and 367 µatm in spring,
39	summer, fall, and winter, respectively. These seasonal mean differences ($\Delta p CO_2$)
40	relative to atmospheric pCO_2 (397, 392, 392, & 396, respectively) were -3, 14, 7, and
41	-29 μ atm, respectively. These findings suggest that the Nanwan Bay coral reef
42	ecosystem acts as a sink for atmospheric CO_2 during the spring and winter, with an
43	average sea-air gas flux of -1 gC m ⁻² year ⁻¹ and a net annual uptake of -29 tC. The
44	carbonate system parameters of the surface water in this high-biodiversity sub-tropical
45	marine ecosystem were influenced not only by seasonal temperature variation but also
46	by vertical mixing, intermittent upwelling, and biological effects.
47	

48 Keywords: carbon sink, carbon source, coral reef, *p*CO₂, total alkalinity, upwelling

50	1. Introduction
51	The concentration of atmospheric carbon dioxide (CO ₂) varies significantly
52	based on region and season. High-latitude temperate regions and coastal seas act as
53	sinks for atmospheric CO2, while subtropical and tropical coastal seas, estuaries, and
54	coral reefs are generally sources (Borges et al., 2005; Cai et al., 2003; Frankignoulle
55	et al., 1998; Frankignoulle et al., 1996; Gattuso et al., 1997; Gattuso et al., 1993; Ito et
56	al., 2005; Ohde and Van Woesik, 1999; Wang and Cai, 2004; Yan et al., 2011; Bates et
57	al., 2001). The hydrological characteristics of coastal waters can vary significantly,
58	leading to differences in surface water pCO_2 even within the same continental shelf.
59	Furthermore, upwelling areas (such as California & Oman) are sinks for CO ₂ , while
60	the coasts of Galicia and Oregon are sources (Borges and Frankignoulle, 2002;
61	Friederich et al., 2002; Goyet et al., 1998; Hales et al., 2005). Borges (2005) notes
62	that when estuaries are included in the gas exchange process, coastal seas worldwide
63	are sources of CO ₂ , becoming sinks when estuaries are excluded.
64	Various factors, such as temperature, tides, currents, river discharge, upwelling,
65	vertical mixing, and biological metabolism, can influence CO ₂ levels in coastal areas
66	(e.g., Dai et al., 2009). These factors can interact and help explain why seasonal
67	variation in CO ₂ levels can differ greatly across regions. For instance, measurements
68	taken at the Bermuda Atlantic Time-series station in the northwest Atlantic from 1996

73

- 69 to 1998 showed that CO₂ levels were lowest in winter and highest in summer
- 70 (Takahashi et al., 2002). Similarly, data collected from the Kyodo Western North
- 71 Pacific Ocean Time-series station between 1998 and 2000 indicated that CO₂ levels

72 were lower in summer compared to winter (Takahashi et al., 2002).

Fig. 1 Map of sampling stations in Nanwan Bay, Taiwan. The color bar indicates the
 bottom depth (m). The blue arrow in the upper right inset shows the sampling
 region.

Coral reefs, despite occupying only 0.2% of the ocean, are home to a significant
portion of marine biodiversity, housing one-third of all marine species (Sheppard et
al., 2017; Reaka-Kudla, 1997). These productive ecosystems boast efficient and stable
carbonate sedimentation rates, contributing to 23-26% of global annual CaCO₃

81 sedimentation (Suzuki and Kawahata, 2004). However, coral reefs are highly

82	vulnerable to the effects of climate change and anthropogenic pollution, which can
83	significantly impact the organisms responsible for building the reef structure
84	(Bellwood et al., 2004; Hughes et al., 2017; Chen, 2021). Due to the structural
85	complexity and high biodiversity of coral reefs, their carbon dynamics may differ
86	substantially from those of the open ocean. Currently, it is unclear whether coral reef
87	ecosystems act as net carbon sources (Ware et al., 1992; Gattuso et al., 1993; Gattuso
88	et al., 1999; Fagan and Mackenzie, 2007; Lønborg et al., 2019; Yan et al., 2018;
89	Watanabe and Nakamura, 2019; Frankignoulle et al., 1998) or sinks (Kayanne et al.,
90	1995; Mayer et al., 2018; Suzuki, 1998; Suzuki and Kawahata, 2004). Additionally,
91	since environmental changes can result in physiological changes in resident organisms
92	(Fabry et al., 2008), it is challenging to predict how seawater carbon levels will
93	change in response to oceanographic anomalies.
94	Semi-enclosed Nanwan Bay is situated at the southernmost point of Taiwan,
95	(Fig. 1). It is flanked by the Pacific Ocean to the east and the Taiwan Strait to the
96	west, and faces the Luzon Strait to the south and the South China Sea (SCS) to the
97	southwest (Lee, 1999). The bay stretches between Cape Moubitou and Cape Oluanpi
98	and boasts a coastline primarily consisting of fringing coral reefs (Yang and Dai,
99	1980). Nanwan Bay is among the most diverse marine regions in Taiwan, which led to
100	its inclusion within Kenting National Park (Meng et al., 2008). The complex seabed in

101	Nanwan Bay comprises various habitats and is the first point of contact for the warm
102	and highly saline Kuroshio Current. The water is oligotrophic, and temperatures
103	typically range from 21 to 30°C, but with periodic upwelling events occurring (Chen
104	et al., 2005). The bay hosts over 1,200 fish species and more than 200 species of reef-
105	building corals, making it a significant research focus area for both the reefs and the
106	anthropogenic stressor regime (Meng et al., 2007). Studies have shown that high
107	levels of nutrients and suspended solids may have contributed to the decline in coral
108	cover between 2001 and 2022 (Meng et al., 2008; Chen et al., 2022).
109	In previous studies of Nanwan Bay, periodic upwelling caused mixing of upper
110	and lower seawater layers, which contributed significantly to the transfer of nutrients
111	from the depths to shallower areas (Chen et al., 2005). In some upwelling areas, CO_2
112	may be released into the atmosphere, while in others, $\rm CO_2$ enters the ocean from the
113	atmosphere. Basic productivity in marine ecosystems has a potential impact on carbon
114	cycling (Dugdale and Wilkerson, 1989; Murray et al., 1995), and upwelling brings
115	nutrients into the photic zone, thereby stimulating the proliferation of phytoplankton
116	and enhancing basic productivity. As a result, there is also an increased demand for
117	carbon for CO ₂ fixation at these times (Chen et al., 2004b). The average ratio of
118	primary production to community respiration (P/R ratio) is often used to determine
119	whether a marine system is a source or sink of CO_2 in the atmosphere (where $P/R < 1$

120	indicates a source, & P/R>1 indicates a sink; Smith and Hollibaugh, 1993; Robinson
121	et al., 2002). We sought herein to determine whether Nanwan Bay is a net carbon
122	source or sink by characterizing the marine carbonate system over time and under a
123	range of biogeochemical processes.
124	2. Methods
125	2.1 Sampling and analysis The study was conducted across four seasons: spring
126	(31 March 2011), summer (5 July 2011), autumn (20 October 2011), and winter (22
127	January 2013), in the area between Nanwan Bay's two capes, Cape Moubitou and
128	Cape Oluanpi. A total of 17 seawater sampling stations were established, including
129	one near the outlet of a nuclear power plant (Fig. 1). Temperature and salinity data,
130	both with accuracy of 99.9%, were collected using an Idronaut Ocean Seven 304 CTD
131	calibrated against an International Association for the Physical Sciences of the Ocean
132	seawater standard. Water samples were collected using Niskin bottles with Teflon-
133	coated inner walls. Seawater at each station was taken at two to five depths at
134	intervals of 3 to 25 m in areas shallower than 50 m; extra samples at 65, 80 and/or 100
135	m were taken for stations with depths of 65-100 m. Water samples were immediately
136	analyzed for dissolved oxygen (DO) content using YSI 52 and YSI 5905 BOD
137	electrodes (accuracy=99.9%). Other water samples were divided into different sample
138	bottles for additional analyses. One 300-mL amber bottle was pre-inoculated with 0.2

- 139 mL of mercuric chloride to suppress biological activity that could affect total
- 140 alkalinity (TA) and other carbonate system parameters.
- 141 Seawater pH and total TA were measured using an automated titration system
- 142 consisting of a Mettler-Toledo DL53 with a DG-111 electrode. Prior to measurement,
- 143 the electrode was calibrated using Merck standard buffer solution (NIST) at 25°C.
- 144 The calibration ranges for pH 4, 7, and 10 were set to fall within the range of 176±30
- 145 mV, 0±30 mV, and -176±30 mV, respectively (calibration slope of -56 to -59).
- 146 Measured values were expressed on the NBS scale (pH_{NBS}). The electrode was also
- 147 calibrated using Tris-artificial seawater buffered at pH 8.083 and AMP artificial
- seawater buffered at pH 6.776, with measured values given on the total scale (pH_{tot}).
- 149 For TA measurements, 40 g of seawater were titrated with 0.1 N HCl at 25°C.
- 150 Titration continued until the pH exceeded the end point (~pH 4.4), and then continued
- 151 until ~pH 3.0, with the potential change and titration volume recorded. The consumed
- 152 volume of HCl was calculated using the Gran (1952) function based on the linear
- 153 relationship between titration volume and pH, and TA was obtained by plotting the
- 154 consumed volume of HCl. The reference material for experimental quality control
- 155 was obtained from Professor Andrew Dickson (Scripps Institute of Oceanography,
- 156 USA), and the pH of the reference material was calculated by entering dissolved
- 157 inorganic carbon (DIC) and TA data into CO₂SYS (Lewis and Wallace, 1998).

158	The pH_{NBS} measurement accuracy in this study was ± 0.01 units, the pH_{tot}
159	accuracy was ± 0.009 units, and the TA accuracy was $\pm 2.7~\mu mol~kg^{\text{-1}}$
160	(precision=0.12%). pCO_2 was also calculated with CO ₂ SYS from measured pH and
161	TA. The dissociation constants of carbonic acid used were the revised K1 and K2
162	values from Mehrbach et al. (1973) and Dickson and Millero (1987).
163	2.2 Calculation of the exchange flux of CO ₂ between the ocean and the
164	atmosphere The formula for calculating the exchange flux of CO ₂ between the ocean
165	and the atmosphere was as follows:
166	$F_{GAS} = k \times K_H \times (pCO_2 \text{seawater} - pCO_2 \text{air})$
167	where k is the gas exchange rate of CO_2 (air-sea gas transfer rate), which was
168	obtained from an empirical formula based on wind speed proposed by Wanninkhof
169	(1992): k=0.31 × u 2 × ($Sc/660$)-0.5, where u is wind speed 10 m above sea level (in
170	m/s; data from the Central Weather Bureau's Oceanic Center-Erluanbi buoy); Sc
171	(Schmidt number) is a function of temperature, which can be obtained from the <i>in situ</i>
172	sea surface temperature (T) as follows:
173	$Sc = 2073.1 - 125.62 \times T + 3.6276 \times T2 - 0.043219 \times T3$
174	The solubility of CO ₂ gas in seawater (K_H), expressed in moles/L·atm, was calculated
175	using the formula developed by Weiss (1974):
176	$\ln K_{\rm H} = -58.0931 + 90.5069 \left(\frac{100}{\rm T}\right) + 22.2940 \ln \left(\frac{\rm T}{100}\right) + S \left[0.027766 - 0.025888 + \left(\frac{\rm T}{100}\right) + 0.0050578 \left(\frac{\rm T}{100}\right)^2\right]$

- 177 Since we did not measure atmospheric CO2, we used data from air samples collected
- 178 by the United States National Oceanic and Atmospheric Administration (NOAA) at
- 179 Dongsha Island: 397 µatm in March 2011, 392 µatm in July 2011, 392 µatm in
- 180 October 2011, and 396 µatm in January 2013
- 181 (https://gml.noaa.gov/dv/data/index.php?category=Greenhouse%2BGases¶meter
- 182 name=Carbon%2BDioxide&site=DSI).

183

184 Fig. 2 Temperature vs. salinity (T-S) diagram at Nanwan Bay, Taiwan in spring,

- summer, autumn, and winter. SCS = South China Sea and KW = Kuroshio 185
- 186 Current waters.
- 187

189	3.1 Variation in hydrological parameters Both temperature and salinity varied
190	over time in Nanwan Bay (Fig. 2), with the seasonal variation likely driven by both
191	the monsoon and SCS circulation patterns. The Kuroshio Current flows northward
192	along Taiwan's east coast, with a portion of Western Philippine Sea (WPS) water
193	following the Kuroshio and then flowing westward along the northern SCS shelf
194	(Yuan et al., 2006). Nan et al. (2015) suggested that surface salinity of 34 or higher is
195	characteristic of the Kuroshio, indicating potential inundation of the Kuroshio Current
196	into Nanwan Bay during high-salinity spring periods. During summer, the southwest
197	monsoon dominates, leading to a decrease in the Kuroshio's influence; the main
198	circulation of the Kuroshio shifts westward to the Luzon Strait, limiting its intrusion
199	into the northwestern SCS region (Liang et al., 2008). In the northern SCS region, the
200	southwest-to-northeast circulation prevails during the monsoon, with most seawater
201	flowing out of the SCS through the Luzon Strait and converging with the Kuroshio
202	axis, resulting in Nanwan Bay being dominated by the SCS water mass during the
203	summer. Analysis of temperature and salinity data from Nanwan Bay, the SCS, and
204	the Kuroshio current indicates that Nanwan Bay mainly consists of the SCS water
205	mass during summer and autumn, while during spring and winter, the water masses
206	are intermediate between the two (Fig. 2). As such, Nanwan Bay is classified as a
207	mixed water mass area, comprising both SCS and Kuroshio Current water masses.

Table 1. (Correlation matr	ix of varia	bles with o	correlation	coefficier	nt (<i>r</i>) for sp	oring,
S	ummer, autumn	, and winte	er. Variable	es include	temperatu	re, salinity	,
d	issolved oxyger	n (DO), sat	turation of	DO (DO%	6), total al	kalinity (T	А),
d	issolved inorgai	nic carbon	(DIC), and	ł pH.			
Spring	Temperature	Salinity	DO	DO (%)	TA	DIC	pН
Salinity	0.35**						
DO	-0.23	-0.40**					
DO (%)	0.02	-0.32**	0.89**				
TA	0.04	0.03	0.19	0.11			
DIC	-0.17	-0.04	0.25*	0.11	0.92**		
pН	0.43**	0.13	-0.02	0.05	0.61**	0.27*	
<i>p</i> CO ₂	-0.28*	-0.07	0.03	-0.02	-0.45**	-0.09	-0.96**
Summer	• Temperature	Salinity	DO	DO (%)	TA	DIC	pН
Salinity	-0.96**	-					
DO	0.65**	-0.53**					
DO (%)	0.90**	-0.81**	0.90**				
TA	-0.82**	0.81**	-0.52**	-0.72**			
DIC	-0.91**	0.84**	-0.68**	-0.87**	0.91**		
pН	0.89**	-0.79**	0.72**	0.89**	-0.72**	-0.94**	
pCO_2	-0.22*	0.07	-0.45**	-0.38**	0.23*	0.51**	-0.64**
Autumn	Temperature	Salinity	DO	DO (%)	ТА	DIC	pН
Salinity	-0.95**						
DO	0.88**	-0.85**					
DO (%)	0.95**	-0.93**	0.98**				
TA	-0.57**	0.56**	-0.51**	-0.55**			
DIC	-0.76**	0.75**	-0.66**	-0.72**	0.88**		
pН	0.79**	-0.77**	0.66**	0.73**	-0.43**	-0.80**	
pCO_2	-0.32**	0.33**	-0.22	-0.27*	0.27*	0.63**	-0.83**
Winter	Temperature	Salinity	DO	DO (%)	ТА	DIC	pН
Salinity	-0.32**	-					_
DO	0.43**	-0.26*					
DO (%)	0.78**	-0.34**	0.70**				
TA	-0.15	0.06	-0.19	-0.17			
DIC	-0.39**	0.02	-0.34**	-0.41**	0.89**		
pН	0.59**	0.06	0.39**	0.61**	-0.12	-0.56**	
	0.24**	0.10	0 22**	0 1 1 **	0.20**	0 67**	0.04**

215 *: $p \le 0.05$ and **: $p \le 0.01$.

- 216 During the survey period, there was a clear positive correlation between pH and
- 217 temperature. Additionally, pH and TA exhibited significant correlations with salinity
- 218 during summer and autumn, but not in spring and winter (Table 1). These findings
- 219 suggest that vertical mixing occurs in spring and winter, whereas the positive
- 220 correlation between TA and pH in the spring season indicates upwelling. It is expected
- 221 that TA and salinity will covary because the charge differences between cations and
- 222 anions in seawater change with salinity. Salinity generally increases with depth and is
- 223 influenced by various factors such as rainfall, evaporation, and freshwater input,

which can lead to changes in TA.

225

226 Fig. 3 Seasonal variation in sea surface *p*CO₂ (μatm) in Nanwan Bay, Taiwan in

spring (a), summer (b), autumn (c), and winter (d). Values in legends along the
right sides of panels correspond to µatm.

3.2 Changes in surface water *p*CO₂ *p*CO₂ levels in Nanwan Bay ranged from

- 230 364-422 µatm, 362-448, 350-480, and 345-427 µatm in spring, summer, autumn,
- and winter, respectively (Fig. 3). The means $(\pm SD)$ for these levels were 393.2
- 232 (±11.6), 411.4 (±19.0), 401.7 (±18.3), and 370 (±17.3) μatm, respectively. The mean
- temperatures during these seasons were 23.3, 28.5, 26.9, and 26°C, respectively. In the
- 234 open ocean, *p*CO₂ levels are primarily influenced by temperature, horizontal transport
- and vertical mixing, biological processes, and gas exchange (e.g., Dai et al., 2009).

236

237 Fig. 4 Vertical profiles of temperature and salinity at station S10 in spring (a & e,

238 respectively), summer (b & f, respectively), autumn (c & g, respectively), and

239 winter (d & h, respectively) at three sampling times as indicated in each panel.

245

- 240 Due to the mixing of different water masses by monsoons, tides, eddies, upwelling,
- 241 and other ocean currents, significant gradient changes were observed at different
- times at station S10 (Fig. 4) and in the carbonate parameter data (Figs. 5-8). In
- summer and autumn, more obvious mixing occurred, as seen by the vertical variation
- 244 in temperature and salinity, while in spring and winter, mixing was less evident.

According to Lee et al. (1997; 1999a; 1999b), cold-water upwelling occurs with tidal
changes in Nanwan Bay, which increases vertical mixing. The temperature-salinitypH-DO diagram of station S1 shows that during cold-water upwelling, cold, low-DO,
low-pH, and high-salinity deep-sea water intrudes the nearshore regions of Nanwan

- 252 Bay (Fig. 9). Seawater quality profiles of S10 provide further evidence of upwelling,
- such as low temperatures, low DO, low pH, high salinity, and pCO₂ increases of 31
- and 37 µatm in summer and autumn, respectively (Figs. 4 & 6–7).

255

256 Fig. 6 Vertical profiles of dissolved oxygen (DO; a), pH (b), total alkalinity (TA; c),

257

and pCO_2 (d) in summer at station S10 at three sampling times.

258

259 Fig. 7 Vertical profiles of dissolved oxygen (DO; a), pH (b), total alkalinity (TA; c),

260 and pCO_2 (d) in autumn at station S10 at three sampling times.

262 Fig. 8 Vertical profiles of dissolved oxygen (DO; a), pH (b), total alkalinity (TA; c),

265 Fig. 9 Relationships between temperature and salinity or pH, as well as dissolved

266 oxygen (DO) vs. pH during upwelling events (data from Tew et al., 2014).

267 As temperature increases, CO_2 solubility decreases, causing an increase in pCO_2 .

268 Takahashi et al. (2002) proposed to evaluate the relative effects of temperature and

269	non-temperature effects on pCO_2 changes as follows:
270	pCO ₂ at T _{obs} = (p CO ₂) _{Mean annual} × exp[0.0423(T _{obs} - T _{mean})]
271	pCO ₂ at T _{mean} = (p CO ₂) _{obs} × exp[0.0423(T _{mean} - T _{obs})]
272	pCO_2 at T _{obs} is calculated using the average pCO_2 to determine the pCO_2 value at the
273	measured temperature, assuming that the change in pCO_2 is due to temperature; pCO_2
274	at T_{mean} is the standardized pCO_2 value at the average temperature, assuming that the
275	change in pCO_2 is <i>not</i> due to temperature; T_{mean} and T_{obs} are the annual average
276	temperature and the measured temperature on-site, respectively.
277	The mean pCO_2 of the monitoring stations varied over time, indicating that
278	temperature and non-temperature effects had different impacts on the average pCO_2 of
279	each station (Fig. 10). This suggests that seasonal changes in pCO_2 are influenced by
280	both temperature and non-temperature effects, with some stations showing larger
281	changes than others. It is believed that the stations with larger pCO_2 changes are
282	primarily affected by one type of effect (temperature vs. other), while the smaller
283	changes reflect the mutual offsetting of the two effects. The variability in p CO ₂
284	observed at S31 and S33, which are located near the Nuclear Power Plant outlet, is
285	likely driven by temperature change, as the water temperature in this area is
286	consistently higher than that of the surrounding area throughout the year. In fact, we
287	expected that temperature effects on pCO_2 would be more pronounced at these sites.

288

289 Fig. 10 Control factors and impact levels of surface water pCO₂ at each station in

290 Nanwan Bay. "Mean" refer to average value of each station, "nT" refers to non-

temperature effects, "T" refers to temperature effects, and "nT-T" represents the 291

292 degree of influence.

293

Abbreviations are as in Fig. 10. The standard deviations are shown as vertical 295

296 lines.

- 297 During the investigation period, seasonal variation in surface water pCO_2 in
- 298 Nanwan Bay was mainly affected by non-temperature effects in the spring,
- temperature in the summer, and both effects in the autumn and winter (Fig. 11). The
- 300 relationship between pCO_2 , surface water temperature, and Chl *a* concentration
- 301 revealed a significant correlation between pCO_2 and temperature in the summer
- 302 (p < 0.01; Fig. 12a), and a positive correlation between $p CO_2$ and Chl a in autumn
- 303 (p < 0.05; Fig. 12b). This suggests that temperature and Chl *a* are the main factors
- 304 affecting pCO_2 in summer and autumn, respectively.

305

306Fig. 12 Relationship between surface water pCO_2 and temperature (a), surface water307 pCO_2 and Chl a (b), surface water pCO_2 at T_{obs} and temperature (c), and surface308water pCO_2 at T_{mean} and Chl a (d) in different seasons in Nanwan Bay.

309	To evaluate the impact of temperature and non-temperature effects on seasonal
310	variation in p CO ₂ , we compared the average p CO ₂ under actual temperature
311	conditions with p CO ₂ values standardized to mean temperature (i.e., excluding the
312	temperature effect). We found a significant correlation between pCO_2 and actual
313	temperature (Fig. 12c), and a significant positive correlation between pCO_2 and Chl a
314	in summer and autumn, when temperature effects were excluded (Fig. 12d; all
315	p<0.05). This suggests that temperature is the main factor driving seasonal variation
316	in p CO ₂ , although non-temperature effects, specifically Chl a , also have an influence.
317	However, given the low r values, there are likely unmeasured parameters that
318	contribute to the variation in pCO_2 over time.
319	Chen et al. (2004a) proposed the Degree of Nutrient Consumption (DNC) as an
320	indicator of upwelling magnitude. This indicator is characterized by changes in
321	temperature, DO, pH, salinity, alkalinity, DIC, nutrients, and Chl a during an
322	upwelling event. These changes can alter the pCO_2 of surface waters through
323	chemical and biological processes (Chen and Hsing, 2005).
324	Nanwan Bay's benthic environmental system has a regenerative effect. However,
325	due to the high shallow water temperature and frequent stratification, regenerative
326	nutrients cannot easily be transported to the shallows. This results in the shallow areas
327	rarely becoming eutrophic (Leichter et al., 1996; Torréton, 1999; Wolanski and

328	Pickard, 1983). Another reason for Nanwan Bay's oligotrophy is that when nutrients
329	flow into reef areas, resident organisms quickly utilize them. Although nutrient input
330	from outside the bay is greater than the outward flux (Su, 2009), rapid circulation of
331	water in Nanwan Bay leads to unused nutrients being swiftly exported out of the bay.
332	This causes oligotrophy and high benthic productivity in the area. Su (2009) reports
333	that during spring tides, the water can be replaced in just 1.6 tidal cycles. Therefore,
334	nutrient levels and Chl a may have only small influences on pCO_2 in Nanwan Bay,
335	with temperature changes and seawater movement having a more significant impact.
336	3.3 Spatial distribution of $\Delta n C \Omega_2$ and $C \Omega_2$ air say flux The partial pressure
550	
337	difference between CO ₂ in surface seawater and the atmosphere, denoted as Δp CO ₂ ,
338	indicates the direction of air-sea CO ₂ exchange. When $\triangle p$ CO ₂ >0, the seawater is
339	supersaturated with CO ₂ and releases it into the atmosphere, contributing to an
340	increase in atmospheric CO_2 concentration (i.e., a source). On the other hand, when
341	$\triangle pCO_2 \le 0$, CO ₂ from the atmosphere enters the seawater, acting as a sink for
342	atmospheric CO ₂ . In spring, the $\triangle p$ CO ₂ range was between -24 and 18 µatm, with an
343	average of -2.3 µatm (Fig. 13a). The highest value was observed near the Nuclear
344	Power Plant outlet station. In summer, it ranged between -20 and 39 $\mu atm,$ with an
345	average of 14.3 µatm. The highest value was measured near station S7. In autumn, the
346	range was between -29 and 37 µatm, with an average of 7.2 µatm. The highest value

- 347 was observed near stations S10-S12. In winter, the range was between -46 and 18
- 348 µatm, with an average of -29 µatm. The lowest value occurred near stations S7-S10.

Fig. 13 Seasonal variation of (a) surface water $\triangle pCO_2$ and (b) air-sea CO₂ exchange

351	flux (F_{GAS}) at each station. Values are	e presented relative to the annual mean

352 (scaled to 0).

353 Based on data from the Central Weather Bureau-Guanyinshan buoy, the average

- 354 wind speed during the southwest monsoon season (summer) was 1.67 m s^{-1} , while
- during the northeast monsoon seasons (spring, autumn, & winter), it was 10, 8.1, and
- 356 2.8 m s⁻¹, respectively. Using these values, the CO₂ air-sea exchange flux in Nanwan

357	Bay was calculated (Figure 13b). During spring, the CO ₂ flux ranged from -33.8 to
358	18.7 mmol m ⁻² day ⁻¹ (average=-3.2 mmol m ⁻² day ⁻¹). In summer, the CO ₂ flux ranged
359	from -0.4 to 2.8 mmol m ⁻² day ⁻¹ (average=0.5 mmol m ⁻² day ⁻¹). During autumn, the
360	CO ₂ flux ranged from -33.4 to 43.2 mmol m ⁻² day ⁻¹ , with an average of 5.1 mmol m ⁻²
361	day ⁻¹ . Finally, in winter, the CO ₂ flux ranged from -8.2 to 3.3 mmol m ⁻² day ⁻¹ , with an
362	average of -3.3 mmol m ⁻² day ⁻¹ . These findings demonstrate that wind speed is a
363	crucial factor affecting CO ₂ air-sea exchange flux.
364	The area between Cape Maobitou and Cape Oluanpi, covering approximately 30
365	km ² (Fig. 1), showed an annual absorption of approximately -29 tC, with seasonal
366	fluxes of -106 tC, 16 tC, 167 tC, and -107 tC in spring, summer, fall, and winter,
367	respectively. This study's calculated value of ~-1 gC m $^{-2}$ year $^{-1}$ as a net sink in
368	Nanwan Bay contrasts with CO ₂ sea-air flux data from other coral reef areas, such as
369	Bermuda (14.4 gC m ⁻² year ⁻¹ ; Bates et al., 2001), Okinawa (21.6 gC m ⁻² year ⁻¹ ; Ohde
370	and Van Woesik, 1999), the Great Barrier Reef (18 gC m^{-2} year ⁻¹ ; Frankignoulle et
371	al., 1996), French Polynesia (1.2 gC m ⁻² year ⁻¹ ; Frankignoulle et al., 1996; Gattuso et
372	al., 1997; Gattuso et al., 1993), and Hawaii (17.4 gC m^{-2} year ⁻¹ ; Fagan and
373	Mackenzie, 2007), all atmospheric CO ₂ sources. The biogeochemistry of nearshore
374	environments is impacted by land-based inputs, resulting in differences in pCO_2 and
375	variations in the CO ₂ sea-air flux. Prior studies showed that ship-based and satellite-

376	based wind field calculations of the CO ₂ sea-air flux in the East China Sea have
377	similar trends, but there are significant differences in absolute values, with ship-based
378	wind field calculations producing greater CO ₂ exchange than satellite-based
379	calculations (Tseng et al., 2011). Short-term and long-term wind speeds, climate
380	conditions, and specific events can cause differences in CO ₂ flux calculations due to
381	the nonlinear empirical relationship between wind speed and gas exchange, leading to
382	varying results (Chou et al., 2011; Evans et al., 2012; De La Paz et al., 2011).
383	4. Conclusions
384	Nanwan Bay is a region that experiences significant changes in temperature and
385	salinity throughout the year, primarily influenced by the SCS and the Kuroshio
386	Current. These seasonal variations have an impact on the seawater carbonate system
387	(including p CO ₂), which can also be influenced by vertical water movement and
388	biological activity. Temperature was the most important driver of spatio-temporal
389	differences in p CO ₂ , particularly at the consistently warmer outlet station. However,
390	non-temperature effects also played a role in the spring, while the interaction between
391	temperature and other factors was important in the autumn and winter. In terms of its
392	impact on atmospheric CO2 levels, Nanwan Bay acts as a sink in the spring and
393	winter. However, in the summer and autumn, particularly during upwelling events, it
394	becomes a source of atmospheric CO ₂ , releasing more CO ₂ than it absorbs. Overall,

395	the complex interplay of temperature, water mass origin, vertical water movement,
396	and biological activity in Nanwan Bay has a significant impact on its carbon dioxide
397	dynamics and its influence on atmospheric CO ₂ levels.
398	
399	5. Acknowledgements
400	This study was supported by grants from the Ministry of Science and Technology
401	of Taiwan (MOST 111-2611-M-259-002, MOST 110-2611-M-259-002, MOST 109-
402	2611-M-259-003, MOST 108-2611-M-291-005, MOST 107-2611-M-291-001, &
403	MOST 106-2611-M-291-006) to PJM and CCC (MOST 111-2611-M-003-005).
404	Data were submitted to Dryad for archiving (doi: 10.5061/dryad.63xsj3v7d).
405	
406	6. Credit author statement
407	This manuscript was conceptualized by PJM and CCC; CMC and HYH conducted
408	investigations on all cruises and collected and analyzed the initial data; PJM, ABM,
409	and CCC wrote the initial draft; all authors provided comments and edits. The authors
410	declare that they have no conflict of interest.
411	

412	References
413	Bates, N. R., Samuels, L., and Merlivat, L.: Biogeochemical and physical factors
414	influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef,
415	Limnol. Oceanogr., 46, 833-846, 10.4319/lo.2001.46.4.0833, 2001.
416	Bellwood, D. R., Hughes, T. P., Folke, C., and Nyström, M.: Confronting the coral
417	reef crisis, Natuure, 429, 827-833, 10.1038/nature02691, 2004.
418	Borges, A. V. and Frankignoulle, M.: Distribution of surface carbon dioxide and air-
419	sea exchange in the upwelling system off the Galician coast, Glob. Biogeochem.
420	Cycles, 16, 1020, 10.1029/2000GB001385, 2002.
421	Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and sources of CO2
422	in the coastal ocean: Diversity of ecosystems counts, Geophys. Res. Lett., 32,
423	n/a-n/a, 10.1029/2005g1023053, 2005.
424	Cai, W. J., Wang, Z. A., and Wang, Y.: The role of marsh-dominated heterotrophic
425	continental margins in transport of CO2 between the atmosphere, the land-sea
426	interface and the ocean., Geophys. Res. Lett., 30, 1849,
427	10.1029/2003GL017633, 2003.
428	Chen, CC., Hsieh, HY., Mayfield, A. B., Chang, CM., Wang, JT., and Meng, P
429	J.: The Key impact on water quality of coral reefs in Kenting National Park, M.
430	Mar. Sci. Eng., 10, 207, 10.3390/jmse10020270, 2022.
431	Chen, CC., Shiah, F. K., Lee, H. J., Li, K. Y., Meng, P. J., Kao, S. J., Tseng, Y. F.,
432	and Chung, C. L.: Phytoplankton and bacterioplankton biomass, production and
433	turnover in a semi-enclosed embayment with spring tide induced upwelling,
434	Mar. Ecol. Prog. Ser., 304, 91-100, 10.3354/meps304091, 2005.
435	Chen, CT. A., Hsing, LY., Liu, CL., and Wang, SL.: Degree of nutrient
436	consumption of upwelled water in the Taiwan Strait based on dissolved organic
437	phosphorus or nitrogen, Mar. Chem., 87, 73-86,
438	10.1016/j.marchem.2004.01.006, 2004a.
439	Chen, C. T. A. and Hsing, L. Y.: Degree of nutrient consumption as an aging index of
440	upwelling or vertically mixed water in the northern Taiwan Strait, Acta Oceanol
441	Sin, 24, 115-124, 2005.
442	Chen, C. T. A., Hsing, L. Y., Liu, C. L., and Wang, S. L.: Degree of nutrient
443	consumption of upwelled water in the Taiwan Strait based on dissolved organic
444	phosphorus or nitrogen, Mar. Chem., 87, 73-86,
445	10.1016/j.marchem.2004.01.006, 2004b.
446	Chen, D.: Impact of climate change on sensitive marine and extreme terrestrial
447	ecosystems: Recent progresses and future challenges, Ambio, 50, 1141-1144,
448	10.1007/s13280-020-01446-1, 2021.

449	Chou, W. C., Gong, G. C., Tseng, C. M., Sheu, D. D., Hung, C. C., Chang, L. P., and
450	Wang, L. W.: The carbonate system in the East China Sea in winter, Mar.
451	Chem., 123, 44-55, 10.1016/j.marchem.2010.09.004, 2011.
452	Dai, M. H., Lu, Z. M., Zhai, W. D., Chen, B. S., Cao, Z. M., Zhou, K. B., Cai, W. J.,
453	and Chen, C. T. A.: Diurnal variations of surface seawater pCO ₂ in contrasting
454	coastal environments, Limnol. Oceanogr., 54, 735-745,
455	10.4319/lo.2009.54.3.0735, 2009.
456	de la Paz, M., Huertas, E. M., Padín, XA., Gónzalez-Dávila, M., Santana-Casiano,
457	M., Forja, J. M., Orbi, A., Pérez, F. F., and Ríos, A. F.: Reconstruction of the
458	seasonal cycle of air-sea CO ₂ fluxes in the Strait of Gibraltar, Mar. Chem., 126,
459	155-162, 10.1016/j.marchem.2011.05.004, 2011.
460	Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the
461	dissociation of carbonic acid in seawater media, Deep-Sea Res. I, 34, 1733-
462	1743, 10.1016/0198-0149(87)90021-5, 1987.
463	Dugdale, R. C. and Wilkerson, F. P.: New production in the upwelling central at Point
464	Conception, California: temporal and spatial patterns, Deep-Sea Res. I, 36, 985-
465	1007, 1989.
466	Evans, W., Hales, B., Strutton, P. G., and Ianson, D.: Sea-air CO ₂ fluxes in the western
467	Canadian coastal ocean, Progress in Oceanography 101, 78-91,
468	10.1016/j.pocean.2012.01.003, 2012.
469	Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean acidification
470	on marine fauna and ecosystem processes, ICES Journal of Marine Science, 65,
471	414-432, 10.1093/icesjms/fsn048, 2008.
472	Fagan, K. E. and Mackenzie, F. T.: Air-sea CO2 exchange in a subtropical estuarine-
473	coral reef system, Kaneohe Bay, Oahu, Hawaii, Mar. Chem., 106, 174-191,
474	10.1016/j.marchem.2007.01.01, 2007.
475	Frankignoulle, M., Copin-Montegut, G., Pichon, M., Gattuso, J. P., Biondo, R., and
476	Bourge, I.: Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon
477	dynamics and measurement of air-sea CO2 exchanges, Marine Ecology.
478	Progress Series, 145, 123-132, 10.3354/meps145123, 1996.
479	Frankignoulle, M., Abril, G., Borges, A., Bourge, I. I., Canon, C., Delille, B., Libert,
480	E., and Theate, J. M.: Carbon dioxide emission from european estuaries,
481	Science, 282, 434-436, 1998.
482	Friederich, G. E., Walz, P. M., Burczynski, M. G., and Chavez, F. P.: Inorganic carbon
483	in the central California upwelling system during the 1997–1999 El Niño–La
484	Niña event, Prog. Oceanogr., 54, 185-203, 10.1016/S0079-6611(02)00049-6,
485	2002.
486	Gattuso, JP., Frankignoulle, M., and Smith, S. V.: Measurement of community

487	metabolism and significance in the coral reef CO ₂ source-sink debate, Proc.
488	Natl. Acad. Sci. U. S. A., 96, 13017-13022, 10.1073/pnas.96.23.13017, 1999.
489	Gattuso, JP., Pichon, M., Delesalle, B., and Frankignoulle, M.: Community
490	metabolism and air-sea CO2 fluxes in a coral-reef ecosystem (Moorea, French-
491	Polynesia), Mar. Ecol. Prog. Ser., 96, 259-267, 10.3354/meps096259, 1993.
492	Gattuso, JP., Payri, C. E., Pichon, M., Delesalle, B., and Frankignoulle, M.: Primary
493	production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated
494	coral reef community (Moorea, French Polynesia), J. Phycol., 33, 729-738,
495	10.1111/j.0022-3646.1997.00729.x 1997.
496	Goyet, C., Eischeid, G., McCue, S. J., Bellerby, R. G. J., Millero, F. J., and
497	O'Sullivan, D. W.: Temporal variations of pCO2 in surface seawater of the
498	Arabian Sea in 1995, Deep-Sea Research I, Oceanographic Research, 45, 609-
499	623, 10.1016/S0967-0637(97)00085-X 1998.
500	Gran, G.: Determination of the equivalence point in potentiometric titrations. Part II,
501	Analyst, 77, 661-671, 10.1039/an9527700661, 1952.
502	Hales, B., Takahashi, T., and Bandstra, L.: Atmospheric CO2 uptake by a coastal
503	upwelling system, Glob. Biogeochem. Cycles, 19, GB1009,
504	10.1029/2004GB002295,, 2005.
505	Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S.,
506	Jackson, J. B. C., Kleypas, J., van de Leemput, I. A., Lough, J. M., Morrison, T.
507	H., Palumbi, S. R., van Nes, E. H., and Scheffer, M.: Coral reefs in the
508	Anthropocene, Nauture, 546, 82-90, 10.1038/nature22901, 2017.
509	Ito, R. G., Schneider, B., and Thomas, H.: Distribution of surface fCO2 and air-sea
510	fluxes in the Southwestern subtropical Atlantic and adjacent continental shelf, J.
511	Mar. Syst., 56, 227-242, 10.1016/j.jmarsys.2005.02.005, 2005.
512	Kayanne, H., Suzuka, A., and Saito, H.: Diurnal changes in the partial pressure of
513	carbon dioxide in coral reef water, Science, 269, 214-216,
514	10.1126/science.269.5221.214, 1995.
515	Lønborg, C., Calleja, M. L., Fabricius, K. E., Smith, J. N., and c, E. P. A.: The Great
516	Barrier Reef: a source of CO ₂ to the atmosphere, Mar. Chem., 210, 24-33,
517	10.1016/j.marchem.2019.02.003, 2019.
518	Lee, HJ., Chao, SY., and Fan, KL.: Flood-Ebb disparity of tidally induced re-
519	circulation eddies in a semi-enclosed basin: Nan Wan Bay, Cont. Shelf Res., 19,
520	871-890, 10.1016/S0278-4343(99)00006-0, 1999a.
521	Lee, HJ., Chao, SY., Fan, KL., and Kuo, TY.: Tide-induced eddies and
522	upwelling in a semi-enclosed basin: Nan Wan, Estuar. Coast. Shelf Sci., 49,
523	775-787, 10.1006/ecss.1999.0524, 1999b.
524	Lee, HJ., Chao, SY., Fan, JL., Wnag, YH., and Liang, NJ.: Tidally induced

525	upwelling in a semi-enclosed basin: Nan Wan Bay, J. Oceanogr., 53, 467-480,
526	1997.
527	Lee, H. J.: Tidally induced eddies and cold water intrusion in Nan Wan Bay, PhD
528	dissertation, Institute of Oceanography, National Taiwan University, Taipei,
529	Taiwan, Taipei, Taiwan, 127 pp., 1999.
530	Leichter, J. J., Wing, S. R., Miller, S. L., and Denny, M. W.: Pulsed delivery of
531	subthermocline water to Conch Reef (Florida Keys) by internal tidal bores,
532	Limnol. Oceanogr., 41, 1490-1501, 10.4319/lo.1996.41.7.1490, 1996.
533	Lewis, E. and Wallace, D. W. R.: Program developed for CO ₂ system calculations,
534	Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridege, Tenn.Rep.
535	ORNL/CDIAC-105, Available at http://cdiac.ornl.gov/oceans/co2rprt.html,
536	1998.
537	Liang, W. D., Yang, Y. J., Tang, T. Y., and Chuang, W. S.: Kuroshio in the Luzon
538	Strait, J. Geophys. Res. Oceans, 113, Artn C08048, 10.1029/2007jc004609,
539	2008.
540	Mayer, B., Rixen, T., and Pohlmann, T.: The spatial and temporal variability of air-sea
541	CO2 fluxes and the effect of net coral reef calcification in the Indonesian seas: A
542	numerical sensitivity study, Frontiers in Marine Science, 5, 116,
543	10.3389/fmars.2018.00116, 2018.
544	Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurement
545	of apparent dissociation constants of carbonic-acid in aeawater at atmospheric
546	pressure, Limnol. Oceanogr., 18, 897-907, 10.4319/lo.1973.18.6.0897, 1973.
547	Meng, P. J., Lee, H. J., Wang, J. T., Chen, C. C., Lin, H. J., Tew, K. S., and Hsieh, W.
548	J.: A long-term survey on anthropogenic impacts to the water quality of coral
549	reefs, southern Taiwan, Environmetnal Pollution, 156, 67-75,
550	10.1016/j.envpol.2007.12.039, 2008.
551	Meng, P. J., Chung, K. N., Chen, J. P., Chen, M. H., Liu, M. C., Chang, Y. C., Fan, T.
552	Y., Lin, H. J., Liu, B. R., Chang, C. M., Fang, L. S., and Shao, K. T.: Long-term
553	ecological monitoring and studies of human activities on the marine ecosystem
554	of Kenting National Park. (in Chinese with English abstract), 17, 89-111, 2007.
555	Murray, J. W., Johnson, E., and Garside, C.: A U.S. JGOFS Process Study in the
556	equatorial Pacific (EqPac): Introduction, Deep-Sea Res. II Top. Stud. Oceanogr.,
557	42, 275-293, 10.1016/0967-0645(95)00044-Q, 1995.
558	Nan, F., Xue, H., and Yu, F.: Kuroshio intrusion into the South China Sea: A review,
559	Prog. Oceanogr., 137, 314-333, 10.1016/j.pocean.2014.05.012, 2015.
560	Ohde, S. and Van Woesik, R.: Carbon dioxide flux and metabolic processes of a coral
561	reef, Okinawa, Bull. Mar. Sci., 65, 559-576, 1999.
562	Reaka-Kudla, M. L.: Global biodiversity of coral reefs: a comparison with rainforests,

563	in: Biodiversity II: Understanding and protecting our biological resources,
564	edited by: Reaka-Kudla, M. L., Wilson, D. E., and Wilson, E. O., Joseph
565	Henry/National Academy Press, Washington, D. C., 83-108, 1997.
566	Robinson, C., Serret, P., Tilstone, G., Teira, E., Zubkov, M. V., Rees, A. P., and
567	Woodward, E. M. S.: Plankton respiration in the Eastern Atlantic Ocean, Deep-
568	Sea Res. I, 49, 787-813, 10.1016/S0967-0637(01)00083-8, 2002.
569	Sheppard, C. R. C., Davy, S. K., Pilling, G. M., and Graham, N. A. J.: The Biology of
570	Coral Reefs, 2nd, Oxford University Press, United Kingdom,
571	10.1093/oso/9780198787341.001.0001, 2017.
572	Smith, S. V. and Hollibaugh, J. T.: Coastal metabolism and the oceanic organic carbon
573	balance, Rev. Geophys., 31, 75-89, 10.1029/92RG02584, 1993.
574	Su, CH.: The study of the nutrient flux in Nan-Wan Bay, National Taiwan Ocean
575	University, National Taiwan ocean university, 101 pp., 2009.
576	Suzuki, A.: Combined effects of photosynthesis and calcification on the partial
577	pressure of carbon dioxide in seawater, J. Oceanogr., 54, 1-7,
578	10.1007/BF02744376, 1998.
579	Suzuki, A. and Kawahata, H.: Reef water CO ₂ system and carbon production of coral
580	reefs: Topographic control of system-level performance, in: Global
581	environmental change in the ocean and on land, edited by: Shiyomi, M.,
582	Kawahata, H., Koizumi, H., Tsuda, A., and Awaya, Y., TERRAPUB, 229-248,
583	2004.
584	Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B.,
585	Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.:
586	Global sea-air CO_2 flux based on climatological surface ocean pCO_2 , and
587	seasonal biological and temperature effects, Deep-Sea Res. II Top. Stud.
588	Oceanogr., 49, 1601-1622, 10.1016/S0967-0645(02)00003-6, 2002.
589	Tew, K. S., Leu, M. Y., Wang, J. T., Chang, C. M., Chen, C. C., and Meng, P. J.: A
590	continuous, real-time water quality monitoring system for the coral reef
591	ecosystems of Nanwan Bay, Southern Taiwan, Mar. Pollut. Bull., 85, 641-647,
592	10.1016/j.marpolbul.2013.11.022, 2014.
593	Torréton, JP.: Biomass, production and heterotrophic activity of bacterioplankton in
594	the Great Astrolabe Reef lagoon (Fiji), Coral Reefs, 18, 43-53,
595	10.1007/s003380050152, 1999.
596	Tseng, C. M., Liu, K. K., Gong, G. C., Shen, P. Y., and Cai, W. J.: CO ₂ uptake in the
597	East China Sea relying on Changjiang runoff is prone to change, Geophys. Res.
598	Lett., 38, Artn L24609, 10.1029/2011gl049774, 2011.
599	Wang, Z. A. and Cai, W. J.: Carbon dioxide degassing and inorganic carbon export
600	from a marsh-dominated estuary (the Duplin River): a marsh CO ₂ pump,

601	Limnol. Oceanogr., 49, 341-354, 10.4319/lo.2004.49.2.0341, 2004.
602	Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean,
603	J. Geophys. Res., 97, 7373-7382, 10.1029/92JC00188, 1992.
604	Ware, J. R., Smith, S. V., and Reaka-Kudla, M. L.: Coral reefs: sources or sinks of
605	atmospheric CO ₂ ?, Coral Reefs, 11, 127-130, 10.1007/BF00255465, 1992.
606	Watanabe, A. and Nakamura, T.: Carbon dynamics in coral reefs, in: Blue Carbon in
607	Shallow Coastal Ecosystems: carbon dynamic, policy, adn implementation,
608	edited by: Kuwae, T., and Hori, M., Springer, Singapore, 273-293, 10.1007/978-
609	981-13-1295-3, 2019.
610	Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
611	Mar. Chem., 2, 203-215, 10.1016/0304-4203(74)90015-2, 1974.
612	Wolanski, E. and Pickard, G. L.: Upwelling by internal tides and Kelvin waves at the
613	continental shelf break on the Great Barrier Reef, Australian Journal of Marine
614	and Freshwater Research, 34, 65-80, 10.1071/MF9830065, 1983.
615	Yan, H., Yu, K., Shi, Q., Lin, Z., Zhao, M., Tao, S., Liu, G., and Zhang, H.: Air-sea
616	CO2 fluxes and spatial distribution of seawater pCO2 in Yongle Atoll, northern-
617	central South China Sea, Cont. Shelf Res., 165, 71-77,
618	10.1016/j.csr.2018.06.008, 2018.
619	Yan, H. Q., Yu, K. F., Shi, Q., Tan, Y. H., Zhang, H. L., Zhao, M. X., Li, S., Chen, T.
620	R., Huang, Y., and Wang, P. X .: Coral reef ecosystems in the South China Sea as
621	a source of atmospheric CO ₂ in summer, Chin. Sci. Bull., 56, 676-684,
622	10.1007/s11434-011-4372-8, 2011.
623	Yang, R. T. and Dai, C. F.: Community structure and species diversity of reef corals at
624	Nanwan Bay, Taiwan, Acta Oceanogr. Taiwanica, 11, 238-251, 1980.
625	Yuan, D., Han, W., and Hu, D.: Surface Kuroshio path in the Luzon Strait area derived
626	from satellite remote sensing data, J. Geophys. Res., 111, C11007,
627	10.1029/2005JC003412, 2006.
628	