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Abstract. The-apphicationConventional laboratory analysis of wvisualsoil properties is often expensive and requires much time
if various soil properties are to be measured. Visual and near infrared sei(vis—NIR) spectroscopy {vis—NHR)}-is-an-easyoffers a
complementary and cost-efficient way to gain a wide variety of soil information te-ceverin high spatial and temporal resolution
in-large-seale-soil-surveys-and. Yet, applying vis-NIR spectroscopy requires confidence in lecal-field-seale-studies—Heowever;

wnlike-for-conventional-methods-the prediction accuracy of vis—NIR-spectral-the infrared models-cannot-yet-be-estimated

experiments).. In this study we used soil data from six agricultural fields in Eastern Switzerland and calibrated i) field-specific
(local) models and ii) general models (combining all fields) for soil organic carbon;-tetal-carbon—total-nitregen; (SOC)
permanganate oxidizable carbon (POXC), total nitrogen (N), total carbon (C) and pH using partial least squares regression. 24

outofThe 30 local models showed an-accurate-or-even-exeeHent performance{a ratio of performance to deviation (RPD) >
2)between 1.14 and 5.27 and the root mean square errors (RMSE) ef-were between 1.07 and 2.43 g kg™* for SOC, between
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0.03 and 0.07 g kg* for POXC, between 0.09 and 0.14 g kg™ for total N, between 1.29 and 2.63 g kg™ for total C and between

0.04 and 0.19 for pH. Two fields with high carbonate content and poor correlation between the target properties were

responsible for six local models with a low performance (RPD < 2). Analysis of variable importance in projection as well as

correlations between spectral variables and target soil properties confirmed that high carbonate content masked absorption

features for SOC. Field sites with low carbonate content can be combined to general models with only limited loss in prediction

accuracy compared to
the field-specific se#pxepeﬁy—andmodels On the meanother hand, for fields with high carbonate eencentration-incontents the
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general models. Whether the combination of soils with high carbonate concentration—General-moedels-combining the-datasets

medels—contents in one prediction model leads to satisfying prediction accuracies needs further investigation.

1 Introduction

The application of spectroscopy in the visible and near infrared (vis—NIR) range is increasing in soil science and related
disciplines with the main objective to gain information on soil properties ferof more samples at lower costs than with

conventional laboratory methods. With a larger sample size, the spatial or temporal resolution can be increased which allows

conclusions about the within-field or within-farm variability but might potentially also increase the statistical power in

agricultural experiments (Greenberg et al., 2022). Despite its eften-lower-performancetendency to be less accurate compared

to mid infrared (MIR) spectroscopy, vis—NIR spectroscopy is widely applied because of less sample preparation, lower costs;

and generally easier portability (Soriano-Disla et al., 2014).

On-site vis—-NIR measurements are therefore feasible but laboratory measurements with dried and sieved soil samples have so
far shown higher accuracy (Allory et al., 2019; Hutengs et al., 2019). In particular, soil properties related to soil organic matter
can be estimated appropriately by laboratory vis—NIR spectroscopy (Angelopoulou et al., 2020). In most cases, the focus is to
provide soil information over large areas (e. g. soil maps) where a high sample number is present and only a moderate
prediction accuracy is needed. LargeHence, large-scale spectral libraries have been developed, to further reduce the need for
wet chemistry data. Due to the high complexity within spectral libraries, the application of a general model to thea local context
leads to high prediction errors. Recent research has-shewnshows that the localization of these infrared models substantially
improves the predictive performance in a local context, for example by spiking (Brown, 2007; Li et al., 2020; Ng et al., 2022;
Seidel et al., 2019; Wetterlind and Stenberg, 2010; Zhao et al., 2021), memory-based learning (Ramirez-Lopez et al., 2013),
resampling algorithms (Lobsey et al., 2017) or deep learning (Shen et al., 2022). However, for analyzing small-scale variability
(field or farm level), a local model is often still the best choice because it-achieves-the-lowestof its low prediction errors. Or-a
theeretical-level-the-development-efTheoretically, developing local models is supported by the finding that in the vis—NIR
range, spectral features that influence specific soil properties vary strongly between different datasets, which makes highly

heterogenous large datasets prone to insufficient model performance (Angelopoulou et al., 2020; Grunwald et al., 2018).

ho dahich allowae cancliiciane ahaut thaaathin finld Aaraathin farm variahilitg hit miglr\f natoantiallvy alen i th.
24 L ¥

2)- The development of local spectral models has the main
purpose to cope with a highlarge sample size at the local scale, but thesesuch local models de-ret-have ary-useno utility beyond

the analysis of the specific local dataset.



65

70

75

80

85

90

95

Spectral vis—NIR models developed from local datasets showed a very high variability in model performance ranging from
excellent models (Breure et al., 2022; Seidel et al., 2019) to those with relatively poor model performance (Camargo et al.,
2022; Kuang and Mouazen, 2011). The reasons for these different performances of local models are understudied and remain
eften-unclear. Among many different possible modelling approaches including support vector machine regression, artificial
neural networks, cubist and random forest, partial least square regression (PLSR) is the most frequently used model type to
build spectral models with small datasets (Alomar et al., 2021; Zhao et al., 2021).

Besides-dataset-variability,—theThe number of samples is crucial for local models because; often, only a limited number of

samples with reference laboratory data are available. #-has-been-shewnKuang and Mouazen (2012) showed that local models

improve with increasing numbers of calibration samples and that a sample size of at least 50 provides accurate prediction
models—{Kuang-and-Moeuazen,—2012).. Some studies thus combined multiple target sites and develop a general model by
combining all the local datasets to reach a larger sample size and potentially better model performance (Kuang and Mouazen,
2011; Singh et al., 2022). In these studies, the general model showed an intermediate performance, and the general prediction
error was between the best and the poorest performing local model. However, these studies only calculated the overall
prediction error of the general model and therefore it is not clear if the prediction on target sites with poorly performing local
models could be improved by applying a general model.

For vis—NIR spectroscopy application at local scales, it is therefore very difficult to estimate the measurement accuracy for the
predicted samples beforehand. This uncertainty is probably the main reason that hampers the application of vis—NIR

spectroscopy because researchers prefer to rely on conventional lab measurements with a smaller sample size (and smaller
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spatial resolution) where the measurement accuracy is known before sampling and measurements are conducted. Applying
spectroscopy at field or farm scale thus bears the risk that the measurement accuracy (RMSE) may be beyond the tolerable
threshold, which might then question thea whole project. Thus, in this paper, we analyze the performance of field-specific
(local) spectral models of a field experiment conducted in six fields in Eastern Switzerland and that of a general model

combining the data from all six fields to ascertain their influencing factors. We ask:

1. To what extent do the prediction errors of local spectral models differ from the lab measurement error?

2. Does a general model that includes several target sites improve the prediction on a target site with a poor local model
performance?

] .

4——\WhiehDo field and soil characteristics (e. g. field size, soil texture, carbonate eoneentrationcontent, correlations of

soil properties) of the target site influence the performance of spectral models?
AnsweringBy answering these questions, we want to provide insights for estimations of prediction accuracies for vis—NIR
studies at the local scale with the objective to support decision making during the development of a sampling design-
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and planning of laboratory reference measurements for subsequent calibration modeling.

2 Methods
2.1 Datasets from a cover cropping experiment on six field sites

We used datasets from six fields (A, B, C, D, E, F) of a cover cropping experiment in the Canton of Thurgau, Eastern
Switzerland (paper in preparation). The six fields were maximathyup to 13 km apart from one another and soil type was for all
of them Eutric Cambisol that had developed on base moraine (Table 1). The aim of the study was to compare the influence of
two different cover cropping regimes on short-term soil organic matter cycling. Each field had 39 differential GPS (dGPS)
referenced sampling points in an unaligned sampling design. At each dGPS referenced point, soil was sampled three to four
times in three depths (0-5, 5-10 and 10-20 cm) during one long cover cropping period (August 2019 to May 2020). Fields A,
B, C and D had four sampling times resulting in 468 samples per field. Fields E and F had three sampling times resulting in
351 samples per field. All samples were dried at 40° C to constant weight (around 72 h) and then gently crushed and sieved to
2 mm. For the total sample size of 2574 samples, soil properties were estimated using vis—NIR soil spectroscopy, whereas 386
samples were analyzed conventionally by wet chemistry for subsequent calibration modeling. These 386 samples for laboratory
analysis were selected for each field separately using the Kennard-Stones algorithm (Kennard and Stone, 1969) to ensure a
cover of the whole spectral variability. Thereby, the Kennard-Stones algorithm was run with 2two to #seven principal
components and the number of principal components was chosen that covered at least 99 % of the spectral variance and
provided a reference sample selection that well represented the different sampling times, soil depths and spatial distribution.
The laboratory analysis comprised soil organic C (SOC), total C, total N, permanganate oxidizable C (POXC) also referred
ascalled active C; and pH.

2.2 Chemical soil analyses and its accuracy

Total C and N concentrations were measured on a ground aliquot by dry combustion (vario MICRO tube, Elementar,
Germany). Inorganic C was analyzed for each sample in triplicates through the dissolution of carbonate in a Scheibler-
apparatus with 10 % HCI solution and the measurement of the evolved CO2 volume. SOC was then calculated as the difference
between total C and the mean of the three measurements for inorganic C. POXC was measured according to the Protocol of
Weil et al. (2003) with the adaption of Lucas and Weil (2012). In brief, 2.0 mL of 0.2 M KMnO4 were added to 2.5 g of soil
and after a reaction time of totalhy-10 minutes, the absorption of the liquid was measured at 550 nm with a Spectrophotometer
(UV-1800, Shimadzu eerperationCorporation, Japan). Measurement of pH was done in a 0.01 M CaCl; solution. Mean-sei




140

145

150

155

160

165

170

To estimate the lab measurement error, we took three samples per field (in total 18) where we conducted the measurements
for total C, total N, POXC; and pH in triplicates to calculate a standard deviation. Fe—estimateWe estimated the lab
measurement error 6ffor SOC we-tesk-the-sum-ef(osoc) according to Equation 1:

— 2 2
Osoc = \/UTntal C + U[nnr_qanic c (1)

Where ool c_is the standard deviation of the total C measurement withand Ginoranic ¢ the standard error of the inorganic C
measurement because inorganic C measurement were for all samples done in triplicates. The measurement error of all 18
triplicates were then averaged to obtain the overall lab measurement error for a soil property.

To characterize the spatial variability of soil texture in the field, we measured grain size on 20 samples per field (every second

sampling point in 10-20 cm soil depth). Organic matter in the samples was oxidized with hydrogen peroxide (H202) and then

grain size was measured with laser-diffraction analysis (LDA) after dispersion of the sample (22 mM socium carbonate and

18 mM sodium hexaphosphate) using a Mastersizer 2000 (Malvern Panalytical, UK). Since the LDA is underestimating the

clay content compared to the standard grain size methods (Taubner et al., 2009), we measured one composite sample per field

with the improved integral suspension pressure method (ISP+; Durner and Iden (2021)) on a PARIO Plus Soil Particle Analyzer
(METER Group, Germany/USA). We rescaled the mean sand, silt and clay content of the LDA-data to the mean of the IPS+

method, while keeping the coefficient of variation constant (See Table S3 in the supplementary material).

2.3 Spectral measurement and pre-processing of spectra

All samples were measured with a vis—NIR spectrometer (ASD FieldSpec 4 Hi-Res, Malvern Panalytical, USA) with a
sampling interval of 1.4 nm from 350-1000 nm and 1.1 nm from 1000-2500 nm. The device then provides a reflectance
spectrum with a resolution of 1 nm and 2151 wavelengths. Measurements were done with a contact probe, containing an
internal halogen bulb, which was in a fixed position and soil samples, placed in a petri dish of 1.5 cm height and 3 cm diameter,
were lifted with a laboratory scissor jack until close contact with the probe to ensure a stable measurement position. For each
sample, five petri dishes were filled to provide five replicate spectra per sample. Each of these five replicates consists of 30
internal repetitive scans that were automatically averaged by the device internal RS3 software. Between samples, the contact
probe was carefully cleaned with water and ethanol. After the 5 replicates of a sample, the calibration of the spectrometer was
checked with a 100 % reflectance white reference panel (Spectralon, 12x12 cm, Labsphere, USA). The infrared data of each
sample was kept in two versions, once as reflectance spectra, as provided by the spectrometer, and once as absorbance spectra
using the log(1/reflectance) transformation. Several pre-processing options and their combination were tested on both, the
reflectance and the absorbance spectra: a) resampling of the spectra in an interval from 1 to 6 nm, b) cutting of the beginning
(350-400 nm) or the end (2450-2500 nm) of the spectra c) first or second order derivative d) Savitzky-Golay (SG) smoothing
in a third order polynomial-erderof-3 with window sizes ranging from 5 to 51, e) gap segment derivative (GSD) with window
width between 5 and 51 and segment size between 1 and 21, f) standard normal variate (SNV) combined with GSD, g) SG
smoothing combined with multiplicative scatter correction (MSC). All applied pre-processing techniques are frequently used
in soil spectroscopy and well described in Ellinger et al. (2019). The pre-processing techniques from a) to g) led to around 100
6
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meaningful combinations that were tested in model building and the final pre-processing option was selected based on the
towestsmallest RMSE.

2.4 Development and evaluation of field-specific local models

We used for all 30 local models (6 fields x 5 properties) a PLSR modelling approach (Wold et al., 1983). Since-at-seil

Model performance was assessed using the statistics of the hold-out folds of each five times repeated five-fold cross-validation

because it was evaluated as a robust method for smaller datasets (Kuhn and Johnson, 2013; Molinaro et al., 2005). To avoid
model overfitting, we set the maximum of latent variables in the PLSR model to 12. For each number of latent variables (1, 2,
...., 12) the dataset was five times randomly split into five folds of which four were used for model training and the remaining
fold was held out and used for model validation. The RMSE (Eq. 12) of the hold-out samples was averaged among the five
repeats resulting in a cross-validated RMSE per number of latent variables. The final number of latent variables was then
chosen according to the “one standard error rule” which means that instead of directly choosing the number of latent variables
with lewestsmallest mean RMSE, the most parsimonious (less latent variables) model within one standard error of the mean
RMSE of the optimal model was selected (Hastie et al., 2017). The “one standard error rule” was also applied during

optimization of pre-processing to avoid model overfitting. The final model was trained using all training data with optimized

number of latent variables.

A proper validation of a spectral model is very crucial and particularly important in this study where soil was repeatedly
sampled in different depths at the same GPS point. To analyze the correlation among the samples and define a grouping factor
for the cross-validation, we calculated the mean Euclidean distances between all samples and compared it with the mean
distance 1) between samples at the same GPS point but different depths, 2) between samples at the same point and depth but
different sampling times and 3) between samples at the same point but different depth and sampling times (Fig. S1 in the
supplementary material). Thereby, we have-seerobserved that the soil samples from the three different soil depths sampled at
the same GPS-point at the same sampling time had a substantially lower mean Euclidean distance compared to the overall
mean. Consequently, we grouped the samples from the same GPS point at the same sampling time and kept them in the same
fold to avoid a too eptimistoptimistic model evaluation during cross-validation.

Since we used a cross-validation approach on the field scale, all models showed a very small bias- (see Table 2). We therefore
do not discuss the bias in this paper and focus on R2, RMSE and RPD (Eg. 23) for the evaluation and comparison of different
models. RMSE was calculated according to Equation 12 where i is the prediction of the spectral model for sample i and y; the
actual measured value for the same sample in the laboratory.
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RMSE = 13,00 =907, 12)

RPD compares the RMSE with the standard deviation (SD, Eq. 23) of the data:

RPD =2, (23)
RMSE

For all model performance parameters (R?, RMSE and RPD) of the cross-validation, we calculated the uncertainty with the

standard deviation of the prediction of the hold-out folds across the five repetitions.

To classify the model performance, we combined the RPD based classification of Chang et al. (2001) and Zhang et al. (2018).
We considered spectral models with RPD < 1.4 as poor, models with RPD between 1.4 and 2 as approximate, models with
RPD between 2 and 3 as accurate and models with RPD > 3 as excellent. Even though in spectroscopy project of a local extent
the RMSE is-prebably the most important model performance parameter, RPD is the best parameter to compare models of
different scales. Model metrics (R?, RMSE and RPD) mentioned in the text are based on the cross-validation and metrics for
the model calibration in Table 2 are specifically labelled as R%.1, RMSEcai, RPDeal.

2.5 Development and evaluation of general models

In addition to the field-specific local models, we built general models for the five soil properties that included all reference
samples (n = 386) of the six fields. Even though for this sample size an independent test-set would be more suitable than a
cross-validation approach, we evaluated the model performance using the hold-out samples in the five times repeated 10-fold
cross-validation, keeping, as for the local models, samples from same GPS point and same sampling time in the same fold.
The first reason for not using an independent validation set is that the modelling approach of the general model should be
similar to the one of the local models to make them comparable. The second reason is that a representative split of the dataset
into a calibration and a validation set according to the spectral variability would not result in equal number of samples per field
in the validation set. Conversely, if we selected an equal sample size per field for the validation set, we would not have been
able to cover the entire spectral variability. Evaluating the general models with hold-out samples of the cross-validation
allowed us to calculate not only the RMSE over all samples but also the RMSE for the samples of each field individually-ane
compare-it. These field specific RMSE of the general model could then be compared with the RMSE achieved-byof the local
models. Since the only purpose of the general models was to increase modelling efficiency for a specific combined dataset,

we did not group the samples according to fields during cross-validation because the same share of samples from the same

field would also be in the prediction dataset. For the general models we cannot indicate uncertainties on a field-specific level

since the folds did not always contain the same number of samples per field.

2.6 Model interpretation

To interpret spectral models, it is crucial to find relevant spectral features that are consistently important for a certain soil
property. To identify the most important wavelength ranges in the final chosen models, we used the variable importance in
8
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projection (VIP) method first published by Wold et al. (1993) and evaluated by Chong and Jun (2005). The VIP method can
deal with multicollinearity and is therefore suitable for the interpretation of spectral models (as it was for example applied by

Baumann et al--. (2021). Wavelengths that have an above-average impact on the model have a VIP score above 1. We classified

spectral ranges in groups of VIP scores between 1 and 1.5, 1.5 and 2 as well as VIP scores above 2.

2.7 Assessment of site characteristics influencing model performance

To understand the reasons for the varying performance of the 35 developed spectral models, we studied the influence of various

site characteristics on the models. To do so, we correlated the model performance parameters (R?, RPD and RMSE) with field

size, soil texture, carbonate content and with the correlation coefficients between SOC and total N in the dataset. With six local

datasets as independent variables it is hardly possible to apply statistical tests and therefore, we relied on visible inspection.

For the identified site characteristics that had a clear visual influence on model performance (carbonate content, correlation
coefficient between SOC and N and variability in clay content) we looked for possible explanations in the spectral features.

Thereby, we relied on the VIP-analysis of the trained models, on the correlation coefficients between soil properties with

spectral variables and on the correlation matrices between target variables.

2.8 Data organization

All analysis were performed in R version 4.0.3 (R Core Team, 2020). The spectral datasets were analyzed using the R-package
Ssimplerspec version 0.2.0 (Baumann, 2019) in combination with the packages prospectr version 0.2.1 (Stevens and Ramirez-

Lopez, 2020) and caret version 6.0-86 (Kuhn, 2020).
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3 Results
3.1 Description of the datasets

A comparison of the data distribution between the six different fields can be seen in Fig. 1 and the corresponding statistics in
Table S1 in the supplementary material. The means for SOC, Fetaltotal N and POXC differed between the six fields, but the
distribution was relatively similar for these three soil properties. The density functions for total C and pH were highly
influenced by the spatial distribution of carbonate in the soil: Fields B, D and E contain samples with and without carbonate
resulting in a broad distribution for both, total C; and pH. All soil samples of fields A and C contained carbonate in varying
concentrations resulting in a broad distribution for total C but narrow distribution for pH. Field F showed high and only slightly
varying carbonate eoncentrationscontent and therefore a very narrow distribution for total C and pH. Field C had highest mean
clay content and field A highest mean sand content whereas field F showed highest variability in soil texture.

3.2 Performance of spectral models

Based on RPD, 13 out of 30 local models showed an excellent performance (RPD > 3), 1211 models an accurate performance
(RPD > 2), feurfive models an approximate (RPD > 1.4) and one model a poor performance (RPD > 1.4; Table 2). The fivesix
models without accurate performance were from-field-A-{SOC, POXC and pH) on field A and field-F{SOC-and-pH)..

However, the RMSE of the local models for pH of fields A (0.6708 + 0.02) and F (0.6304 + 0.01) were lewersimilar or smaller
than the RMSE of the other three local models (between 0.4308 + 0.02 and 0.4819 + 0.03) whose performance was classified
as accurate. Differently, the local models for SOC on fields A and F with only approximate performance showed a higher
RMSE (4-882.43 + 0.55 and 2.4200 + 0.38 g kg'?) than the other accurately performing local models for SOC (between 1.6507

+0.19 and 1.5859 + 0.28 g kg™*). The five general models showed all an accurate to excellent performance with RPD ranging
from 2.4260 + 0.43 to 3.974.16 + 0.47.

3.3 Influence of pre-processing on spectral variability

compared to the raw spectra (see an example of pre-processing optimization for total C in Table S2 in the supplementary

material). Although pre-processing was necessary for all models, we highlight that several pre-processing options performed

similarly well within one standard deviation, and the differences in RMSE were often relatively small (see Table S2 in the

supplementary material). Figure S2 in the supplementary material gives an overview of the best performing pre-processing

technigues. Most times, the first or second order derivatives improved the models substantially. Most models performed best
when the spectra were reduced to every third wavelength and models based on absorbance were a bit more frequently used
than models based on reflectance. The combined application of SG filter and MSC was the most successful pre-processing

10
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while a single SG filter, GSD and SNV in combination with GSD were of minor importance. Cutting of the beginning (350-
400) or end of the spectra (2450-2500) sometimes improved the model performance but since most pre-processing steps reduce
the beginning and end of the spectra, it was not possible to evaluate the cutting. Similarly, it was not possible to evaluate the
window width chosen in the SG-filter because there is an interference with the resampling interval. A detailed list of the
selected pre-processing options of the final models and the corresponding metrics for model performance can be found in
Table 2.

The sensitivity of model performance to pre-processing can be visualized with the biplots of principal component analysis
(PCA). Figure 2 shows the first three biplots of the raw spectra and the spectra that were pre-processed according to the general
models of the five soil properties. The raw spectra had a very high share of the explained variance (96.8%) on the first principal
component but hardly any groups according to fields could be observed with the first two principal components. All pre-
processing options used for the general models decreased the explained variance on the first principal component (32.5 to 39.6
%) and a grouping according to fields could already be seen in the biplot of the first two principal components. Thereby,
especially field F with highest carbonate eencentrationcontent and field C with highest clay content often showed clear groups.
Nevertheless, in the pre-processing for pH, field E with the highest pH variability shows a clear group in the first biplot and
the pH variability is well represented with the first PC.

3.4 Comparison of general models with local models and lab measurement error

The overall cross-validated model metrics of the general model (black filled circle in Fig. 3) indicated over all fields for all
soil properties a good performance, but the field-specific model evaluation showed distinct differences among fields. The field-
specificallycaleulatedspecific R? of the general models of fields B, C, D and E was similar to the R? of the local model for
SOC, total C, total N and POXC (only a slight slope in Fig. 3). For pH, only field C, D and BE showed similar R? in the local
and general model while all-otherfields A, B and F showed clearly higher R? in the local model. On the other hand, field F
had clearly lower R? in the general model than in the local model (strong-negative-slope)-for all five-soil properties except
POXC. For field A, R? was similar between the local and the general model for SOC, total C and POXC but for-the-otherfour
properties-clearly lower for total N and pH in the general model.

The field-specifically-caleulatedspecific RPD of the general model was across all soil properties on average 2731 % lower
compared to the local models (Fig. 3). All property-field combinations of fields B, C, D and F showed at least an approximate

(RPD > 1.4) performance in the general models, whereas the eightseven poorly (RPD < 1.4) performing property field
combinations were all from fields A and F. It can therefore elearly-be concluded that the general models could not improve
the low performing local models.

Field-specificalhy-caleulatedspecific RMSE of the general models was on average 4947 % higher compared to the local models.
However, there were substantial differences between the different fields. For Field A-and-F-showed, the highest-increases-of
field-specific RMSE in the general medel-models for SOC, total C, total N and pH (2.58 g kg, 0.17 g kg™* and 0.09,) were
much higher compared to the local model fer-SOC total Cand-total N-{strong-slopes-in(2.00 + 0.38 g kg%, 0.09 + 0.02 g kg™

11
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and 0.04 + 0.01, respectively; Fig. 3). Similarly, for total N and pH, field A had much higher RMSE in the general model 0.22
g kgt and 0.14) than in the local model (0.14 + 0.03 and 0.08 + 0.02). On the other hand, fieldfields C and E showed quite
simiar-RMSE in the local and in the general model for all soil properties except total C.

The RMSE of the best local models waswere close to the overall lab measurement errererrors for SOC, total C and total N, a
bit higher for POXCpH and substantially higher for pHPOXC (Fig. 2)-3). The RMSE of SOC on field B (1.26 + 0.36 g kg™?)
and D (1.07 + 0.19 g kg) were within the standard deviation of the lab measurement error for SOC (1.01 + 0.40 g kg ). The
overall lab measurement error for SOC (1.3-g-kg™*)}-was calculated as-the-sum-oeffrom the measurement error for total C and
inorganic C and therefore the-RMSE-for SOC-en-fields B and D with only little inorganic C-(fields-B-and-D)-was-lower-than
)and-D(105-g-kg™)-withlittle-inorganic
Cwas-clearly-above, the lab measurement error effor total C which-weuld-forthese-two-fields(0.83 + 0.25 g kg™) might be the
better lab-reference-error{0.85-g-kg™)Thecross-validated. However, the RMSE of the local spectral models of all fields
exceeded the overall lab measurement errors between factor 8:81.1 and 1.92.4 for SOC, 1.46 and 3.02 for total C, 1.3 and 2.0
for total N, 2.13 and 4.03 for POXC and between 2.83.4 and 16.517.8 for pH. The field-specifically-caleulatedspecific RMSE
of the general model exceeded the overall lab measurement error between factor 1.63 and 2.13 for SOC, 2.42 and 4.95.2 for
total C, 1.5 and 3.32 for total N, 2.78 and 4.96 for POXC and between 7.98.3 and 22.419.9 for pH.

The VIP scores (Fig. 4) show that the most important wavelengths were very-dataset- specific. It can clearly be seen that on

field B and differed—forto a lower extent on field F, the same property-substantially—from-ene-anetherwavelengths were
important in all soil properties related to soil organic matter (SOC, total C, total N and POXC), whereas on the other fields the

VIP pattern of the different properties were more distinct from each other. However, for all the analyzed soil properties the

wavelength ranges between 400 and 750 nm (visible) as well as 1800 and 2450 nm were most important while the range in
between was of lower importance. Nevertheless, some models had VIP scores above 2 in the range between 750 and 1800 nm.
Prediction performance in terms of RMSE and RPD of total C of fields E and F was particularly lower in the general model
than in the local model (Fig. 3). This finding can be explained with the VIP analysis (Fig. 4) that showed for the general model
the most important wavelength range between 2150 and 2450 nm but for the local models of fields E and F in the range of 500
to 1020 nm. The local model for total N of field F showed very high VIP scores (>2) in a small specific range between 2345
and 2369 nm but these wavelengths were not important in the general model for total N (Fig. 4), which resulted in a much

lower prediction accuracy of total N for field F in the general model compared to the local model.
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We found an order of model performance with respect to R? and RPD in dependence of mean carbonate content, correlation

coefficient between SOC and total N as well as coefficient of variation in clay content (Fig. 5). Fields A and F that showed

lower model performance in terms of RPD had higher carbonate content, lower correlation coefficient between SOC and total

N and higher variability in soil texture (compare also with density plots in Fig. 1). However, in absolute prediction performance

(RMSE) we only found a clear effect for SOC (Fig. 6) and not for the other properties (Fig. S3 in the supplementary material).

We did not observe an influence of field size absolute contents of sand, silt and clay or variability of carbonate content on
model performance (see Fig. S4 in the supplementary material).
The influence of carbonate content on model performance of SOC is illustrated by plotting at each wavelength the correlation

coefficients between pre-processed spectral variables and inorganic C as well as SOC content (Fig. 7). The correlation between

SOC and spectral variables was higher on fields B, D and E than on fields A, C and F, which also explains the better model

performance. On field A, SOC and carbonate content show a very similar correlation with spectral variables across the whole

vis—NIR range, which makes it difficult to distinguish organic and inorganic C on field A resulting in an excellent performance

of total C but much lower performance for SOC (see Table 2). Even though the correlation between spectral variables and

SOC content on field C was lower than on other fields (B, D and E), the very different correlation pattern of carbonate content

still resulted in good model performance for SOC. Especially the ranges between 600 and 1200 nm and the peaks at 1680 nm

and 2240 nm showed different spectral features for SOC and carbonate which corresponds to the high VIP scores at that

wavelengths for the SOC model on field C. On field F, correlations for both carbonate content and SOC were relatively weak,

whereby carbonate content showed stronger correlations with spectral variables which probably masked the spectral features
of SOC resulting, as for field A, in a better model for total C than SOC.

13




400

405

410

415

420

425

The better model performance on field B, D and E compared to fields A, C and F also coincided with higher correlation

between SOC and total N (Fig. 5). In general, correlation coefficient between target variables tended to be higher on field B,

D and E compared to fields A, C and F (see Fig. 8 as example and all correlation matrices in Fig. S5 in the supplementary

material).

4 Discussion
4.1 Performance of local spectral models

Most of the developed local models showed an accurate performance and confirm the suitability of vis—NIR spectroscopy in
projects of local or single plot extent. The performance (based on RPD) of the two models for pH on field A and F, which
were classified as only approximate or even poor, respectively, can be explained by the low variability of pH in these datasets
(see Fig. 1) and is supported by the fact that these two models havehad the lowestsmallest RMSE values for pH (Fig. 3). This
explanation does not hold for the other three local models that were also classified as only approximate because SOC and
POXC on field A as well as SOC on field F showed a similar variability as on the other fields (Fig. 1)—\Ae-assume-thatthe

-1), but higher RMSE.
However, considering the mean SOC concentration on fields A (22.4 + 3.7 g kg™*) and F (28.6 + 2.7 g kg™*) as well as the lab

measurement error (1.00 + 0.04 g kg%), we argue that the RMSE on fields A (2.43 +0.55 g kg™*) and F (2.00 + 0.38 g kg™!) are

probably for many research projects still acceptable, especially when taking into account that a higher sample size can be
analyzed for the same costs.

In agreement with literature (Soriano-Disla et al., 2014), primary properties with a direct impact in the vis—NIR range like
SOC, total C, total N; and POXC showed a RMSE that was closer to the lab measurement error-{(maximum-four-times-higher)..
On the other hand, pH has only an indirect impact on the spectra and thus showed a much higher RMSE compared to the lab
measurement error {maximtm-16-4-times-higher)-but the RMSE for pH in the local models (between 0.04 + 0.01 and 0.19 +
0.03) is probably small enough for most research purposes.

4.2 Comparison of general models with local models

The general models could not improve the prediction of low performing local models. This finding is especially interesting

because in this study the general model was built with datasets of six fields that were spatially close to one another (maximal

distance of 13 km), had the same soil type and the same parent material. However, the base moraine as a parent material can

be variable which we mainly observed in different soil texture and carbonate ceneentrationcontent but also in the high spectral

variability (see PCA biplots in Fig. 2). In this sense, we confirm the conclusions of Seidel et al. (2019) and Ng et al. (2022)

who suggested that the best solution is always to develop a local model if enough samples (> 30) are available. This conclusion
14
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is supported in this study by the quite distinctive pattern of VIP scores between the different models (Fig. 4). The overall
picture shows that the wavelengths between 2000 and 2450 nm followed by the visible range between 400 and 700 nm were
most important for prediction of the investigated properties, which is in agreement with the literature (Munnaf and Mouazen,
2022; Soriano-Disla et al., 2014). Nevertheless, each local model has distinct and site-specific features that could not be
attributed to specific soil characteristics but—ebvioushy—werewhile being important for the model development. The
development of general models where different locations are aggregated in one dataset can save costs because the number of
lab analysis per location can be reduced and less work is required for model building. Depending on the research purpose and
the required measurement accuracy, the development of general models can be a very suitable and cost-effective approach.
Nevertheless, this study showed that some fields (A and F) can show a poor performance in general models, hence it is crucial

to consider what locations or datasets are being combined.

4.3 Pre-processing

The selection of the optimal pre-processing scheme was crucial for model performance but strongly dependent on the dataset.
Often MSC was the best performing pre-processing option, which was confirmed in some studies (Cambule et al., 2012; Liu
et al., 2019) but disproved in others (Knox et al., 2015; Riefolo et al., 2020). We therefore highly recommend considering
MSC as a pre-processing option in spectral modelling but at the same time agree with Barra et al. (2021) that there is no
general pre-processing solution that works for all datasets. The principal component analysis with the combined dataset of all
fields (Fig. 2) illustrates this finding by the different grouping of individual field datasets due to different pre-processing. This
leads to the conclusion that studies that did not optimize the pre-processing scheme for every soil property separately did
eventually not make full use of the spectroscopy-petential-{see-alse-examples-in-Table-3);, which has been shown by other
studies as well (Alomar et al., 2021; Rodriguez-Febereiro et al., 2022; Singh et al., 2022). Nevertheless, the property-specific
optimization of spectral pre-processing is a tedious process and constrains the fast and cost-effective application of vis—NIR
spectroscopy, but some progress has recently been made simuttanesushy-with-our-study-by Mishra et al. (2022).
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4.64.4 Site characteristics influencing model performance

We found anhigher model performance on fields with low carbonate content, high correlations between soil properties and

low variability in clay content. We want to discuss how these identified important field characteristics influence or mask

spectral features.

4.4.1 Mean carbonate content

We found an influence of carbonate eencentrationcontent with lowest performance of local spectral models on fields A and F.

Similar observations were made by Amare et al-. (2013) and MeCartyMccarty et al. (2002) who argued that the absorbance
bands of carbonate mask those of SOC. Looking at the correlation between spectral variables and inorganic C respectively

SOC (Fig. 7) we can confirm this finding but have to add that on the local scale the absorption bands for carbonate and SOC

varied substantially between different datasets. In this context, Reeves (2010), who showed that the spectrum of a soil sample

varied greatly with its carbonate cencentrationcontent, considered the prediction of SOC in soils with high carbonate
eencentrationcontent as one of the open questions in vis—NIR spectroscopy research. Even-though-the-local-medels-offields

atien—An important point missing in this discussion
is the measurement accuracy of SOC in the laboratory, which is strongly influenced by the presence of carbonate and the
method used (Goidts et al., 2009). If the soil samples contain carbonate, often two measurements must be conducted, and SOC
is calculated as the difference between total C and inorganic C. Especially with a high carbonate cencentrationcontent, the

measurement error for the inorganic C eoncentrationcontent can be a substantial share of the SOC eoneentration-content. The
higher lab measurement error with higher carbonate eencentrationcontent can explain the lower model performance on soils
with high carbonate eeneentrationcontent for SOC but not for the other four soil properties where model performance (in terms
of RPD) still tended to be lower than on fields with little carbonate concentrationcontent (Fig. 65). This confirms the above-

mentioned observation of spectral interference between inorganic C and organic matter and is additionally substantiated by
the result that most properties of fields A and F showed a poor performance in the general models (Fig. 3). It is known that
carbonate has many more defined peaks and less interferences with organic matter in the MIR than in the vis—NIR (Reeves,
2010y;-therefore-). Therefore, datasets that combine soil samples with high and low carbonate eencentrationscontent might
better be predicted with MIR spectroscopy.

4.4.2 Correlations between target variables

Reflectance measured with vis—NIR spectroscopy is a combined effect of all constituents present in the soil sample (Stenberg

et al., 2010) and through processing and modeling one tries to distinguish the absorption feature of one specific soil property

from the other constituents of the sample. Apart from pH, all our target variables were closely related to soil organic matter

which was therefore for this study the most important soil constituent influencing the absorption features. In case of high
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correlations between target variables, that form part of soil organic matter, the modelling is easier because the same absorption

features can be used for modelling the different properties which was the case for field B (see VIP analysis in Fig. 4). On the

other hand, a low correlation between target variables makes it more difficult to attribute absorption features of organic matter

to specific soil properties, which probably contributed to the lower model performance of fields A, C and F compared to fields
B, D and E. The literature shows that different soil properties related to soil organic matter (e.g. SOC and total N) can show
different absorption features in the vis—NIR range (Chang and Laird, 2002; Kusumo et al., 2019), which is also supported in

our study (see VIP analysis in Fig. 4). However, we argue that prediction accuracy improves substantially if target variables

related to soil organic matter are well correlated with each other, which was also hypothesized by Martin et al. (2002) in a one
location field study.

4.4.3 Variability of clay content

Unlike Stenberg et al. (2010) and Heinze et al. (2013), we did not find a better model performance with increasing mean clay
content in the dataset which might also be explained by the relatively small range in mean clay contents between 18 % (Field

F) and 38 % (Field C)._However, we observed that the fields A and F with lower model performance also showed a higher

variability in soil texture (see density plots in Fig. 1). We hypothesize that this observation is mainly an effect of our sampling

design and the specific agricultural management and therefore not generalizable. Clay as well as soil organic matter are claimed

to be modelled with high success rate with vis—NIR spectroscopy since they have strong absorption features (Da Silva-Sangoi

et al., 2022). Unfortunately, soil texture was measured on different samples than the reference dataset for the spectral

modelling, so we cannot check for the correlation between soil texture and target variables. However, in this study the

correlation may be relatively low for the following reason: We took samples in different depths (0-5, 5-10 and 10-20 cm)

within the past tillage layer and therefore expect that the soil texture is homogenized across the sampling depth. Since all fields

are now under organic reduced tillage management, the three soil layers show quite distinct soil organic matter content (see

Fig. S6 in the supplementary material) but very probably similar soil texture. Therefore, a high (horizontal) variability in soil

texture on a field (e. g. clay content) without strong correlation to organic matter could have added “noise” to the spectrum

which worsened the prediction accuracy in our specific sampling design. Nevertheless, in untilled soils or more distinct depth

segments a high variability in soil texture may not be a disadvantage in vis—NIR modeling because it might also be correlated
with organic matter

5 Conclusion

This study investigated the impact of variousfacterssite characteristics on vis—-NIR modeling performances and compared a
local and a general modeling approach. Among the 35 built-models-30, 29 performed accurate or even excellent whereby the

RMSE was maximaty-four-times-higherthan-close to the lab measurement error for-al-analyzed-soi-properties-exceptpH-
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We-identified-the-variability-and-the-and achieved prediction accuracies are probably for many research purposes acceptable.
The local models with lowest performance, were all from field A and F and we found three field characteristics in their datasets

that interfered with model performance. Fields A and F had higher mean carbonate content-in-a-dataset-as-crucial-factors-that
. lower correlation between target soil properties and higher variability in soil texture compared to the other fields. The
influence the-performance-of A W y
performancesoil texture variability was mainly an issue in terms—of-R*-and-PRMSE Thelower 95 % predictioninterval

WA eguired-in-a-d et A ming-a-tolerable prediction-erro

indicates-thatfora-good-R"-(>-0:6

carbonate content and correlation between soil properties can probably be generalized due to observed spectral features and

VIP analysis. Before starting a local vis—NIR project, testing for inorganic C content can be done relatively easily but it is
almost impossible to know beforehand the correlations between different soil properties-can-be-very-different—as—e.g-—on
eropland-SOC-nermally-shows-mueh-highervariability-than-pH. One can only be aware of the correlation issue and consider

potential gradients of soil properties while designing the sampling design which is probably more important and feasible in

disturbed or agricultural soils than in natural undisturbed soils. In terms of efficiency in data collection, we recemmend-to

We-therefore-conclude that in case-of low-carbonate concentrationa region, several target sites efaregion(or agricultural fields)

with low carbonate content can be combined tein a general model with only a minor reduction in model performance. A general

model for multiple target sites then also allows to reduce the number of wet chemistry analyses. Whether or not several target

sites with high carbonate eoncentrationcontent can be combined in one general model using vis—NIR spectroscopy is a question
that is-net-answered-yet-and-requires further research. However, since carbonates show less interferences with organic matter
in the MIR than in the vis—NIR spectral range, soil samples from sites with high carbonate concentratiencontent might be the
better predicted with MIR spectroscopy. Censidering-the-mentioned-recommendationYet, the application of laboratory vis—
NIR spectroscopy in projects of local extent provides the opportunity to increase;-at-low-costs;-the-sample-size-drastically-and
nereaseas-desired; the spatial or temporal resolution in thea sampling design_cost-effectively with only minor decreases in
measurement accuracy.
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Table 1: Description of the datasets of the six different fields A to F. All fields were classified as Eutric Cambisol developed on base
moraine. Soil texture was measured with the improved integral suspension pressure method (ISP+)

Field Coordinates Elevation Area | Mean soil texture Number of samples
[m above sea level] | [ha] | (Sand/Silt/Clay) [%] Spectroscopy | Wet chemistry
A 47°40° 58" N /08°45° 54" E | 420 0.84 Sandy loam (50/29/21) 468 70
B 47°40° 54" N /08°46’ 05" E | 420 0.67 Sandy loam (44/35/20) 468 70
C 47°38°01”N/08°57°02”E | 600 0.44 Sandy loam (27/35/38) 468 70
D 47°38°43” N /08°42° 58" E | 460 0.64 Clay loam (28/44/28) 468 70
E 47°38°49"N/08°43’ 06" E | 460 1.05 Sandy loam (30/48/23) 351 53
F 47°34°22” N /08°48° 52" E 380 0.3 Sandy loam (39/43/18) 351 53
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Table 2: Description of applied pre-processing and model performance of the final chosen models using a Partial Least Square
regression. The local models (fields A to F) were evaluated with 5 times repeated 5-fold cross-validation and the general models (All)

Eingefiigte Zellen
Eingefiigte Zellen

[ hat formatiert

[ Formatiert

[ hat formatiert

Eingefiigte Zellen

Eingefiigte Zellen

[ hat formatiert

Eingefiigte Zellen
Eingefiigte Zellen

[ Formatiert

( Formatiert

Eingefiigte Zellen

[ hat formatiert

Eingefiigte Zellen

( Formatiert

( Formatiert

with 5 times repeated 10-fold cross-validation. Model metrics of Cross-validation are indicated as mean with the standard deviation [ F tiert
across the repeats in brackets. RMSE = Root mean square error, RPD = ratio of performance to deviation, Refl. = Reflectance, Abs. ormatie (... i
= Absorbance, SG = Savitzky-Golay filter (m = order of derivative, w = window width), SNV = standard normal variate, GSD = gap [ Formatiert [ ﬂ
segment derivative (m = derivative, w = window width, s = segment size), MSC = multiplicative scatter correction -
hat formatiert
Range of Calibration Cross-validation / Eingefiigte Zellen @
Field | Property | avelengths | o Latent Biascal Bias Model performance :
/[lm]erval processing variable Rl RMSEcal | RPDear | R? RMSE RPD [ Formatiert
nm
soc Abs., SG 0.00 0.5701 <] [ Formatiert [ i
Cl9 | 410250076 [(m=1, 2 70 | 059 2.3335 | 158 055 | (0.69) | 2.4243(0.55) | 1.5350 (0.30) | Approximate </ -
kgl w=35) Formatiert
z;f\'/ 0.00 ?60(6% Eingefiigte Zellen )
i%c 19| 350-2500 /2 813:'32 7 |70 o0& 005 | 228 ‘zﬁ% 0.07(001) | 1.7465(0.41) | Approximate +/ [ Formatiert
w=31, [ Formatiert
s=1) -
Refl., SG 0.00 £0.01 [ Formatiert (... }
Total N (m=1, 0.79 0.05, .
A [okg? | 370248076 | LT 7 70 | 087 0.11 277 011 0.14(0.03) | 2.1618(0.61) |Accurate <« [ Formatiert [ﬂ
MsC .
‘Abs. 0.00 0.00 [ Formatiert
SNV, (0.84) [ - [ﬂ
Toal €| 3902500 /4 | G50 6 |70 094 214 | 421 | 09288 25863 (0.66) | 3.4948 (1.41) | Excell < Formatiert
kg] - (m=2. . § ¥ (0.09) 5 . . xcellent n "
lokg 2. Eingefiigte Zellen )
s=1) [ hat formatiert [ﬂ
Abs., SG 0.00 0.0700
pH 410-2500/4 | (m=1 5 70 | 074 0.06 197 | 06563 | (0.03) 0.08(0.02) | 1.6970(0.60) | Approximate <- [ Formatiert o i
w=35)
Abs., SG 0.00 :0.04 [ Formatiert [ﬂ N
soc m=2, 09291 | (0.37 .
s 19 | 360-2500/5 \(szl), 7 70 | 098 0.66 6.47 0.05 O30 | 1 2026 (036) | 35546 (112) | Excellent = [ Formatiert [ﬂ
MsC " -
Abs.. 5G 0.00 0.0400 Eingefiigte Zellen [
EC?,XC 9] 360-2480 /3 | (™2 4 |70 00 003 | 408 | 0884 | QO 00001 | 25760 (0.74) | Accurate = [ Formatiert
'] w=21), (012)
MSC [ Formatiert
Abs., SG 0.00 0.1200
Total N g (m=2, 0.8987 0.04 2.85 [ Formatiert
B [okg?] | 360248075 | LT0 4 70 | 093 0.10 3.87 0.08 3:090:13-(0:03) {5 55+2 Accurate <
MsC [hat formatiert (... j
Abs., SG 0.490Q, 10-0.05 135 ) [ F tiort
= ‘ormatiel ( j
Total C | 374 5500 /5 | (M2, 10 |70 09 051 | ges | A8 | Q404 | 129 3.6265 (0.84) | Excellent
[9 k] w=21), (0:03) (0.9225) i\ -
MSC [ Formatiert
ér?f'i se 0420G o | Eingefiigte Zellen )
pH 350-2500/3 | 7 70 | 0.9398 381007 | 0.85664 | 083 | 0080 | 5 19003) | 26246 (051) | Accurate
w=21), 0.07, "
MSC Formatiert
Abs., 0.00 1.580.03 \ [ hat formatiert [ﬂ
SNV, (0.46) |
ﬁ;),c] 19| 370-2480/1 (Gn?:Dl 7 |70 0% w2 | s | 950 150(028) | 20105(046) |Accurate < | Eingefiigte Zellen )
w=11, i [ Formatiert j
c s=1) | -
POXC [g Refl., SG 0.00 07977 0.00 '\ [ Formatiert [ﬂ
g 370-2440/3 | (=2, w 7 70 | 093 0.03 3.80 A=l B OXOT) 0.05(0.01) | 2.2230(0.81) |Accurate < ..
kg'] (:21) (0.15) I\ Geloschte Zellen )
Total N Abs., SG 0.00 0.8890 | 0.00 L) [ . ﬁ
[gkg] 350-2460 / 4 m=2, 7 70 | 0.97 0.05 5.87 (0.06) ©03) 0.09(0.02) | 2.933.22(0.97) ExcellemAs%uéﬁe hat formatiert
| [ Formatiert )
28 \

Eingefiigte Zellen




[ hat formatiert

Eingefiigte Zellen
w=2), )
MSC Eingefiigte Zellen @
Refl., SG 0.9800, 152 Formatiort
TotalC | 390350~ | (m=1, 09193 | 007 ( Formatie )
b | seres |, 910 | 70 |0.9697 ps2 | saeso | (ot | @9, | L44029) | asera098) | Excellnt < :
MSC [ Formatiert
‘Abs., SG 0.00 0.00 ( - o)
(m=2, 0.7577 0.03 Formatiert
pH 390-2500/5 | 2 6 |70 089 005 | 209 | 008(002) | 20200(059) |Accurate < -
o [ hat formatiert
MSC
Abs, 0.00 105 Eingefiigte Zellen
SNV, 0.01 9 9 @
SOcC [g g GSD 0.95 0.35 Eingefiigte Zellen
b | s02s00/3 | B0 6 |70 097 os1 | o1 | 0% 107(019) | 4.6474 (1.23) | Excellent = )
w=21, [ Formatiert [ i
s=1) -
POXC [g Refl. SG 0.00 00102 | 200 [ Formatiert [ﬂ »
) 300-2460/6 | (m=2, 7 |69 | 095 003 | 472 | %92 | (001) | 005(001) | 3.3447(0.65) |Excellent -
kg] \(NZZI) (0.03) \ [ Formatiert
Total N1 376 2500/ 4 ?mbié'SG 6 |70 09 w 006 | 730 | 0% @i 011(002) | 45366 (116) | Excellent < [ hat formatiert
lokg™ w=21), : ’ ’ (0.04) - : \ i i
vsC \ Eingefiigte Zellen [
Refl, 000 162002 ( Formatiert -
SNV, (0.45),
Total C GSD 0.93 [ Formatiert
by | ssozs00r2 | &0 6 |70 097 s | sa | 0% 3.861.61(039) | A.07(104) |Excellent < !
w=21, [ Formatiert (... }
s=1) N .
Refl., SG 0.00 0.00 Eingefiigte Zellen @
pH 350-2500/ 6 \(Nm=:221) 9 |70 09 006 | 979 (g'gg) 004 | 013(0.03) | 44883 (123) | Excellent <\ [ Formatiert [ﬂ
MSsC 1 [ i fﬂ
soc [g Abs., SG 0.00 oza79 | 155 T Formatiert
i 350-2500/3 | (m=1, 3 | s3] 082 125 | 235 | (0UF | 005 |247140(042) | 220(070) | Acourate < | [ Formatiert [ﬂ
w=25) (0.53), |
Abs., GSD 000 0.00 77| ( hat formatiert =
POXC[G | ary. (m=2, 08182 | (0.02 ‘
R € [ aso2s00/4 | G122 4 |53 082 0os | 2a1 | 050 0050002) | 28133069) | Accurate < Eingefiigte Zellen 5
s=21) | .
Total N Abs., 56 0.00 0.8990 | 000 \\ [ Formatiert [ﬂ
N | 350-2500/3 | (m=2, 4 |53 004 007 | a12 | %% | 003 | 010(002) | 3.0810(057) |Excellent < -
[9 kg™ \(N:21) (0.04) Il [ Formatiert
Refl., SG 0.00 1.910.04 I [ - [ﬂ
Total C 1 360 2500/ 3 | (ML, 6 |53 098 120 | 783 | 99 | Ok }i011 75051y | 527185 | Excell \ Formatiert
ko] - we21) X . : (©0.03) 4:931:72(0.58) | 5:27-(1:85 xeellent < | -
[g kg . \\ hat formatiert
MSC |
Refl., SG 0.00 0.1701 I\ Eingefiigte Zellen [
pH 350-2500/4 | (ML 7 | s3] ogs 010 | 715 | 09495 | QO8L L 46005y | 42657 (191) | Excellent | -
w=21), - : : (0.03) : '\3 | [ Formatiert
MSC
Abs., SG 1.770.00 1:470.01 [ Formatiert [ j
s0C [g (m=1, 188051 | (0.72 —
b | aso2s00/3 | (00 4 | 53 |0s868 1ee59 | 0saL73 | HERSS 2.00(0.38) | —1:430:39) Eingefiigte Zellen )
Rl ( Formati )
Refl., GSD 0.00 0.00 Formatiert
POXC [g g (m=2, 0.8176 | (0.01) [ : [ﬂ
b [ sso-2s00/2 | {102 5 |53 086 oos | 272 | O 0.03(0.00) | 2.291.96 (0.60) Formatiert
5=21) [ Formatiert [ﬂ
Abs., SG 0.00 0.00
E;’Eg,’]‘ 350-2500/ 3 55’;:211) 5 |53 092 006 | 347 (g'fg) 009 1 509002 | 24151 (084) Eingefiigte Zellen C.J
MsC [ Formatiert (.. }
Abs., SG 0.8500 2.000.01 [ Formatiort
- ormatiel
Toal € 5762500 /6 | (ML 5 |53 084 254096 | 0.752.49 | ¥2°%12 | OS6k | 3 99 920 | 2.82.(0.54) | Accurate
o kg w=21), (0.18), N
MSC [ hat formatiert
Refl., SG 0.00 0.0300 -
pH 370-2500/4 | (m=1, 1 |53 023 0.04 115 0(')3?80 (002) | £170.04(001) | 1.14(0.19) | Poor Eingefiigte Zellen )
w=51) Formatiert
Formatiert
» .

Formatiert

Formatiert

Formatiert

hat formatiert

(
(
(
[ Formatiert
(
(
(

Eingefiigte Zellen

( Formatiert

( Formatiert

[ hat formatiert

Eingefiigte Zellen

( Formatiert

[ Formatiert




All

o

(N,

Refl, 0.00 109
SOCT9 | 35096003 | asD 7 |386| 092 ves | ass | 0890 | 0% |sesion 032)| 321(057) |Excellent < - ; ] "
kg1 =2 i (0.04) g + : hat formatiert: Schriftart: Times New Roman, Schriftfarbe:
w=5, 5=1) Schwarz
POXC [ (Rmeill s o0 osass | 002 [ Formatiert: Zentriert
PoNC 18 | as0-2500/1 | I 8 |385| 0ss oos | 200 | 058 | OO 00500 | 24260(043) |Accurate < - -
9] v’\;—s c). [ Formatiert: Zentriert
Abs., SG 0.00 0.1700 Eingefiigte Zellen
[TOL‘",,'}‘ 350-2500/ 4 | (m=2, 7 |386| 092 014 | 353 Obgﬁ%g (0.03) | 2.910.16 (0.02) Ee‘*oajgm Excellent
9kg w=11) : \ [ Formatiert: Zentriert
Abs., 0.00 2.930.00 = -
Total ¢ v, oea | @353 [ Formatiert: zentriert
'C | 350-2500/2 | GSD 6 |38 096 231 | 504 : 3.97279(030) | A16(047) | Excellent < - -
[9kg] (m=2, 0.0 \ [ Formatiert: zentriert
w=5, 5=1) -
Refl. SG 000 04700 Eingefiigte Zellen
pH 350-2500/ 3 ‘(ijzzl) 9 |38 095 012 | 4dn | O8O0 | OOk s 67045 000y | ACEEN | e copen “ hat formatiert: Schriftart: Times New Roman, Schriftfarbe:
’ - \ Schwarz
MSC

Formatiert: Zentriert

hat formatiert: Schriftfarbe: Automatisch

hat formatiert: Schriftart: Times New Roman, Schriftfarbe:

(

[ Formatiert: Zentriert
(

{ Schwarz

o JCU A

Eingefiigte Zellen

Formatiert: Zentriert

. Aret (&Y s ] e : bepth
Field Property N | Mean R? R—MSE| |R—PD|R41|-Q| . |Evaluauen| |.~
|W*} | [ 6] 19] 36] 069 03] 16| 189 [PSR [
[somqokay | **[ 06| 40| 47] 073| 06| 24| 104] [Posr | O zed estset -0 tone
[ socfgke™ [ 200]400] 72 19T 054] 098] 23] 244] [PLSR [Limited | Testset | 0-40 [ Unknewn
[ pH-(H:0y \ [ 8] 605 13]o049] o78] 3] [ [PLsk T . . | | |
124 Limited Festset 010 Present
| pHHCaCly) | [ 85| 546| 20| 048] o085 6] | [rsr |
05513
SOCfgkg} 600 | 562 79| 65| 081 38 48 1.66 | Cubist | Limited Test-set 17,28- | Nome
32:58-62
[socigke] | [[oz] 180 26 [ o8] 6] [ zafeese T | | |
37.7 Limited Test-set 0-25 None
[pH | [ o7 7=a] 6] [ oaa] 2] | 26]PLsk |
O Alemarstal, 2621
[ somigkel | [43] 208] 27] 087 21] 10] 260 [PSR [ . .
_ | T | P[as0] w6l seloess]| 2| sal am| [mem |OPWE [Tt [0H0 [He
BOKAPAN. | SOC fgka ] 1] 128 99 99] 097 16 16 855 | NN
LAU-PAN SOC g kg 1] 123 138| 73] 0.96 21 15 6.63 | NN 630
TFSA-CCH SoCigkg™} 1428 122 s3] 082 39 32 32 | NN o Cross-. 2080 paent
WAL-WIN | S0Cfgkg] 1] 128 194 52] 096 03 2 149 | PLSR M@ggg‘
General-model | SOCfg-kg} 4] 507 138 78] 096 42 30 149 [ NN
8 Riefok t al(2020)
)
|soctpigy [ wss] oo s foss| ae] ] | aorfeuon [omwma [ZE,, [0 [uwr
9 Kawamura-etal{(2021)
] [ 40000 162] 305] 56] 094] 49 6] [ 3841 [PLSR [Limited [ TFestset [ 0-10 [ Unkrown
10-Stafford-et-al{(2018)
] TotakCigkg™] 813[ 172 341 81] 095 64 19] 433 PLSR 0-20:
Waikato TotakN{akg ] 813 | 172 37| 7] o081 08 22| 343 PLSR Cross- 10-20;
. TotakCigkg™] 1519 168 | 205| 63| 0.91 4.0 20| 341 pLsr | e validation | 20-30; vere
’ Tota-NHgkg} 1519 | 168 22| 59[ 092 04 18| 357 PLSR 30-40

30

hat formatiert: Schriftart: Times New Roman, Schriftfarbe:

[ Formatiert: Zentriert
[ Schwarz

Eingefiigte Zellen

[ Formatiert: Zentriert

[ Formatiert: Zentriert

[ hat formatiert: Schriftfarbe: Automatisch

(N




Ts1 SOCfgkg¥ eld- 1 o0 | a0a| 47| 097| oo of su1 PLSR 05
Op Test-set 10-20; | None
¥S2 SOC{gkg'} Field- 90 91| 54| 092 14 15| 321 PLSR fg; Sf;
12 Nawsarand-Moudsen (2019)
} [ soctgke™} | 2] 12| 207] 18] o6 20 10] 172] [PSR T, | | |
limited e i Slpesenh
Hagg | socfgkg} | 21| 139 187| 18] 075 17| o] 205] [Pesr |
13 Vaudouretal—(2018)
SOC{gkg ] 146 107 | 48] 081 22 22 231 PLSR
GCaCOsgkg'] gl 6| s086] 37[o088| 500 13| 292 PLSR Cross- Different
TotakN-fg kg '] 146 08| 44| 082 [ 3] 357 prsr | e validation | depths | resont
pH 146 862] 2| 09| 006 1] 3 PLSR
Wy ela] (2018Y-8 fields with cach 20.10.36-topsoit
General-model | CaCOsfgkg™] ‘ 93| 240 | 2094 | 87 w| 291%| ;4| &9@| |;2L—SR |Hm+&ed |G9.55‘. |(epse# |e=ugh
15 1w tal(2017)
[ Fotalcioke] | 33 216] 615] 28] 0682 8] 4] [ 303[swvmM [Limited [ TFestset | 0-20 [ None
16 Dobacne etal(2014)
pH | [398] 625] 8] oes2] o34] 5[ 140] (PSR T, | | |
56 Limited Test-set 0-25 Present
[socfokg | s8] 15[ 20[o7e[ 12] 0] 200] | |
[ socfgke™ [ 200]2s2] 232] 31]o085] 24[ 13] 240] [PLSR [Limited | TFestset | 0-20 [ Unknown
18 na(2011)
g
[FowiNfokg™ Trarm- [122] 20[ 20To00a[ o2] 8] s3] [PLSR [ | | |
Test-set Topsoil None
Bl tevet  [222] 107[ 28] o9 16| 8] z21] [Pesr [ 77
19 Ky ng and-Meuazen{2011)
TotalCgkg ™} 79 184 163] 089 110 60 315
Bramstrup SsoC{gkg™ Fam- | 70| 174 144] 096 62 36| 495
Estate FotaNTa ko] 70 17| 18] 093 06 35| 388
pH 70| 719| 7| o008| 033 5] 210
Total-Cgkg ] 128 165 73| 074 70 42| 200
) SOCgkg'} Famm- | 128] 138 51] 075 3.0 22| 2.00
Tota-NHgkg} 128 13| 7| o7 03 23| 210
pH 128 702| 27[0d6| 063 9] 213 -
TotalCigkg™] 205 153| 1| 0w 22 4] 095 LR | Limited estset et csent
SOC gk} Famm- | 205 148] 14] 012 19 13] 107
epotedio Fota-Nfg-kg} 205 17| 14| 009 03 18| o081
pH 2056| 678 6| 03| 030 4] 131
TotaCgkg ™} 408 163 92] 083 66 40| 245
P - Three | 408| 150] 80| 083 54 36| 249
TotabNfakg'] | Farms | 408 16| 63| o079 o5 31| 221
pH 408 694| 7[003] 070 10] 090
20 Wetterlind-and-Stenberg-(2010)
SsoCigkg'} oo 8] 240 1] oz 12 5] 9%
v [pH 680 1] 049] o010 1] 133
Socfgkg'} 137 240 25] 085 22 9] 260
Hacksta 97
pH 660 2] 033] 019 3] 110
SOCgke] ol ®] 0] sslon| sal wml 1e0 SR | Limited estset | 020 esent
atorp pH 620 5| 05| o022 4] 140
N Socigkg'} 2| 298] 100] 26] 057 27 4| 190
! i pH 6.90 6] 048] o031 4] 140
21 Wetterhind et-al(2008)
[somigked | o7] 50| 410[ 27] 089 32 [ 8] 200] [PLSR [ iimited [ TFestset | 0-20 [ Nore
22 MeCarb nd-Ry (’)n/\a\
SOC{gkg™} 544 110 45] 088 16 15[ 3.06 ]
TotakNfokg '] 20 | 544 09| 44] 085 02 18] 250 PLSR | Limited Cross G None
pH e - 8| 853 — 5| 345

31




Total N (g kg™

m O QO

5 &
° D_u [
ic o

wow
"R i
L

Total C (g kg ™)

SO

N

0.15

D ! o
0.001

20 30

SOC (gkg™)

10

0.004 1

750 1000

POXC (mg kg™")

500

32



500 750

POXC (mg kg™")

1000

0.154
0.151
20:107 2 0.10
= [
[ [
0 0,051 a 0.054
0.001 0.001
Total N (g kg™")
0.004
2
2
[
0 0.002 J} > \
Py 2 /
ol fAES \
S 7/ o \\ \
0.000+ =7 K

0.251
0.201
20154 2 2
[} (2} [}
c ~ [ =4 [ =4
8 0.101 /\ 2 2
/o
7
0.05- \
/ N L
0.00 1 : ; —— ; . : - - g . »
20 30 40 30 40 50 20 30 40 50 60
Clay content (%) Silt content (%) Sand content (%)
Field[Jaf iei_jc  /oitelTF
840

field.

33

Figure 1: Density plots of the reference samples for the five analyzedtarget properties (SOC, total C, total N, POXC and pH}:) and
inorganic C. Field A to D contained each 70 samples and field E and F each 53 samples. Soil texture was analyzed on 20 samples per
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Figure 2: Biplots of principle component analysis with the first four principal components for the raw spectra and the pre-processed

spectra according to the properties SOC, Tetaltotal C, Tetaltotal N, POXC and pH. The pre-processing is indicated in the figure

and except for total N it was conducted on reflectance spectra (SG = Savitzky-Golay filter (m = order of derivative, w = window

width), SNV = standard normal variate, GSD = gap segment derivative (m = derivative, w = window width, s = segment size), MSC
850 = multiplicative scatter correction)
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Figure 3: R?, ratio of performance to deviation (RPD) and root mean square error (RMSE) calculated from the local models and

field-specifically calculated from the general model for the six fields (A — F) and the five soil properties (SOC, total C, total N, POXC

|855

and pH). The overall RMSE of the general model is indicated with a black filled circle and the label “All”. The calctlated- RMSE
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are compared with the error of the lab measurements (mean standard error of 18 triplicates)-ef-the-tab-measurements. indicated

with standard deviation)
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Figure 7: Correlation graphs between spectral variables at each wavelength and SOC as well as inorganic C for the combined dataset
(All) and the individual fields (A-F). The spectra were pre-processed according to the numbered-publications—in—TFable-3chosen
models for SOC.
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Figure 8: Pairwise correlation matrices between target soil properties and inorganic C for a field with weak (Field A) and field with
strong correlations (Field B) between the target variables. The correlation matrices for all fields can be found in the supplementary

material (Fig. S5).
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