

What is the cause(s) of positive ozone trends in three megacity clusters in eastern China during 2015–2020?

Tingting Hu¹, Yu Lin¹, Run Liu^{1,2}, Yuepeng Xu¹, Boguang Wang^{1,2}, Yuanhang Zhang³, Shaw Chen Liu^{1,2}

¹Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China

²Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, China

³State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China

10 *Correspondence to:* Run Liu (liurun@jnu.edu.cn), Shaw Chen Liu (shawliu@jnu.edu.cn)

Abstract. Due to a robust emission control policy, significant reductions in major air pollutants, such as PM_{2.5}, SO₂, NO₂, and CO, were observed in China between 2015 to 2020. On the other hand, during the same period, there was a notable increase in ozone (O₃) concentrations, making it a prominent air pollutant in eastern China. The annual mean concentration of maximum daily 8-hour average (MDA8) O₃ exhibited alarming linear trends of 2.4, 1.1, and 2.0 ppb yr⁻¹ in three megacity clusters:

15 Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD), respectively. Additionally, there was a significant three-fold increase in the number of O₃-exceeding days, defined as MDA8 O₃>75 ppb during the same period. Our analysis indicated that the upward trends in the annual mean concentration of MDA8 were primarily driven by the rise in consecutive O₃-exceeding days. Furthermore, from 2015 to 2017, there was a widespread expansion of high O₃ concentrations from urban centers to surrounding rural regions, resulting in a more uniform spatial distribution of O₃ after 2017. Lastly, we 20 discovered found a close association between O₃ episodes featuring with four or more consecutive O₃-exceeding days and the position and strength of tropical cyclones (TCs) in the northwest Pacific and the West Pacific subtropical high (WPSH). The TC and WPSH contributed to meteorological conditions characterized by clear skies, subsiding air motion, high vertical stability in the lower troposphere, increased solar radiation, and positive temperature anomaly at the surface. These favorable meteorological conditions greatly facilitated the formation of O₃. Thus, we propose that the worsening O₃ trends observed in 25 BTH, YRD and PRD from 2015 to 2020 can be mostly attributed to enhanced photochemical O₃ production resulting from an increased occurrence of meteorological conditions with high solar radiation and positive temperature anomalies under the influence of WPSH and tropical cyclones TCs.

1 Introduction

Ozone (O₃) is an important greenhouse gas, which can also have adverse effects on human health, vegetation, and materials 30 (Bell et al., 2006; Cohen et al., 2017; Kalabokas et al., 2020; Nuvolone et al., 2018). Surface O₃ is a secondary pollutant produced by photochemical reactions involving O₃ precursors such as volatile organic compounds (VOCs), carbon monoxide

(CO) and nitrogen oxides (NOx) (Ma et al., 2012; Monks et al., 2015; Wang et al., 2017). Compared to O₃ precursors, meteorological conditions are also crucial factors driving the O₃ formation. Solar radiation, temperature, relative humidity, wind speed, and cloud cover have been found to be closely related to O₃ formation (Dong et al., 2020; Han et al., 2020; Yin et al., 2019). In addition, large-scale circulations, such as the East Asian monsoon, West Pacific subtropical high (WPSH) and tropical cyclones (TCs) can influence O₃ concentration as well (Lu et al., 2019; Rowlinson et al., 2019; Yang et al., 2014; Zhao and Wang, 2017).

The concentrations of air pollutants SO₂, NOx, CO, PM₁₀ and PM_{2.5} in China have been significantly reduced since 2013 (Li M. et al., 2021; Li et al., 2022; Zhai et al., 2019), thanks to the implementation of “Air Pollution Prevention and Control Action Plan”. However, the O₃ concentration has dramatically increased and emerged as a major air pollutant in eastern China (Bian et al., 2019; Fu et al., 2019; Wang et al., 2020; Zheng et al., 2018). O₃ concentrations are particularly high in the three megacity clusters in eastern China, namely Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) (Gao et al., 2020; Guo et al., 2019; Li K. et al., 2021; Liu et al., 2018; Yang et al., 2019).

Annual mean concentrations of maximum daily 8-hour average (MDA8) O₃ in the three megacity clusters are shown in Fig. 1. The linear increasing trends of MDA8 O₃ for BTH, YRD and PRD are 2.4, 1.1 and 2.0 ppb yr⁻¹, respectively during the period 2015–2020. These trends are unusually large compared to the trends in other parts of China as well as the trends worldwide (Chen et al., 2020; Lu et al., 2018; Professional Committee of Ozone Pollution Control of Chinese Society for Environmental Sciences, 2022; Zhang et al., 2020). Thus, a crucial scientific question is: What is the cause(s) of these large positive trends in O₃ concentration? Some recent studies suggested that changing photochemical processes induced by anthropogenic emissions are responsible for these trends (Li et al., 2019; Li et al., 2022; Shao et al., 2021; Wang et al., 2020). However, in our analysis of the O₃ trends at individual stations in eastern China during the period 2015–2020, we noticed that the interannual variations of O₃ concentration were strongly affected by the position and intensity of WPSH and the presence of TCs in the western Pacific and South China Sea, consistent with the results of a number of recent studies (Chang et al., 2019; Mao et al., 2020; Ouyang et al., 2022; Zhao and Wang, 2017). These results suggest that transport/meteorological parameters associated with WPSH and TCs may also play an important role in the large trends of MDA8 O₃.

The significant impact of WPSH on weather patterns and O₃ concentrations over East China is widely recognized (Bachmann, 2015; Chang et al., 2019; Yin et al., 2019; Zhao and Wang, 2017). It is well established that the WPSH plays a critical role in controlling weather conditions, which in turn affects O₃ concentrations. For example, the WPSH is known to contribute to the formation of the East Asian monsoon and influence precipitation patterns in the YRD. Furthermore, it also influences air temperature and precipitation across North and South China (Zhang, 2001; Zhao and Wang, 2017). These changes in meteorological conditions have a profound impact on the photochemical formation, dispersion, and accumulation of O₃.

Previous studies have indicated that in the outer regions peripheries of TCs, PRD experiences specific atmospheric conditions, e.g., high pressure, low humidity, and intense solar radiation, which are highly conducive to O₃ formation. These conditions often result in consecutive days with elevated levels of O₃, as observed in various case studies (Ouyang et al., 2022; Wei et al.,

2026). Furthermore, statistical investigations have established several noteworthy connections between TCs and O₃ concentrations in the PRD area. For example, the meteorological conditions associated with the TC periphery frequently contributed to the formation of elevated surface O₃ levels and aerosols (Deng et al., 2019). In addition, TCs in the East China Sea had a higher likelihood of causing increased O₃ concentrations in the PRD region (Zhao et al., 2022). Lastly, TCs in the vicinity of Taiwan, China have the greatest influence on air quality in Hong Kong when compared to TCs in other areas, which is primarily because these TCs facilitate the transportation of air pollutants from the PRD region (Lam et al., 2018).

In this study, we focus on exploring possible contributions to the large positive O₃ trends in the three megacity clusters in eastern China by changes in meteorological parameters associated with WPSH and TCs during the period 2015–2020. [This](#)[The rest of this](#) paper is organized as follows. In Section 2, the data and methodology used in this study are described. Major characteristics of the O₃ interannual variability and trends in the three megacity clusters are discussed in Section 3.1. In Section 3.2, we examine the spatial expansion and [quasi](#)-saturation of high O₃. The annual change of O₃-exceeding days with different durations are also examined. A hypothesis of the cause of O₃ trends in three megacity clusters in eastern China during 2015–2020 is presented in Section 3.3. Section 4 presents a summary and conclusions.

2 Data and methodology

80 2.1 Pollutant Data

[In this study, the](#)[The](#) observed hourly concentrations of air pollutants, including O₃, NO₂, CO, PM_{2.5}, and SO₂ from 2015 to 2020 are obtained from the Chinese National Environmental Ministry of Environmental Protection (<http://www.cnemc.cn/en/>). Gridded MDA8 O₃ data from Tracking Air Pollution in China dataset (<http://tapdata.org.cn>) with a resolution of 10 km are also used (Xue et al., 2020).

85 2.2 Meteorological Data

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) dataset (available at <https://cds.climate.copernicus.eu/>), with a horizontal resolution of 0.25° × 0.25° and a [time interval](#)[temporal resolution](#) of 1 h, was used to analyze the influence of meteorological parameters on O₃ pollution. The variables used in this study include 2 m temperature (T2m), surface net solar radiation (SSR). In addition, daily mean relative humidity, geopotential height, zonal and meridional wind at 500 hPa, [and vertical velocity at 850hPa](#) from the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) reanalysis (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html>) at a resolution of 2.5° × 2.5° are used.

2.3 Methods

The Chinese National Ambient Air Quality Standard for MDA8 O₃ is 160 μg m⁻³, which corresponds to 75 ppb at 273.15 K and 1 atm. [It follows that the](#)[The](#) O₃-exceeding days are defined as MDA8 O₃ concentration >75 ppb, while non-O₃-exceeding

days are defined as MDA8 O₃ concentration <75 ppb. According to the duration of O₃ pollution [episode](#), it can be divided into consecutive O₃-exceeding days with four or more days (O₃ days \geq 4) and consecutive O₃-exceeding days less than four days (O₃ days<4). In addition, some common statistical methods are used in this study, including linear fitting, meteorological synthesis method, and two-tailed Student's t test.

100 The normalized annual mean O₃ concentration of the O₃-exceeding days is calculated by adding the O₃ concentration of the O₃-exceeding day each year and dividing it by the total number of days in the year. The normalized annual mean O₃ of the non-O₃-exceeding days is calculated by the same method except for the non-O₃-exceeding days.

Table 1 lists the criteria and corresponding numbers of low O₃ and high O₃ stations in the three megacity clusters. [Low O₃ and high O₃ stations are defined basing This classification is undertaken with the purpose of distinguishing stations with various O₃ levels within the three megacity clusters, and it is based](#) on the number of O₃ exceeding days in 2015. Stations with the number of O₃-exceeding days fewer than or equal to the low O₃ criterion (second column) are considered as low O₃ stations. When more than or equal to the high O₃ criterion (4th column), they are considered as high O₃ stations. We have tested a few reasonably different criteria and found only some insignificant differences in the results. i.e., the results associated with low O₃ and high O₃ stations are robust against reasonable changes in their selection criteria. For example, the relatively large 110 criterion (37 days) of low O₃ stations in YRD is intended to include a large enough number of stations (about one third of the total of 152 stations) to be fully representative of low O₃ and moderate O₃ stations. These results have been compared to those of a more stringent criterion of nineteen days and found no notable change in the major characteristics (Figs. S1 and S2).

3 Results and discussion

3.1 Major characteristics of O₃ trends

115 Major characteristics of the large positive trends in the annual mean O₃ concentration are shown in Figs. 2a, 2b and 2c for BTH, YRD and PRD, respectively, in which the normalized annual mean concentrations of MDA8 O₃ in the three megacity clusters are compared to contributions from two groups: The O₃-exceeding days and non-O₃-exceeding days. The increase in O₃-exceeding days is the primary contributor to the substantial increase in the annual mean O₃ in all three megacity clusters from 2015 to 2020. The contribution of O₃-exceeding days is affected mostly by the changing number of exceeding days (more 120 than 80%), and secondly but nevertheless significantly by their changes in concentrations (less than 20%) (Tables 2–4). e.g., in BTH the exceeding days were 31, 43, 62, 74, 96 and 78 days in the individual years of 2015–2020, respectively, while their concentrations of those years were 66.42, 64.13, 69.44, 68.21, 70.19 and 69.69, respectively (Table 2 second column). Contributions from non-O₃-exceeding days are insignificant ([p_value](#) > 0.1), except that in BTH (Fig. 2a) which shows a significant declining contribution ([p_value](#) = 0.02) due to the reduced number of non-O₃-exceeding days. Therefore, the 125 following discussions on the O₃ trends will be focused on the O₃-exceeding days.

Annual numbers of single and consecutive O₃-exceeding days are shown in Figs. 3a, 3b and 3c for BTH, YRD and PRD, respectively. A drastic two to three-fold increase in the annual numbers of consecutive O₃-exceeding days can be seen in all

three regions. In contrast, the numbers of single O₃-exceeding days show only a slight increase in PRD. These drastic increases in the annual numbers of consecutive O₃-exceeding days are clearly the primary contributors to the trends in O₃ shown in Figs.

130 2a, 2b and 2c. This brings up ~~several~~^{two} key scientific questions: What is the cause(s) of the drastic increases in the numbers of consecutive O₃-exceeding days? Is it due to changing ~~O₃-photochemical processes~~^{emissions of air pollutants} or changing meteorological parameters?

3.2 Spatial expansion and quasi-saturation of high O₃

Another important changing characteristics of O₃ concentrations is illustrated in Fig. 4a, which depicts the annual mean 135 concentrations of MDA8 O₃ in BTH during O₃-exceeding days for all 78 stations (black line), 14 stations in the highest category of O₃ concentration (average 103 ppb) observed in 2015 (red line, denoted as high O₃ stations hereafter, Table 1) and 13 stations in the lowest category of O₃ (average 57 ppb) observed in 2015 (green line, denoted as low O₃ stations hereafter, Table 1). It is remarkable that O₃ concentrations at the low O₃ stations caught up within 12 ppb with other stations in merely two years (an increase of about 30 ppb from 2015 to 2017), and actually equaled the average of other stations in 2019. Meanwhile, 140 the high O₃ stations experienced a slight decrease in O₃ concentration, albeit not statistically significant. This phenomenon suggests strongly that the annual mean concentrations of MDA8 O₃ in BTH experienced a fast (within two years) and widespread spatial expansion of high O₃ from urban centers to surrounding regions where O₃ concentrations were low in 2015. Temporally most of the expansion was accomplished during 2015–2017. This phenomenon of a fast and widespread expansion 145 of high O₃ concentrations from urban centers to surrounding regions were also observed at a slightly less degree in YRD (Fig. 4b) and PRD (Fig. 4c).

~~It is worth noting that O₃-concentrations at the high O₃ stations of approximate 100 ppb in 2015 remained nearly constant or slightly declined throughout the entire period of 2015–2020, while the low O₃ stations with O₃-concentrations less than about 75 ppb in 2015 in all three megacity clusters experienced significant enhancements in O₃-concentration (>5 ppb yr⁻¹) during 2015–2017 (Figs. 4a, 4b and 4c). This near-constant O₃-phenomenon suggests a quasi-saturation effect of O₃-formation when the annual mean concentration of MDA8 O₃ reached approximately 100 ppb.~~

Figs. 6a, 6b and 6c are the same as Figs. 5a, 5b and 5c, respectively, ~~except but~~ for YRD. Similar to BTH, one can clearly see the expansion of high O₃ from the vicinity of Shanghai City (31°N, 121.3°E) in the northwestern direction reaching as far as the central BTH box during the period 2015–2017 (Figs. 6b and 6c). Comparing Fig. 6a to 6b, one can see that the area inside the greater than 70-ppb contour expanded from Shanghai and vicinity northwestward by more than a factor of five from 2015 155 to 2017. This expansion was in different direction from the southwestern expansion occurred in BTH (Fig. 5c). ~~Since it is highly unlikely that any change in emissions could result in these different expansions in YRD and BTH, the logical explanation of the expansion in YRD would be that the weather system conducive to O₃-formation moved from the vicinity of Shanghai in 2015 (Fig. 6a) northwestward toward western BTH in 2017 (We note, however, this expansion Figs. 6b and 6c). We note, however, this movement of the weather system~~ does not necessarily mean the direct transport of high O₃ or its 160 precursors from the vicinity of Shanghai to central BTH. In fact, the presence of separate rather than contiguous red patches

of high O₃ (>70 ppb) in southern BTH and northern YRD in Fig. 6b is a clear indication that the high O₃ are primarily controlled by local photochemical production from local O₃ precursors under the expanded conducive weather conditions, rather than the direct upwind-downwind transport of high O₃ and/or its precursors. The daily average concentration of MDA8 O₃ inwithin the YRD box increased from 53.79 ppb in 2015 (31 days, Fig. 6a) to 64.35 ppb in 2017 (40 days, Fig. 6b), which was a difference 165 of 10.56 ppb or a 20% increase between the two years (Fig. 6c). When accountedAfter accounting for the number of O₃-exceeding days, the ratio of normalized MDA8 O₃ in all O₃-exceeding days between 2017 and 2015 became:

Figs. 7a, 7b and 7c are the same as Figs. 5a, 5b and 5c, respectively, except they are but for PRD. Unlike BTH and YRD, there was only a slight expansion of high O₃ within the PRD box toward the southwest in 2017 compared to 2015 (Fig. 7c). Nevertheless, outside the PRD box there was an extensive expansion of high O₃ in eastern China, substantially greater than 170 the expansion within the PRD box (Fig. 7c). The daily average concentration of MDA8 O₃ within the PRD box increased from 61.16 ppb in 2015 (14 days, Fig. 7a) to 65.18 ppb in 2017 (36 days, Fig. 7b), which was a difference of 4.02 ppb or a merely 175 6.6% increase between the two years (Fig. 7c). After accounting for the number of O₃-exceeding days, the ratio of normalized MDA8 O₃ in all O₃-exceeding days between 2017 and 2015 became 2.74. The calculation formula is: This comparison suggests
that the increase in O₃ in PRD between 2015 and 2017 was almost entirely (93.4%) due to the increase in the number of O₃-exceeding days.

$$(65.18 \times 36) / (61.16 \times 14) = 2.74$$

More evidence against the emissions of air pollutants as a major cause of the expansion and quasi-saturation can be seen in Fig. 8, in which the annual mean concentrations of MDA8 O₃ during O₃-exceeding days are compared to those of O_x (O₃+NO_x) as well as other air pollutants in BTH in 2015–2020. The nearly 30 ppb increases in O₃ (Fig. 8a) at low O₃ stations from 2015 180 to 2017 occurred also in O_x (Fig. 8b), suggesting that titration by NO or emission of NO was not the cause of the increases in O₃ in 2015–2017, even though the titration effect may well be the cause of the smaller overall trend in O₃ during much longer period 2006–2019 as suggested convincingly by Li et al. (2022). In addition, PM_{2.5} concentrations at high O₃ stations in Fig. 8c decreased significantly more than those at low O₃ stations from 2015 to 2017, yet the low O₃ stations experienced a near 185 30 ppb increase in O₃, while O₃ remained essentially constant at the high O₃ stations, suggesting that the proposed removal of HO₂ radicals by PM_{2.5} (Li K. et al., 2021; Shao et al., 2021) was also not a likely cause of the increases in O₃ in 2015–2017. In this context, it should be pointed out that we do not doubt the validity of HO₂ removal by PM_{2.5}, but its effect was obviously 190 too small to impact on the O₃ trend in 2015–2017. Finally, neither CO nor NO₂ showed any notable change at low O₃ stations between 2015 and 2017, implying negligible change in O₃ precursors, NO_x and VOCs, as their emission rates tended to be proportional to those of NO₂ and CO, respectively. This again supported the notion that changes in the emissions of O₃ precursors were unlikely to be the driving cause of the increases in O₃ at low O₃ stations from 2015 to 2017.

带格式的: 下标

3.3 Cause(s) of the expansion and quasi-saturation

Major findings of subsections 3.1 and 3.2 can be summarized as follows: (1) Trends in O₃ observed in the three megacity clusters in eastern China during 2015–2020 (Fig. 1) were mainly caused by the large trends of approximately two to three-fold

increase in the number of consecutive O_3 -exceeding days (Figs. 2 and 3). (2) A fast and widespread expansion of high O_3 from 195 urban centers to surrounding regions was observed in the three megacity clusters during 2015–2019 (Fig. 4); and the majority of the expansions were accomplished during the 2015–2017 period (green lines in Fig. 4). And (3) The, the expansions of high O_3 in the three megacity clusters were accompanied by a quasi-saturation effect that O_3 concentrations at the high O_3 stations (high O_3 in 2015) of approximate 100 ppb in 2015 remained nearly constant or slightly declined throughout the entire period of 2015–2020, while the low O_3 stations (low O_3 in 2015) with O_3 of about 75 ppb in all three megacity clusters in 2015 200 experienced significant enhancements in O_3 ($>5 \text{ ppb yr}^{-1}$) during 2015–2017 (Figs. 4a, 4b and 4c). And (4) There is independent evidence, including spatial distribution of the expansion (Figs. 5 and 6) and inter-annual variations in O_3 , Ox , NO_2 , CO and $PM_{2.5}$ (Fig. 8), suggesting that transport/meteorology rather than emissions of O_3 precursors would more likely be the major cause of the expansion and quasi saturation. In the following, we explore the evidence in support of changing meteorological parameters as a cause of O_3 trends in 2015–2020.4).

205 3.3.1 Changing emissions as a possible cause of O_3 trends in 2015–2020

As mentioned earlier, two emission oriented hypotheses have been proposed as a possible cause of the O_3 trends in 2015–2020. One is changing emissions of O_3 precursors NOx and VOC (Li et al., 2022). The other is the reduced removal of HO_2 radicals due to diminishing $PM_{2.5}$ suggested by Li K. et al. (2021) and Shao et al. (2021). Li et al. (2022) demonstrated convincingly that the NO titration effect was the cause of the linear trend in O_3 in PRD (0.5 ppb yr^{-1}) during the relatively long period 2006–210 2019. But for the period 2015–2020, the NO titration effect could account for only about 10% of the linear trend in O_3 of the low O_3 stations in PRD (5.0 ppb yr^{-1} , green line, Fig. S3a).

The increase of 30 ppb in O_3 at the low O_3 stations in BTH from 2015 to 2017 (green line, Fig. 4a and Fig. 8a) represents about 215 50% increase in O_3 . The titration effect can account for only about 5% (Fig. 8f). If this increase of 30 ppb in O_3 were due to an enhancement in O_3 precursors, the enhancement would have to be substantially greater than 50% because of the well-known less-than-linear relationship between changes in O_3 and its precursors, i.e., substantially more percentage changes in precursors 220 are needed for each percentage change in O_3 (Dodge, 1977; Shafer and Seinfeld, 1985). Figs. 8d and 8f show that CO (a proxy for VOC) and NOx changed only by a few percent from 2015 to 2017, more than one order of magnitude less than the changes needed. Hence it appears that changes in meteorological conditions conducive to O_3 formation are more likely the major contributing factor to the 50% increase in O_3 at the low O_3 stations in BTH. Similar argument can be extended to YRD and PRD (Figs. S1 and S3).

The theory of reduced removal of HO_2 radicals by diminishing $PM_{2.5}$ (25%, green line of Fig. 8c) appeared to be valid qualitatively for the 50% increase in O_3 at the low O_3 stations in BTH from 2015 to 2017 (green line of Fig. 8a). But this theory was contradicted directly by the phenomenon at the high O_3 stations where a 30% reduction in $PM_{2.5}$ (red line of Fig. 8c) corresponded to a decrease rather than an increase in O_3 (red line of Fig. 8a).

225 [3.3.2 Changes in meteorological parameters as a possible cause of O₃ trends in 2015–2020](#)

While a specific process/mechanism has yet to be found as the primary contributor to the trends in O₃ observed in the three megacity clusters [at this moment](#), the [findings summarized](#)[discussions](#) above suggest that an examination into transport/meteorological processes involved in O₃ episodes with consecutive O₃-exceeding days could provide useful information on the identity of the primary contributor. Using BTH as an example, we address this issue in the following by 230 dividing O₃ episodes of a given year into two groups: the first group has four or more consecutive O₃-exceeding days (labeled O₃ days \geq 4), the second group has less than four consecutive O₃-exceeding days (labeled O₃ days<4). [Fig. Figure](#) 9a shows the mean daily O₃ concentrations of the first group in 2015 (mean concentration of 71.14 ppb inside the BTH box, 7 days), [Figure Fig.](#) 9b shows the mean daily O₃ concentrations of the second group (65.04 ppb, 24 days), and Fig. 9c is the difference between the two groups (6.10 ppb, Table 2). [Figs. Figures](#) 9d–9f are the same as Figs. 9a–9c, respectively, [except but](#) for 2017. 235 The first group in 2017 had 28 days and mean O₃ of 74.43 ppb inside the BTH box, while the second group had 34 days and 65.32 ppb (Table 2). One of the most remarkable differences between 2017 and 2015 in Figs. 9a–9f was the large number of days with four or more consecutive O₃-exceeding days (first group) in 2017 (28 days, Fig. 9d) over that of 2015 (7 days, Fig. 9a), which alone contributed to about 62% of the difference in O₃ between 2017 and 2015 as shown in Fig. 2a (red line). 240 Approximately 30% was contributed by the 10 days' difference (2017 vs. 2015) in the number of days with less than four consecutive O₃-exceeding days (second group). The contribution by the higher average concentration of MDA8 O₃ of the first group in 2017 is only about 8% (Table 2). These values of contributions reconfirm what is shown in Fig. 3a, i.e., the greater frequency of episodes with four or more consecutive O₃-exceeding days contributes the majority (62%) to the higher O₃ in BTH in 2017 vs. 2015, the greater intensity/concentration of O₃ during the episodes contributes only about 8%, consistent with the expansion and [quasi](#)-saturation effect discussed earlier. The phenomenon of frequency over intensity is even more 245 pronounced when the data of 2015 (4th row and 4th column in Table 2) are compared to those of 2019 (8th row and 4th column in Table 2), in which the higher frequency of the first group of 2019 contributes as much as 83% to the higher O₃ in BTH in 2019 vs. 2015.

The phenomena illustrated in Figs. 9a–9f also exist in YRD and PRD as well as in most other years. Figures equivalent to Figs. 250 9a–9c for all years in the three city clusters (except PRD during 2015–2016, in which no episode with four or more consecutive O₃-exceeding days occurred) are provided in the Supplementary Material (Figs. [S3–S5](#)[S4–S6](#)). Essential information derived from those figures is summarized in Tables 2–4. The 4th column of Table 2 shows that the number of days with four or more consecutive O₃-exceeding days in BTH increased consistently from 7 days in 2015 to 66 days 2019 [and but](#) dropped back to 38 days in 2020; this pattern of changes matched very well with those in Fig. 2a (red line). The same can be said for YRD 255 (Table 3) and PRD (Table 4), except there are some minor contributions from the third column in Tables 3 and 4, i.e., days with less than four consecutive O₃-exceeding days. Another remarkable point is that the difference between (\geq 4 days) and (<4 days) (5th column) in Tables 2–4 is slightly positive (mostly by a few percent) for all three city clusters in all years, which again implies expansion and [quasi](#)-saturation of high O₃ in episodes with four or more consecutive O₃-exceeding days. In

带格式的: 英语(美国)

summary, Tables 2–4 show quantitatively that the temporal and spatial changes in O₃ concentrations in three megacity clusters of eastern China during 2015–2020 can be mostly attributed to the changes in the number of days with four or more consecutive O₃-exceeding days. It follows then that the critical question of our quest for the cause(s) of the remarkable large upward linear trend in O₃ of the three megacity clusters becomes: what process/mechanism is conducive to the formation of O₃ episodes with four or more consecutive O₃-exceeding days?

In Figs. 10a and 10b the values of SSR and T2m of the episodes with four or more consecutive O₃-exceeding days are compared to those of O₃ episodes with less than four consecutive O₃-exceeding days, and to those of clean days (non-O₃-exceeding days).

As expected, the O₃ episodes with four or more consecutive O₃-exceeding days consistently have the highest values of SSR and T2m, while the clean days have the lowest values. This is the case in nearly all years studied as shown in the Supplementary Material (Fig. S6S7) and is also generally true in YRD and PRD (Figs. S7S8 and S8S9). Coupling the higher values of SSR and T2m in the O₃ episodes with four or more consecutive O₃-exceeding days depicted in Fig. 10 and greater number of days in the O₃ episodes with four or more consecutive O₃-exceeding days shown in Fig. 3, we therefore propose a hypothesis as follows: the cause of worsening O₃ trends in BTH, YRD and PRD from 2015 to 2020 could be attributed to enhanced photochemical O₃ production due to the increased occurrence of meteorological conditions of high solar radiation and positive temperature anomaly at the surface.

Quantitatively the coupling of Fig. 10 with Fig. 3 can be performed by multiplying the difference between the red (four or more consecutive O₃-exceeding days) and green (clean days) values of SSR/T2m in Fig. 10 with the frequency of occurrence (in percentage of total days) of O₃ episodes with four or more consecutive O₃-exceeding days from Fig. 3. The results are compared to the yearly total O₃-exceeding days in Fig. 11. Correlation between the yearly O₃-exceeding days and weighed SSR is very good with R values 0.88 or greater in all three regions, lending strong support for our hypothesis. Correlation between the yearly O₃-exceeding days and weighed T2m is high correlated in BTH but not correlated in YRD and PRD, which probably suggests that T2m is not as strongly coupled to O₃ formation as SSR. Inclusion of O₃ episodes with less than four consecutive O₃-exceeding days in Fig. 11 did not change the correction coefficients significantly, supporting the robustness of results shown in Fig. 11.

The presence of TCs in the northwest Pacific, specific positions and strengths of WPSH in different regions, and mid-high latitude wave activities can contributed to the increased frequency of meteorological conditions characterized by high solar radiation and positive temperature anomalies at the surface (Hu W. et al., 2023; Mao et al., 2020; Ouyang et al., 2022). The contributions of TCs and WPSH are discussed in the following two sections.

Mechanically we propose that the O₃ concentrations at the high O₃ stations stayed close to a saturation level of about 100 ppb throughout 2015 to 2020, even under increased downdrafts and stable atmospheric conditions brought about by mid-distance category TCs. This saturation effect was the result of enhanced rates of atmospheric dispersion, dry deposition and photochemical loss at high O₃ concentrations, which were supported by modeling results (Li et al., 2012; Ouyang et al., 2022; Zhang et al., 2023). It is also consistent with theoretical consideration. While the low O₃ stations, where O₃ production were relatively small in 2015, experienced significant enhancements in the O₃ production (32 ppb in BTH, 12 ppb in PRD) from

2015 to 2017 because in the latter year the increased downdrafts and stable atmospheric conditions brought about by mid-distance category TCs were highly conducive to O_3 formation (Hu W. et al., 2023).

Following the analysis by Hu W. et al. (2023), the mean vertical velocity at 850 hPa during all O_3 -exceeding days in PRD in 295 2015 (Fig. 12a) is compared to that of episodes with four or more consecutive O_3 -exceeding days in 2017 (Fig. 12b). Major features in Fig. 12 compare very well with those of Fig. 7. E.g., area with positive vertical velocity (downdrafts) in 2017 (red area in Fig. 12b), which was highly conducive to O_3 formation, was by far more widespread and greater in value than that of 300 2015 (red area in Fig. 12a), agreeing well with the greater high O_3 area of Fig. 7b (2017) than that of Fig. 7a (2015). This agreement confirms that the increase in O_3 in PRD from 2015 to 2017 was caused by increased downdrafts and stable atmospheric conditions (meteorological conditions) brought about by TCs as suggested by Hu W. et al. (2023). The same plots 305 for BTH are shown in Fig. 13. Features of Fig. 13 are highly consistent with those of Fig. 5. The same plot for YRD (Fig. S10) also showed more extensive and greater downdrafts in 2017 than 2015. However, the area of positive vertical velocity in YRD appeared to shift about 500 km to the east compared to the area of high O_3 in Fig. 6b. Considering the uncertainty in evaluating the vertical velocity and that O_3 formation is also dependent on parameters other than the vertical velocity, the discrepancy is acceptable.

In summary of this section, the trends in O_3 in the three megacity clusters are critically dependent on the number of four or 310 more consecutive O_3 -exceeding days. In addition, Hu W. et al. (2023) found that the changing frequency of mid-distance category TCs (i.e., changing meteorological conditions) is the cause of the increases in the numbers of consecutive O_3 -exceeding days as well as the O_3 concentrations in PRD. More importantly, our additional analyses of the mean vertical velocity at 850 hPa over the three megacity clusters (Figs. 12, 13 and S10) show that the increases in O_3 in all three megacity clusters 315 from 2015 to 2017 were caused by enhanced downdrafts and stable atmospheric conditions (meteorological conditions) which were highly conducive to O_3 formation. The enhanced downdrafts and stable atmospheric conditions were brought about by TCs and associated WPSH. Here we bring up WPSH because it is well known that the tracks of TCs are influenced strongly by WPSH, and that WPSH affects strongly regional atmospheric dynamics and therefore O_3 formation (Chang et al., 2019; Mao et al., 2020; Ouyang et al., 2022; Zhao and Wang, 2017).

3.3.3 Contribution of WPSH_{western pacific subtropical high}

Mao et al. (2020) made a comprehensive study of an 11-day O_3 episode in BTH in 2017 and found it was dominated by the presence of the WPSH and mid-high latitude wave activities. Depending on the position and intensity, WPSH is well known to be a crucial factor affecting O_3 concentrations in various parts of eastern China (Chang et al., 2019; Yin et al., 2019; Zhao 320 and Wang, 2017). During this 11-day O_3 episode, the ridge line of WPSH maintained at approximately 22°N from June 24 to June 29, which in combination with mid-high latitude wave activities induced meteorological conditions highly conducive to the O_3 production in BTH and northern YRD (Mao et al., 2020).

Following the analysis of Mao et al. (2020), the impact of WPSH on O_3 in BTH in April–September has been analyzed in Fig. 325 1214 which depicts the composite 500 hPa geopotential height contours, humidity and winds in BTH in April–September for

325 O_3 -exceeding days in 2015 (a), clean days in 2015 (b), O_3 -exceeding days in 2017 (c), clean days in 2017 (d), O_3 -exceeding days in 2019 (e) and clean days in 2019 (f). The three years 2015, 2017 and 2019 are chosen because their differences in O_3 contribute predominately to the overall O_3 trends (Figs. 1–2). The importance of WPSH is clearly visible in all Figs. 12a–12f 14a–14f when the 5880 and 5900 gpm isolines (green lines) of O_3 -exceeding days are compared to those of clean days. In all three years, the WPSH of the former (O_3 -exceeding days) were significantly stronger than the latter (clean days) as evident
330 by the strong anticyclonic winds and/or the larger areas inside the 5880 gpm isolines. Even in the case of 2017 when the area inside 5880 gpm isolines of the former looked to be similar to that of the latter, the appearance of 5900 line in the former indicated a stronger WPSH. The strong anticyclonic winds in the former (O_3 -exceeding days) (Figs. 12a, 12e 14a, 14c and 12e 14e) force moist air of South China Sea northward into southern China and contributed to extensive clouds and precipitation and thus low O_3 formation over southern China and southern YRD. This difference in the O_3 formation between BTH and southern
335 China provides a good explanation to why the O_3 -exceeding days mostly occur in different time periods in the three megacity clusters as discussed in Section 3.2. Furthermore, over East China Sea the prevailing westerlies were forced northward, slowed down and lead to meteorological conditions in BTH and northern YRD characterized by cloudless sky, sinking motion and high vertical stability in the lower troposphere, as well as high SSR and positive T2m anomaly at the surface. These meteorological conditions were highly conducive to the formation and accumulation of O_3 . In contrast, the weaker WPSH of
340 the latter (clean days) allowed relatively strong westerlies to prevail over BTH during clean days in the three years, which tended to disperse O_3 (Figs. 12b, 12d 14b, 14d and 12f 14f). e.g., the average wind speed over BTH was about 10 m s^{-1} in Fig. 12b 14b, while only about 5 m s^{-1} in Fig. 12a. Quantitatively Fig. 12c had 31 more O_3 -exceeding days (93 ppb) than Fig. 12a 14a, the 31 days came at the expense of clean days (52 ppb) (Figs. 12b 14b and 12d 14d). The contribution of these 31 days to the difference in MDA8 O_3 between 2017 and 2015 (6.5 ppb, Fig. 1) can be calculated as follows:
345 We have made the same analysis for other years as well as for YRD and PRD. The results are mostly similar, and thus presented in the Supplementary material (Figs. S9, S10 S11, S12 and S13). Figs. 13a–13d 15a–15d for PRD in 2017 and 2019 are shown because there were interesting anticyclonic circulations over PRD during O_3 -exceeding days in both years (Figs. 13a 15a and 13e 15c). The 2017 anticyclone was a direct product of the WPSH as it resided within the western tip of the 5880 gpm isoline. The 2019 anticyclone was also likely associated with the WPSH as the center of anticyclone resided just beneath the
350 5860 gpm isoline to the west of PRD. The anticyclonic circulations were accompanied by stable downdrafts, low winds, and cloudless sky conditions (short arrows and blue shades in Figs. 13a 15a and 13e 15c), which were highly conducive to the O_3 formation. Cloudless sky conditions also occurred in YRD and BTH in Figs. 13a 15a and 13e 15c, but the high wind speed prevented the accumulation of O_3 . This difference in O_3 accumulation between PRD and other two regions provide another good explanation to why the O_3 -exceeding days mostly occur in different days in the three megacity clusters as discussed in
355 Section 3.2. Quantitatively Fig. 13e 15c had 27 more O_3 -exceeding days (90 ppb) than Fig. 13a, the 27 days came at the expense of clean days (39 ppb) (Figs. 13b 15b and 13d 15d). The contribution of these 27 days to the difference in MDA8 O_3 in PRD between 2019 and 2017 (6.0 ppb, Fig. 1) can be calculated as follows:

带格式的: 字体: Times New Roman

The presence of anticyclonic circulations over PRD is in good agreement with the results of Ouyang et al. (2022) and Hu W. et al. (2023). The latter authors suggested that the anticyclonic circulations over PRD were primarily caused by TCs in 360 northwestern Pacific. Nevertheless, it is widely acknowledged that the tracks of TCs in the northwestern Pacific are influenced, at least to some extent, by WPSH (Sun et al., 2015; Wang et al., 2017), making it difficult to separate the roles played by the TCs on the anticyclonic circulations and O₃ formation from those of WPSH. Clearly, further investigations are needed to fully understand the complex relationship among WPSH, TCs and O₃. Based on these results, we hypothesize that the increased frequency of these meteorological conditions enabled by the changing intensity and position of WPSH could contribute as a 365 major cause of the positive O₃ trends in the three megacity clusters in eastern China during 2015–2020.

3.4 Uncertainty and cautionary statements

带格式的: 字体: 10 磅

It is worth noting that the analyses conducted in Sections 3.1–3.3 have predominantly relied on correlation or regression analysis techniques, which do not imply a cause-and-effect relationship. To establish a cause-and-effect link between the proposed changes in meteorological parameters and O₃ trends, it is necessary to employ a mechanistic model that is based on 370 the proposed causes and can accurately reproduce the observed O₃ trend. Until such model reproduction is achieved, all correlation or regression findings should be considered as a potential maximum cause-and-effect relationship (Wu et al., 2022). However, current mechanistic models suffer from significant uncertainties, making it difficult to credibly simulate critical atmospheric processes that regulate O₃ formation. These processes include atmospheric transport parameterizations, the sources and sinks of OH, HO₂ and RO₂ radicals, and the photochemistry of VOCs and OVOCs.

375 4 Summary and Conclusions

Thanks to a strong emission control policy, major air pollutants in China, including PM_{2.5}, SO₂, NO₂ and CO had shown remarkable reductions during 2015–2020. However, O₃ concentration had increased significantly and emerged as a major air pollutant in eastern China during the same time period. The annual mean concentration of MDA8 in three megacity clusters in eastern China, namely BTH, YRD and PRD, showed alarming large upward linear trends of 25%, 10% and 19%, 380 respectively during 2015–2019. Identifying the causes of these worsening O₃ trends is urgently required for air pollution prevention and management.

Some recent studies suggested that enhanced photochemical processes induced by changing anthropogenic emissions were responsible for these trends (Li et al., 2019; Li et al., 2022; Shao et al., 2021; Wang et al., 2020). However, we noticed that there was independent evidence, including the spatial distribution of the expansion of high O₃ (Figs. 5 and 6) and inter-annual 385 variations in O₃, Ox, NO₂, CO and PM_{2.5} (Fig. 8), suggesting that transport/meteorological conditions rather than emissions of O₃ precursors were more likely to be the major contributor to the O₃ trends. Moreover, we found that the trends in O₃ observed in the three megacity clusters during 2015–2020 (Fig. 1) were mainly caused by the large trend of approximately two to three-fold increase in the number of consecutive O₃-exceeding days (Fig. 3), during that time a fast and widespread expansion of high O₃ from urban centers to surrounding regions was observed (Fig. 4), and the majority of the expansions was accomplished

390 during the two-year 2015–2017 period (green lines in Fig. 4). Furthermore, the expansions of high O₃ in the three megacity clusters were accompanied by a quasi-saturation effect that O₃ concentrations at the high O₃ stations (high O₃ in 2015) of approximate 100 ppb remained nearly constant throughout the entire period of 2015–2020, while the low O₃ stations (low O₃ in 2015) with O₃ less than 75 ppb in all three megacity clusters experienced a significant enhancement in O₃ (>5 ppb yr⁻¹) during 2015–2017 (Figs. 4a, 4b and 4c). Finally, greater frequency of episodes with four or more consecutive O₃-exceeding 395 days contributed the majority to the higher O₃ in all three megacity clusters in 2017 vs. 2015, the greater intensity/concentration of O₃ during the episodes contributes only about 10% (Fig. 9), consistent with the expansion and quasi-saturation effect discussed earlier.

Coupling the higher values of SSR and T2m in the O₃ episodes with four or more consecutive O₃-exceeding days depicted in Fig. 10 and greater occurrence (number of days) in the O₃ episodes with four or more consecutive O₃-exceeding days shown 400 in Fig. 3, we hypothesize that the cause of the worsening O₃ trends in BTH, YRD and PRD from 2015 to 2020 could be attributed to enhanced photochemical O₃ production due to the increased occurrence of meteorological conditions of high solar radiation and positive temperature anomaly under the influence of WPSH and TCs. The hypothesis is substantiated in Fig. 11, which shows excellent correlation between the yearly O₃-exceeding days and SSR with R values 0.88 or greater in all three regions. Correlation between the yearly O₃-exceeding days and T2m is good in BTH but poor in YRD and PRD, which 405 probably suggests that T2m is not as strongly coupled to O₃ formation as SSR.

In conjunction with our study, Hu W. et al. (2023) conducted a statistical analysis to evaluate the processes that promote high O₃ formation in PRD when TCs are present in the northwest Pacific. They assessed the impact of the distance between a TC in the northwest Pacific and PRD on O₃ in the PRD from 2006 to 2020. They found that the increased frequency of the downdrafts and stable atmosphere conditions brought forth by the mid-distance category TCs could be the main cause of the 410 large number of consecutive O₃-exceeding days in 2019, which contribute to about 80% of the overall positive trend of O₃ in 2015–2020 (Fig. 3e and black line, Fig. 4e).

Therefore, we propose that the O₃ concentrations at the high O₃ stations stayed close to a saturation level of about 100 ppb throughout 2015 to 2020, even under enhanced conditions conducive to O₃ formation, was the result of a relatively high rates of atmospheric dispersion, dry deposition and photochemical loss at the high O₃ concentration. While the low O₃ stations, 415 where O₃ production were relatively small in 2015, experienced significant enhancements in the O₃ production in 2017 and 2019 because of the enhanced downdrafts and stable atmospheric conditions associated with TCs and WPSH in the northwestern Pacific, which were highly conducive to O₃ formation (Hu W. et al., 2023).

Following the analysis of Mao et al. (2020), the impact of WPSH on O₃ in BTH in April–September has been analyzed in Fig. 420 4214. We found that the increased frequency of these meteorological conditions enabled by the changing intensity and position of WPSH could contribute as a major cause of the positive O₃ trends in the three megacity clusters in eastern China during 2015–2020.

Nevertheless, it is crucial to recognize that the examinations carried out in Sections 3.1–3.3 primarily utilized correlation or regression analysis techniques, which do not inherently establish causal relationships. To attribute cause and effect between

the suggested alterations in meteorological parameters and O₃ trends, it is necessary to employ a mechanistic model that
425 accurately replicates the observed O₃ trend based on the proposed cause(s). Until the model successfully reproduces the phenomenon, all correlation or regression findings should be treated as merely indicating the highest potential cause-and-effect relationship (Wu et al., 2022).

In conclusion, we hypothesize that the cause of the worsening O₃ trends in BTH, YRD and PRD from 2015 to 2020 is attributable to enhanced photochemical O₃ production due to the increased occurrence of meteorological conditions of high
430 solar radiation and positive temperature anomaly under the influence of WPSH and TCs. Therefore, we suggest that future O₃ pollution prevention and control policies should pay more attention to changes in the meteorological/climate conditions, particularly changes in the large-scale circulations, including WPSH and TCs.

Data availability. Hourly surface O₃, NO₂, CO, PM_{2.5}, and SO₂ data were obtained from China National Environmental Centre
435 (<http://www.cnemc.cn/en/>). Hourly meteorological data are obtained from European Centre for Medium-Range Weather Forecasts ERA5 reanalysis (<https://cds.climate.copernicus.eu/>). Daily meteorological data are obtained from National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html>). The data of this study are available upon request to Shaw Chen Liu (shawliu@jnu.edu.cn).

440 *Author Contributions.* SL and RL proposed the essential research idea. TH, and YL performed the analysis. TH, YL, RL, and SL drafted the manuscript. YX, BW, and YZ helped analysis and offered valuable comments. All authors have read and agreed to the published version of the manuscript.

445 *Competing interests.* The authors declare that they have no conflict of interest.

Acknowledgments. The authors thank the China National Environmental Centre and European Centre for Medium-Range Weather Forecasts for providing datasets that made this work possible. We also acknowledge the support of the Institute for Environmental and Climate Research and Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for
450 Environmental Quality in Jinan University.

Financial support. This research was supported by the National Natural Science Foundation of China (grant number 92044302, 41805115), Guangzhou Municipal Science and Technology Project, China (grant number 202002020065), Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province (grant number 2019B121205004),
455 Guangdong Innovative and Entrepreneurial Research Team Program (grant number 2016ZT06N263), and National Key Research and Development Program of China (grant number 2018YFC0213906).

References

Bachmann, J. D.: Air quality and climate connections, *J. Air Waste Manage.*, 65, 641–644, 460 <https://doi.org/10.1080/10962247.2015.1040697>, 2015.

Bell, M. L., Peng, R. D., and Dominici, F.: The exposure–response curve for ozone and risk of mortality and the adequacy of current ozone regulations, *Environ. Health Perspect.*, 114, 532–536, <https://doi.org/10.1289/ehp.8816>, 2006.

Bian, Y., Huang, Z., Ou, J., Zhong, Z., Xu, Y., Zhang, Z., Xiao, X., Ye, X., Wu, Y., Yin, X., Li, C., Chen, L., Shao, M., and Zheng, J.: Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015, *Atmos. 465 Chem. Phys.*, 19, 11701–11719, <https://doi.org/10.5194/acp-19-11701-2019>, 2019.

Chang, L., Xu, J., Tie, X., and Gao, W.: The impact of Climate Change on the Western Pacific Subtropical High and the related ozone pollution in Shanghai, China, *Sci. Rep.*, 9, 16998, <https://doi.org/10.1038/s41598-019-53103-7>, 2019.

Chen, Z., Li, R., Chen, D., Zhuang, Y., Gao, B., Yang, L., and Li, M.: Understanding the causal influence of major meteorological factors on ground ozone concentrations across China, *J. Clean. Prod.*, 242, 118498, 470 <https://doi.org/10.1016/j.jclepro.2019.118498>, 2020.

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope III C. A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L., and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an 475 analysis of data from the Global Burden of Diseases Study 2015, *The Lancet*, 389, 1907–1918, [https://doi.org/10.1016/S0140-6736\(17\)30505-6](https://doi.org/10.1016/S0140-6736(17)30505-6), 2017.

Deng, T., Wang, T., Wang, S., Zou, Y., Yin, C., Li, F., Liu, L., Wang, N., Song, L., Wu, C., and Wu, D.: Impact of typhoon periphery on high ozone and high aerosol pollution in the Pearl River Delta region, *Sci. Total Environ.*, 668, 617–630, <https://doi.org/10.1016/j.scitotenv.2019.02.450>, 2019.

Dodge, M. C.: [Effect of selected parameters on predictions of a photochemical model, PB-269858, EPA-600/3-77/048, Environmental Protection Agency, Research Triangle Park, N. C., U.S.A., 1977.](#)

Dong, Y., Li, J., Guo, J., Jiang, Z., Chu, Y., Chang, L., Yang, Y., and Liao, H.: The impact of synoptic patterns on summertime ozone pollution in the North China Plain, *Sci. Total Environ.*, 735, 139559, <https://doi.org/10.1016/j.scitotenv.2020.139559>, 2020.

Fu, Y., Liao, H., and Yang, Y.: Interannual and decadal changes in tropospheric ozone in China and the associated chemistry-climate interactions: a review, *Adv. Atmos. Sci.*, 36, 975–993, <https://doi.org/10.1007/s00376-019-8216-9>, 2019.

Gao, D., Xie, M., Chen, X., Wang, T., Liu, J., Xu, Q., Mu, X., Chen, F., Li, S., Zhuang, B., Li, M., Zhao, M., and Ren, J.: Systematic classification of circulation patterns and integrated analysis of their effects on different ozone pollution levels in the Yangtze River Delta Region, China. *Atmos. Environ.*, 242, 117760, <https://doi.org/10.1016/j.atmosenv.2020.117760>, 2020.

490 Guo, H., Chen, K., Wang, P., Hu, J., Ying, Q., Gao, A., and Zhang, H.: Simulation of summer ozone and its sensitivity to emission changes in China, *Atmos. Pollut. Res.*, 10, 543–1552, <https://doi.org/10.1016/j.apr.2019.05.003>, 2019.

Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic meteorological influences on daily variability in summertime surface ozone in eastern China, *Atmos. Chem. Physics.*, 20, 203–222. <https://doi.org/10.5194/acp-20-203-2020>, 2020.

495 Hu, W., Liu, R., Chen, Z., Ouyang, S., Hu, T., Wang, Y., Cui, Z., Jiang, B., Chen, D., Liu, S.C., Processes conducive to high ozone formation in Pearl River Delta in the presence of Pacific tropical cyclones, *Atoms. Environ.*, 307, 119859, <https://doi.org/10.1016/j.atmosenv.2023.119859>, 2023.

Kalabokas, P., Jensen, N.R., Roveri, M., Hjorth, J., Eremenko, M., Cuesta, J., Dufour, G., Foret, G., Beekmann, M.: A study of the influence of tropospheric subsidence on spring and summer surface ozone concentrations at the JRC Ispra station in 500 northern Italy, *Atmos. Chem. Phys.*, 20, 1861–1885, <https://doi.org/10.5194/acp-20-1861-2020>, 2020.

Lam, Y. F., Cheung, H. M., and Ying, C. C.: Impact of tropical cyclone track change on regional air quality, *Sci. Total Environ.*, 610–611, 1347–1355, <https://doi.org/10.1016/j.scitotenv.2017.08.100>, 2018.

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China, *Proc. Natl. Acad. Sci. U.S.A.*, 116, 422–427, <https://doi.org/10.1073/pnas.181216811>, 2019.

505 Li, K., Jacob, D. J., Liao, H., Qiu, Y., Shen, L., Zhai, S., Bates, K. H., Sulprizio, M. P., Song, S., Lu, X., Zhang, Q., Zheng, B., Zhang, Y., Lee, H. C., and Su, K. K.: Ozone pollution in the North China Plain spreading into the late-winter haze season, *Natl. Acad. Sci. U.S.A.*, 118, e2015797118, <https://doi.org/10.1073/pnas.2015797118>, 2021.

Li, L., Chen, C. H., Huang, C., Huang, H. Y., Zhang, G. F., Wang, Y. J., Wang, H. L., Lou, S. R., Qiao, L. P., Zhou, M., Chen, M. H., Chen, Y. R., Streets, D. G., Fu, J. S., and Jang, C. J.: Process analysis of regional ozone formation over the Yangtze 510 River Delta, China using the Community Multi-Scale Air Quality modeling system, *Atmos. Chem. Phys.*, 12, 10791–10987, <https://doi.org/10.5194/acp-12-10971-2012>, 2012.

Li, M., Wang, T., Shu, L., Qu, Y., Xie, M., Liu, J., Wu, H., Kalsoom, U.: Rising surface ozone in China from 2013 to 2017: A response to the recent atmospheric warming or pollutant controls? *Atmos. Environ.*, 246, 118130, <https://doi.org/10.1016/j.atmosenv.2020.118130>, 2021.

515 Li, X., Yuan, B., Parrish, D. D., Chen, D., Song, Y., Yang, S., Liu, Z., Shao, M.: Long-term trend of ozone in southern China reveals future mitigation strategy for air pollution, *Atmos. Environ.*, 269, 118869, <https://doi.org/10.1016/j.atmosenv.2021.118869>, 2022.

Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., and He, K.: Ground-level ozone pollution and its health impacts in China, *Atmos. Environ.*, 173, 223–230, <https://doi.org/10.1016/j.atmosenv.2017.11.014>, 2018.

520 Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang, T., Gao, M., Zhao, Y., and Zhang, Y.: Severe surface ozone pollution in China: A global perspective, *Environ. Sci. Technol. Lett.*, 5, 487–494, <https://doi.org/10.1021/ACS.ESTLETT.8B00366>, 2018.

Lu, X., Zhang, L., and Shen, L.: Meteorology and climate influences on tropospheric ozone: a review of natural sources, chemistry, and transport patterns, *Curr. Pollution Rep.*, 5, 238–260, <https://doi.org/10.1007/s40726-019-00118-3>, 2019.

525 Ma, J., Xu, X., Zhao, C., and Yan, P.: A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions, *Adv. Atmos. Sci.*, 29, 1006–1026, <https://doi.org/10.1007/s00376-012-1188-7>, 2012.

Mao, J., Wang, L., Lu, C., Liu, J., Li, M., Tang, G., Ji, D., Zhang, N., and Wang, Y.: Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017, *J. Environ. Sci.*, 92, 187–199, <https://doi.org/10.1016/j.jes.2020.02.019>, 2020.

530 Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, *Atmos. Chem. Phys.*, 15, 8889–8973, <https://doi.org/10.5194/acp-15-8889-2015>, 2015.

Nuvolone, D., Petri, D., and Voller, F.: The effects of ozone on human health, *Environ. Sci. Pollut. Res. Int.*, 25, 8074–8088, <https://doi.org/10.1007/s11356-017-9239-3>, 2018.

535 Ouyang, S., Deng, T., Liu, R., Chen, J., He, G., Leung, J. C.-H., Wang, N., and Liu, S. C.: Impact of a subtropical high and a typhoon on a severe ozone pollution episode in the Pearl River Delta, China, *Atmos. Chem. Phys.*, 22, 10751–10767, <https://doi.org/10.5194/acp-22-10751-2022>, 2022.

Professional Committee of Ozone Pollution Control of Chinese Society for Environmental Sciences: The Bluebook: Prevention 540 and Control of Ozone Pollution in China (2020), Science Press, Beijing, China, ISBN 978-7-03-071664-4, 2022 (in Chinese).

Rowlinson, M. J., Rap, A., Arnold, S. R., Pope, R. J., Chipperfield, M. P., McNorton, J., Forster, P., Gordon, H., Pringle, K. J., Feng, W., Kerridge, B. J., Latter, B. L., and Siddans, R.: Impact of El Niño–Southern Oscillation on the interannual variability of methane and tropospheric ozone, *Atmos. Chem. Phys.*, 19, 8669–8686, <https://doi.org/10.5194/acp-19-8669-2019>, 2019.

545 Shafer, T. B., and Seinfeld, J. H.: *Evaluation of chemical reaction mechanisms for photochemical smog. Part 3. Sensitivity of EKMA (Empirical Kinetic Modeling Approach) to chemical mechanism and input parameters. Final Report, March 1984–February 1985, PB-85-210888/XAB, California Institute of Technology, Pasadena, U.S.A., 1985.*

Shao, M., Wang, W., Yuan, B., Parrish, D. D., Li, X., Lu, K., Wu, L., Wang, X., Mo, Z., Yang, S., Peng, Y., Kuang, Y., Chen, W., Hu, M., Zeng, L., Su, H., Cheng, Y., Zheng, J., and Zhang, Y.: Quantifying the role of PM_{2.5} dropping in variations of 550 ground-level ozone: Inter-comparison between Beijing and Los Angeles, *Sci. Total Environ.*, 788, 147712, <https://doi.org/10.1016/j.scitotenv.2021.147712>, 2021.

Sun, Y., Zhong, Z., Yi, L., Li, T., Chen, M., Wan, H., Wang, Y., and Zhong, K.: Dependence of the relationship between the tropical cyclone track and western Pacific subtropical high intensity on initial storm size: A numerical investigation. *J. Geophys. Res. Atmos.*, 120(22), 11451–11467, <https://doi.org/10.1002/2015jd023716>, 2015.

555 Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects, *Sci. Total Environ.*, 575, 1582–1596, <https://doi.org/10.1016/j.scitotenv.2016.10.081>, 2017.

556 Wang, Y., Gao, W., Wang, S., Song, T., Gong, Z., Ji, D., Wang, L., Liu, Z., Tang, G., Huo, Y., Tian, S., Li, J., Li, M., Yang, Y., Chu, B., Petäjä, T., Kerminen, V.-M., He, H., Hao, J., Kulmala, M., Wang, Y., and Zhang, Y.: Contrasting trends of PM_{2.5} and surface-ozone concentrations in China from 2013 to 2017, *Natl. Sci. Rev.*, 7, 1331–1339, <https://doi.org/10.1093/nsr/nwaa032>, 2020.

560 Wei, X., Lam, K.-S., Cao, C., Li, H., and He, J.: Dynamics of the Typhoon Haitang related high ozone episode over Hong Kong, *Adv. Meteorol.*, 6089154, <https://doi.org/10.1155/2016/6089154>, 2016.

565 Wu, Y., Liu, R., Li, Y., Dong, J., Huang, Z., Zheng, J., and Liu, S. C.: Contributions of meteorology and anthropogenic emissions to the trends in winter PM_{2.5} in eastern China 2013–2018, *Atmos. Chem. Phys.*, 22, 11945–11955, <https://doi.org/10.5194/acp-22-11945-2022>, 2022.

Xue, T., Zheng, Y., Geng, G., Xiao, Q., Meng, X., Wang, M., Li, X., Wu, N., Zhang, Q., and Zhu, T.: Estimating spatiotemporal variation in ambient ozone exposure during 2013–2017 using a data-fusion model, *Environ. Sci. Technol.*, 54, 14877–14888, <https://doi.org/10.1021/acs.est.0c03098>, 2020.

570 Yang, W., Chen, H., Wang, W., Wu, J., Li, J., Wang, Z., Zheng, J., and Chen, D.: Modeling study of ozone source apportionment over the Pearl River Delta in 2015, *Environ. Pollut.*, 253, 393–402, <https://doi.org/10.1016/j.envpol.2019.06.091>, 2019.

575 Yang, Y., Liao, H., and Li, J.: Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China, *Atmos. Chem. Phys.*, 14, 6867–6879, <https://doi.org/10.5194/acp-14-6867-2014>, 2014.

580 Yin, Z., Cao, B., and Wang, H.: Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations, *Atmos. Chem. Phys.*, 19, 13933–13943, <https://doi.org/10.5194/acp-19-13933-2019>, 2019.

Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM_{2.5}) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, *Atmos. Chem. Phys.*, 19, 11031–11041, <https://doi.org/10.5194/acp-19-11031-2019>, 2019.

585 Zhang, Y., Tao, M., Zhang, J., Liu, Y., Chen, H., Cai, Z., and Konopka, P.: Long-term variations in ozone levels in the troposphere and lower stratosphere over Beijing: observations and model simulations, *Atmos. Chem. Phys.*, 20, 13343–13354, <https://doi.org/10.5194/acp-20-13343-2020>, 2020.

Zhang, R.: Relations of water vapor transport from Indian Monsoon with that over East Asia and the summer rainfall in China. *Adv. Atmos. Sci.* 18 (5), 1005–1017, <http://doi.org/10.1007/bf03403519>, 2001.

585 [Zhang, S., Zhang, Z., Li, Y., Du, X., Qu, L., Tang, W., Xu, J. and Meng, F.: Formation processes and source contributions of ground-level ozone in urban and suburban Beijing using the WRF-CMAQ modelling system, *J. Environ. Sci.*, 127, 753–766, https://doi.org/10.1016/j.jes.2022.06.01](https://doi.org/10.1016/j.jes.2022.06.01), 2023.

Zhao, W., LÜ, M., Lu, Q., Gao, B., Liang, X., Liu, M., Sun, J., Chen, L., and Fan, S.: Effects of tropical cyclones on ozone pollution in the Pearl River Delta in autumn, *Environ. Sci.*, 43, 2957–2965, <https://doi.org/10.13227/j.hjkx.202109169>, 2022

590 (in Chinese).

Zhao, Z. and Wang, Y.: Influence of the West Pacific subtropical high on surface ozone daily variability in summertime over eastern China, *Atmos. Environ.*, 170, 197–204, <https://doi.org/10.1016/j.atmosenv.2017.09.024>, 2017.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions,

595 *Atmos. Chem. Phys.*, 18, 14095–14111, <https://doi.org/10.5194/acp-18-14095-2018>, 2018.

Table 1. Criteria and corresponding numbers of low O₃ and high O₃ stations in the three megacity clusters in 2015. The criterion listed for each megacity cluster was based on the number of MDA8 O₃ exceeding days in 2015. For instance, the criterion for a low O₃ site in BTH was the number of MDA8 O₃ exceeding days in 2015 being less than or equal to 19 days, while for high O₃ site was the number of MDA8 O₃ exceeding days in 2015 being greater than or equal to 71 days.

	Criterion of low O ₃ stations	Number of low O ₃ stations	Criterion of high O ₃ stations	Number of high O ₃ stations	Total number of stations
BTH	≤ 19 days	13	≥ 71 days	14	78
YRD	≤ 37 days	54	≥ 67 days	13	152
PRD	≤ 12 days	10	≥ 46 days	10	48

Table 2. Mean O₃ concentrations (ppb) and number of days of all O₃-exceeding days (2nd column), consecutive O₃-exceeding days with less than four days (3rd column), consecutive O₃-exceeding days with four or more days (4th column) and the difference between (≥ 4 days) and (< 4 days) (5th column) within the BTH box in 2015–2020.

	All days	<4 days	≥ 4 days	Difference
	Concentration (days) ppb	Concentration (days) ppb	Concentration (days) ppb	(≥ 4 days) – (< 4 days) ppb
2015	66.42(31)	65.04(24)	71.14(07)	6.10
2016	64.13(43)	62.65(26)	66.39(17)	3.74
2017	69.44(62)	65.32(34)	74.43(28)	9.11
2018	68.21(74)	65.43(27)	69.80(47)	4.37
2019	70.19(96)	65.28(30)	72.42(66)	7.14
2020	69.69(78)	65.52(40)	74.08(38)	8.56

605 **Table 3.** Same as Table 2, but for YRDMean O₃ concentrations (ppb) and number of days of all O₃-exceeding days (2nd column), consecutive O₃-exceeding days with less than four days (3rd column), consecutive O₃-exceeding days with four or more days (4th column) and the difference between (>4days) and (<4days) (5th column) within the YRD box in 2015–2020.

	All days Concentration (days) ppb	<4 days Concentration (days) ppb	≥4 days Concentration (days) ppb	Difference (≥4 days) – (<4 days) ppb
2015	53.79(31)	53.59(19)	54.11(12)	0.52
2016	58.87(27)	58.03(23)	63.73(04)	5.70
2017	64.35(40)	62.62(25)	67.22(15)	4.60
2018	63.33(43)	62.49(32)	65.75(11)	3.26
2019	67.18(49)	66.09(27)	68.51(22)	2.42
2020	65.84(38)	64.12(27)	70.06(11)	5.94

610 **Table 4.** Same as Table 2, but for PRDMean O_3 concentrations (ppb) and number of days of all O_3 -exceeding days (2nd column), consecutive O_3 -exceeding days with less than four days (3rd column), consecutive O_3 -exceeding days with four or more days (4th column) and the difference between (≥ 4 days) and (< 4 days) (5th column) within the PRD box in 2015–2020.

	All days	<4 days	≥ 4 days	Difference
	Concentration (days) ppb	Concentration (days) ppb	Concentration (days) ppb	$(\geq 4 \text{ days}) - (< 4 \text{ days})$ ppb
2015	61.16(14)	61.16(14)	---(0)	---
2016	58.44(19)	58.44(19)	---(0)	---
2017	65.18(36)	64.60(23)	66.20(13)	1.60
2018	65.82(31)	63.27(16)	68.55(15)	5.28
2019	69.80(62)	65.96(29)	73.16(33)	7.20
2020	65.08(37)	63.87(22)	66.84(15)	2.97

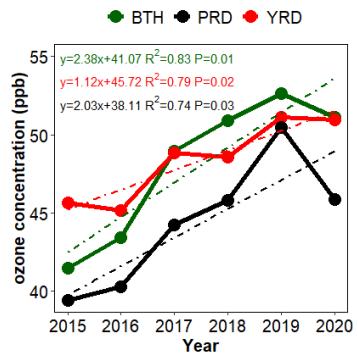


Figure 1: Annual mean concentrations of maximum daily 8-hour average O₃ in BTH (green), YRD (red) and PRD (black).

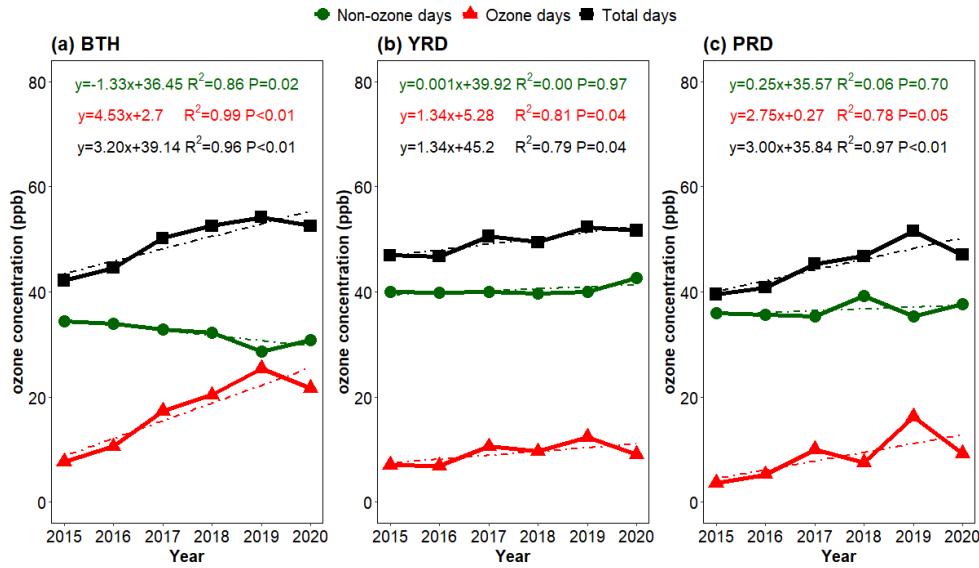


Figure 2: Contributions from the O₃-exceeding days (red) and non-O₃-exceeding days (green) to the annual mean concentration of maximum daily 8-hour average O₃ (black) in BTH (a), YRD (b) and PRD (c).

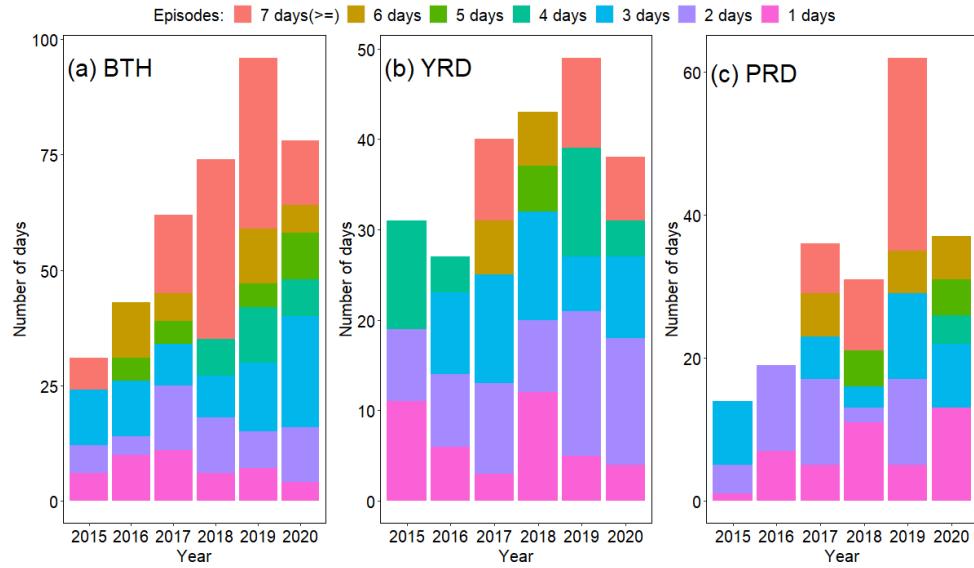


Figure 3: Annual numbers of various consecutive O₃-exceeding days in BTH (a), YRD (b) and PRD (c). Individual colors denote different numbers of consecutive O₃-exceeding days.

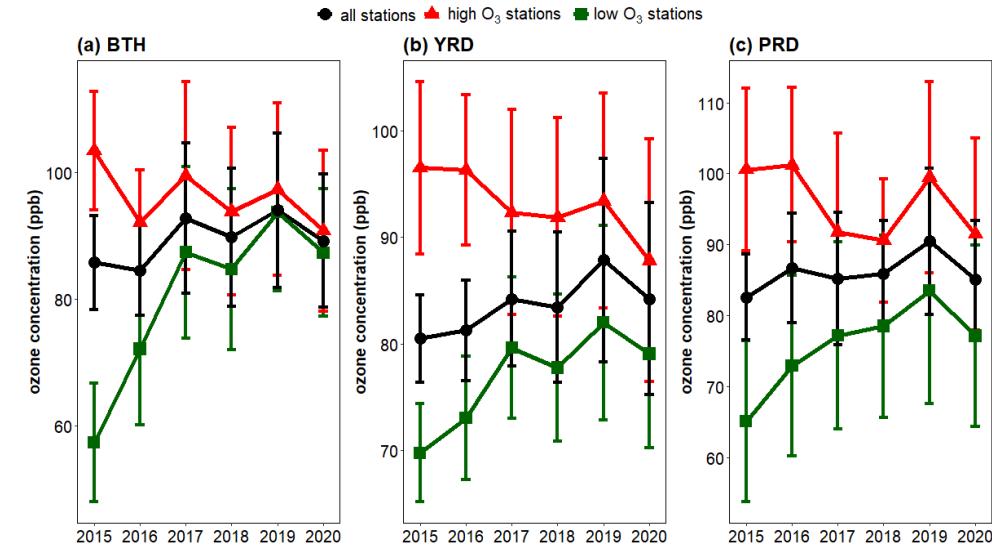
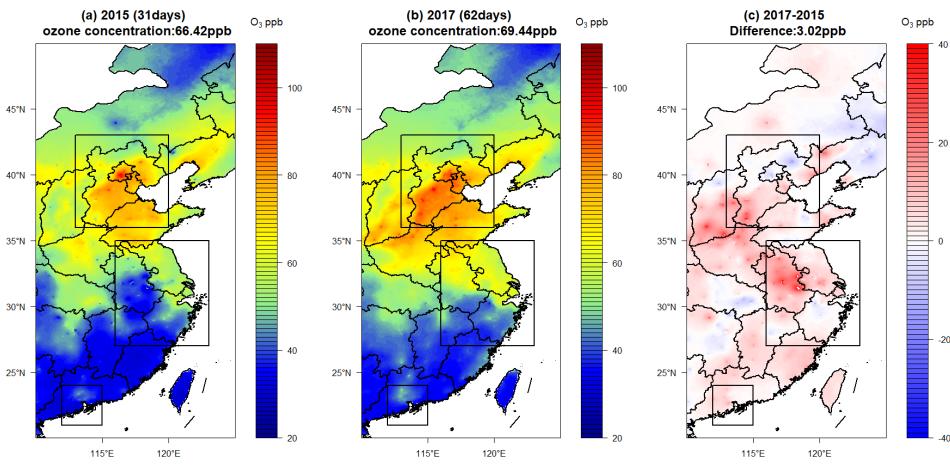
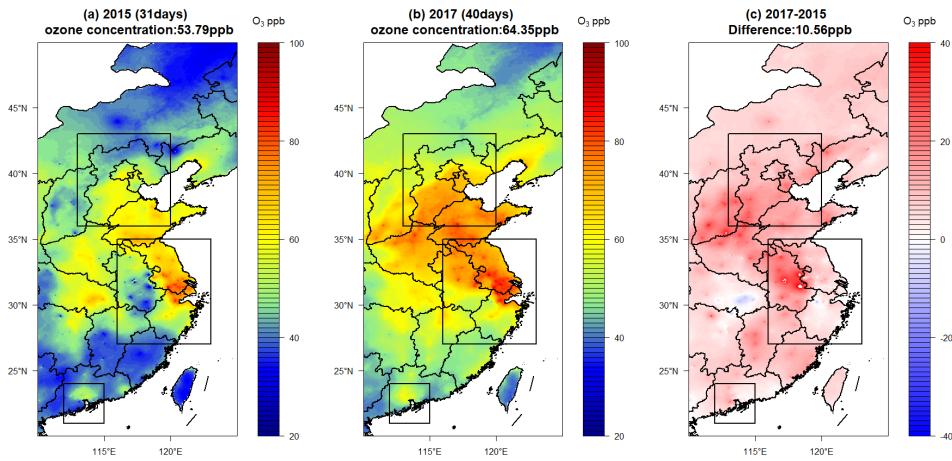
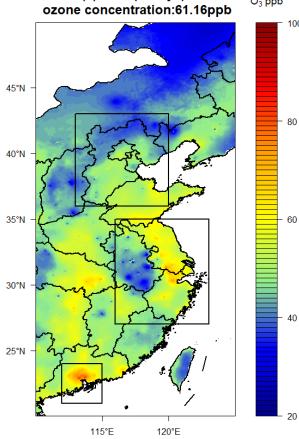
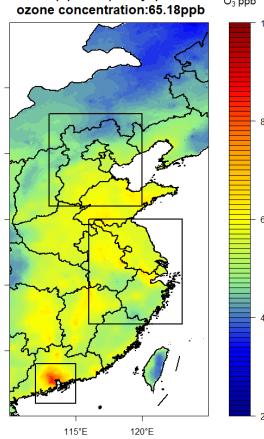




Figure 4: Mean concentrations of maximum daily 8-hour average O₃ during O₃-exceeding days for all stations (black), high O₃ stations (red) and low O₃ stations (green) in BTH (a), YRD (b) and PRD (c).



630 **Figure 5: Spatial distribution of annual mean concentrations of maximum daily 8-hour average O₃ for O₃-exceeding days in BTH in 2015 (a), 2017 (b) and their difference (2017 - 2015) (c). The top, middle and bottom rectangle boxes denote BTH, YRD and PRD districts, respectively. The number inside the parenthesis behind 2015 or 2017 denotes the number of O₃-exceeding days.**



635 **Figure 6: Spatial distribution of annual mean concentrations of maximum daily 8-hour average O_3 for O_3 -exceeding days in YRD in 2015 (a), 2017 (b) and their difference (2017 - 2015) (c). The top, middle and bottom rectangle boxes denote BTH, YRD and PRD districts, respectively. The number inside the parenthesis behind 2015 or 2017 denotes the number of O_3 -exceeding days.**

640
(a) 2015 (14days)
ozone concentration:61.16ppb

(b) 2017 (36days)
ozone concentration:65.18ppb

(c) 2017-2015
Difference:4.02ppb

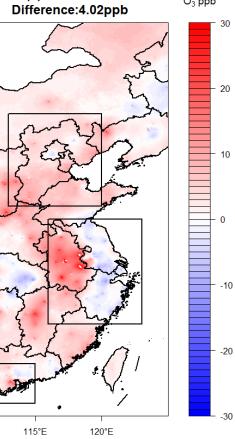


Figure 7: Spatial distribution of annual mean concentrations of maximum daily 8-hour average O₃ for O₃-exceeding days in PRD in 2015 (a), 2017 (b) and their difference (2017 - 2015) (c). The top, middle and bottom rectangle boxes denote BTH, YRD and PRD districts, respectively. The number inside the parenthesis behind 2015 or 2017 denotes the number of O₃-exceeding days.

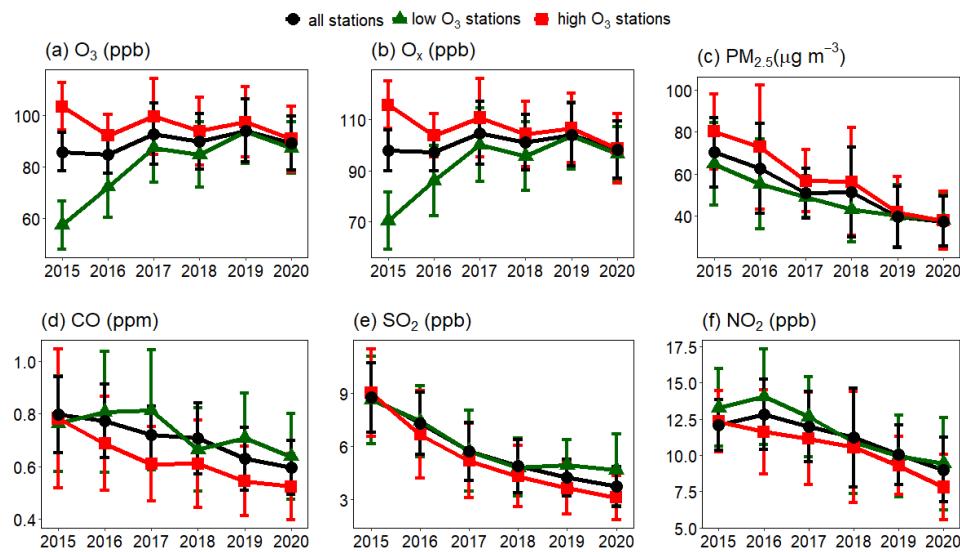


Figure 8: Annual mean concentrations of maximum daily 8-hour average O₃ in BTH during O₃-exceeding days for all stations (black), high O₃ stations (red) and low O₃ stations (green) (a), same as (a) except that for O_x (b), PM_{2.5} (c), CO (d), SO₂ (e), NO₂ (f).

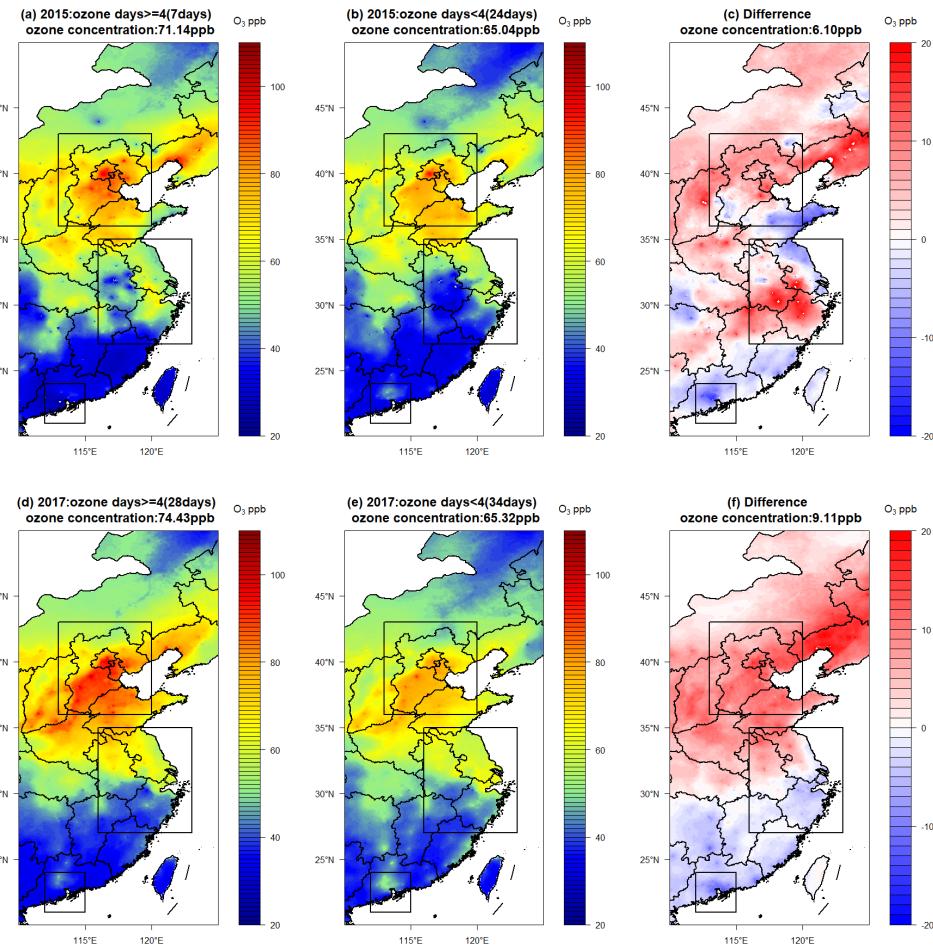
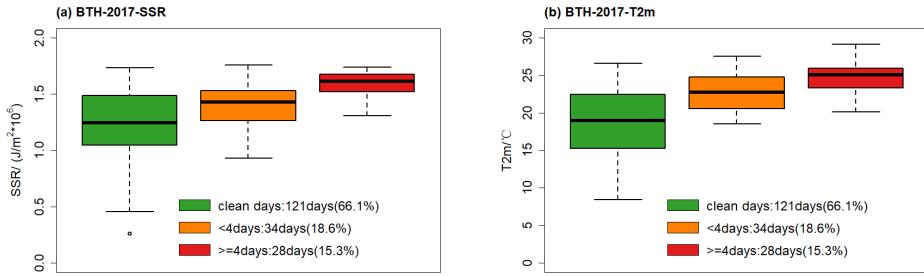



Figure 9: Spatial distribution of daily mean MDA8 O₃ of O₃-exceeding days in BTH for O₃ episodes with four or more consecutive O₃-exceeding days in 2015 (a), O₃ episodes with less than four consecutive O₃-exceeding days in 2015 (b), and (a minus b) (c); (d, e and f) are the same as (a, b and c), respectively, except but for 2017.

655

Figure 10: Surface solar radiation (SSR) (a) and temperature (T2m) (b) in BTH in April–September 2017 for four episodes with four or more consecutive O₃-exceeding days (red), clean days (non-O₃-exceeding days) (green) and O₃ episodes with less than four consecutive O₃-exceeding days (orange).

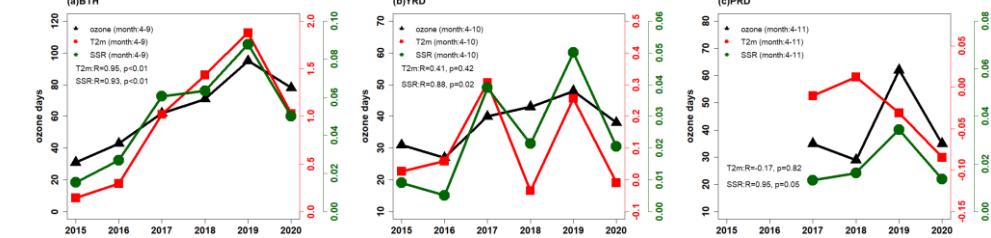
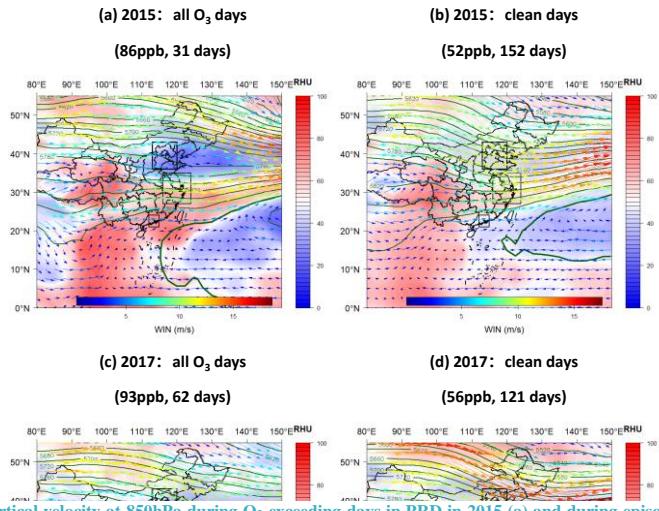
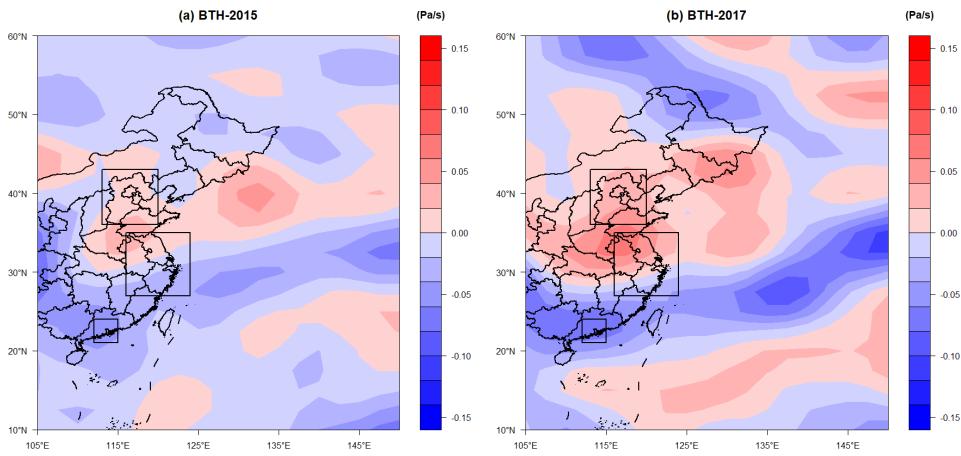
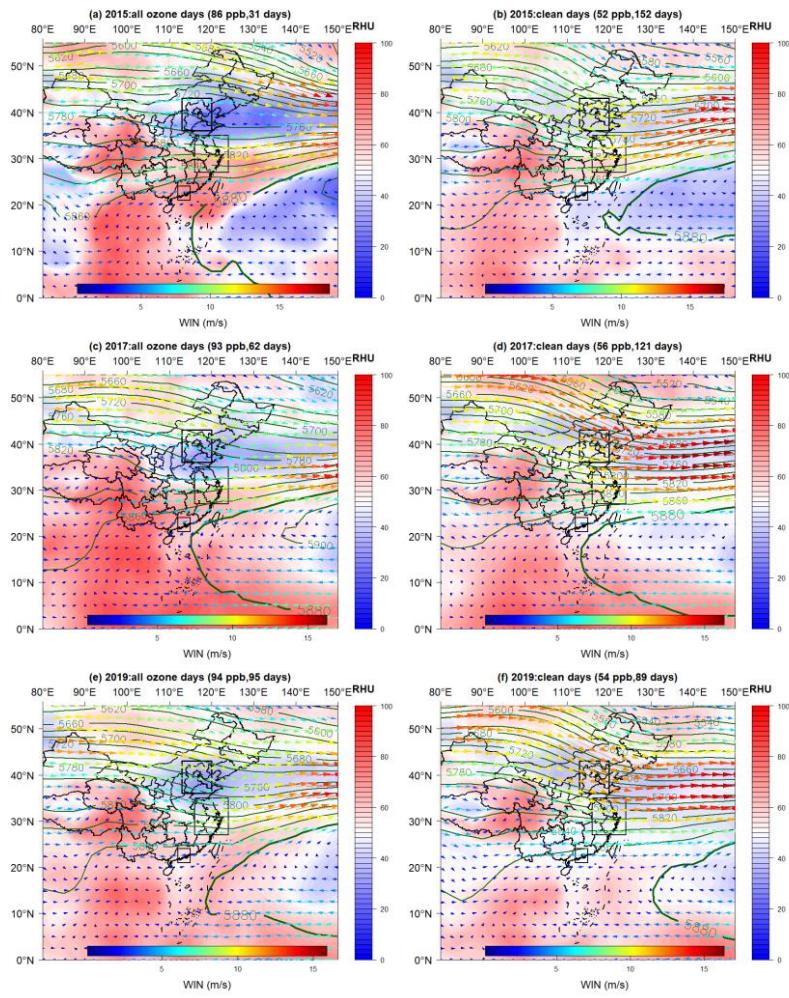


Figure 11. Correlations among annual O_3 -exceeding days, surface solar radiation (SSR) and temperature (T2m) in BTH (a), YRD (b) and PRD (c).

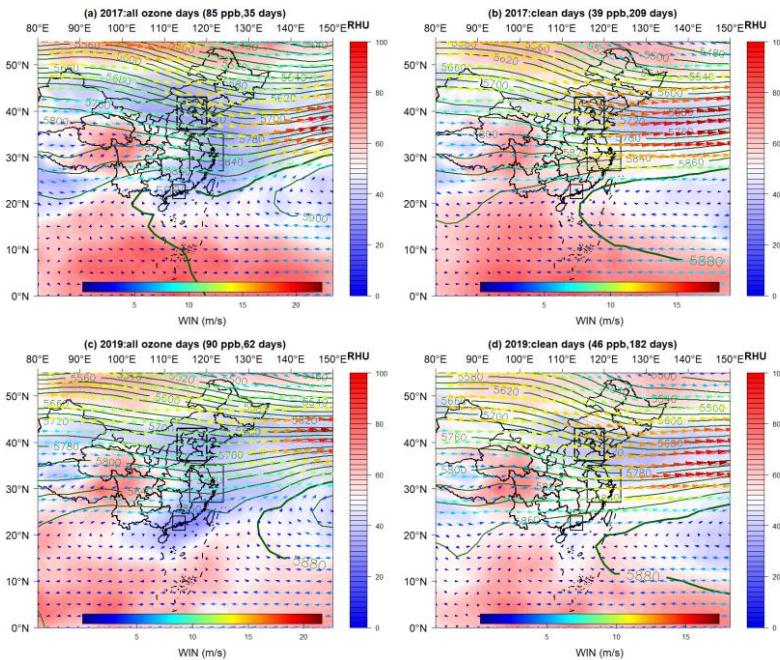

Figure 12: Mean vertical velocity at 850hPa during O_3 -exceeding days in PRD in 2015 (a) and during episodes with four or more consecutive O_3 -exceeding days in 2017 (b).

Figure 13: Mean vertical velocity at 850 hPa during O₃-exceeding days in BTH in 2015 (a) and during episodes with four or more consecutive O₃-exceeding days in 2017 (b).

Figure 14: Composite 500 hPa geopotential height contours, humidity and winds in BTH in April-September for O₃-exceeding days in 2015 (a), clean days in 2015 (b), O₃-exceeding days in 2017 (c), clean days in 2017 (d), O₃-exceeding days in 2019 (e) and clean days in 2019 (f).

675

Figure 1315: Composite 500 hPa geopotential height contours, humidity and winds in PRD in April-November for O₃-exceeding days in 2017 (a), clean days in 2017 (b), O₃-exceeding days in 2019 (c), clean days in 2019 (d).