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Abstract. Weak turbulence often occurs during heavy pollution events in eastern China. However, existing mesoscale 

models cannot accurately simulate turbulent diffusion under weakened turbulence, particularly under the nocturnal stable 

boundary layer (SBL), often leading to significant turbulent diffusivity underestimation and surface aerosol simulation 

overestimation. In this study, based on the Weather Research and Forecasting model coupled with the Chemistry model 20 

(WRF-Chem 3.9.1), a new parameterization of minimum turbulent diffusivity (Kzmin) is tested and applied in PM2.5 

simulations in eastern China under SBL conditions. Sensitivity experiments show that there are different value ranges of 

available Kzmin over the northern (0.8 to 1.3 m2·s-1) and southern (1.0 to 1.5 m2·s-1) regions of East China. The 

geographically related Kzmin could be parameterized by means of two factors: sensible heat flux (H) and latent heat flux 

(LE), which also exhibited a regional difference related to the climate and underlying surface. The revised Kzmin scheme 25 

obviously enhanced the turbulent diffusion (north: 0.88 m2·s-1, south: 1.17 m2·s-1 on average) under the SBL, simultaneously 

improving the PM2.5 simulations, with the PM2.5 relative bias decreasing from 44.0% to 14.16% on the surface. The 

improvement in the mean bias of the surface simulation was more noticeable in the north (57.99 to 3.43 ug·m-3) than in the 

south (37.77 to 19.8 ug·m-3). It also increased the PM2.5 concentration in the upper SBL. Furthermore, we discussed the 

physical relationship between Kzmin and two factors. Kzmin was inversely correlated with sensible heat flux (negative) and 30 

latent heat flux (positive) in the SBL. Process analysis showed that vertical mixing is the key process to improve PM2.5 

simulations on the surface in the revised scheme. The increase in the PM2.5 concentration in the upper SBL was attributed to 

vertical mixing, advection, and aerosol chemistry. This study highlights the importance of improving turbulent diffusion in 
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current mesoscale models under the SBL and has great significance for aerosol simulation research under heavy air pollution 

events. 35 

1 Introduction 

The aerosol particles with aerodynamic diameters less than 2.5 µm (PM2.5), which is still the principal air pollutant over 

eastern China in wintertime, has received widespread attention in recent decades (Cai et al., 2017; Li et al., 2017; Hou et al., 

2019; Liu et al., 2021). Numerical models are an important tool to study evolutionary mechanisms. However, there are 

serious shortcomings in PM2.5 simulations during rapid growth and severe air pollution events (Wang et al., 2018), especially 40 

under the stable boundary layer (SBL). An accurate emissions inventory is an indispensable factor in obtaining accurate 

PM2.5 simulations. Meteorological conditions, particularly turbulent diffusion, play a critical role in the evolution of 

pollutants in the boundary layer (BL) when emissions are constant on a monthly scale (Kurata et al., 2004; Sofiev et al., 

2013; Jia et al., 2021b; Liu et al., 2022). 

Studies of the SBL remain insufficient; the SBL is often accompanied by intermittent turbulence and decoupling of the 45 

surface and free troposphere (Louis 1979; Grachev et al. 2005). At night, buoyancy is typically weak, which could lead to 

the calculation of a zero-turbulence diffusivity value in the model (Li et al., 2018). The diffusion of air pollutants is governed 

by the minimum turbulent diffusivity (Kzmin), which is determined from the planetary boundary layer (PBL) scheme (Li et 

al., 2018). Huang et al. (2010) improved the turbulent fluxes in the SBL by redefining the closure constants and modifying 

the sensible heat flux prognostic equation. Jia et al. (2021a) developed a novel formula for particle diffusion based on 50 

mixing-length theory. It has improved the simulation of aerosols in the SBL over eastern China. In addition to updating the 

turbulent diffusion formula, some modifications were focused on altering the value of Kzmin. Li et al. (2018) and Ding et al. 

(2021) parameterized Kzmin by land-use category. The value of Kzmin depends on the urbanization rate on land, while it is 

0 on water. They investigated the model performance between fixed values and parameterized values. In comparison to the 

fixed value, ozone biases that are simulated by the parameterized value are 31% lower, and the simulation of temperature has 55 

been improved. Du et al. (2020) and Wang et al. (2021) evaluated the simulation performance of aerosols by using different 

fixed Kzmin values in WRF-Chem and found that the higher the values of Kzmin were, the closer to the observations they 

were, particularly under the nocturnal SBL. Because the values of Kzmin were different based on regions and events in 

previous research, adopting a fixed value of Kzmin for a large region (e.g., east of China) and long-term (e.g., the whole 

month) study might not be an option. Therefore, a flexible Kzmin value is required for BL meteorology and aerosol 60 

simulations. 

This study aims to improve the model performance of aerosol and BL temperature simulations in the nocturnal SBL by 

implementing a novel parameterized scheme of Kzmin. Additionally, we attempt to discuss the physical meanings of Kzmin. 

Furthermore, we attempt to determine the key process in the simulation improvements by process analysis technology. Our 

research results would be useful for the improvement of PM2.5 and BL-Met simulations in the nocturnal SBL over eastern 65 
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China and will be of great significance for aerosol research across this region. The rest of this paper is organized as follows. 

The description of the observation data, model configuration and numerical experiments will be presented in section 2. The 

results and discussion will be presented in section 3, and the summary can be found in section 4. 

2 Data and Methodology 

2.1 Observation data 70 

Three sets of data were used to evaluate model performance. The first set of data is the hourly ground-based 

observations of PM2.5 mass concentrations in 89 cities obtained from the China National Environmental Monitoring Center 

and published online (http://106.37.208.233:20035). The second set of data is the 3 h-hourly meteorological factors at 99 

ground observation stations in eastern China. The meteorological factors contain 10 m wind speed, 10 m wind direction, and 

2 m temperature. The third set of data is the vertical observations of PM2.5 and meteorological factors from field experiments 75 

by our group in Nanjing. The field experiment was carried out between 27 December 2016 and 31 December 2016 to obtain 

the 3 h-resolution vertical distribution data of PM2.5. 

2.2 Model configuration 

The WRF-Chem model (V3.9.1.1), a fully coupled online 3-D Eulerian meteorological and chemical transport model, 

was used in this study. It has been widely applied in air quality research (Grell et al., 2005; Lu et al., 2023). The parent 80 

domain (D01) has 99×99 grids with a resolution of 27 km, covering most parts of China and the surrounding regions and 

ocean. The nested domain (D02) has 129×150 grids and a 9 km resolution covering most of East China (Fig. 1). Thirty-eight 

layers were set up from the surface up to the 50 hPa level, of which 13 layers were located below the lowest 2 km to explore 

the precise BL structure. The PBL scheme is YSU, which is a nonlocal closure BL scheme(Hong et al. 2006). The Carbon-

Bond Mechanism version Z (CBMZ) and the Model for Simulating Aerosol Interactions (MOSAIC) with aqueous chemistry 85 

were chosen for gas-phase and aerosol chemical processes (Zaveri et al., 2008; Zaveri and Peters et al., 1999). Other 

parameterization schemes for physical processes included the Morrison 2–moment Scheme (Morrison et al., 2009), the rapid 

radiative transfer model for GCM (RRTMG) short- and longwave radiation (Iacono et al., 2008), and the Noah land surface 

model (Chen et al., 2001). 

The model was driven by the National Centers for Environmental Prediction final (FNL) data file product (1°×1°, 90 

https://rda.ucar.edu/datasets/ds083.2/index.html, last accessed: September 18, 2022). The chemical initial and boundary 

conditions were provided by the Community Atmosphere Model outputs with Chemistry (CAM-chem; Emmons et al., 2020). 

The anthropogenic emissions are derived from the Multiresolution Emission Inventory for China (MEIC; emission index 

year is 2016; Li et al, 2017a; Zheng et al, 2018) database and MIX (emission index year is 2010; Li et al, 2017b). The 

model's biogenic emissions were generated by the Model of Emission of Gas and Aerosols from Nature (MEGAN; Guenther 95 
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et al., 2006). Based on the above model configurations and observational data, we designed the new Kzmin scheme in 

section 3.1 and compared and evaluated the results of the new and old schemes. 

 

Figure 1. The model domain of D01(a) and D02(b). Air quality monitoring sites (i.e., 89 stations) and their locations are 

shown in (b), used for model validation.  100 

2.3 Numerical experiments 

The turbulent mixing of pollutants in WRF-Chem model is a process related to the turbulence diffusion coefficient and 

the concentration difference between vertical adjacent (above or below) grids. The turbulent mixing process of pollutants is 

considered to be similar to that of heat, which supposes the turbulent diffusion of particles and heat is identical (Jia et al., 

2021b). In this study, we adopted the YSU scheme as the PBL scheme due to it is widely used in eastern China (Du et al., 105 

2020, Gao et al., 2022, Yan et al., 2023). Compared to the previous generation version MRF scheme, YSU scheme increased 

vertical mixing in the buoyancy driven and decreased it in the mechanic driven (Hong et al., 2006).  In YSU sheme, the 

momentum mixing coefficient Km in the mixed layer is formulated following Hong et al. (2006):  

𝐾𝑚 = 𝑘𝑤𝑠𝑧(1 − 𝑧/ℎ)𝑝                                                                                                                                                                                  (1) 

where k is the von Karman constant (=0.4), ws is the mixed layer velocity scale, z is the height from the surface, h is the 110 

height of the PBL, and p is the profile shape exponent taken to be 2. According to the Prandtl number as in Noh et al., 2003:  

𝑃𝑟 = 1 + (𝑃𝑟0 − 1)exp [
−3(𝑧 − 𝜀ℎ)2

ℎ2
]                                                                                                                                                      (2) 

the heat mixing coefficient Kh can be calculated following: 

𝐾ℎ = 𝐾𝑚/𝑃𝑟 + 𝐾𝑧𝑚𝑖𝑛                                                                                                                                                                                  (3)  
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where Kzmin is the minimum eddy diffusivity (=0.01 m2·s-1).  115 

However, many studies have suggested that mesoscale models underestimate the mixing in SBL simulation and lead to the 

overestimation of PM2.5 simulation (Teixeira et al. 2008, Du et al., 2020, Jia et al., 2021a). Therefore, two sets of 

experiments are designed in our research. In the control experiment (EXP_BASE), the default value of Kzmin in the YSU 

scheme is set to 0.01 m2·s-1. Through sensitivity experiments on Kzmin (shown in Table S1, the available values are marked 

in red), we found that the available Kzmin values for winter aerosol simulations are different in the north of eastern China 120 

(NCP: 0.8 to 1.3 m2·s-1) and in the Yangtze River Delta (YRD:1.0 to 1.5 m2·s-1). The sensible heat flux (H), also known as 

sensible heat transfer, refers to the turbulent heat exchange that occurs between the atmosphere and the underlying surface 

due to temperature differences. The latent heat flux (LE) is usually used to characterize the heat released or absorbed by a 

substance during the phase change of water. Some studies have suggested that the spatial distributions of H and LE are 

related to climate zones and different underlying surfaces (Dan et al., 2011). The evaporative fraction (EF) was used to 125 

represent the relative contributions of the turbulent energy fluxes to the surface energy budget (Shuttleworth et al., 1989), 

which is defined as the ratio of the LE to the sum of the H and LE: 

𝐸𝐹 = 𝐿𝐸/(𝐻 + 𝐿𝐸)                                                                                                                                                                                        (4) 

We assume that the value of EF can be used to characterize Kzmin in different regions. As such, we parameterized the new 

value of Kzmin in the PBL scheme by that in EXP_NEW, and the expression can be found in formula 1. 130 

𝑢𝑛𝑑𝑒𝑟 𝑠𝑡𝑎𝑏𝑙𝑒     ∶ 𝐾𝑧𝑚𝑖𝑛 = 𝐸𝐹 + 1.0                                                                                                                                                     (5) 

𝑢𝑛𝑑𝑒𝑟 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 ∶ 𝐾𝑧𝑚𝑖𝑛 = 0.01                                                                                                                                                              (6) 

When the grid in the PBL was under stable conditions (Ri > 0), the Kzmin value was set to the value calculated by 

formula 1. While the grid in the PBL was under unstable conditions (Ri<0), the Kzmin value was set to the default value 

(0.01). To avoid outlier calculation results, we set the Kzmin value variations from 0.01 to 2.0 (93% grid values fall within 135 

this interval). By comparing EXP_BASE with EXP_NEW, we can explore the impact of Kzmin on the PM2.5 simulation. We 

will also discuss the physical relationships of Kzmin with EF in section 3.2. 

3 Results and discussion 

3.1 Evaluation of the new scheme 

In this study, model performance metrics (MB, mean bias; IOA, index of agreement; RMSE, root mean square error; R: 140 

correlation coefficient, NMB: normalized mean bias, NME: normalized mean error) were used to validate meteorological 

factors and air pollution (T2m: temperature at 2 m above the surface; WS10m, wind speed at 10 m above the surface; WD10m, 

wind direction at 10 m above the surface and PM2.5 on the surface). 
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3.1.1 Simulation of meteorological factors and PM2.5 on the surface 

The mean model performance of the meteorological factors and PM2.5 in EXP_BASE is shown in Table 1. T2m showed 145 

high values of the mean IOA and R, which indicated that the simulation agreed well with the observations. Approximately 

82% of stations underestimated T2m, which caused the MB mean value to be negative (-0.86 ℃). The simulation of WS10m 

was slightly higher than the observation, while the IOAs and RMSEs met the criteria. The mean IOA of WD10m reached 0.87, 

which also suggests good agreement between the wind simulation and observation. In general, the model satisfactorily 

captured the variation in meteorological factors.  150 

 

Table 1. Mean model performance metrics for meteorological factors and PM2.5 (daytime and nighttime) in EXP_BASE. 

The values that unsatisfied the EPA suggested are highlighted in bold. 

Variable MB IOA RMSE R 

T2 -1.15 [-0.5,0.5]) 0.82 (≥0.8) 2.63 0.81 

WS10m 0.60 ([-0.5,0.5]) 0.69(≥0.6) 1.46(≤2) 0.6 

WD10m 2.85([-10,10]) 0.87 64.12 0.87 

PM2.5_day 19.57 0.77 65.35 0.7 

PM2.5_night 48.23 0.72 82.68 0.66 

 

The simulation of PM2.5 was overestimated both in the daytime (8:00 to 16:00) and nighttime (19:00 to 5:00 the next 155 

day), and the overestimation was more obvious at nighttime. The mean MBs at nighttime are more than twice as high as 

those during the daytime. The mean IOAs, RMSEs, and Rs during the daytime are also better than those at night. In short, 

the daytime simulations are significantly better than the nighttime simulations, which may be related to the good 

performance of the boundary layer mechanism in the model under the convective boundary layer. The simulation under 

nocturnal SBL needs to be improved. Therefore, we will focus on the improvement during the nocturnal SBL in our research. 160 

The distribution of the simulation (shaded) and observation (scatter) from each station is shown in Figure 2a 

(EXP_BASE). Obviously, the model overestimated the simulation of PM2.5 both in the north and south, which is similar to 

previous research in this region by WRF-Chem (Du et al., 2020; Jia et al., 2021a). A total of 96.9% of stations overestimate 

the simulation concentration with a mean relative bias equal to 44.0%. The deviation is larger in the inland regions than in 

the coastal regions. The relative simulation bias of PM2.5 is slightly different in the north (NCP: Beijing, Tianjin, Hebei, 165 

Henan and Shandong) and south (YRD: Anhui, Jiangsu, Shanghai and Zhejiang), and the north is more overestimated. This 

may be related to geographical conditions, climate and emission differences, and the degree of pollution (Liu et al., 2022; 

Wang et al., 2018). In comparison to the YRD, the degree of overestimation is more apparent in the NCP. The mean value of 

MB was 57.99 µg·m-3 in the NCP and 37.77 µg·m-3 in the YRD (Figure 2b, c). The mean IOA and R in the NCP are higher 

than those in the YRD. Thus, the simulated variation trend is closer to the observation in the NCP than in the YRD. 170 
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Figure 2. The distribution of PM2.5 concentration (unit: μg⋅m-3) in EXP_BASE (a) and EXP_NEW(d). The shaded and 

scatter are represented for simulation and observation, respectively. Taylor diagram for displaying model performance 

metrics of PM2.5 simulation in EXP_BASE (b: NCP; c: YRD) and EXP_NEW (e: NCP; f: YRD). The radial distance from 

the origin, the azimuthal position and the size of dots represent the values NME, IOA, and NMB of each station, respectively. 175 

The mean model performance was shown by the pink font.  

A new PBL scheme was introduced in EXP_NEW and solved the overestimation in eastern China (Figure 2d). The 

performance of the meteorological factor simulation is shown in Figure S1. The simulation of temperature has a better 

enhancement, which is consistent with the results of the study by Ding et al. (2021). For wind, there is not much difference 

between EXP_NEW and EXP_BASE. For PM2.5, the mean relative bias of the PM2.5 simulation decreased from 44.0 % to 180 

14.1%. The mean value of MB decreased to 3.43 µg·m-3 in the NCP, and most NME values clustered between 20 and 40 

(Figure 2e). The mean value of R (IOA) increased from 0.73 (0.76) in EXP_BASE to 0.76 (0.86). For the YRD, the 

improvement effect of the PM2.5 simulation is not as significant as that in the NCP (Figure 2f). The value of NME clustered 

between 20 and 60 with a larger mean MB (19.8 ug·m-3). The mean value of R (IOA) increased from 0.71 (0.71) in 

EXP_BASE to 0.74 (0.79). The mean IOA and R values in the YRD have increased significantly, indicating that the 185 

introduction of Kzmin may make the simulation more consistent with the observed trend (Figure 2f). Although there is no 

significant improvement in the mean MB in the YRD, the simulated trend is more similar to the observation. Therefore, we 

believe that the simulation in the YRD has also been improved. 
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3.1.2 The simulation of PM2.5 in the vertical direction 

Aerosols have a significant impact on the radiation and structure of the BL in the vertical direction (Yan et al., 2023). 190 

We further evaluate the vertical simulation of PM2.5 during nighttime over eastern China. The difference shows that 

EXP_NEW decreased the concentration of PM2.5 on the surface, especially in the NCP region (Figure 3b). The vertical 

section from the NCP to the YRD (Figure 3a) showed that EXP_NEW decreased the PM2.5 concentration on the surface and 

increased it in the upper BL (approximately 0.5-1.2 km). The results of UAV vertical sounding show that EXP_NEW makes 

the vertical simulation more reasonable (Figure 4). The simulation in EXP_BASE overestimated the PM2.5 concentration on 195 

the surface and underestimated it in the upper BL. 

In general, EXP_NEW can enhance the simulation ability in the meteorological factor and PM2.5 in the nocturnal SBL 

better than EXP_BASE. In the next section, we attempt to explain the physical effects of the newly designed Kzmin. 

 

 200 

Figure 3. The distribution of difference (EXP_NEW-EXP_BASE) in PM2.5 concentration (unit: μg⋅m-3). (a) Vertical cross 

section of the difference (blue line in Figure 3b). (b) Difference on the surface.  

 

Figure 4. Model performance of PM2.5 (unit: ug·m-3) in vertical direction. The black solid line represents the observation. 

The red and grey dot represents the simulation in EXP_BASE and EXP_NEW, respectively. Time in an orange shading 205 

represents nighttime.  
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3.2 The relationship between Kzmin and the evaporative fraction 

As shown in Figure 5, the new Kzmin scheme enhanced the turbulent diffusion values over eastern China, much larger 

than the default value of 0.01 m2·s-1. The distribution of the Kzmin value exhibited a north‒south difference with a mean 

value of 0.88 m2·s-1 (0.8-1.3 m2·s-1) in the NCP and 1.17 m2·s-1 (1.0-1.5 m2·s-1) in the YRD, which is within the ideal Kzmin 210 

range based on the sensitivity experiments in section 2.3 (Table S1). 

 

 

Figure 5. The distribution of Kzmin (unit: m2·s-1) in EXP_NEW. 

 215 

EF in formula 4 was used to represent the proportion of available energy at the surface that is used for evaporation (i.e., 

LE) (Shuttleworth et al., 1989). A high value of EF indicated that a large portion of the available energy was being used for 

evaporation, which is associated with more stable atmospheric conditions. The evaporation process tends to absorb heat and 

cool the surface. In contrast, a low value of EF indicated that a larger proportion of the available energy at the surface is used 

to heat the air directly through H, leading to a higher air temperature near the surface and reducing the stability of the 220 

atmosphere. We need to use a larger Kzmin value to enhance turbulence under a strong stable atmosphere and small or no 

adjusted Kzmin values under a weak stable or neutral atmosphere. As such, EF can reflect thermal flux features related to 

climate and the underlying surface in different regions, e.g., the NCP and YRD. After setting the adjustment factor value to 

1.0 in formula 3, we obtained reasonable Kzmin values suitable for PM2.5 simulation under the SBL over East China. 
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3.3 Key process in the improvement of PM2.5 simulation in the new scheme 225 

As shown in section 3.1, the average PM2.5 concentration during nighttime in EXP_NEW was significantly reduced, 

and the values were much closer to the observed data. To further investigate the key processes that contributed to the 

improvement of PM2.5 in EXP_NEW, we analysed the changes in PM2.5 induced by each physical and chemical process in 

the simulations. There was a significant difference in advection (ADV), vertical mixing (VMIX), and aerosol process 

(AERO) between the two schemes. 230 

VMIX is related to turbulent diffusion in the vertical direction, which is important for the mixing and transport of air 

pollutants in the vertical direction. As most primary pollutants are emitted to the first level in the model, the PM2.5 

concentration at the surface is typically higher than that at higher altitudes. As a result, PM2.5 is mixed from the surface to 

higher altitudes via turbulent diffusion, leading to negative VMIX values at the surface in most regions (Figure 6a, b). The 

difference in VMIX contribution (Figure 6c) indicated that the new scheme improved the overestimation of PM2.5 near the 235 

surface. More surface PM2.5 can diffuse to high altitudes in EXP_NEW, which means that VMIX reduces the 

underestimation of PM2.5 in the upper BL (discussed in Figure 7a). Regarding the advection process (ADV), there are no 

significant distribution characteristics between EXP_BASE and EXP_NEW (Figure 5d, 5e). Wind can transport pollutants 

among different regions or play a role in clearing air pollutants (Kang et al., 2019). Figure 5f shows that the difference 

between EXP_NEW and EXP_BASE is positive in most regions of eastern China. The ADV process in EXP_NEW 240 

increased the surface PM2.5 concentration compared with that in EXP_BASE. Therefore, the ADV process is not the key 

process in improving overestimation issues. It only redistributed the PM2.5 over this region. AERO mainly involves the 

conversion of aerosol and precursor gases. The simulation temperature in EXP_NEW was higher than that in EXP_BASE 

(Table 1) near the surface, which may accelerate the production of PM2.5. The positive difference between AERO in 

EXP_NEW and EXP_BASE (Figure 6i), especially in the YRD region, indicates that the AERO process did not contribute 245 

significantly to the improvement of surface PM2.5 simulation. 
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Figure 6. The distribution of PM2.5 contributions from VMIX (unit: ug·m-3·h-1), ADV (unit: ug·m-3·h-1), and AERO (unit: 

ug·m-3·h-1) in EXP_BASE (a, d, g) and EXP_NEW (b, e, h). (c, f, i) represents the difference between EXP_NEW and 250 

EXP_BASE.  

Figure 7 shows a vertical cross section of the differences from process contributions along the NCP to the YRD. The 

difference in VMIX is negative in the lower BL (< 0.5 km) but positive in the upper BL (>0.5 km), which means that VMIX 

in the new scheme enhanced turbulence diffusion and diffused more PM2.5 from the lower BL to the upper BL. Both benefits 

improved the overestimation on the surface and underestimation at high altitudes. For the difference in ADV, the effect is the 255 

opposite of that of VMIX, which is positive at the lower BL and negative at the upper BL. This result indicated that ADV 

increased the PM2.5 concentration at the lower BL and decreased it at the upper BL. The difference in AERO is positive from 

the surface to the upper BL. More precursors can be diffused by turbulence in EXP_NEW, which could contribute to the 

formation of secondary aerosols, such as nitrate. The net contribution showed that the combined effect of various processes 

in EXP_NEW decreased the surface concentration and increased the upper BL concentration. The decrease effect on the 260 
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surface can contribute to the VMIX. The increase effect between 0.1-0.5 km could contribute to the ADV and AERO, and 

the increase effect above 0.5 km may contribute to the VMIX and AERO. 

 

 

Figure 7. The distribution of difference (EXP_NEW-EXP_BASE, unit: ug·m-3·h-1) in difference process contribution (a: 265 

VMIX, b: ADV, c: AERO d: NET=VMIX+ADV+AERO).  

https://doi.org/10.5194/egusphere-2023-1089
Preprint. Discussion started: 9 June 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

Through process analysis, we discovered that the VMIX process decreased the surface PM2.5 concentration in the 

nocturnal SBL, while both the AERO and ADV processes had the opposite effect. The results suggest that our new 

parameterized Kzmin scheme improved PM2.5 simulation mainly driven by the VMIX process on the surface. The 

improvement in upper-BL was related to the combined effects of the three processes. 270 

4 Conclusion 

Accurately simulating PM2.5 under the stable boundary layer (SBL) remains a challenging issue in model studies, as 

weak turbulence often results in overestimation of PM2.5 concentrations. The default Kzmin value (0.01 m2·s-1) in WRF-

Chem 3.9.1 is too small to facilitate nocturnal turbulence diffusion. In this study, the new parameterization of Kzmin was 

applied and enhanced the PM2.5 simulation performance in the nocturnal SBL over eastern China. Furthermore, we discussed 275 

the physical relationships of the parameterized formula and explored the key process in the improvement of simulation. The 

conclusions are described as follows: 

Sensitivity experiments show that there are different value ranges of available Kzmin over the northern (0.8 to 1.3 m2·s-

1) and southern (1.0 to 1.5 m2·s-1) regions of East China. Using a fixed Kzmin may present a flaw. We determined that the 

geographically related Kzmin could be parameterized by the evaporative fraction (EF), which also exhibited a regional 280 

difference related to the climate and underlying surface. Thus, we parameterized Kzmin to enhance the turbulent diffusion in 

the SBL and embedded it into the YSU scheme. The model overestimated (98.8%) the simulation of PM2.5 with a mean 

relative bias equal to 43.0% in EXP_BASE, where Kzmin is equal to 0.01 m2·s-1. The mean value of MB is 54.61 µg·m-3 in 

the NCP and 37.05 µg·m-3 in the YRD. Compared with EXP_BASE, EXP_NEW, where Kzmin is parameterized, can 

significantly improve the model simulations of temperature and PM2.5. The issue of overestimated surface PM2.5 under the 285 

SBL has been solved, with the mean relative bias decreasing to 15.6%. The mean value of MB decreases to 3.79 µg·m-3 in 

the NCP and 17.99 µg·m-3 in the YRD, which is more noticeable in the north. EXP_NEW also improved the underestimation 

of PM2.5 in the upper SBL, while the improvement was not obvious compared to the surface. 

We also determined the relationship between Kzmin and EF in the SBL that we used in the parameterized formula. The 

value of the evaporative fraction, which was calculated by H and LE, can represent the proportion of available energy at the 290 

surface that is used for evaporation. A high value of EF was consistent with a more stable atmosphere, and a larger Kzmin 

was needed. Therefore, we parameterized Kzmin with EF, which is calculated by H and LE. In this process analysis, VMIX 

is the key process for the improvement of PM2.5 simulation on the surface in EXP_NEW, which made a negative 

contribution to the surface PM2.5 concentration. AERO and ADV both increased the surface PM2.5 concentration in the SBL, 

thereby having a counterproductive effect on the simulation improvement. The increase in PM2.5 concentration in the upper 295 

SBL was attributed to VMIX, ADV and AERO. We highlight the importance of enhanced turbulent diffusion in the current 

mesoscale models under the SBL to improve the PM2.5 simulation. 
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