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Abstract. It was shown that a theoretically derived relation between annual global mean temperature variability and climate

sensitivity held in the CMIP5 climate model ensemble (Cox et al. (2018a), hereafter CHW18). This so called emergent rela-

tionship was then used with observations to constrain the value of equilibrium climate sensitivity (ECS) to about 3oC. Since

this study was published, CMIP6, a newer ensemble of climate models has become available. Schlund et al. (2020) showed

that many of the emergent constraints found in CMIP5 were much weaker in the newer ensemble including that of CHW18.5

As the constraint in CHW18 was based on a relationship derived from reasonable physical principles it is of interest to find

out why it is weaker in CMIP6. Here, we look in detail at the assumptions made in deriving the emergent relationship in

CHW18 and test them for CMIP5 and CMIP6 models. We show one assumption, that of low correlation and variation between

ECS and the internal variability parameter, a parameter that captures chaotic internal variability as well as sub-annual (fast)

feedbacks, while true for CMIP5 is not true for CMIP6. When accounted for, an emergent relationship appears once again10

in both CMIP ensembles implying the theoretical basis is still applicable although the original assumption in CHW18 is not.

Unfortunately however, we are unable to provide an emergent constraint in CMIP6 as observational estimates of the internal

variability parameter are too uncertain.

1 Introduction

Since the first general circulation climate models were introduced in the 1960s (Manabe and Bryan, 1969; Manabe and Wether-15

ald, 1975) an ever increasing amount of effort has been spent developing and improving these models to produce simulations

that look
::
are

:
increasingly more realistic and feature more of the processes and interactions present in the real world. The

progress and understanding of the processes governing the Earth’s climate as a result has been impressive. However, even

after decades of research, the range of predictions of some key characteristics of the Earth’s future climate coming from these

models are actually increasing rather than narrowing with time, one particular characteristic being the amount of warming due20

to doubling of CO2 at equilibrium, known as equilibrium climate sensitivity (ECS, Sherwood et al. (2020)). Even though the
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latest state-of-the-art climate models in the Coupled Model Intercomparison Project 6 (CMIP6, Eyring et al. (2016)) have a

larger range of ECS values ([1.84K 5.68K]) than previous CMIP model ensembles (Forster et al., 2019), the latest IPCC esti-

mates have actually narrowed. For decades the IPCC high confidence
::::::
‘likely’

:
range for ECS was between 1.5 to 4.5 K. In the

latest report (IPCC, 2021) this was reduced to 2.5K to 4K with a best estimate of 3K.25

There have been numerous attempts (Knutti et al., 2017) to constrain ECS using the historical warming record and paleo-

climate data as well as climate model experiments. Researchers have also used the emergent constraint technique (Hall et al.,

2019; Brient, 2020; Williamson et al., 2021) to constrain ECS (see for example Covey et al. (2000); Knutti et al. (2006);

Masson and Knutti (2011a); Hargreaves et al. (2012); Sherwood et al. (2014); Caldwell et al. (2018) and the many references

listed in Williamson et al. (2021)). The basic idea of emergent constraints is to identify an observable of the climate x that30

varies significantly across a climate model ensemble and that exhibits a statistically significant relationship f(x) with another

variable y describing an aspect of the climate model’s future state. The relationship y = f(x)+ε, is referred to as an ‘emergent

relationship’ where ε is a relatively small departure from f . Since x is observable, it can be measured in the real world. f may

then place a useful constraint on y, provided that the measurement uncertainty in x is small compared to the range of simulated

values. This constraint is ‘emergent’ because the emergent relationship f cannot be diagnosed from a single climate model. It35

becomes apparent only when the full ensemble is analyzed.

There are pitfalls with the emergent constraint approach that must be guarded against particularly when the emergent re-

lationships are not founded on well understood physical processes. For example, data-mining outputs from climate models

could lead to spurious correlations (Caldwell et al., 2014) and less than robust constraints on future changes (Bracegirdle

and Stephenson, 2013). Care is also needed drawing statistical inferences from ensembles of small numbers of models. The40

problem is compounded if models within the ensemble share common components giving a smaller effective ensemble size

(Pennell and Reichler, 2010; Masson and Knutti, 2011b; Herger et al., 2018). Observations used to guide model development

also may lead to dependencies (Masson and Knutti, 2012) and common structural inaccuracies (Sanderson et al., 2021).

One way of guarding against spurious correlations between x and y is to use analytical solutions of simplified models of

the full complexity climate models to predict the emergent relationship f . f can then be tested against the results from the45

complex models. This approach was used in Cox et al. (2018a) (CHW18) where the analytical solution of the one-box or

Hasselmann model (Hasselmann, 1976) provided an emergent relationship between the statistics of historical global annual

mean temperature variability (x) and ECS (y, see later for further details). This emergent relationship was tested and found

to hold in the CMIP5 (Taylor et al., 2011) models although it was not without some debate regarding the applicability of the

theory (Po-Chedley et al. (2018); Brown et al. (2018); Rypdal et al. (2018); Cox et al. (2018b), see section 3 for a discussion50

of these points). However, since these works were published, the newer CMIP6 ensemble has become available. Schlund et al.

(2020) showed that many of the emergent constraints found in CMIP5 were much weaker in the newer ensemble including that

of CHW18.

As the constraint in CHW18 was based on a relationship derived from reasonable physical principles it is of interest to find

out why it got weaker in CMIP6. Some possible reasons are:55
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– The simple theory is not applicable to climate models and the real world. However, simple models (particularly two-box

models) are regularly used to reproduce the annual global mean temperature response of climate models and they do it

well (see Caldeira and Myhrvold (2013); Geoffroy et al. (2013b, a); Gregory (2000); Held et al. (2010); MacMynowski

et al. (2011)).

– Estimates of the temperature variability observable (x) are uncertain enough to mask the relationship with ECS (y). This60

is unlikely as historical observations are long (> 100 yrs) and relatively un-autocorrelated
::
in

::::
time

::
(a

::::
few

:::::
years)

:
giving

good estimators of the true values.

– The assumptions made in deriving the emergent relationship that held for CMIP5, no longer hold for CMIP6. This is

something we test in this manuscript.

The central interest of this manuscript is to test the assumptions that go into the derivation of the emergent relationship65

in CHW18. These assumptions are outlined in section 3 and then tested in the CMIP5 and CMIP6 model ensembles with

the aim of understanding why the emergent relationship in CHW18 is weaker for the CMIP6 model ensemble. Of course all

assumptions will be ultimately wrong if perfect agreement is expected (the often used quote ‘all models are wrong’ applies).

However, ‘some models are useful’ and we look for agreement ‘for all practical purposes (FAPP)’, a term coined by John Bell

(Bell, 1990). We will largely not be interested in the final step of obtaining the emergent constraint that results from combining70

the emergent relationship with observations for reasons we will outline later in the manuscript.

The structure is as follows: In section 2 we review the methodology of CHW18 and how it is used in this study. In section

3 we explicitly list, discuss and test the assumptions in CHW18 and show which assumption fails for the CMIP6 model

ensemble. In section 4 we show how to recover a robust emergent relationship in both CMIP5 and CMIP6 ensembles by

including the forcing parameter in the the predictor x. In section 6 we make a rigorous test of the emergent relationship theory75

by numerical simulation and show it does a reasonable job (FAPP) reproducing the results seen in each of the ensembles of the

full complexity CMIP climate models. We discuss and conclude in section 7.

2 CHW18 methodology

The response of the global mean surface air temperature anomaly T (t) with time t to forcing Q(t) is assumed to be well

modelled by the one-box or Hasselmann model (Hasselmann (1976), hereafter H76) in CHW18. Forcing in this model comes80

from random, short timescale weather noise as well as other external sources such as solar radiation and changes in greenhouse

gas concentrations. Air temperature sensitivity to forcing is parameterized by λ, a term that lumps all the effects of the Earth

system’s feedbacks together. The single box has heat capacity C. In this model, T (t) evolves according to

C
dT

dt
=Q(t)−λT (t). (1)
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Solving this model results in a linear relation between ECS and a metric of temperature variability Ψ, which is a form of a85

fluctuation-dissipation theorem (Kubo, 1966; Leith, 1975). Explicitly

ECS =
√

2
Q2×CO2

σQ
Ψ. (2)

Where Q2×CO2 is the radiative forcing resulting from doubling the atmospheric CO2 concentration and σQ is the standard

deviation of a zero mean white noise process designed to model the random, fast internally generated
::
fast

:::::::::::
(sub-annual),

:::::::
chaotic

weather forcing on the slower Earth system components. Ψ can be measured from temperature observations and is defined as90

Ψ =
σT√
− logα1T

, (3)

where σT is the standard deviation and α1T is the autocorrelation at 1 year lag of annual global mean temperature. Details of

this derivation can be found in CHW18 and Williamson et al. (2018).

CHW18 calculated the pair of values (Ψi,ECSi) for each of the n= 16 CMIP5 climate models labelled by i ∈ {1,2, ...,n}
performing a simulation of the historical period 1880-2016. Plotting the n pairs confirmed the theoretically expected Ψ vs95

ECS linear ‘emergent relationship’ with good correlation (r = 0.77, r in this manuscript denotes Pearson’s correlation coeffi-

cient). Combining this resulting emergent relationship with Ψ from observational records of the same period gave an emergent

constraint on ECS of 2.8± 0.6oC (plus minus values are 66% confidence intervals).

::::::::
Although

::::
there

::::
were

:::::
more

::::::
CMIP5

::::::
models

::::::::
available

::::
than

:::
the

::::::
n= 16

::::
used

::
in

::::::::
CHW18,

:::
the

:::::
choice

::
of

::::
one

:::::
model

:::
per

:::::::::
modelling

:::::
centre

::::
was

:::::
made

::
to

:::::
avoid

:::::::
biasing

:::
the

::::::::
emergent

:::::::::
constraint

:::::::
towards

::::::
similar

:::::::
models.

::::::
Where

::::::::
multiple

::::::
models

:::::
were

::::::::
available100

::::
from

:::
the

:::::
same

::::::
centre,

:::
the

:::::
model

::::
with

:::
the

::::::
lowest

::::
root

:::::
mean

::::::
square

::::
error

::
to

:::
the

::::::::::::
observational

::::::::::
temperature

:::::
record

::::
was

:::::::
chosen.

::::::::::::::::::::
Po-Chedley et al. (2018)

:::
and

::::::::::::::::::
Schlund et al. (2020)

:::::::
repeated

::
the

:::::::
analysis

::
of

:::::::
CHW18

::::::::
including

:::::
these

::::::::
additional

:::::::
models

:::
and

::::
thus

:::
had

:
a
:::::
larger

:::::::
CMIP5

::::::::
ensemble

:::::
(larger

:::
n).

:::::
They

:::::
found

:::
the

::::::::
emergent

:::::::::
relationship

:::
got

:::::::
slightly

:::::::
weaker,

:::::::
although

::
it

:::
was

::::
still

::::::
‘highly

:::::::::
significant’

::
in

:::
the

::::::::
language

::
of

:::::::::::::::::
Schlund et al. (2020)

:
.

In this manuscript we use the CHW18 methodology (further detailed in the original manuscript) and apply it to CMIP5 and105

CMIP6 models with the following differences: Here we look at the historical period 1880-2005 for both CMIP5 and CMIP6

ensembles following Schlund et al. (2020) rather than 1880-2016 as in CHW18. This is because the standard CMIP5 historical

experiment ends in 2005. (Increasing the time period to present day by concatenating with one of the CMIP rcp or ssp future

projection experiments slightly increases the strength of the correlation in the emergent relationship.) We also use a different

ensemble of 15 CMIP5 models corresponding with those analyzed in Geoffroy et al. (2013b). Geoffroy et al. (2013b) also lists110

FGOALS-s2 however we leave this model out as it does not have a historical simulation with which to calculate Ψ. We use the

Geoffroy et al. (2013b) ensemble as their published parameter values are used in section 6 to run simulations of box models.

These simulations are used to compare the theory with the full complexity CMIP5 models. To make a fair comparison limits

us to the same set. For the CMIP6 ensemble we use all models that have the necessary simulations for our analysis (piControl,

historical and abrupt-4xCO2), a set of n= 33 models. For both CMIP ensembles we use one run for each model, preferably115

the one labelled or r1i1p1 (CMIP5) or r1i1p1f1 (CMIP6) where it exists. We look at the results for different runs of the same

model in section 5 although we find no qualitative changes to the findings with the r1i1p1 (CMIP5) or r1i1p1f1 choices. A list

of models used and their parameter values is given in appendix B.
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Figure 1. Ψ vs ECS emergent relationships in the CMIP5 (left panel) and CMIP6 (right panel) model ensembles running the historical

experiment. The period 1880-2005 of each model’s timeseries is used to calculate Ψ. ECS is determined from the abrupt4xCO2 experiment

using the standard Gregory plot method. Individual models are plotted as circles (CMIP5 models are blue and CMIP6 models are red). The

best fit line in the ordinary least squares sense is shown in black along with the standard deviation of the prediction error (black dotted line).

Pearson correlation r and p value are given for each emergent relationship in each subplot title.
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The (Ψ,ECS) emergent relationships for CMIP5 and CMIP6 ensembles are shown in figure 1. The CMIP5 ensemble shows

good correlation between Ψ and ECS, r(Ψ,ECS) = 0.66, however for CMIP6 this is weaker, r(Ψ,ECS) = 0.31, confirming120

the results of CHW18 (although with slightly different historical period and set of CMIP5 models) and Schlund et al. (2020)

(CMIP6).

Schlund et al. (2020) use the following definitions for significance based on p value: An emergent relationship is called

‘highly significant’ if p < 0.02, ‘barely significant’ if 0.02≤ p < 0.05, ‘almost significant’ if 0.05≤ p < 0.1 and ‘far from

significant’ if p≥ 0.1. We adopt their definitions in this manuscript. We find the (Ψ,ECS) emergent relationship highly125

significant for CMIP5 and almost significant for CMIP6.

3 Assumptions in CHW18

The following assumptions are made in the CHW18 methodology to obtain the emergent relationship between Ψ and ECS:

A1 The T (t) response to Q(t) is modelled well by H76 for timescales greater than one year and less than the detrending

window length (55 years in CHW18).130

A2 H76 is solved with a random, white noise forcing Q(t) of zero mean and standard deviation σQ. This is designed to

parameterize internally generated variability (from weather for example, Hasselmann (1976)). It is assumed that the response

from all other sources of forcing in the historical period such as (but not limited to) GHGs, solar irradiance and volcanoes can

be removed via detrending to a good approximation so that equation 2 applies to this period in both observations and CMIP

models.135

A3 The forcing parameters, Q2×CO2 and σQ in equation 2, are uncorrelated to ECS and their variation is small relative to

the variation in Ψ. This requirement makes Ψ a good predictor of ECS.

There are further assumptions concerning the quantification of sources of uncertainty (structural, observational etc) in deriv-

ing the emergent constraint in CHW18. These are considered in more detail in Williamson and Sansom (2019) and Williamson

et al. (2021). However, as we look only at the emergent relationship here, these will not discussed further.140

3.1 Testing the assumptions

To summarise this subsection, assumption A3, is violated for the CMIP6 models. However, all other assumptions still apply

FAPP for CMIP5 and CMIP6. In particular, it is the assumption of no correlation between ECS and the forcing parameter, σQ,

that is no longer true for CMIP6. In CMIP6 significant correlation exists. Each assumption in order is discussed below.

Assumption A1 was studied in detail in Williamson et al. (2018) and Cox et al. (2018b). To summarize, H76 only really has145

any physical justification when the timescales of interest are dominated by the well-mixed atmosphere and ocean surface layer

(a few years to decades). It is well known H76 does a poor job of reproducing T (t) on longer timescales (see e.g. Caldeira and

Myhrvold (2013); Schwartz (2007, 2008); Foster et al. (2008); Kirk-Davidoff (2009); Knutti et al. (2008); Scafetta (2008)).

This led some to question the use of H76 in CHW18 e.g. Rypdal et al. (2018). However, one can show (Williamson et al., 2018)

analytically
:::::::::
analytically

:::::::::::::::::::::
(Williamson et al., 2018) that a near-linear emergent relationship is also expected between ECS and Ψ150
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for the more realistic and widely used two-box (Gregory, 2000; Held et al., 2010) and diffusion models (MacMynowski et al.,

2011). Both two-box and diffusion models are known to do a good job of reproducing the global annual mean temperature

response of CMIP climate models (Caldeira and Myhrvold, 2013; Geoffroy et al., 2013b). As the T (t) solutions of CMIP6

models qualitatively have the same structural form as CMIP5 models to stepped and linearly increasing forcing (abrupt-4xCO2

and 1pctCO2 experiments respectively) we expect that two-box and diffusion models also emulate the CMIP6 models well.155

We fit two-box models to the CMIP6 ensemble (as Geoffroy et al. (2013b) did for CMIP5) later in the manuscript and can

confirm this is indeed the case. The reason the Ψ vs ECS linear relationship still holds to a good degree in the more complete

two-box and diffusion models is because Ψ is a statistic that is dominated by fast timescale processes of a few years, a feature

H76 does capture well.

A2 assumes the response to all external forcing (GHGs, volcanoes, etc) in the historical period can be removed to a good160

approximation by linearly detrending T (t) in a 55 year moving window, leaving just the internally generated random variability

parameterized as the response to random ‘forcing’ in H76.

This was the procedure introduced in CHW18 and we continue with the same procedure here for consistency and comparison.

The reasons for using a 55 year window have been discussed in the original paper (Cox et al., 2018a) as well as subsequent

publications (Cox et al., 2018b; Williamson et al., 2018). The reason for linear detrending is to remove the response due to the165

slow timescale in the climate. It turns out that when fitting two-box models to the CMIP models, a fast timescale (∼ 4 years)

and a slow timescale (∼ 200 years) response result, see Geoffroy et al. (2013b) for example or the tables in the appendix of this

manuscript. Linear detrending with a 55 year timescale fits nicely between the short and fast timescale and removes the slow

response component. It also minimizes the uncertainty in the resulting emergent constraint (Cox et al., 2018a). Removing the

slow timescale response leaves a signal that is more H76 (one-box) model like and therefore more like the underlying simple170

theory of the emergent relationship.

Assumption A2 is to make the derivation of equation 2 (which is a derivation that applies to the piControl experiment)

applicable to the historical simulations. Several works (Po-Chedley et al., 2018; Brown et al., 2018) showed this assumption to

be false. In particular they showed that the detrending procedure in CHW18 does not remove the response to all external forcing.

They also showed that better methods of removing forced variability slightly weakened the emergent relationship. Cox et al.175

(2018b) acknowledged this to be true, however they also showed that external forcing, provided it is common for all models in

the ensemble, would actually be helpful and improve the emergent relationship. This was demonstrated using an ensemble of

H76 and two-box models tuned to mimic the CMIP5 models running a variety of experiments with and without common and

random forcing. A sketch of the reason is as follows: Ψ is linearly proportional to sensitivity and given an ensemble of models

with a range of sensitivities, more sensitive models will respond with a larger Ψ (or response) if all models in the ensemble are180

given the same (common) forcing, providing a natural way of ordering the model’s sensitivities. The common forcing in the

historical simulations comes from volcanoes, anthropogenic trends, solar cycles etc.

Equation 2 predicts a linear relationship between ECS and Ψ provided Q2×CO2 and σQ can be treated as ‘constants’ across

the model ensemble (assumption A3). A looser definition of ‘constant’ for equation 2 is stated in A3. In figure ??
:
2
:::
(a) we

plot Q2×CO2 against ECS and compute their correlation in both CMIP5 and CMIP6 ensembles. For both ensembles Q2×CO2185
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is uncorrelated to ECS (r =−0.17 for CMIP5 and r =−0.07 for CMIP6, both p values, p≥ 0.1, are far from significant).

Q2×CO2 is determined in the standard way for each model running an abrupt-4xCO2 experiment via a Gregory plot (Gregory

et al., 2004).

In figure ??
:
2

::
(b)

:
we plot the other forcing ‘constant’ σQ against ECS. σQ is estimated from the detrended temperature resid-

ual of each climate model’s historical run. The standard deviation of white noise forcing σQ is fitted for each model from the190

global annual mean temperature timeseries. This timeseries is linearly detrended with a rolling 55 year window. This is to iso-

late the T (t) response to internal variability, analogous to how Ψ is determined in the CHW18 methodology, to leave the noisy

T (t) response to white noise with standard deviation σT . The theoretical formula is given by
:::
(see

::::::::::::::::::::
Williamson et al. (2018)

:::
for

:::::::
example)

:

σ2
T =

σ2
Q

2λC
. (4)195

We rearrange this relation to get σQ in terms of the observable σT and the parameters λ and C (given in tables B1, B2, B3 and

B4, see section 6 for details on how the H76 model parameters are fitted). Values of σQ in both historical and piControl runs

are also reported in these tables.

As expected
:::::::::
Consistent

::::
with

:::::::
CHW18,

:
σQ is uncorrelated to ECS in CMIP5 (r =−0.09), however in CMIP6 there is highly

significant anti-correlation (r =−0.58, p < 0.001). We could equally estimate σQ from piControl simulations. We choose the200

historical experiment for consistency with estimation of Ψ. Whichever simulation is used, the correlation with ECS remains

largely invariant (piControl r(σQ,ECS) =−0.09 and r(σQ,ECS) =−0.58 in CMIP5 and CMIP6 respectively).

σQ against ECS in the CMIP5 (left panel) and CMIP6 (right panel) model ensembles. σQ is calculated from the period

1880-2005 of each model’s historical experiment timeseries. Individual models are plotted as circles (CMIP5 models are blue

and CMIP6 models are red). The best fit line in the ordinary least squares sense is shown in black along with the standard205

deviation of the prediction error (black dotted line). Pearson correlation r and p value are given for each emergent relationship

in each subplot title.

When plotting the combination of ‘constants’
:
,
::::::::::::
Q2×CO2/σQ, multiplying Ψ in equation 2, Q2×CO2/σQ (figure not shown),

CMIP6 still has highly significant correlation between the forcing parameters
::::::::::
Q2×CO2/σQ:

and ECS (r = 0.74, p < 0.001).

CMIP5 shows some, although far from significant anti-correlation (r =−0.21, p= 0.46).210

4 Recovering an emergent relationship

We have confirmed that Ψ is a good predictor of ECS for CMIP5 models although not for CMIP6 models. In figure 3, when

σQ is included in the x axis predictor variable, a good emergent relationship is recovered for both CMIP ensembles, both

have highly significant p values of p < 0.001. One can also include Q2×CO2 (although it is uncorrelated to ECS in both CMIP

ensembles) in the predictor i.e. ECS ∝ Q2×CO2

σQ
Ψ to get a similarly skillful emergent relationship (figure not shown). We215

restrict to Ψ/σQ as minimal degrees of freedom are preferred.
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Figure 2. Q2×CO2 against ECS in the CMIP5 (left panel) and CMIP6 (right panel) model ensembles. Q2×CO2 is inferred from the

abrupt4xCO2 experiment using the standard Gregory plot method. Individual models are plotted as circles (CMIP5 models are blue and

CMIP6 models are red). The best fit line in the ordinary least squares sense is shown in black along with the standard deviation of the pre-

diction error (black dotted line). Pearson correlation r and p value are given for each emergent relationship in each subplot title.
::
(a)

:::::::
Q2×CO2

:::::
against

::::
ECS

::
in

:::
the

:::::
CMIP5

::::
(left

:::::
panel)

:::
and

::::::
CMIP6

::::
(right

::::::
panel)

:::::
model

::::::::
ensembles.

:::::::
Q2×CO2::

is
::::::
inferred

::::
from

:::
the

::::::::::
abrupt4xCO2

:::::::::
experiment

::::
using

:::
the

::::::
standard

:::::::
Gregory

:::
plot

:::::::
method.

::
(b)

:::
σQ::::::

against
::::
ECS

::
in

::
the

::::::
CMIP5

::::
(left

:::::
panel)

:::
and

::::::
CMIP6

::::
(right

::::::
panel)

:::::
model

::::::::
ensembles.

:::
σQ::

is

:::::::
calculated

::::
from

:::
the

:::::
period

::::::::
1880-2005

::
of

::::
each

::::::
model’s

:::::::
historical

:::::::::
experiment

::::::::
timeseries.
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Figure 3. Ψ/σQ against ECS in the CMIP5 (left panel) and CMIP6 (right panel) model ensembles running the historical experiment. The

period 1880-2005 of each model’s timeseries is used to calculate Ψ and σQ. Individual models are plotted as circles (CMIP5 models are blue

and CMIP6 models are red). The best fit line in the ordinary least squares sense is shown in black along with the standard deviation of the

prediction error (black dotted line). Pearson correlation r and p value are given for each emergent relationship in each subplot title.
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Where does the skill in predicting ECS using Ψ/σQ come from? In CMIP5, it came from Ψ (an observable). There is no

skill in σQ (it is uncorrelated with ECS). In CMIP6 the converse is roughly correct: There is limited correlation with ECS from

Ψ but good correlation from σQ, which, to our knowledge, is unfortunately not directly observable.

Theoretically, these findings should hold equally well in the piControl run, although the emergent relationships should have220

slightly weaker correlation for reasons outlined in section 3.1 and Cox et al. (2018b). Again, we find this is roughly true

(figures ?? and ??
:::
see

:::::
figure

::
4). For the piControl experiments we analyze the longest common period simulated in the CMIP5

and CMIP6 ensembles which is 200 years.

:::
H76

::
in
::::::::
equation

:
2
:::::::
predicts

::::::::::::::::
ECS = kQ2×CO2

σQ
Ψ

::::
with

::
a

:::::::
constant

::
of

::::::::::::
proportionality

:::::::
k =
√

2.
:::
We

:::::::::
investigate

:::
the

::::::::
empirical

:::::
value

::
of

:
k
:::

for
:::

the
::::

full
:::::::::
complexity

:::::::
models

::::
next.

:::
As

::::
this

:::::::
relation

::::::
should

::::
hold

:::
for

::
all

:::::::
models

:::::::
running

:::
any

::::::::::
experiment

::::::::
(provided

::::
you225

:::
can

::::::
remove

:::
the

::::::
forced

:::::::
signal),

:::
we

::::
have

::::::
plotted

::::
ECS

:::::::
against

::::::::

Q2×CO2

σQ
Ψ

:::
for

:::
an

::::::::
ensemble

::::::::
composed

:::
of

::
all

:::::::
CMIP5

:::
and

:::::::
CMIP6

::::::
models

::::::
running

::::
both

:::::::::
piControl

:::
and

::::::::
historical

::::::::::
experiments

::
(a

::::
total

::
of

:::
96

::::
data

::::::
points)

::
to

::::::::
determine

:::
the

::::::::
empirical

::
k

:::::
(figure

::
5
::::
(a)).

:::::
While

:::
the

::::::::::::
proportionality

:::::
holds

::::
with

::
a
::::
high

:::::::::
correlation

:::::
value

:::
and

::::::::::
significance

:::::::::
(r = 0.74,

::::::::::
p < 0.001),

:::
the

::::::::
empirical

:::::::
constant

::
is

:::::::
k ∼ 2

√
2
:::::
rather

::::
than

:::
the

:::

√
2
::::::::
predicted

:::
by

::::
H76

:::
i.e.

::
the

:::::::::
theoretical

:::::::::
prediction

::
of

::::
ECS

:::::
from

:::
H76

::
is
:::::
lower

::::
than

:::
the

:::
full

::::::::::
complexity

::::::
models

:::::::
suggest.230

::::::::::::::::::::
Williamson et al. (2018)

::::::
showed

:::
the

:::::::
two-box

::::
and

::::::::
diffusion

::::::
models

::::
also

::::::
shared

:::
the

:::::
linear

::::
ECS

::
-
::
Ψ

::::::::::::
proportionality

:::
of

::::
H76

:::::
FAPP

:::::::
although

:::::
with

::::::
slightly

::::::::
different

:::::::
variables

::::
and

:::::::::
constants.

:::
We

::::
have

::::::::
therefore

::::
also

:::::::::
compared

:::
the

::::
more

:::::::
realistic

::::::::
two-box

:::::
model

:::::::::
theoretical

::::::::::
predictions

::
of

::
k
::::::::
(equation

::::
(23)

:::
in

::::::::::::::::::::
Williamson et al. (2018)

:
)
::
to

:::
the

:::
full

::::::::::
complexity

:::::::
models

::::::
(figure

:
5
:::::

(b)).

:::::
Using

:::
the

:::::::
two-box

::::::
values

::
in

:::::
tables

:::
B5

:::
and

:::
B6

::::::
brings

:::
the

:::::::::
empirically

::::::::::
determined

:::::::::
k ∼ 1.3

√
2
:::::
closer

:::
to

:::
the

:::::::
two-box

:::::::::
theoretical

::::
value

::::::::
(k =

√
2)

::::
with

::::::
similar

::::
high

:::::::::
correlation

::::
and

::::::::::
significance

::::::::
(r = 0.76,

::::::::::
p < 0.001).

::::
The

:::::::
two-box

:::::
model

::::
adds

::
a

::::::
second,

::::::
longer235

::::::::
timescale

::
to

::::
H76,

:::::::::
mimicking

:::
the

:::
full

::::::::::
complexity

::::::
models

:::::
more

::::::
closely,

:::::::
however

:::
the

:::::::::
theoretical

::
k

:
is
::::
still

::::::
slightly

::::
low.

::::
The

:::::
lower

::::::::
prediction

::
of

::
k
::::
than

:::
the

::::::::
empirical

::::::
results

::::::
suggest

::::
this

:::::
could

::
be

::::
due

::
to

:::
the

:::
full

:::::::::
complexity

:::::::
models

::::::
having

::::
other

:::::::::
timescales

::::
that

::
the

::::::::::
conceptual

::::::
models

:::
do

::::
not.

::::::::
Although

:::
the

:::::::::
conceptual

:::::::
models

::::::
predict

:
a
::::::

linear
::::::
ECS-Ψ

:::::::::::::
proportionality

::::
also

::::
seen

::
in

:::
the

::::
full

:::::::::
complexity

:::::
CMIP

:::::::
models,

::::
they

:::
do

:::
not

::::::
predict

:::
the

:::::::
constant

:::
of

::::::::::::
proportionality

:::::
well.

::::
This

::
is

::::
why

:::
the

:::::::::
empirically

::::::::::
determined

::
k

:::::
should

:::
be

::::
used

::
to

:::::
obtain

:::
an

::::::::
emergent

::::::::
constraint

::
as

::
in

::::::::
CHW18.

:
240

5 Robustness to choice of model run

For both CMIP ensembles we have used one run for each model, preferably the one labelled or r1i1p1 (CMIP5) or r1i1p1f1

(CMIP6) where it exists, however we could have equally chosen any r*i*p* (CMIP5) or r*i*p*f* (CMIP6) for each model

provided multiple runs of the same model exist. In this section we show the results for r1i1p1 or r1i1p1f1 are representative of

a typical random run choice.245

For models with multiple runs, we have drawn at random one run (r*i*p* or r*i*p*f* for CMIP5 and CMIP6 respectively)

for each model and repeated the analysis in the previous sections multiple times. For the historical runs, in both CMIP5 and

CMIP6 ensembles, many models do repeated runs, sometimes multiple times. For example, the CMIP6 model CanESM5 has

the most runs, performing the historical experiment 50 times. There are 1.6× 1012 and 5.4× 1020 unique permutations for

11



Figure 4. Ψ against ECS in the CMIP5 (left panel) and CMIP6 (right panel) model ensembles running the piControl experiment (no external

forcing). The first 200 years of each model’s timeseries is used to calculate Ψ. Individual models are plotted as circles (CMIP5 models are

blue and CMIP6 models are red). The best fit line in the ordinary least squares sense is shown in black along with the standard deviation of

the prediction error (black dotted line). Pearson correlation r and p value are given for each emergent relationship in each subplot title.

Ψ/σQ :::
The

:::
first

:::
200

:::::
years

::
of

:::
each

:::::::
model’s

:::::::
timeseries

::
is

::::
used

::
to

::::::
calculate

::
Ψ
:::
and

:::
σQ::::::

running
:::
the

:::::::
piControl

:::::::::
experiment

:::
(no

::::::
external

:::::::
forcing).

::
(a)

::
Ψ

:
against ECS in the CMIP5 (left panel) and CMIP6 (right panel) model ensemblesrunning .

:::
(b)

:::::
Ψ/σQ::::::

against
::::
ECS

:
in
:

the piControl

experiment
:::::

CMIP5 (no external forcing
::

left
::::
panel) . The first 200 years of each

::
and

::::::
CMIP6

:::::
(right

:::::
panel) model ’s timeseries

::::::::
ensembles.

:
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Figure 5.
::::
ECS

:::::
against

:::
the

::::::::
theoretical

:::::::
predictor

:
it
:
is used

:::::::::
proportional to calculate Ψ

:
in

:::
(a)

::
the

::::::
one-box

::
or
::::
H76

:::::
model and σQ ::

(b)
::
the

:::::::
two-box

:::::
model. Individual models are plotted as circles (CMIP5 models are blue and CMIP6 models are red)

:::::
running

::::
both

:::::::
historical

:::
and

::::::::
piControl

:::::::::
experiments

::::::
between

:::::::::
1880-2005

:::
and

:::
the

:::
first

:::
200

::::
years

:::
of

::
the

::::::::
simulation

::::::::::
respectively. The best fit line in the ordinary least squares sense

is shown in black along with the standard deviation of the prediction error (black dotted line). Pearson correlation r and p value are given

for each emergent relationship in each subplot title.
::
The

:::::::::
empirically

:::::::::
determined

::::::
constant

::
of

:::::::::::
proportionality

:::::::
between

:::
the

:
x
:::
axis

:::::::
variable

:::
and

::::
ECS,

::
k,

:
is
:::::
given

::
in

:::
each

::::::
subplot

::::
title.

:::
The

::::
H76

:::
and

::::::
two-box

::::::::
theoretical

:::::
values

::
of

::::::
k =
√

2
:::
are

:::::
plotted

::
as

:::
the

:::::
dashed

:::::
black

:::
line.
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CMIP5 Pearson correlation r1i1p1 run r*i*p* run

experiment r mean ± std min max

r(Ψ,ECS) 0.66 0.59± 0.11 0.14 0.82

historical r(σQ,ECS) -0.09 −0.16± 0.08 −0.40 0.09

r(Ψ/σQ,ECS) 0.77 0.75± 0.05 0.58 0.89

r(Ψ,ECS) 0.64 0.61± 0.02 0.57 0.64

piControl r(σQ,ECS) -0.09 −0.10± 0.02 −0.13 −0.08

r(Ψ/σQ,ECS) 0.80 0.79± 0.01 0.77 0.80

Table 1. CMIP5 - Robustness of correlation to choice of run: Comparison of Pearson correlation r for model ensemble using the r1i1p1

run (3rd column) with randomly chosen runs r*i*p*. There are 15 unique permutations of runs for the piControl experiment and 1.6× 1012

unique permutations for the historical experiment. We calculate r for all unique permutations for the piControl experiment and 1000 randomly

chosen unique permutations for the historical experiment. We report the mean value of r with its standard deviation (±) in column 4 and the

most extreme values of r in columns 5 and 6.

the same set of CMIP5 and CMIP6 models respectively performing the historical experiment. These numbers are clearly too250

large to search exhaustively. We have therefore drawn 1000 unique permutations for the historical experiment and repeated

the analysis in this manuscript i.e. calculated the Pearson correlation, r, for every one of these 1000 permutations. The results

are shown in the upper half of tables 1 (CMIP5) and 2 (CMIP6). We find that the results reported for r1i1p1 and r1i1p1f1

where they exist are fairly typical of a randomly chosen set of runs i.e. they fall within one standard deviation of the mean

value in the CMIP5 ensemble. The CMIP6 historical experiment r(Ψ,ECS) with r1i1p1f1 is slightly higher than would be255

expected (mean value for a randomly chosen permutation is r = 0.18±0.11, far from significant, compared to r = 0.31, almost

significant). We have also listed the outer most values (min and max) found in the 1000 random run choice distribution for

completeness. As one would expect with a large enough sample, there is a chance of finding non-representative correlations i.e.

for the CMIP5 historical ensemble there is a small possibility that you might find an r(Ψ,ECS) = 0.14 (far from significant)

or even r(Ψ,ECS) = 0.82 (highly significant) in a random pick of runs. These are not typical however.260

For the piControl runs, there are 15 and 24 unique permutations for the same set of CMIP5 and CMIP6 models respectively.

The relatively low number of unique permutations is due to the low number of repeated runs for the piControl experiment. We

have run the same analysis in this manuscript i.e. calculated the Pearson correlation, r, for every one of these permutations. The

results are shown in the lower half of tables 1 (CMIP5) and 2 (CMIP6). Because of the low number of unique permutations,

the range of results is much narrower than the historical experiment. Again, we find that the results reported for r1i1p1 and265

r1i1p1f1 where they exist are fairly typical of a randomly chosen set of runs i.e. they fall within one standard deviation of

the mean value in the CMIP5 and CMIP6 ensembles with the exception of CMIP5 r(Ψ,ECS) = 0.64 (highly significant) for

r1i1p1 compared to r = 0.61±0.02 (highly significant) for a randomly chosen permutation. This is actually highest value of r

(max) found in that experiment.
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CMIP6 Pearson correlation r1i1p1f1 run r*i*p*f* run

experiment r mean ± std min max

r(Ψ,ECS) 0.31 0.18± 0.11 −0.14 0.46

historical r(σQ,ECS) -0.58 −0.58± 0.04 −0.69 −0.46

r(Ψ/σQ,ECS) 0.71 0.69± 0.04 0.56 0.77

r(Ψ,ECS) 0.13 0.13± 0.01 0.11 0.15

piControl r(σQ,ECS) -0.58 −0.57± 0.01 −0.58 −0.55

r(Ψ/σQ,ECS) 0.69 0.70± 0.01 0.69 0.71

Table 2. CMIP6 - Robustness of correlation to choice of run: Comparison of Pearson correlation r for model ensemble using the r1i1p1f1

run if available (3rd column) with randomly chosen runs r*i*p*f*. There are 24 unique permutations of runs for the piControl experiment

and 5.4× 1020 unique permutations for the historical experiment. We calculate r for all unique permutations for the piControl experiment

and 1000 randomly chosen unique permutations for the historical experiment. We report the mean value of r with its standard deviation (±)

in column 4 and the most extreme values of r in columns 5 and 6.

6 Can theory simulate the CMIP model results?270

In section 4 we found that by including the forcing parameter σQ in the predictor for ECS, an emergent relationship could

be recovered for both CMIP5 and CMIP6 ensembles. These relationships are present in both the historical and piControl

experiments giving confidence in the underlying theoretical basis FAPP.

In this section we make a more demanding test of the theoretical basis by asking if theory alone can simulate the full

complexity CMIP model ensemble r(Ψ,ECS) and r(Ψ/σQ,ECS) results. To do this, we create a H76 model emulator of275

each of the i ∈ {1,2, ...,n} full complexity CMIP5 and CMIP6 models used in the preceding figures. With the emulator H76

models we can build emulator H76 CMIP5 and CMIP6 ensembles and run analogous historical and piControl experiments

with them. This will allow us to compare the results of the pure theory used in CHW18 with that of the full complexity CMIP

model ensembles. We also fit the more complete two-box model in addition for comparison (see section A).

6.1 Methodology280

The H76 model fitted to each of the full complexity CMIP models is given by equation 1. Parameters are fitted from the full

complexity abrupt-4xCO2 CMIP model experiments: λ and Q2×CO2 are determined from Gregory plots (tables B1, B2), C is

found using a modification of Geoffroy et al. (2013b)’s methodology (tables B3 and B4).

Geoffroy et al. (2013b) published parameter values for two-box models fitted to CMIP5 models. The two-box model is

H76s
::::
H76’s well mixed upper ocean/atmosphere box extended by coupling to a large heat capacity deep ocean box (see section285

A). This gives the two-box model a fast and a slow e-folding timescale of adjustment with typical values of∼ 4 and∼ 200 years

when fitted to CMIP models (see Geoffroy et al. (2013b) and tables B5 and B6) which is known to do a good job reproducing

the global annual mean temperature response of climate models.
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As H76 only has one-box and therefore one timescale, it cannot capture both fast and slow responses of CMIP models.

Because Ψ is a statistic that is dominated by fast timescale processes of a few years, a feature H76 does capture well, we290

choose to fit the fast response with H76 by using Geoffroy et al. (2013b)’s fast timescale fitting methodology (see equation 18

in that paper). When modified for H76, this equation becomes

τ =− t

log(1− T (t)λ
Q2×CO2

)
. (5)

We fit H76’s timescale parameter τ = C
λ (and therefore the heat capacity C) by averaging over the first 5 years of the abrupt-

4xCO2 experiment. We choose the average over 5 years rather than the first 10 in Geoffroy et al. (2013b)’s two-box fits. This295

is because the H76 fit gets worse as the number of years in the average increases (in the root mean square error of the fit). For

the two-box fits we use Geoffroy et al. (2013b)’s methodology unmodified (see section A for complete details).

Fitted values of λ, τ , C and σQ are reported for CMIP5 and CMIP6 ensembles in tables B3 and B4 respectively.

6.2 Emulator piControl experiments

We perform analogous piControl experiments with the H76 and two-box CMIP5 and CMIP6 ensembles by integrating each of300

the individual CMIP H76 (and two-box) emulators (equations 1 and A1 respectively) numerically with forcing Qi(t), a zero

mean random variable with model specific standard deviation σQi and Gaussian pdf. We write this as

Qi(t) = σQiηi(t) (6)

where ηi(t) is the Gaussian random variable with unit standard deviation. The equations are integrated with a timestep of 0.1

yrs using the Euler-Maruyama method. The Ti(t) timeseries that result are then analyzed in the same way as the full complexity305

CMIP model timeseries to produce a pair of values (Ψi,ECSi). For the full set of n two-box models in each CMIP emulator

ensemble r(Ψ,ECS) and r(Ψ/σQ,ECS) are calculated. Because Qi(t) is a random variable of finite length, repeating the

same experiment results in slightly different values of r(Ψ/σQ,ECS) for each run due to the properties of statistical estimators

(estimation converges as 1/
√
N where N is the number of points in the timeseries). The same applies to different initial value

runs in the full complexity models due to the chaotic weather variability the random forcing captures in the H76 and two-310

box models. We therefore repeat each piControl emulator experiment 250 times and compare the distribution of emulator

r(Ψ,ECS) values with the single full-complexity CMIP piControl experiment.

Results are shown in figure 6. Agreement between the H76 emulator CMIP r(Ψ,ECS) and the full complexity CMIP

ensembles is reasonable. Full complexity CMIP5 ensemble r(Ψ,ECS) results (LH panel, blue dotted line) fall in the upper

end of the distribution of r(Ψ,ECS) H76 emulator values. Although full complexity r(Ψ,ECS) CMIP6 results (in red) were315

shown to be lower in correlation (red dotted line), they can still be simulated reasonably well by the H76 emulator ensemble,

falling like CMIP5, in upper end of simulated r(Ψ,ECS) values. In the RH panel of figure 6 where Ψ is now normalized

by the mean amplitude of the random forcing σQ both CMIP5 and CMIP6 results are much more similar, with histograms of

the H76 emulator ensembles and the full complexity results having much more overlap although simulated values are still on

average slightly lower than the full complexity ensembles.320
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Figure 6. Probability of obtaining r(Ψ,ECS) (left) and r(Ψ/σQ,ECS) (right) in the H76 CMIP emulator ensembles performing a piCon-

trol simulation of 200 years. The CMIP5 emulator ensemble histogram is given in blue, equivalent CMIP6 in red. The full complexity CMIP

ensemble results performing the same experiment are the vertical dotted lines.

Analogous figures simulated with two-box emulator CMIP ensembles are shown in figure A1. The two-box ensembles do

an even better job of simulating the full complexity CMIP results.

6.3 Emulator historical experiments

The analogous historical experiments are performed in the same way to the piControl experiments but with a common external

forcing componentQi(t) in addition to the random forcing. This comes from GHGs, volcanoes, solar cycles and others. For this325

common external forcing component we use Meinshausen et al. (2011) reconstructed historical forcing (QIPCC(t)). Explicitly
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Figure 7. Probability of obtaining r(Ψ,ECS) (left) and r(Ψ/σQ,ECS) (right) in the H76 CMIP emulator ensembles performing a his-

torical simulation of the period 1880-2005. The CMIP5 emulator ensemble histogram is given in blue, equivalent CMIP6 in red. The full

complexity CMIP ensemble results performing the same experiment are the vertical dotted lines.

Qi(t) =QIPCC(t) +σQiηi(t) (7)

in the historical simulations. We integrate the H76 and two-box ensembles between the years 1765 and 2005 but calculate Ψ

and r(Ψ,ECS) between 1880-2005 to correspond to the full complexity model analysis. Results are shown in figure 7. As with330

the piControl experiments in section 6.2, agreement between the pure theory H76 emulator ensembles and the full complexity

ensembles is reasonable, giving confidence that the underlying theory used in CHW18 is good FAPP. The analogous figure

simulated with two-box CMIP emulator ensembles does an even better job (figure A2).
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6.4 Emulator experiments with constant σQ

We have shown that by taking into account model specific σQ in the CHW18 theory we can both understand r(Ψ,ECS)335

correlation results and can recover good emergent relationships for both CMIP5 and CMIP6 in piControl and historical runs.

In CHW18 and Cox et al. (2018b) it was assumed that σQ was constant for each model in the CMIP5 ensemble (assumption

A3). We now test this assumption with the H76 and two-box CMIP ensembles. Instead of fitting σQ to each CMIP model we

fix it to be a constant, σQ = 0.25 W m−2 following Cox et al. (2018b). This value was chosen (even though it is lower than

the values given in the tables) as it was the mean value of the standard deviation of net top-of-the-atmosphere radiation which340

was thought to be a good proxy for σQ at that time. Results with constant, model independent σQ for r(Ψ,ECS) are shown in

figure 8 (H76) and A3 (two-box) for both piControl and historical experiments. r(Ψ/σQ,ECS) results are not shown as they

are identical to r(Ψ,ECS). This is because the predictors, the set of {Ψi} are all divided by the same constant.

The constant σQ assumption can be seen to be good for the CMIP5 ensemble (blue) with full complexity models (blue

dotted line) agreeing well with likely values of the H76 and two-box CMIP5 emulator ensembles (blue histogram). However,345

the full complexity CMIP6 ensemble (red dotted line) correlations are generally much lower than the CMIP6 emulators (red

histogram). This is again supporting evidence that the underlying theory in CHW18 is sound FAPP. The similarity in the CMIP5

and CMIP6 histograms also suggests there is no real difference in the parameters of the emulator ensembles. The difference

can be attributed to the amount of correlation between σQ and ECS in the CMIP5 and CMIP6 ensembles.

7 Discussion and conclusion350

The aim of this manuscript was to understand why the strong emergent relationship from CHW18 found in the CMIP5 model

ensemble weakened in the newer CMIP6 ensemble. This emergent relationship was based on reasonable, although simple

physical principles so it is interesting (and important) to understand the differences between the theory and full complexity

models. A number of assumptions (section 3) were made in deriving the theoretical emergent relationship between the predictor

Ψ, a metric based on annual global mean temperature variability and ECS, the predictand in CHW18. We have shown the ‘no355

correlation between forcing and ECS’ assumption no longer holds for the CMIP6 ensemble. In particular, the parameter σQ

describing random forcing from internally generated variability, is correlated to ECS in CMIP6 and when this parameter is

incorporated into the predictand, a good emergent relationship is recovered for both CMIP ensembles.

Assumption A3 stated that the forcing parameters, Q2×CO2 and σQ could be treated as constants across a model ensemble.

While this is a fair assumption for Q2×CO2 for both CMIP ensembles and σQ in the CMIP5 ensemble, we have shown that σQ360

is correlated to ECS in the CMIP6 ensemble. We have also shown that when the predictor of ECS is changed to Ψ/σQ good

emergent relationships are recovered in both CMIP ensembles for both piControl and historical experiments. We also showed

that pure theory could reproduce the full-complexity CMIP model results using H76 and two-box CMIP emulator ensembles.

These
::::::::
Although

:::
the

::::::::::::
proportionality

::::::::
between

::::
ECS

:::
and

:::
the

::::::::
predictor

:::::::::

Q2×CO2

σQ
Ψ

:::
has

:
a
:::::
high

:::::::::
correlation

:::
and

:::::::::::
significance,

::::::
simple

::::
pure

:::::
theory

::::::::::::
underestimates

:::
the

:::::::
constant

::
of
:::::::::::::
proportionality.

:::::
Aside

:::::
from

:::
this,

:::::
these results give us confidence the theoretical basis365
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Figure 8. Probability of obtaining r(Ψ,ECS) in the H76 CMIP emulator ensembles performing a piControl (left panel) and historical (right

panel) simulation if each two-box emulator is given the same value of σQ = 0.25 W m−2. The CMIP5 emulator ensemble histogram is given

in blue, equivalent CMIP6 in red. The full complexity CMIP ensemble results performing the same experiment are the vertical dotted lines.
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of CHW18 still applies as well to CMIP6 models as it did for CMIP5
::::
FAPP. Testing the theoretical basis was the underlying

aim of our study.

Several questions remain however: Can we estimate σQ from observations and therefore get an emergent constraint on

ECS from the CMIP6 ensemble? Why is σQ correlated to ECS in CMIP6 and not CMIP5? σQ is a parameter designed to

reproduce the observed global annual mean temperature variability, σT , in the non-chaotic H76 and two-box models. In the370

full complexity models and the real world, this parameter attempts to capture chaotic internal variability as well as sub-annual

(fast) feedbacks. It is fitted in this study using σT (an observable) as well as the unobservable two-box parameters. The reliance

on these unobservable two-box parameters makes it appear that getting an estimate of σQ in the real world and so an emergent

constraint, may be tough. However there may be observable proxies for σQ which we have not yet found.

An obvious place to start looking for a proxy for σQ is in basic theory. The simplest one can imagine375

Q(t) =N(t) +λT (t) (8)

where N(t) is the net top-of-the-atmosphere radiative flux. However this still requires knowledge of λ. Even given knowledge

of λ it is well known (Forster, 2016) that N is poorly correlated to T where most of the change in N and T is driven by

internal variability (although this relation works very well for large forced trends, for example the Gregory method works well

applied to large stepped increases in CO2). There are several models (Winton et al., 2010; Geoffroy et al., 2013a) and methods380

(Dessler et al., 2018; Bloch-Johnson et al., 2020) that get much better correlations between N and T when most of the changes

are driven internally by taking into account the spatial distributions (the so called pattern effect, see Armour et al. (2012)). We

leave this to a future study.

:::
The

:::::::
question

::
of
::::
why

:::
σQ::

is
:::::::::
correlated

::
to

::::
ECS

::
in

::::::
CMIP6

::::
and

:::
not

::::::
CMIP5

::
is

:::
also

::::
left

::::::::::
unanswered.

::::::::
However,

::::
one

:::
can

::::::::
speculate

:::
why

::::
this

::::
may

::
be

:::
the

:::::
case:

:::
As

:::::::::
previously

:::::::::
mentioned

:::
σQ::

is
:
a
::::::
fitting

::::::::
parameter

::::
that

::
is

:::::::
designed

:::
to

::::::
capture

:::
the

:::::
effect

::
of

:::::::
chaotic385

::::::
internal

:::::::::
variability

::
as

::::
well

::
as

:::::::::
sub-annual

:::::
(fast)

::::::::
feedbacks

:::
on

:::::
global

:::::
mean

::::::::::
temperature

:::::::::
variability.

::::::::::::::::::
Zelinka et al. (2020)

::::::
showed

:::
that

:::
the

::::::::
increased

:::::
range

::
of

::::
ECS

:::
in

:::
the

::::::
CMIP6

::::::
models

:::::
could

:::
be

::::::::
explained

:::
by

:::
the

::::::::
increased

:::::
range

::
in

:::::
cloud

::::::::
feedbacks

::::
(see

::::
also

:::::::::::::::::::
Bock and Lauer (2024)

:
).

::
As

:::
σQ::

is
:::::
fitted

::
to

::::::
annual

::::::::::
temperature

:::::::::
timeseries,

:::::
some

::
of

:::
this

:::
fast

:::::::::::
(sub-annual)

:::::
cloud

::::::::
feedback

:::::
effect

::::
could

:::
be

:::::::
included

::
in

:::
σQ:::::::::

correlating
::
it
::
to

:::::
ECS.

:::
We

:::::
leave

:::::::
concrete

:::::::
answers

::
to

:
a
:::::
future

::::::
study.

We have understood what assumption in the theoretical emergent relationship for CHW18 was responsible for the weakened390

correlation in CMIP6, namely correlated σQ :
is
:::::::::

correlated
::::
with

:::::
ECS. When accounted for, good emergent relationships are

recovered. Although the information that the simple theory holds FAPP is useful and that σQ is correlated in CMIP6 with ECS

is interesting, it is disappointingly not useful in constraining ECS due to the unobservable nature (we think) of σQ. In this

sense, the method in CHW18 does not produce a useful emergent constraint on CMIP6 because the extra degree of freedom in

σQ needs to be incorporated.395

Schlund et al. (2020) tested 11 emergent constraints found in CMIP5 and nearly all of these got weaker in CMIP6. We do

not know whether they failed for similar reasons. Indeed, many of them do not have a simple theoretical model as a basis for

their emergent relationship so assumption testing, the approach we follow in this manuscript, would be difficult to do. This is

why we argue that emergent constraints should be based on a testable, falsifiable theoretical model. This aids understanding
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and lifts emergent constraint research from looking for strong correlations between variables to a more scientific approach of400

testing hypotheses of how the Earth system works. However, looking at all these other emergent constraints and identifying

why they got weaker in CMIP6 would be very beneficial to understanding and useful to the community.

Emergent constraints based on theory with minimal degrees of freedom are most likely to be the most robust and useful.

Constraints such as Hall and Qu (2006) on snow albedo feedback where the predictor (seasonal cycle snow albedo feedback)

and predictand (climate change snow albedo feedback) are the essentially the same variable have been shown to be robust405

through 3 CMIP generations (Thackeray et al., 2021). Other constraints of this type that are likely to be more robust are the

transient climate response constraints of Nijsse et al. (2020) and Tokarska et al. (2020) where near term historical warming is

the predictor of future, longer term warming.

Even if emergent relationships based on sound theoretical principles do fail there is still information to be gleaned on

understanding why. Today, there is even more of an opportunity for the top down insights of specific conceptual models to410

meet and complement the comprehensive, bottom up approach from state-of-the-art climate models; there are many more high

quality observations; the global warming signal has also become clearer over time; and there is also a large archive of past and

present climate model simulations.

Data availability. All original CMIP5 and CMIP6 data used in this study are publicly available at https://esgf-node.llnl.gov/projects/cmip5/and

https://esgf-node.llnl.gov/projects/cmip6/ respectively (last access: August 2021).415

Appendix A: Two-box CMIP emulators

The two-box model is H76’s low thermal inertia atmosphere/well-mixed ocean surface layer with heat capacity C extended

with a large heat capacity C0 deep ocean box coupled to the surface box by flux γ. This gives the model two timescales of

adjustment, a fast (τf ) and a slow e-folding time (τs). When fitted to CMIP models typical values for the timescales are τf ∼ 4

years and τs ∼ 200 years (see tables B5 and B6).420

Each CMIP model labelled with i is ‘mimicked’ by the two-box equations

Ci
dTi
dt

=Qi(t)−λiTi(t)− γi (Ti(t)−T0i(t)) , (A1)

C0i
dT0i
dt

= γi (Ti(t)−T0i(t)) .

T0i is the annual global mean deep ocean temperature anomaly of model i. Parameters are fitted from the full complexity

abrupt-4xCO2 CMIP model experiments. The parameters λ and Q2×CO2 are determined from Gregory plots while C, C0 and425

γ are determined using Geoffroy’s methodology (Geoffroy et al., 2013b). We use Geoffroy et al. (2013b)’s published values

for CMIP5 models. Values for CMIP6 models are given in tables B2 and B6.

The standard deviation of white noise forcing σQ is fitted for each model from the global annual mean temperature timeseries

of either the piControl or historical experiment. This timeseries is linearly detrended with a rolling 55 year window. This is to
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isolate the T (t) response to internal variability, analogous to how Ψ is determined in the CHW18 methodology, to leave the430

noisy T (t) response to white noise with standard deviation σT . The theoretical formula is given by Williamson et al. (2018)

σ2
T =

σ2
Q

2λ2

(
a2f
τf

+
a2s
τs

+
4afas
τf + τs

)
(A2)

We rearrange this relation to get σQ. Values of λ, af , as, τf and τs are taken from tables B1, B2, B5 and B6. Values of σQ

in both historical and piControl runs are also reported in tables B5 and B6. The parameters af , as, τf and τs are complicated

functions of the parameters C, C0, λ and γ. Their exact full functional forms can be found in Geoffroy et al. (2013b) and are435

not given here.

Appendix B: Parameter values

Q2×CO2 λ ECS

Model (W m−2) (W m−2 K−1) (K)

BNU-ESM 3.70 0.93 4.00

CCSM4 3.60 1.24 2.90

CNRM-CM5 3.65 1.11 3.25

CSIRO-Mk3-6-0 2.55 0.61 4.15

CanESM2 3.80 1.03 3.70

GFDL-ESM2M 3.30 1.34 2.45

GISS-E2-R 3.65 1.70 2.15

HadGEM2-ES 2.95 0.65 4.55

IPSL-CM5A-LR 3.20 0.79 4.05

MIROC5 4.25 1.58 2.70

MPI-ESM-LR 4.10 1.14 3.65

MRI-CGCM3 3.30 1.26 2.60

NorESM1-M 3.10 1.11 2.80

bcc-csm1-1 3.35 1.21 2.80

inmcm4 3.10 1.51 2.05

Multimodel mean 3.44 1.15 3.19

Standard deviation 0.44 0.32 0.78
Table B1. Gregory plot determined parameters for CMIP5 models from Geoffroy et al. (2013b).

Author contributions. M.S.W. carried out the data analysis and drafted the paper with advice from P.M.C., C.H. and F.J.M.M.N. All authors

contributed to the submitted paper.
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Figure A1. Probability of obtaining r(Ψ,ECS) (left) and r(Ψ/σQ,ECS) (right) in the two-box CMIP emulator ensembles performing a

piControl simulation of 200 years. The CMIP5 emulator ensemble histogram is given in blue, equivalent CMIP6 in red. The full complexity

CMIP ensemble results performing the same experiment are the vertical dotted lines.
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Figure A2. Probability of obtaining r(Ψ,ECS) (left) and r(Ψ/σQ,ECS) (right) in the two-box CMIP emulator ensembles performing a

historical simulation of the period 1880-2005. The CMIP5 emulator ensemble histogram is given in blue, equivalent CMIP6 in red. The full

complexity CMIP ensemble results performing the same experiment are the vertical dotted lines.
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Figure A3. Probability of obtaining r(Ψ,ECS) in the two-box CMIP emulator ensembles performing a piControl (left panel) and historical

(right panel) simulation if each two-box emulator is given the same value of σQ = 0.25 W m−2. The CMIP5 emulator ensemble histogram is

given in blue, equivalent CMIP6 in red. The full complexity CMIP ensemble results performing the same experiment are the vertical dotted

lines.
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Q2×CO2 λ ECS

Model (W m−2) (W m−2 K−1) (K)

ACCESS-CM2 3.21 0.67 4.81

ACCESS-ESM1-5 2.71 0.68 3.97

AWI-CM-1-1-MR 3.71 1.18 3.15

BCC-CSM2-MR 2.95 0.98 3.00

BCC-ESM1 2.95 0.90 3.28

CESM2-WACCM 3.08 0.63 4.90

CIESM 3.80 0.67 5.68

CMCC-CM2-SR5 3.67 1.03 3.56

CanESM5 3.63 0.64 5.66

E3SM-1-0 3.23 0.60 5.38

EC-Earth3 3.30 0.78 4.22

EC-Earth3-Veg 3.32 0.77 4.34

FIO-ESM-2-0 3.59 0.83 4.31

GFDL-CM4 2.91 0.71 4.09

GFDL-ESM4 3.51 1.31 2.68

GISS-E2-1-G 3.89 1.43 2.71

GISS-E2-1-H 3.54 1.14 3.11

HadGEM3-GC31-LL 3.38 0.60 5.62

HadGEM3-GC31-MM 3.36 0.61 5.52

IITM-ESM 4.37 1.83 2.38

INM-CM4-8 2.61 1.42 1.84

INM-CM5-0 2.88 1.49 1.93

IPSL-CM6A-LR 3.32 0.72 4.63

MIROC-ES2L 4.13 1.55 2.66

MIROC6 3.76 1.47 2.56

MPI-ESM-1-2-HAM 3.93 1.31 3.00

MPI-ESM1-2-HR 3.58 1.20 2.99

MPI-ESM1-2-LR 4.08 1.34 3.04

MRI-ESM2-0 3.36 1.07 3.14

NESM3 3.73 0.78 4.76

SAM0-UNICON 3.83 1.02 3.76

TaiESM1 3.75 0.85 4.43

UKESM1-0-LL 3.56 0.66 5.40

Multimodel mean 3.47 1.00 3.83

Standard deviation 0.42 0.34 1.15
Table B2. Gregory plot determined parameters for CMIP6 models.
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C τ historical σQ piControl σQ

Model (W yr m−2 K−1) (yr) (W m−2) (W m−2)

BNU-ESM 7.9 8.5 0.53 0.50

CCSM4 8.8 7.3 0.61 0.46

CNRM-CM5 8.6 7.8 0.57 0.43

CSIRO-Mk3-6-0 7.2 13.2 0.40 0.35

CanESM2 8.0 7.9 0.60 0.46

GFDL-ESM2M 9.5 7.3 0.75 0.61

GISS-E2-R 8.1 5.4 0.34 0.40

HadGEM2-ES 9.2 14.2 0.51 0.39

IPSL-CM5A-LR 8.2 10.5 0.52 0.38

MIROC5 9.6 6.1 0.95 0.60

MPI-ESM-LR 8.1 7.5 0.47 0.50

MRI-CGCM3 8.9 7.3 0.39 0.40

NorESM1-M 9.3 9.0 0.51 0.41

bcc-csm1-1 8.6 7.5 0.55 0.38

inmcm4 9.6 6.4 0.39 0.33

Multimodel mean 8.6 8.4 0.54 0.44

Standard deviation 0.7 2.5 0.16 0.08
Table B3. H76 model parameters fitted from abrupt4xCO2 runs for CMIP5 models. σQ values are calculated from detrended T (t) for either

historical or piControl runs.
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C τ historical σQ piControl σQ

Model (W yr m−2 K−1) (yr) (W m−2) (W m−2)

ACCESS-CM2 7.9 11.9 0.48 0.32

ACCESS-ESM1-5 7.9 11.6 0.35 0.33

AWI-CM-1-1-MR 7.5 6.4 0.48 0.39

BCC-CSM2-MR 8.7 8.8 0.51 0.45

BCC-ESM1 8.0 8.9 0.43 0.34

CESM2-WACCM 8.2 13.1 0.45 0.36

CIESM 8.6 12.8 0.33 0.30

CMCC-CM2-SR5 8.0 7.7 0.57 0.64

CanESM5 7.5 11.8 0.41 0.31

E3SM-1-0 7.4 12.4 0.40 0.30

EC-Earth3 7.2 9.3 0.53 0.33

EC-Earth3-Veg 7.1 9.2 0.46 0.34

FIO-ESM-2-0 8.5 10.2 0.43 0.32

GFDL-CM4 6.3 8.9 0.38 0.28

GFDL-ESM4 8.3 6.3 0.70 0.50

GISS-E2-1-G 8.5 5.9 0.84 0.67

GISS-E2-1-H 8.6 7.6 0.52 0.45

HadGEM3-GC31-LL 8.0 13.4 0.40 0.32

HadGEM3-GC31-MM 8.1 13.3 0.37 0.32

IITM-ESM 10.2 5.5 0.79 0.55

INM-CM4-8 7.3 5.1 0.40 0.30

INM-CM5-0 8.0 5.3 0.43 0.35

IPSL-CM6A-LR 6.6 9.2 0.36 0.34

MIROC-ES2L 10.8 7.0 0.93 0.73

MIROC6 8.7 5.9 0.72 0.61

MPI-ESM-1-2-HAM 8.6 6.6 0.55 0.55

MPI-ESM1-2-HR 7.9 6.6 0.50 0.43

MPI-ESM1-2-LR 8.7 6.5 0.68 0.52

MRI-ESM2-0 9.2 8.6 0.54 0.42

NESM3 5.3 6.7 0.42 0.29

SAM0-UNICON 8.4 8.3 0.51 0.40

TaiESM1 8.0 9.5 0.45 0.38

UKESM1-0-LL 7.2 10.9 0.47 0.33

Multimodel mean 8.0 8.8 0.51 0.41

Standard deviation 1.0 2.6 0.15 0.12
Table B4. H76 model parameters fitted from abrupt4xCO2 runs for CMIP6 models. σQ values are calculated from detrended T (t) for either

historical or piControl runs.
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Model C C0 γ τf τs af as historical σQ piControl σQ

(W yr m−2 K−1) (W yr m−2 K−1) (W m−2 K−1) (yr) (yr) (W m−2) (W m−2)

BNU-ESM 7.4 90 0.53 5.0 267 0.62 0.38 0.64 0.60

CCSM4 6.1 69 0.93 2.8 132 0.56 0.44 0.65 0.48

CNRM-CM5 8.4 99 0.50 5.2 289 0.68 0.32 0.67 0.50

CSIRO-Mk3-6-0 6.0 69 0.88 3.9 200 0.38 0.62 0.52 0.46

CanESM2 7.3 71 0.59 4.5 193 0.63 0.37 0.70 0.54

GFDL-ESM2M 8.1 105 0.90 3.6 197 0.59 0.41 0.87 0.71

GISS-E2-R 4.7 126 1.16 1.6 184 0.58 0.42 0.32 0.37

HadGEM2-ES 6.5 82 0.55 5.3 280 0.52 0.48 0.58 0.44

IPSL-CM5A-LR 7.7 95 0.59 5.5 286 0.56 0.44 0.65 0.47

MIROC5 8.3 145 0.76 3.5 285 0.66 0.34 1.07 0.67

MPI-ESM-LR 7.3 71 0.72 3.9 164 0.60 0.40 0.55 0.59

MRI-CGCM3 8.5 64 0.66 4.3 150 0.63 0.37 0.46 0.47

NorESM1-M 8.0 105 0.88 4.0 218 0.55 0.45 0.60 0.48

bcc-csm1-1 7.6 53 0.67 4.0 126 0.62 0.38 0.62 0.43

inmcm4 8.6 317 0.65 4.0 698 0.70 0.30 0.43 0.37

Multimodel mean 7.4 104 0.73 4.1 245 0.59 0.41 0.62 0.51

Standard deviation 1.1 64 0.19 1.0 138 0.08 0.08 0.18 0.10
Table B5. Two-box parameters fitted from abrupt4xCO2 runs for CMIP5 models taken from Geoffroy et al. (2013b). σQ values are calculated

from detrended T (t) for either historical or piControl runs.
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Model C C0 γ τf τs af as historical σQ piControl σQ

(W yr m−2 K−1) (W yr m−2 K−1) (W m−2 K−1) (yr) (yr) (W m−2) (W m−2)

ACCESS-CM2 7.9 88 0.59 6.1 286 0.51 0.49 0.65 0.43

ACCESS-ESM1-5 7.0 87 0.70 5.0 255 0.47 0.53 0.47 0.43

AWI-CM-1-1-MR 7.3 52 0.54 4.2 143 0.67 0.33 0.56 0.46

BCC-CSM2-MR 8.0 68 0.73 4.6 165 0.55 0.45 0.63 0.56

BCC-ESM1 7.6 85 0.62 4.9 235 0.58 0.42 0.53 0.43

CESM2-WACCM 6.6 82 0.81 4.5 237 0.41 0.59 0.59 0.47

CIESM 7.7 70 0.76 5.2 203 0.44 0.56 0.45 0.41

CMCC-CM2-SR5 7.6 61 0.57 4.7 169 0.62 0.38 0.68 0.77

CanESM5 7.7 74 0.54 6.3 259 0.52 0.48 0.55 0.42

E3SM-1-0 7.8 40 0.41 7.4 169 0.55 0.45 0.52 0.39

EC-Earth3 7.5 40 0.49 5.8 137 0.58 0.42 0.67 0.43

EC-Earth3-Veg 7.0 39 0.51 5.4 130 0.57 0.43 0.58 0.43

FIO-ESM-2-0 7.2 86 0.79 4.4 217 0.49 0.51 0.54 0.41

GFDL-CM4 5.3 84 0.69 3.7 245 0.49 0.51 0.48 0.35

GFDL-ESM4 8.3 127 0.61 4.3 306 0.67 0.33 0.85 0.60

GISS-E2-1-G 6.4 143 0.88 2.7 264 0.61 0.39 0.92 0.73

GISS-E2-1-H 8.4 83 0.65 4.6 203 0.62 0.38 0.64 0.55

HadGEM3-GC31-LL 7.8 72 0.55 6.6 259 0.50 0.50 0.53 0.43

HadGEM3-GC31-MM 8.2 71 0.64 6.4 234 0.46 0.54 0.52 0.45

IITM-ESM 9.3 157 0.74 3.6 299 0.71 0.29 0.89 0.62

INM-CM4-8 5.1 28 0.94 2.1 51 0.57 0.43 0.42 0.32

INM-CM5-0 7.9 46 0.55 3.8 115 0.71 0.29 0.49 0.41

IPSL-CM6A-LR 7.2 61 0.46 6.0 222 0.59 0.41 0.47 0.45

MIROC-ES2L 11.4 232 0.63 5.2 521 0.71 0.29 1.12 0.89

MIROC6 8.8 171 0.66 4.1 378 0.68 0.32 0.86 0.74

MPI-ESM-1-2-HAM 8.7 103 0.69 4.3 230 0.64 0.36 0.68 0.68

MPI-ESM1-2-HR 7.4 83 0.71 3.8 188 0.61 0.39 0.60 0.52

MPI-ESM1-2-LR 8.4 99 0.67 4.1 224 0.66 0.34 0.82 0.63

MRI-ESM2-0 6.8 90 1.08 3.1 171 0.48 0.52 0.65 0.51

NESM3 5.7 100 0.47 4.5 343 0.61 0.39 0.54 0.38

SAM0-UNICON 6.3 99 0.84 3.4 219 0.53 0.47 0.59 0.46

TaiESM1 7.9 91 0.68 5.1 245 0.53 0.47 0.60 0.50

UKESM1-0-LL 7.4 75 0.54 6.0 259 0.53 0.47 0.63 0.44

Multimodel mean 7.6 87 0.66 4.7 230 0.57 0.43 0.63 0.51

Standard deviation 1.2 41 0.15 1.2 84 0.08 0.08 0.16 0.13
Table B6. Two-box parameters fitted from abrupt4xCO2 runs for CMIP6 models.σQ values are calculated from detrended T (t) for either

historical or piControl runs.
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