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Abstract. Atmospheric clouds greatly impact the Earth’s radiation, hydrological cycle, and climate change. Accurate 10 

automatic recognition of cloud shape based on ground-based cloud image is helpful to analyze solar irradiance, water 11 

vapor content, and atmospheric motion, and then predict photovoltaic power, weather trends, and severe weather 12 

changes. However, the appearance of clouds is changeable and diverse, and its classification is still challenging. In 13 

recent years, convolution neural network (CNN) has made great achievements in ground-based cloud image 14 

classification. However, traditional CNNs poorly associate long-distance clouds, making the extraction of global 15 

features of cloud images quite problematic. This study attempts to mitigate this problem by elaborating a ground-16 

based cloud image classification method based on the improved RepVGG convolution neural network and attention 17 

mechanism. Firstly, the proposed method increases the RepVGG residual branch and obtains more local detail features 18 

of cloud images through small convolution kernels. Secondly, an improved channel attention module is embedded 19 

after the residual branch fusion, effectively extracting the global features of cloud images. Finally, the linear classifier 20 

is used to classify the ground cloud images. Finally, the warm-up method is applied to optimize the learning rate in 21 

the training stage of the proposed method, making it lightweight in the inference stage and thus avoiding overfitting 22 

and accelerating the model’s convergence. The proposed method is validated on MGCD and GRSCD ground-based 23 

cloud image datasets containing 7 cloud categories, with the respective classification accuracy rate values of 98.15% 24 

and 98.07%, outperforming those of ten most advanced methods used as the reference. The results obtained are 25 

considered instrumental in ground-based cloud image classification. 26 

1. Introduction 27 

In meteorology, cloud is an aerosol consisting of a visible mass of water droplets, ice crystals, their aggregates or 28 

other particles suspended in the atmosphere. Clouds of different types cover over 70% of the Earth surface (Qu et al., 29 

2021; Gyasi and Swarnalatha, 2023; Fabel et al., 2022). Cloud analysis plays a crucial role in meteorological 30 
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observation because clouds can affect the Earth’s water cycle, climate change, and solar irradiance (Gorodetskaya et 31 

al., 2015; Goren et al., 2018; Zheng et al., 2019). Cloud observation methods mainly include satellite observation 32 

(Norris et al., 2016; Zhong et al., 2017; Li et al., 2023) and ground observation (Calbó and Sabburg, 2008; Nouri et 33 

al., 2019; Lin et al., 2023). Satellite observation refers to the distribution, movement, and change of clouds observed 34 

by high-resolution remote sensing satellites from above. When observing local sky regions, satellite observations have 35 

low performance and are unable to obtain sufficient resolution to describe the characteristics of different cloud layers 36 

in detail (Long et al., 2023; Sarukkai et al., 2020). Compared with satellite observation, ground-based observation 37 

opens up a new way to monitor and understand regional sky conditions. Typical ground-based cloud observation 38 

instruments include All-Sky Imager (ASI) (Shi et al., 2019; Cazorla et al., 2008), Total Sky Imager (TSI) (Long et al., 39 

2006; Tang et al., 2021), etc. The relevant equipment and ground-based cloud images are shown in Figure 1. 40 

 41 

Figure 1: Two kinds of ground-based cloud images and their observation equipment: (a) ASI ground-based cloud image 42 
and its observation equipment (Cazorla et al., 2008; Shi et al., 2019); (b) TSI ground-based cloud image and its observation 43 
equipment (Long et al., 2006). 44 

Ground-based cloud observation can obtain more obvious cloud characteristics by observing the information at the 45 

bottom of the cloud, which is conducive to assisting the prediction of local photovoltaic power generation. Clouds 46 

play an important role in maintaining the atmospheric radiation balance by absrbing short-wave and the ground not to 47 

solar radiation (Taravat et al., 2015). Pv power prediction is affected by multiple factors such as cloud genus, cloud 48 

cover change, solar irradiance, and solar cell performance in local areas, among which cloud genus is an important 49 

factor affecting PV power prediction (Zhu et al., 2022). Therefore, it is of great significance to accurately obtain sky 50 

cloud information through cloud observation and then accurately classify clouds for accurate prediction of 51 

photovoltaic power generation (Alonso-Montesinos et al., 2016). The traditional ground-based cloud observation 52 

method is mainly visual observation, which relies heavily on the experience of observers, cannot achieve 53 

standardization. Therefore, ground-based cloud automatic observation has been widely concerned by scholars. In 54 

recent years, with the development of digital image acquisition devices, many ground-based whole-sky cloud image 55 

acquisition devices have emerged the world, providing massive data support for automatic ground-based cloud 56 

observation (Pfister et al., 2003). 57 
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Ground-based cloud image classification is an important part of the foundation of automatic cloud observation and 58 

is the key to climate change and photovoltaic power prediction. The classification of ground-based cloud images 59 

mainly classifies each cloud image taken from the ground into the corresponding cloud genus by extracting cloud 60 

image features, such as cirrus, cumulus, stratus, nimbostratus, etc. According to different cloud image feature 61 

extraction methods, the ground-based cloud image classification method is divided into based on traditional machine 62 

learning method and based on deep learning method (Simonyan and Zisserman, 2015; Krizhevsky et al., 2017; Hu et 63 

al., 2018). Most of the ground-based cloud image classification methods based on traditional machine learning classify 64 

cloud images by artificially designing cloud image features, while the ground-based cloud image classification 65 

methods based on deep learning mainly classify cloud images through self-learning cloud image features of deep 66 

neural network (DNN) (Wu et al., 2019). 67 

Early ground-based cloud image classification studies relied on manual classification methods, which focused on 68 

features such as texture, structure, and color, combined with traditional machine learning methods to classify ground-69 

based cloud images. These methods include a decision tree, K-nearest neighbor (KNN) classifier, support vector 70 

machine (SVM), etc. (Singh and Glennen, 2005) proposed a method for automatically training the texture function of 71 

a cloud classifier. In this method, five feature extraction methods including autocorrelation, co-occurrence matrix, 72 

edge frequency, Laws texture analysis, and original length are used respectively. Compared with other cloud 73 

classification methods, this method has the advantages of high accuracy and fast classification speed, but its 74 

classification ability for mixed clouds is insufficient. (Heinle et al., 2010) described cloud images by using spectral 75 

features (mean value, standard deviation, skewness, and difference) and texture features (energy, entropy, contrast, 76 

homogeneity, and cloud cover), and combined with a KNN classifier, divided ground cloud images into seven 77 

categories. In addition, (Zhuo et al., 2014) reported that the spatial distribution of contour lines could represent the 78 

structural information of cloud shapes, used the central description pyramid to simultaneously extract the texture and 79 

structural features of ground-based cloud images, and used SVM and KNN to classify cloud images. It can be seen 80 

that the traditional classification method of ground-based cloud images based on machine learning mainly uses hand-81 

designed texture, structure, color, shape, and other features to extract, and obtains high-dimensional feature expression 82 

of ground-based cloud images through single feature or fusion feature. Traditional machine learning methods mostly 83 

describe the features from the perspective of digital signal analysis and mathematical statistics, but ignore the 84 

representation and interpretation of the visual features of the cloud image itself. 85 

In recent years, under the background of cross-integration of different disciplines and artificial intelligence, the 86 

ground-based cloud image classification method based on deep learning has become a research hotspot with its 87 

superior classification performance. Aiming at the unique characteristics of ground-based cloud images, (Shi et al., 88 

2017) proposed Deep Convolutional Activations-Based Features (DCAFs) to classify ground-based cloud images, 89 

and the results are better than the artificially designed cloud image features. Alternatively, (Ye et al., 2017) used CNN 90 

to extract cloud image features and proposed a local pattern mining method based on ground-based cloud images to 91 
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optimize the local features of cloud images and improve the classification accuracy of cloud images. (Zhang et al., 92 

2018a) put the wake cloud as a new genus of cloud into the ground-based cloud image database for the first time, 93 

proposed a simple convolutional neural network model called CloudNet, and applied it to the ground-based cloud 94 

image classification task, effectively improving the accuracy of ground-based cloud image classification. More 95 

recently, (Wang et al., 2020) proposed the CloudA network, an optimized iteration of the AlexNet convolutional 96 

neural network, which reduces the number of parameters through a simplified network architecture. The classification 97 

accuracy on the Singapore Whole-Sky Imaging Categories (SWIMCAT) ground-based cloud image dataset exceeded 98 

the traditional ground-based cloud image classification methods. (Liu et al., 2020b) proposed Multi-Evidence and 99 

Multi-Modal Fusion Networks (MMFN) by fusing heterogeneous features, local visual features, and multi-mode 100 

information, which significantly improves the classification accuracy of cloud images. Aiming at the problem that the 101 

traditional neural network has insufficient ability to classify the ground-based cloud images within and between genera, 102 

(Zhu et al., 2022) proposed to use of an improved combined convolutional neural network to classify the cloud images, 103 

and the classification accuracy is greatly improved compared with the traditional neural network. Alternatively, (Yu 104 

et al., 2021) used two sub-convolutional neural networks to extract features of ground-based cloud images and used 105 

weighted sparse representation coding to classify them, which solved the problem of occlusion in multi-mode ground-106 

based cloud image data and greatly improved the robustness of cloud images classification. (Liu et al., 2020a) 107 

introduced a ground-based cloud image classification method based on a graph convolution network (GCN). However, 108 

the weight assigned by GCN failed to accurately reflect the importance of connection nodes, thus reducing the 109 

discrimination of aggregated cloud image features. To make up for this deficiency,(Liu et al., 2022) proposed a context 110 

attention network for ground-based cloud classification and publicly released a new cloud classification dataset. In 111 

addition, (Liu et al., 2020c) further combined CNN and GCN to propose a multimodal ground-based cloud image 112 

classification method based on heterogeneous deep feature learning. Alternatively, (Wang et al., 2021) elaborated a 113 

ground-based cloud image classification method based on Transfer Convolutional Neural Network (TCNN) by 114 

combining deep learning and transfer learning. (Li et al., 2022) further enhanced the classification performance of 115 

ground-based cloud images based on the improved Vision Transformer combined with the EfficientNet-CNN. The 116 

performance of the above-mentioned ground-based cloud image classification methods based on deep learning has 117 

significantly improved compared to traditional machine learning methods. 118 

CNN plays an important role in the field of target detection, image classification, and image segmentation, 119 

especially in the tasks of power line fault detection (Zhao et al., 2016), face recognition (Meng et al., 2021), and 120 

medical image segmentation (Zhang et al., 2021), and has been widely used and achieved great achievements. Ground-121 

based cloud image classification is an emerging task in the field of image classification and has achieved rapid and 122 

considerable development based on the CNN method. However, it still has some shortcomings such as shallow 123 

network level of ground-based cloud image classification method, limited ground-based cloud image classification 124 
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performance, and small ground-based cloud image classification dataset, which cannot verify the generalization ability 125 

of large-scale ground-based cloud image classification dataset.  126 

To solve the above problems, the current study improved the RepVGG (Ding et al., 2021) and used it as a basis for 127 

elaborating a new classification method for ground-based cloud images called CloudRVE (Cloud Representative 128 

Volume Element Network). In this method, the ground-based cloud image was incorporated into the CNN model, and 129 

its image features were extracted. Multi-branch convolution layer and channel attention module were used to capture 130 

local and global features of the cloud image simultaneously time to enhance the classification performance of ground-131 

based cloud images. The method’s application to the multi-modal ground-based cloud dataset named MGCD (Liu et 132 

al., 2020a) and ground-based remote sensing cloud database (GRSCD) (Liu et al., 2020b) . The main contributions of 133 

this paper are as follows: 134 

(1)   This study elaborated the Improved RepVGG ground-based cloud image classification method with attention 135 

convolution called CloudRVE. It broadened the residual structure and comprehensively combined the attention 136 

mechanism’s abilities to extract the cloud image’s global features and describe in detail its local features in the 137 

classification process. 138 

(2)  In particular, the Efficient Channel Attention network (ECA) was improved and incorporated into the feature 139 

extraction process of ground-based cloud images, which optimization occurred through local cross-channel 140 

interaction without dimensionality reduction. Besides, the structural re-parameterization in the inference stage 141 

was performed, reducing the model complexity, improving the feature extraction performance, and enhancing 142 

the network’s learning ability of ground-based cloud image features. 143 

(3)  The comparative analysis of experimental results on the ground-based cloud image classification dataset MGCD 144 

proved that the proposed method outperformed ten other state-of-the-art methods in classification accuracy. Its 145 

application to GRSCD dataset further verified its generalization ability. Finally, the proposed method’s training 146 

process optimization and dynamical adjustment of its learning rate were provided by the warm-up method, and 147 

the respective recommendations were drawn.  148 

The rest of this paper is organized as follows. Section 2 elaborates on the structure and composition of the proposed 149 

CloudRVE method for classifying ground cloud images. Section 3 briefly introduces the ground cloud image 150 

classification datasets used in this paper and the model evaluation indices. Section 4 provides the experimental results 151 

and discusses the feasibility and effectiveness of the proposed method. Finally, Section 5 concludes the study and 152 

outlines future research directions and practical application of the research results. 153 
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2. Methods 154 

2.1 Overview of Method 155 

 156 

Figure 2: CloudRVE network framework. Ground-based cloud images come from Kiel-F datasets (Kalisch and Macke, 157 
2008). 158 

This section shows the overall architecture of the proposed RepVGG-based improved classification method, as shown 159 

in Figure 2. In the CloudRVE training process, CloudRVE Block with a multi-branch topology structure is used to 160 

extract features of ground-based cloud images. The multi-branch topology structure has rich gradient information and 161 

a complex network structure, which can effectively improve the characterization ability of local feature information 162 

of ground-based cloud images. Feature maps extracted by CloudRVE Block enter the New Efficient Channel Attention 163 

(NECA) network and learn the feature relationships between sequences to obtain the global feature representation of 164 

an image. In addition, the warm-up method is incorporated into the CloudRVE training process to dynamically 165 

optimize the learning rate and accelerate the model parameter convergence to enhance the model training effect. 166 

CloudRVE inference process uses the single branch topology structure of VGG-style (Simonyan and Zisserman, 2015), 167 

and through structural re-parameterization, the multi-branch convolutional layer and batch normalization (BN) (Ioffe 168 

and Szegedy, 2015) are converted into a 3×3 convolutional layer, increasing its inference speed. The CloudRVE 169 

training process and inference process use the linear classifier to classify the ground-based cloud images to get the 170 



7 

 

final result. The specific framework parameter information of the model is shown in Table 1, where a and b are 171 

magnification factors used to control the network width. The specific contents of each part are as follows. 172 

                Table 1. The details of CloudRVE training architecture. 173 

Stage Blocks of each stage Output size Output channels 

0 1 224×224 Min (64, 64a) 

1 2 112×112 64a 

2 4 56×56 128a 

3 14 28×28 256a 

4 1 14×14 512b 

2.2 Broadening the CloudRVE Block of Residual Structure 174 

CNN is a deep learning model including convolution calculation, including feedforward neural network, which has 175 

representation learning ability, similar to artificial neural network multilayer perceptron (Shi et al., 2017). In 2014, 176 

the most representative convolution neural network VGG came out, which adopted a single-branch topology structure, 177 

greatly improved the image processing effect and model inference speed, and became a new direction for scholars to 178 

learn and develop. With the in-depth study of the VGG, its potential in image processing is close to saturation. Scholars 179 

realize that the VGG has some shortcomings such as simple network structure, few network layers, and large 180 

parameters, which makes it difficult to extract high-order features of images and has limited image-processing 181 

performance. Therefore, improving network complexity and increasing the number of network layers has become a 182 

new research direction. The ResNet developed by  (He et al., 2016) differed from the traditional neural network 183 

stacked by convolution layer and pooling layer. The network was stacked by residual modules, which not only 184 

increased the complexity of the network structure and reduced the number of network parameters, but also perfectly 185 

solved the problem of gradient disappearance or gradient explosion caused by increasing the number of network layers, 186 

which could extract abstract image features with semantic information and effectively improve image-processing 187 

performance. By improving the complexity and depth of the network, the ResNet could train the CNN model with 188 

higher accuracy, but there were numerous redundancies in its residual network, impeding the network inference speed 189 

and reducing the accuracy of image processing results (Szegedy et al., 2015). Therefore, increasing the complexity 190 

and depth of the network, weakening its influence on inference speed, and improving the classification effect of 191 

ground-based cloud images become the key goals of this study. 192 

To improve the classification effect of the ground-based cloud images, the CloudRVE training process is composed 193 

of CloudRVE blocks that adopt the multi-branch topology. The CloudRVE Block contains four branches and the 194 

improved channel attention module NECA. Its main branch contains a convolutional layer with a convolution kernel 195 

size of 3×3, which can inspect the input images with a larger neighborhood scope and extract global features easily. 196 
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Ground-based cloud images contain abundant cloud shape and cloud amount information, while a large convolution 197 

kernel tends to ignore cloud boundary features, resulting in inadequate feature extraction from ground-based cloud 198 

images. Therefore, the two bypass branches of CloudRVE Block adopt the convolution layer with the convolution 199 

kernel size of 1×1, which can not only extract fine cloud boundary features and abstract cloud cover features but also 200 

keep the output dimension consistent with the input dimension, facilitating the multi-branch ground-based cloud 201 

image feature fusion. The third bypass branch of CloudRVE Block adopts the Identity branch, whose purpose is to 202 

take the input as the output and change the learning objective to the residual result approaching 0 so that the accuracy 203 

does not decline with the deepening of the network. In addition, each branch is connected to the BN layer, not only to 204 

avoid overfitting but also to prevent gradient disappearance or explosion. The specific structure of CloudRVE Block 205 

is shown in Figure 3. The input feature maps pass through three branches with a convolutional layer and BN layer at 206 

the same time. The output obtained by the input feature maps is summed with the Identity branch and input into the 207 

NECA module to obtain the final output feature. 208 

 209 

Figure 3: CloudRVE Block structure. 210 

2.3 NECA Module Focusing on Full Image Features 211 

The attention mechanism is to let the neural network have the information processing way to distinguish the key points 212 

and to capture the connection between global information and local information flexibly. Its purpose is to enable the 213 

model to obtain the target region that needs to be focused on, put more weight on this part, highlight significant useful 214 

features, and suppress and ignore irrelevant features. The NECA (New Efficient Channel Attention) is an 215 

implementation form of channel attention mechanism, which can strengthen channel features without changing the 216 

size of the input feature maps. It adopts a local cross-channel interaction strategy without dimensionality reduction so 217 

that the 1×1 convolution layer can replace the full connection layer to learn channel attention information, which can 218 

effectively avoid the negative impact of dimensionality reduction on channel attention learning. The network 219 

performance is guaranteed and the complexity of the model is significantly reduced. 220 

The ground-based cloud image samples in Figure 2 were taken by the all-sky imager and could cover the sky in 221 

this area. However, the ground-based cloud images contain not only the valid area of the whole sky but also the black 222 
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invalid area. Therefore, the NECA module abandons the traditional global maximum pooling and adopts double global 223 

average pooling. The global average pooling formulas are as follows: 224 

𝛾𝑔𝑎𝑝 =
1

𝑤ℎ
∑ 𝑋𝑖𝑗∙

𝑤,ℎ
𝑖=1,𝑗=1  , 𝑋 ∈ 𝑅𝑤×ℎ×𝑐 ,                                                                           (1) 225 

𝜂𝑔𝑎𝑝 = 𝜎(𝑉𝑘
𝑔𝑎𝑝

𝛾𝑔𝑎𝑝) , 𝑉𝑘
𝑔𝑎𝑝

∈ 𝑅𝑐×𝑐 ,                                                                                       (2) 226 

where 𝑋 and 𝑋′ represent the input and output feature maps, respectively, whereas 𝑤, ℎ, and 𝑐 are the width, height, 227 

and number of channels of the input feature map. The NECA module adopts a double global average pool, which can 228 

effectively improve its noise suppression ability and enhance its channel feature extraction ability, which can avoid 229 

the black invalid part of the feature calculation. The NECA module structure is shown in Figure 4. 230 

N 231 

Figure 4: NECA model structure. 232 

Here 𝑏 and 𝑟 are fixed values, and their values are set to 1 and 2, respectively, while 𝑘 represents the convolution 233 

kernel size and has a corresponding relationship with 𝑐. As the network deepens, the number of channels 𝑐 increases 234 

by the power of 2. Therefore, 𝑘 should not be a fixed value, but a dynamic change and its relationship are as follows: 235 

𝐶 = 𝜙(𝑘) = 2(𝛾∗𝑘−𝑏)                                                                              (3) 236 

𝐾 = 𝜓(𝐶) = |
𝑙𝑜𝑔2(𝑐)

𝑟
−

𝑏

𝑟
|

𝑜𝑑𝑑
                                               (4) 237 

2.4 Inference Process from Multi-Branch to Single-Branch 238 

The residual module is crucial to the CloudRVE training process. Its multi-branch topology can improve CloudRVE 239 

Block’s ability to extract ground cloud image features and solve optimization problems such as gradient disappearance 240 

and gradient explosion caused by increasing network depth. However, the multi-branch topology will occupy more 241 

memory for the CloudRVE reasoning process, resulting in insufficient utilization of hardware computing power and 242 

slower reasoning speed. If the single-branch topology is adopted, the computing load is reduced and the inference 243 

time is saved, thus reducing memory consumption. Therefore, the single-branch topology structure is adopted in the 244 

CloudRVE inference stage, and the trained CloudRVE Block needs to be transformed into a single-branch topology 245 

model through structural re-parameterization. The conversion process mainly includes the fusion of the convolutional 246 
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layer and BN layer, the conversion of the BN layer into a convolutional layer, and the fusion of the multi-branch 247 

convolutional layer. We use 𝑊(3) ∈ 𝑅𝐶1×𝐶2×3×3  as 3×3 convolution layers, and use 𝐶1 , 𝐶2  as input channels and 248 

output channels respectively, and use 𝑊(1) ∈ 𝑅𝐶1×𝐶2×1×1 as 1×1 convolution layers. In addition, we use 𝜇(3), 𝜎(3), 249 

𝛾(3), 𝛽(3) to represent the mean value, standard deviation, learning scaling factor, and deviation of the BN layer of the 250 

main branch, and use  𝜇(1), 𝜎(1), 𝛾(1), 𝛽(1)  to represent the parameters of the BN layer of the by-pass branch containing 251 

1×1 convolution layer, and use  𝜇(0), 𝜎(0), 𝛾(0), 𝛽(0) to represent the parameters of the BN layer of the identity branch, 252 

and use 𝑀(1) ∈ 𝑅𝑁×𝐶1×𝐻1×𝑊1 , 𝑀(2) ∈ 𝑅𝑁×𝐶2×𝐻2×𝑊2  to represent the input and output. The CloudRVE Block structure 253 

reparameterization calculation process is as follows: 254 

(2) (1) (3) (3) (3) (3) (3) (1) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0)

M = BN(M * W ,  μ ,σ ,γ ,β )+BN(M * W , μ ,σ ,γ ,β )

           +BN(M * W , μ ,σ ,γ ,β )+BN(M , μ ,σ ,γ ,β )
                                                                           (5)                                                                                                                                             255 

The input feature map is inputted into the NECA module through the 3×3 convolution layer completed by fusion. 256 

The process is shown in Figure 5. 257 

 258 

Figure 5: Re-parameterization process of CloudRVE Block structure. 259 

2.4.1 Fusion of Convolutional Layer and BN Layer 260 

This section first describes the fusion of the main branch 3×3 convolution layer with the BN layer and then describes 261 

the transformation of the bypass branch 1×1 convolution layer into the 3×3 convolution layer and fusion with the BN 262 

layer. In the inference stage, the number of convolutional kernel channels in the convolution layer is the same as the 263 

number of channels in the input feature map, and the number of convolutional kernel channels in the output feature 264 

map is the same. The main parameters of the BN layer include mean 𝜇, variance 𝜎2, learning ratio factor 𝛾, and 265 

deviation 𝛽. Of these, 𝜇 and  𝜎2 are obtained statistically in the training stage, while 𝛾 and 𝛽 are obtained by learning 266 

in the training stage. The calculation of the 𝑖 channel of the input BN layer is performed as follows: 267 

𝑦𝑖 =
𝑥𝑖−𝑢𝑖

√𝜎𝑖
2+𝜀

× 𝛾𝑖 + 𝛽𝑖 ,                                  (6) 268 

where 𝑥 is the input and 𝜀 is the constant approaching 0. The calculation process of the 𝑖 channel input BN in the 269 

feature map can be expressed as follows: 270 
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𝑏𝑛(𝑀, 𝜇, 𝜎, 𝛾, 𝛽):,𝑖,:,: = (𝑀:,𝑖,:,: − 𝜇𝑖)
𝛾𝑖

𝜎𝑖
+ 𝛽𝑖 =

𝛾𝑖

𝜎𝑖
𝑀:,𝑖,:,: + 𝛽𝑖 −

𝛾𝑖

𝜎𝑖
𝜇𝑖 ,                                        (7) 271 

where 𝑀  is the output feature map obtained by weighted summation of the convolution layer, input to BN layer and 272 

ignore 𝑥. Therefore, we can multiply 𝛾𝑖/𝜎𝑖 to the 𝑖 convolution kernel of the 3×3 convolution layer: 273 

𝑊𝑖,:,:,:
′ =

𝛾𝑖

𝜎𝑖
𝑊𝑖,:,:,:                                                                                         (8) 274 

𝒃𝒊
′ = 𝜷𝒊 −

𝝁𝒊𝜸𝒊

𝝈𝒊
                                                                                         (9) 275 

   The 𝑖 convolution kernel weight of the fusion of the 3 × 3 convolution layer and BN layer is obtained, and the 276 

specific fusion process is shown in Figures 6 and 7. The input channel 𝐶1 and output channel  𝐶2 make two, and the 277 

stride is one. In the convolution layer, the input feature map is calculated by convolution to obtain the output feature 278 

map with the number of channels 2. Figure 8 shows that the number of channels in the BN layer is 2, and the output 279 

feature map of the convolution layer is used as the input feature map of the BN layer. The output feature map with 280 

the number of channels being 2 is obtained via equation (2). 281 

 282 

Figure 6: Input feature map through convolution layer process. For visualization, we assume that 𝑪𝟏=𝑪𝟐=2. 283 

 284 

Figure 7: Convolutional layer output feature map through the BN layer process. 285 
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   In addition, to ensure that the size of the output feature map is consistent with that of the input feature map, the input 286 

feature map should be converted into 5 × 5 size by padding operation. The concrete convolution is as follows: 287 

𝑜1
1 = 𝑥1

1 ∙ 𝑘5
1 + 𝑥2

1 ∙ 𝑘6
1 + 𝑥4

1 ∙ 𝑘8
1 + 𝑥5

1 ∙ 𝑘9
1 + 𝑥1

2 ∙ 𝑘5
2 + 𝑥2

2 ∙ 𝑘6
2 + 𝑥4

2 ∙ 𝑘8
2 + 𝑥5

2 ∙ 𝑘9
2                                                      (10)     288 

The specific calculation process of the input feature map through the BN layer is 289 

𝑏1 =
(𝑥1

1∙𝑘5
1+𝑥2

1∙𝑘6
1+𝑥4

1∙𝑘8
1+𝑥5

1∙𝑘9
1+𝑥1

2∙𝑘5
2+𝑥2

2∙𝑘6
2+𝑥4

2∙𝑘8
2+𝑥5

2∙𝑘9
2)−𝜇1

√𝜎2+𝜀
∙ 𝛾1 + 𝛽1                                                                    (11) 290 

Re-arranging equation (7) yields 291 

𝑏1 = (𝑥1
1 ∙ 𝑘5

1 + 𝑥2
1 ∙ 𝑘6

1 + 𝑥4
1 ∙ 𝑘8

1 + 𝑥5
1 ∙ 𝑘9

1 + 𝑥1
2 ∙ 𝑘5

2 + 𝑥2
2 ∙ 𝑘6

2 + 𝑥4
2 ∙ 𝑘8

2 + 𝑥5
2 ∙ 𝑘9

2) ∙
𝛾1

√𝜎2+𝜀
+ (𝛽1 −

𝜇1

√𝜎2+𝜀
)          (12)                                           292 

𝑐 =
𝛾1

√𝜎2+𝜀
  ;                          𝑑 = 𝛽1 −

𝛾1∙𝜇1

√𝜎2+𝜀
                                                                                           (13) 293 

In equation (8), 𝑐 and 𝑑 are constants and are multiplied to the first convolution kernel of the convolution layer to 294 

obtain the parameters of the first convolution kernel after the convolution layer and BN layer are fused. Other fused 295 

convolution kernel parameters are calculated similarly. The convolution layer and BN layer are fused by the bypass 296 

branch containing a 1 × 1 convolution layer. The convolution layer is first converted to 3 × 3 size by padding operation 297 

and then fused with the BN layer by repeating the above steps. The convolution layer padding process is shown in 298 

Figure 8. 299 

 300 

Figure 8: 1 × 1 convolution layer transformed into 3 × 3 convolution layer. 301 

2.4.2 Converting the BN Layer to the Convolution Layer 302 

The identity bypass branch has only a BN layer, its function is to ensure the identity mapping of the input feature map 303 

and output feature map. To realize the identical mapping between the input feature map and the output feature map in 304 

the fusion process, a 3 × 3 convolution layer with 2 convolution kernels and 2 convolution kernel channels needs to 305 

be designed. Secondly, the input feature map needs to be converted into a 5 × 5 feature map by padding operation. 306 

The specific process is shown in Figure 9. The output feature map is obtained by convolution calculation of the input 307 

feature map, and its parameters and sizes are consistent with those of the input feature map. Finally, the fusion process 308 

of the 3 × 3 convolution layer and BN layer is repeated to obtain a new 3 × 3 convolution layer. 309 
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2.4.3 Multi-Branch Convolution Layer Fusion 310 

The structure re-parameterization transforms each branch into a 3 × 3 convolution layer by construction and fusion, 311 

which facilitates the fusion of multi-branch convolution layers into a single-branch 3 × 3 convolution. We use 𝐼 and 312 

𝑂 to represent the input and output, respectively, while  𝐾𝑖 and 𝐵𝑖  are the convolution kernel weight and bias of the 𝑖 313 

branch. The multi-branch fusion calculation process is as follows: 314 

𝑂 = (𝐼⨂𝐾1 + 𝐵1) + (𝐼⨂𝐾2 + 𝐵2) + (𝐼⨂𝐾3 + 𝐵3) + 𝐼⨂(𝐾1 + 𝐾2 + 𝐾3) + (𝐵1 + 𝐵2 + 𝐵3)                                       (14)   315 

 316 

Figure 9: Identity branch Identity mapping process. 317 

2.5 Warm-Up Method 318 

In this paper, the warm-up method (He et al., 2019) is used to optimize the learning rate in the model training process, 319 

so that the learning rate varies in different training stages. In the initial stage of model training, a small learning rate 320 

is selected, which is due to the random initialization of model weights and no prior knowledge of ground-based cloud 321 

image data, and the model will quickly adjust parameters according to the input. If a large learning rate is adopted at 322 

this time, the model will be overfitted and the prediction accuracy of the model will be affected. After training the 323 

model for some time, the learning rate linearly increases to a preset large value and the model has some prior 324 

knowledge, which can avoid overfitting and accelerate the convergence speed of the model. Finally, the model 325 

distribution is relatively stable, so it is difficult to learn new features from ground-based cloud image data, and the 326 

learning rate linearly approaches to zero, keeping the model stable and easily obtaining local optima. 327 
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3. Dataset and Experimental Settings 328 

This section introduces two kinds of ground-based cloud image classification datasets, MGCD and GRSCD, and 329 

describes the relevant experimental Settings. Subsection 3.1 describes MGCD and GRSCD in detail, and Subsection 330 

3.2 details experimental setting parameters and model evaluation indices. 331 

3.1 Ground-Based Cloud Image Dataset 332 

3.1.1 Introduction to MGCD Dataset 333 

Multi-modal Ground-based Cloud image Dataset (MGCD) is the first ground-based cloud image classification dataset 334 

composed of ground-based cloud images and multi-modal information, which was collected by the School of 335 

Electronics and Communication Engineering of Tianjin Normal University and the Meteorological Observation 336 

Center of Beijing Meteorological Bureau of China from 2017 to 2018. There are 8000 ground-based cloud images in 337 

MGCD, and 4000 ground-based cloud images in the training set and testing set, including altocumulus (Ac), cirrus 338 

(Ci), clear sky (Cl), cumulonimbus (Cb), cumulus (Cu), stratocumulus (Sc), and mix (Mx). In addition, cloud images 339 

with a cloud cover of less than 10% are classified as clear sky, and each sample contains a captured ground cloud 340 

iamge and a set of multimodal cloud information. Among them, the ground-based cloud images are collected by an 341 

all-sky camera with a fisheye lens, and its data storage format is JPEG with a resolution of 1024 × 1024 pixels; 342 

Multimodal information is collected by weather stations, including temperature, humidity, pressure, and wind speed, 343 

and these four elements are stored in the same vector. Figure 10 is a partial sample of the MGCD dataset, and the 344 

specific information is shown in Table 2. 345 

 346 

Figure 10: Sample legend of MGCD dataset (Liu et al., 2020a). 347 
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              Table 2. MGCD dataset-specific information. 348 

No Class Training Testing Total 

1 Ac 365 366 731 

2 Ci 662 661 1323 

3 Cl 669 669 1338 

4 Cb 593 594 1187 

5 Cu 719 719 1438 

6 Sc 482 481 963 

7 Mx 510 510 1020 

 Total 4000 4000 8000 

3.1.2 Introduction to GRSCD Dataset 349 

Ground remote sensing cloud dataset (GRSCD) is a ground-based cloud image classification dataset composed of 350 

ground-based cloud images and multimodal information. It was collected by the College of Electronic and 351 

Communication Engineering of Tianjin Normal University and the Meteorological Observation Center of Beijing 352 

Meteorological Administration of China from 2017 to 2018. The total number of ground-based cloud images in 353 

GRSCD is consistent with MGCD, with a training set and a testing set each accounting for 50%, including 7 types of 354 

clouds: altostratus (Ac), cirrus(Ci), clear sky(Cl), cumulonimbus(Cb), cumulus(Cu), stratocumulus(Sc), and mix(Mx). 355 

Among them, the features of cumulonimbus and stratocumulus in MGCD are not distinct and easy to confuse; the 356 

features of altostratus and cumulus in GRSCD are not distinct and easy to confuse. In addition, each sample contains 357 

a ground-based cloud image and a set of multi-modal cloud information, and cloud images with cloud cover not 358 

exceeding 10% are classified as clear sky. Figure 11 depicts a partial sample of the GRSCD dataset. The specific data 359 

are listed in Table 3. 360 

 361 

Figure 11: Sample legend of GRSCD dataset (Liu et al., 2020b). 362 
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                Table 3. GRSCD dataset-specific information 363 

No Class Training Testing Total 

1 Ac 400 331 731 

2 Ci 650 673 1323 

3 Cl 650 688 1338 

4 Cb 600 587 1187 

5 Cu 690 748 1438 

6 Sc 500 463 963 

7 Mx 510 510 1020 

 Total 4000 4000 8000 

3.2 Experimental Setting 364 

3.2.1 Implementation Details 365 

All experiments in this paper adopt Python programming language and run on Intel(R) Core (TM) i9-12700K CPU 366 

@ 3.60GHz. NVIDIA GeForce RTX 3090 24G Graphical Processing Unit (GPU) platform and uses Pytorch as a deep 367 

learning framework. The CNN experiment is trained on the ground-based cloud image classification datasets MGCD 368 

and GRSCD respectively. The number of training data accounts for 50%, the initial learning rate is set to 0.0002, 369 

Batchsize is set to 32, and Adam optimizer (Kingma and Ba, 2015) is used to optimize all available parameters in the 370 

network. In addition, to improve the generalization ability of the CNN model and the convergence speed of the 371 

experiment, the transfer learning method is adopted in the training stage, and model parameters are obtained by 372 

training RepVGG with the ground-based cloud image classification dataset made by the team and used as the weight 373 

of pre-training. CNN experiment directly trains based on pre-training weight, which can accelerate the model 374 

convergence speed and shorten the training time, avoid the problem of parameter overfitting, and promote the rapid 375 

gradient decline. 376 

3.2.2 Evaluation Index 377 

To objectively evaluate the ground-based cloud image classification performance of CloudRVE and other CNN 378 

models, the accuracy rate, recall rate, and the average values of different indices of 7 types of clouds in MGCD and 379 

GRSCD datasets are calculated in the experiment, which is used as evaluation indices of CNN model. The accuracy 380 

rate and average accuracy rate is derived based on positive and negative samples, 𝑛 represents the number of cloud 381 

types and the calculation process is as follows: 382 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐𝑐) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐴𝑐𝑐̅̅ ̅̅ ̅) =

1

𝑛
∑

𝑇𝑃𝑖+𝑇𝑁𝑖

𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖

𝑛
𝑖=1                                                      (15)                  383 

TP (True Positive) parameter is the number of correctly classified samples for a specific  genus, TN (True Negative) 384 

parameter is the number of correctly classified samples for the remaining genus, and FN (False Negative) parameter 385 

is the number of misclassified samples for a specific class genus. FP (False Positive) parameter is the number of 386 
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misclassified samples for the remaining classes genera. The precision rate,average precision rate, recall rate and 387 

average recall rate can be expressed as: 388 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛(𝑃𝑟) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑃𝑟̅̅ ̅) =

1

𝑛
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖

𝑛
𝑖=1                                                                                   (16)                                                          389 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝑒) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 𝑅𝑒𝑐𝑎𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑅𝑒̅̅̅̅ ) =

1

𝑛
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝑛
𝑖=1                                                                                                  (17)                                   390 

In addition, the specificity, average specificity, F1_score and average F1_score are also used as evaluation indices 391 

of the CNN model in the experiment, and their expressions are shown as follows: 392 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑇𝑁𝑅) =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 , 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑇𝑁𝑅̅̅ ̅̅ ̅̅ ) =

1

𝑛
∑

𝑇𝑁𝑖

𝐹𝑃𝑖+𝑇𝑁𝑖

𝑛
𝑖=1                                                                    (18)                                                             393 

𝐹1_𝑠𝑐𝑜𝑟𝑒(𝐹1) =
2×𝑃𝑟×𝑅𝑒

𝑃𝑟+𝑅𝑒
 , 𝐹1_𝑠𝑐𝑜𝑟𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐹1̅̅̅̅ ) =

1

𝑛
∑

2×𝑃𝑟𝑖×𝑅𝑒𝑖

𝑃𝑟𝑖+𝑅𝑒𝑖

𝑛
𝑖=1                                                                    (19)                                                              394 

4. Experimental Results and Discussion 395 

4.1 Classification Results of Ground-Based Cloud Images 396 

Figure 12 shows the confusion matrix of MGCD and GRSCD datasets, showing CloudRVE prediction results on 397 

MGCD and GRSCD datasets. The horizontal axis represents the true cloud image classification, while the vertical 398 

axis represents the predicted cloud image classification, where the value of the diagonal element represents the correct 399 

number of cloud image classifications and the value of the off-diagonal element represents the number of cloud image 400 

classification errors. As can be seen from Figure 12(a), in the MGCD dataset, the correct classification of the Cu is 401 

the largest, while the misclassification of the cloud images mainly comes from Sc and Mx. The reason is that the cloud 402 

base of Sc is blackened by illumination, making it easily confused with Cb. In addition, the dynamic change of cloud 403 

will lead to a change in the viewpoint of the whole sky camera, thus increasing the difficulty of cloud genus 404 

identification. As can be seen in Figure 12(b), in the GRSCD dataset, the correctly classified cloud images of the same 405 

Cu had the largest number, while the incorrectly classified ones mainly came from Mx and Sc. The Mx cloud is a 406 

hybrid cloud, containing a variety of different cloud genera, with large shares of Ac, Ci, and Cu, which could be 407 

erroneously classified as Mx. Similarly, Sc could be taken for Cb, due to their similar features, impeding the correct 408 

identification. 409 
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 410 

Figure 12: Confusion matrix images. (a)MGCD confusion matrix image. (b) GRSCD confusion matrix image. 411 

The overall classification accuracy of the CloudRVE method proposed in this paper in MGCD and GRSCD datasets 412 

and the classification results of each cloud genus are listed in Tables 4 and 5. It can be seen that the accuracy of 413 

CloudRVE in MGCD and GRSCD datasets reached 98.15 and 98.07%, respectively. The characteristics of the Cl in 414 

MGCD and GRSCD datasets were easy to identify, resulting in the accuracy rate, recall rate, specificity, and F1 value 415 

reaching 100%. In the MGCD dataset, the accuracy rate, recall rate, and F1 value of the other six cloud genera all 416 

exceeded 95.00%, and the specificity was above 99.50%. The accuracy and specificity of the Ci were the highest, 417 

reaching 98.64 and 99.73%, respectively. Cu had the highest recall rate and F1 value, reaching 99.17 and 98.89%, 418 

respectively. In addition, the recall rate and F1 value of Sc and Mx were about 2.00% lower than other cloud genera, 419 

mainly their characteristics in the MGCD dataset were similar to those of Cb and Ci, respectively, reducing 420 

CloudRVE’s ability to classify them.  421 

                Table 4. Classification results for the MGCD dataset. 422 

Genus 𝑨𝒄𝒄̅̅ ̅̅ ̅ (%) Pr (%) Re (%) TNR (%) F1 (%) 

Cu 

98.15 

98.62 99.17 99.70 98.89 

Ac 97.02  98.08 99.70 97.55 

Ci 98.64 98.94 99.73 98.79 

Cl 100.0 100.0 100.0 100.0 

Sc 97.26 95.84 99.63 96.54 

Cb 97.13 97.13 99.51 97.13 

Mx 97.24 96.67 99.60 96.95 
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                Table 5. Classification results for the GRSCD dataset. 423 

Genus 𝑨𝒄𝒄̅̅ ̅̅ ̅ (%) Pr (%) Re (%) TNR (%) F1 (%) 

Cu 

98.07 

99.30 99.03 99.85 99.16 

Ac 94.24  98.63 99.39 96.39 

Ci 97.91 99.24 99.58 98.57 

Cl 100.0 100.0 100.0 100.0 

Sc 98.10 96.47 99.74 97.27 

Cb 97.33 98.48 99.53 97.90 

Mx 97.74 93.33 99.68 95.49 

   In the GRSCD dataset, the accuracy rate, recall rate, and F1 value of the other six cloud genera exceeded 94.00%, 424 

and the specificity as over 99.30%. Cu had the highest accuracy, specificity, and F1 value, reaching 99.30, 99.85, and 425 

99.16%. The recall rate of Ci was the highest, reaching 99.17%. In addition, the Ac accuracy was only 94.24%, mainly 426 

because Ac contained a small amount of Sc, and CloudRVE could easily to misjudge Ac as Sc or Mx. Mx contained 427 

a variety of other clouds, and the images composition was complex. Cloud clusters of different can genera varied in 428 

size and shape, resulting in lower recall rate and F1 values.  429 

4.2. Ablation Experiment 430 

               Table 6. Results of the ablation experiment. 431 

Dataset Model 𝑨𝒄𝒄̅̅ ̅̅ ̅ (%) 𝑷𝒓̅̅ ̅̅  (%) 𝑹𝒆̅̅ ̅̅  (%) 𝑻𝑵𝑹̅̅ ̅̅ ̅̅  (%) 𝑭𝟏̅̅ ̅̅  (%) 

MGCD 

RepVGG 95.57 95.31 94.99 99.26 95.14 

RepVGG_M 95.97 95.65 95.67 99.33 95.56 

RepVGG_M+ECA 96.80 96.60 96.37 99.47 96.45 

CloudRVE 98.15 97.99  97.98 99.68 97.83 

GRSCD 

RepVGG 95.42 94.99 94.88 99.24 94.92 

RepVGG_M 95.70 95.46 95.30 99.29 95.36 

RepVGG_M+ECA 96.10 95.67 95.74 99.35 95.68 

CloudRVE 98.07 97.80 97.88 99.68 97.82 

In this section, the ablation experiment is used to compare the original structure and different improvement stages of 432 

the proposed method on the MGCD and GRSCD datasets respectively, and the results are shown in Table 6. 433 

RepVGG_M is the main improved network, ECA is the attention module, CloudRVE is the combined improved 434 

network of RepVGG_M and NECA, and is the final version of the method proposed in this paper. It can be seen from 435 

the data in the table that the performance of each improvement stage of the network model is improved compared to 436 

the previous stage, which not only verifies the feasibility of extracting more cloud image detail features by adding 437 

1×1 convolutional layer branches but also verifies that NECA can effectively improve the noise suppression ability 438 

and enhance the channel feature extraction ability. Compared with the original network structure, the accuracy of 439 

CloudRVE in the MGCD dataset increased by 2.58%, the average accuracy rate increased by 2.68%, the average 440 

recall rate increased by 2.99%, the average specificity increased by 0.42%, and the average F1 value increased by 441 
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2.69%. In the GRSCD dataset, the accuracy rate increased by 2.65%, the average accuracy rate increased by 2.81%, 442 

the average specificity increased by 0.44%, and the average F1 value increased by 2.69%. Therefore, it can be seen 443 

from the data display that the method proposed in this paper has the best performance. 444 

 445 

Figure 13: Feature extraction of different models based on MGCD (Liu et al., 2020a). 446 

 447 

 448 

Figure 14: Feature extraction of different models based on GRSCD (Liu et al., 2020b). 449 

To visually compare the performance of the original structure and the method proposed in this paper in different 450 

improvement stages, we visualize the features by extracting the feature map of the middle layer of the network and 451 
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then explain the feature extraction ability of the original structure and the method proposed in this paper in different 452 

improvement stages, as shown in Figures 13 and 14. The method generates a rough feature map to display the 453 

important region of the predicted images through the parameter weights generated by network training, in which the 454 

brighter the region indicates the higher its importance, and the darker the region represents the sky or those that cannot 455 

be extracted. Figure 13 shows that CloudRVE has the best feature location and extraction ability by showing the 456 

feature maps of three different cloud images in the MGCD dataset. Figure 14 shows that the three cloud images of the 457 

GRSCD dataset include not only clouds and sky but also strong sunlight, which affects the classification accuracy of 458 

the model. However, it can be seen from the feature maps that CloudRVE not only has the best feature extraction 459 

ability but also has a strong ability to suppress noise such as sunlight. 460 

4.3 Comparison of Experimental Results 461 

 462 

Figure 15: Training accuracy (a) and training loss (b) curves of the MGCD dataset. 463 

 464 

 465 

Figure 16: Training accuracy (a) and training loss (b) curves of the GRSCD dataset.  466 
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To verify the feasibility of the proposed CloudRVE method, we compared it with other advanced methods, including 467 

CloudNet (Zhang et al., 2018), CloudA (Wang et al., 2020), Eff-Swin-T (Li et al., 2022), and other ground-based 468 

cloud image classification methods. These included such classic CNN models as VGG16 (Szegedy et al., 2015), 469 

ResNet50 (He et al., 2016), ShuffleNet (Zhang et al., 2018) and EfficientNet (Tan and Le, 2019). In addition, we 470 

compared it with other Transformer-based classification models such as ViT-L (Dosovitskiy et al., 2022), Swin-T(Liu 471 

et al., 2021), etc. Figures 15 and 16 illustrate the performances of different methods by displaying the training accuracy   472 

and training loss curves of MGCD and GRSCD datasets. Here the black bold curve represents the CloudRVE method, 473 

which has the largest accuracy value, the fastest convergence rate, the smallest loss rate, and the fastest decline rate 474 

in the training stage. This strongly indicates that the CloudRVE method has the best classification performance of 475 

ground-based cloud images. 476 

Table 7. Comparison of experimental results. 477 

Method 
MGCD 

 
GRSCD 

𝑨𝒄𝒄̅̅ ̅̅ ̅ (%) 𝑷𝒓̅̅ ̅̅ (%) 𝑹𝒆̅̅ ̅̅  (%) 𝑻𝑵𝑹̅̅ ̅̅ ̅̅  (%) 𝑭𝟏̅̅ ̅̅ (%) 𝑨𝒄𝒄̅̅ ̅̅ ̅ (%) 𝑷𝒓̅̅ ̅̅ (%) 𝑹𝒆̅̅ ̅̅  (%) 𝑻𝑵𝑹̅̅ ̅̅ ̅̅  (%) 𝑭𝟏̅̅ ̅̅  (%) 

VGG-16 78.25 77.04 75.52 96.36 75.55  73.50 73.88 70.29 95.53 70.87 

ResNet-50 85.98 85.24 84.55 97.67 84.82  86.51 85.56 85.38 97.75 85.34 

ShuffleNet 86.95 86.08 85.68 97.83 85.71  86.99 86.85 85.18 97.82 85.71 

CloudNet 90.01 89.24 89.08 98.34 89.13  89.60 89.06 88.60 98.27 88.79 

CloudA 89.62 88.78 88.50 98.28 88.61  90.03 89.54 88.71 98.34 89.03 

EfficientNet 91.17 90.66 90.22 98.53 90.27  90.10 89.68 88.92 98.35 89.13 

ViT-L 91.11 90.91 90.21 98.55 90.40  90.98 90.49 90.33 98.50 90.39 

Swin-T 92.87 92.44 91.63 98.63 91.76  93.55 93.22 92.87 98.93 92.71 

RepVGG 95.57 95.31 94.99 99.26 95.14  95.42 94.99 94.88 99.24 94.92 

Eff-Swin-T 96.93 96.73 96.44 99.49 96.56  95.62 95.41 95.11 99.27 95.21 

CloudRVE 98.15 97.99 97.98 99.68 97.83  98.07 97.80 97.88 99.68 97.82 

The comparative analysis results of the above methods are summarized in Table 7. It can be seen from the 478 

experimental results that RepVGG had the best performance among the CNN-based methods. Among them, the 479 

accuracy rate has the most significant improvement, and the precision and recall rates also have good improvement. 480 

The accuracy rate, precison rate, recall rate for the MGCD dataset reached 95.57, 95.31, and 94.99, respectively, while 481 

those for the GRSCD dataset were 95.42, 94.99, and 94.88, respectively. Ground-based cloud images have more 482 

texture features and deep semantic features than other images, and more image features need to be obtained to meet 483 

the classification requirements of such images. In recent years, Transformer has been widely used for image 484 

processing tasks due to its strong feature extraction capability. Several scholars have improved the Transformer 485 

derivative model through continuous exploration. Among them, Eff-Swin-T was an improvement based on Swin-T, 486 

and its performance on MGCD and GRSCD datasets was better than that of the classic CNN model. Its accuracy rate, 487 

precison rate, and recall rate reached 96.93, 96.73, 96.44, and 95.62, 95.41, 95.11, respectively. Compared with 488 
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Transformer and classical networks, the proposed method had much better classification performance of ground-based 489 

cloud images. For different cloud image classification datasets, it exhibited excellent generalization ability and strong 490 

robustness, which is instrumental in photovoltaic power generation prediction. 491 

The space complexities of CloudRVE and ten alternative methods are summarized and compared in Table 8. It can 492 

be seen from the table that CloudRVE had a spatial complexity of 105.17 Mb, which is in line with the spatial 493 

complexity of Swin-T and Eff-Swin-T, and far less than the spatial complexity of ViT-L. The spatial complexity of 494 

CloudRVE exceeded that of RepVGG by three times, achieving the best ground cloud image classification 495 

performance. Thus, CloudRVE achieved excellent ground cloud image classification performance at the expense of 496 

higher spatial complexity.           497 

Table 8. Space complexity of the proposed and ten alternative methods. 498 

Method Space complexity (Mb) 

VGG-16 512.28 

ResNet-50 90.03 

ShuffleNet 4.93 

CloudNet 153.36 

CloudA 87.57 

EfficientNet 15.61 

ViT-L 327.37 

Swin-T 105.28 

RepVGG 30.10 

Eff-Swin-T 105.24 

CloudRVE 105.17 

In order to provide a more intuitive display of the advantages of CloudRVE over other advanced methods, we 499 

extracted the features of the intermediate layers of different methods to generate the ground cloud feature maps for 500 

the building foundation, demonstrating the strong feature extraction capabilities of CloudRVE and proving its 501 

superiority, as shown in Figures 17 and 18. Feature extraction was achieved by generating rough feature maps through 502 

network training with parameter weights to highlight the important regions of predicted images. The light colored 503 

regions represent the important features, while the dark colored regions represent the sky or unsuccessfully extracted 504 

features. Figure 17(b-i) shows the feature maps of different ground cloud classification methods based on MGCD 505 

dataset to demonstrate the CloudRVE capability to extract more extensive and comprehensive cloud features and 506 

suppress the black regions and sunlight, further illustrating the best feature localization and extraction capability of 507 

CloudRVE. Figure 18(b-i) shows the feature maps of different ground cloud classification methods based on GRSCD 508 

dataset to demonstrate that the cloud feature extracted by CloudRVE covers the effective area in Figure 18(a) with 509 

the best coverage and the best suppression of the sunlight, further proving that CloudRVE has the best feature 510 

localization and extraction capabilities. 511 
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 512 

Figure 17: Feature extraction of different methods based on MGCD, (a) Original (Liu et al., 2020a); (b)VGG-16; (c) ResNet-513 
50; (d) ShuffleNet; (e) CloudNet; (f) CloudA; (g) EfficientNet; (h) ViT-L; (i) Swin-T; (j) RepVGG; (k) Eff-Swin-T; (l) 514 
CloudRVE 515 

 516 

Figure 18: Feature extraction of different methods based on GRSCD: (a) Original (Liu et al., 2020b); (b)VGG-16; 517 
(c)ResNet-50; (d) ShuffleNet; (e) CloudNet; (f) CloudA; (g) EfficientNet; (h) ViT-L; (i) Swin-T; (j) RepVGG; (k) Eff-Swin-518 
T; (l) CloudRVE 519 

5. Conclusion 520 

This study proposed a new classification method called CloudRVE for ground-based cloud images based on the 521 

improved RepVGG network. In particular, its training stage structure was improved, the residual structure was 522 

broadened, and 1×1 convolutional layer branches were added to each block, extending the gradient information of the 523 

topology structure and enhancing the network ability to represent boundary features of cloud images. In addition, the 524 

NECA module was embedded after multi-branch fusion to learn the feature relationship between sequences, improve 525 
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the network cross-channel interaction ability, and extract the best global features of cloud images. We validated the 526 

excellent performance of the proposed method on MGCD and GRSCD ground-based cloud image datasets, achieving 527 

the classification accuracy values of 98.15 and 98.07%, respectively, which outperformed ten other advanced methods. 528 

In addition, the MGCD and GRSCD ground-based cloud image datasets contain 7 types of cloud categories, which is 529 

more than the ground-based cloud image datasets used in other papers. This further demonstrates the excellent 530 

performance of the proposed method. The particular contributions of this paper were summarized in Section 1. 531 

However, this study shares some limitations with other methods of classifying ground-based cloud images via 532 

convolutional neural networks, which have reached a bottleneck due to continuous expansion of the capacity of 533 

ground-based cloud image datasets. A lucrative alternative is Transformer, which got a high reputation of a powerful 534 

deep neural network for processing sequences but has received little attention in ground-based cloud image 535 

classification. On the other hand, cloud classification is only based on ground-based cloud image features, while many 536 

physical features, such as height, thickness, etc., may be also used. Our follow-up study envisages combining CNN 537 

and Transformer models and using cloud height, cloud thickness, and other parameters in ground-based cloud image 538 

classification to improve the model’s performance. 539 
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