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Abstract. The use of depolarization lidar to measure atmospheric volume depolarization ratio (VDR) is a common technique

to classify cloud phase (liquid or ice). Previous work using a machine learning framework, applied to peak properties derived

from co-polarised attenuated backscatter data, has been demonstrated to effectively detect supercooled liquid water containing

clouds (SLCC). However, the training data from Davis Station, Antarctica, includes no warm liquid water clouds (WLWC),

potentially limiting the model’s accuracy in regions where WLWC are present. In this work, we apply the same framework used5

on the Davis data to a 9-month Micro Pulse Lidar dataset collected in Christchurch, New Zealand, a location which includes

WLWC. We then evaluate the results relative to a reference VDR cloud phase mask. We found that the Davis model performed

relatively poorly at detecting SLCC with a recall score of 0.18, often misclassifying WLWC as SLCC. The performance of our

new model, trained using data from Christchurch, displays recall scores as high as 0.88 for identification of SLCC, although

generally underestimates SLCC occurrence. The overall performance of the new model highlights the effectiveness of the10

machine learning technique when appropriate training data relevant to the location is used.

1 Introduction

Supercooled liquid water (SLW) droplets exist in clouds at temperatures below 0◦C and above the homogeneous nucleation

freezing temperature of around -40 ◦C (e.g. DeMott and Rogers, 1990; Khain and Pinsky, 2018). Heterogeneous nucleation

of ice in clouds occurs at temperatures between -40 ◦C and 0 ◦C when SLW droplets interact with ice nucleating particles15

(INPs) such as dust and other aerosols, or other ice particles (Hoose and Möhler, 2012). Regions in which INPs are scarce thus

favour increased quantities of SLW clouds (Murray et al., 2012), hereafter referred to as SLWC. In mixed-phase clouds (MPC)

between -40 ◦C and 0 ◦C, SLW droplets and ice particles are both present. In this study, we use the term ’supercooled liquid

water-containing clouds’ (SLCC) to refer to clouds that may be either mixed-phase or composed solely of supercooled liquid

water droplets.20

Previous work has shown that SLWC and MPC are common over the Southern Hemisphere, particularly the Southern Ocean,

using satellite (Hogan et al., 2004; Hu et al., 2010; Morrison et al., 2011; Huang et al., 2012) and in situ observations (Chubb

et al., 2013), and that these clouds are under represented in numerical weather prediction (NWP) (Forbes and Ahlgrimm, 2014)

and climate models (Mason et al., 2015; Schuddeboom and McDonald, 2021). This uncertainty in cloud occurrence and cloud
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phase has a large impact on models’ radiation budgets (Bodas-Salcedo et al., 2016; Vergara-Temprado et al., 2018). When25

SLWC are under represented in models, too much sunlight warms the Southern Ocean instead of being reflected from cloud

tops back to space, causing an artificial heating of the sea surface. This is the main contributor to sea surface temperature (SST)

biases observed in many CMIP5 models (Hyder et al., 2018). Understanding the formation processes of SLWC is therefore

an important topic of research to reduce biases in the radiation budget in NWP and global climate models over the Southern

Hemisphere.30

Moreover, recent work has shown that satellite-based identification of low-altitude SLCC are prone to errors due to attenua-

tion from higher-altitude clouds (Blanchard et al., 2014; Protat et al., 2014; Liu et al., 2017; Alexander and Protat, 2018; McEr-

lich et al., 2021). Therefore, while satellite-based measurements allow for global analysis of high-altitude SLWC occurrence,

ground-based remote sensing observations are essential for accurate measurement of low-level clouds that are imperfectly

measured from space.35

Lidar is an active remote sensing technique that involves the transmission of laser pulses into the atmosphere, and the

measurement of returned radiation backscatter from liquid drops, ice crystals, aerosols and other atmospheric constituents

(Emeis, 2011). In this study we use a MicroPulse Lidar (MPL), which has a depolarization capability that allows for the

calculation of the linear volume depolarization ratio δ, hereafter referred to as VDR, as calculated in Equation 1. This value

includes contributions from both particle and molecular backscatter within a volume, and differs from the linear particle40

depolarization ratio (Lewis et al., 2020). The utility of the VDR to determine cloud phase was first identified by Schotland

et al. (1971) and has been used in numerous studies since to classify liquid water and ice-phase clouds (Sassen, 1991; Lewis

et al., 2020; Ricaud et al., 2022). The VDR difference between different phase clouds occurs because spherically symmetric

liquid water droplets produce little to no depolarization, whereas backscatter from complex ice crystals tends to be depolarized

and thus have higher VDR. Various studies have derived different thresholds to distinguish liquid- and ice-phase cloud, but45

most agree that δ < 0.1 is characteristic of liquid water clouds, with δ > 0.4 for ice clouds and intermediate values representing

mixed phase clouds (Sassen, 1991). It should be noted, however, that horizontally aligned ice crystals can produce specular

reflections and decreased values of VDR, meaning such clouds can be misclassified as liquid. This is usually mitigated by

orienting the lidar off-zenith (Hogan and Illingworth, 2003). Furthermore, multiple scattering from multiple layers of liquid

clouds can sometimes cause cross-polarized reflection and thus higher VDR, causing some liquid clouds to be falsely classified50

as ice.

Ceilometers are simpler automatic lidars that do not have depolarization capability, and only measure the co-polarized lidar

backscatter. A methodology to detect SLCC from ceilometers, using only co-polarised backscatter, would allow for SLCC

occurrence to be analysed using widely-used existing ceilometer networks, negating the need for polarized lidar systems.

Moreover, application to historical data sets would allow cloud phase retrievals to be extended to past records. Previous work55

by Hogan and Illingworth (1999) proposed a method of SLCC detection using ceilometers, and further studies developed

new algorithms (Hogan et al., 2003; Hogan and O’Connor, 2004; Tuononen et al., 2019) for scientific and operational usage.

Operational networks of comprehensive observing systems, such as the Atmospheric Radiation Measurement (ARM) Climate

Research Facility (Mather and Voyles, 2013) and Cloudnet (Illingworth et al., 2007), use synergistic radar-lidar algorithms to
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retrieve cloud properties including cloud phase. Within the Cloudnet retrieval, liquid water detection is based on empirically-60

derived thresholds of lidar attenuated backscatter (Hogan et al., 2003; Illingworth et al., 2007) and in recent versions, the

attenuated backscatter profile shape (Tuononen et al., 2019; Tukiainen et al., 2020).

More recently, Guyot et al. (2022) implemented a machine learning classification model applied to lidar observations col-

lected at Davis Station, Antarctica, and found that it outperformed the technique of Tuononen et al. (2019). A reference cloud

phase mask was created from a merged depolarization lidar and W-band cloud radar product, and used to train an extreme gra-65

dient boosting (XGBoost) model (Chen and Guestrin, 2016) with single-polarization ceilometer backscatter peak properties.

The model was named G22-Davis to reflect that the training data was from Davis. Guyot et al. (2022) found that G22-Davis

outperformed previous methods of SLCC detection, with accuracy scores as high as 0.91 compared to 0.84 for the application

of the Tuononen et al. (2019) approach. However, a key consideration is that at Davis, virtually all liquid water will be in

the supercooled state. No warm liquid water was detected over a year-long period based on ceilometer observations and the70

G22-Davis retrieval at Davis (Guyot et al., 2022). It is therefore important to determine whether the G22-Davis model can be

applied to mid-latitude and lower latitude sites, where ’warm’ liquid water clouds with temperatures greater than 0 ◦C exist.

Furthermore, for the G22-Davis technique to be practical for wider use, it should be evaluated in a variety of conditions and

regions. This provides the central motivation for this study.

The aims of this study are to: (i) evaluate the performance of G22-Davis for our dataset of MPL observations from Christchurch,75

New Zealand; (ii) using the same methodology (Guyot et al., 2022), develop a new model for SLWC identification trained us-

ing Christchurch MPL measurements; and (iii) apply the resulting cloud phase masks to produce a climatology of SLWC for

Christchurch.

2 Data sets and Methodology

2.1 Data sets80

2.1.1 Christchurch MPL Observation Campaign

For the Christchurch field campaign, a Droplet Measurement Technologies Mini MicroPulse Lidar (MPL) was installed and

operated from May 2021 to January 2022 on the roof of the Ernest Rutherford building on the University of Canterbury campus

(43.5225◦S, 172.5841◦E) at an altitude of 45 m. The MPL is a compact dual-polarization elastic backscatter lidar that operates

at a wavelength of 532 nm, and has a range of 30 km. For the Christchurch deployment, the vertical range resolution was set85

to 15 m, and the averaging time was set to 30 s. The minimum range and detection height of the MPL is 100 m. The scanning

head of the MPL enclosure was set to a fixed vertical scanning mode with elevation angle 90◦.

Post-processing of the raw MPL data is completed with version 1.2.1 of the Automatic Lidar and Ceilometer Framework

(ALCF), a software package detailed in Kuma et al. (2021b). While individual ceilometers typically implement post-processing

in their firmware, ALCF provides a consistent noise-reduction and calibration method that can be applied to different ceilometer90

types, and has been applied in previous studies using ceilometer datasets in Antarctica (Guyot et al., 2022) and the Southern
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Ocean (Kuma et al., 2020; Kremser et al., 2021; Pei et al., 2023). First, raw MPL data was converted with the mpl2nc tool

(Kuma, 2020), which performs after-pulse, overlap and dead-time calibration and calculates cross- and co-polarized normalized

relative backscatter (NRB) from cross- and co-polarized raw backscatter counts. ALCF performs noise reduction, absolute

calibration and cloud detection from the mpl2nc-derived NRB, including resampling of the data to a common 5 minute temporal95

and 50 m vertical resolution. More details on ALCF methodologies are provided by Kuma et al. (2021b).

2.1.2 AMPS

The Antarctic Mesoscale Prediction System (AMPS) is a real-time limited area numerical weather prediction (NWP) system,

based on the Polar Weather Research and Forecasting (Polar WRF) model (Powers et al., 2012; Hines and Bromwich, 2008).

The AMPS forecasting system is used for scientific and logistical purposes in Antarctica, and extends to cover New Zealand100

because of Christchurch’s status as an Antarctic gateway city, providing access to Scott Base and McMurdo Station. The AMPS

NZ grid has a 6 km spatial resolution on 21 pressure levels, available in 3-hourly intervals initialised at 00:00 and 12:00 UTC.

Real-time forecasts are available online in GRIB1 format, and were set to automatically download during the study period and

convert to NetCDF (NC). Due to occasional download errors, AMPS data was not available for 29 days of the 9-month study

period. Temperature data was extracted for the nearest neighbour grid cell corresponding to the University of Canterbury site.105

The 2-dimensional time × pressure level temperature field was cubic spline interpolated to a finer grid size and the hydrostatic

balance equation, assuming an isothermal atmosphere, was applied to resample to a 2-d time × altitude grid to match the

resolution of the ALCF-derived products. Isotherms at 0 ◦C and -40 ◦C were also determined from the Polar WRF output.

2.2 Cloud Phase Masks

ALCF performs cloud detection using an attenuated volume backscatter coefficient threshold algorithm (Kuma et al., 2021b).110

The cloud mask was determined to be positive where the attenuated volume backscatter coefficient was greater than a tunable

threshold plus 5 standard deviations of noise. The default backscatter threshold for ALCF of 2×10−6m−1sr−1 was used during

preliminary analysis of the Christchurch MPL dataset, but was found to be too low and resulted in a significant number of false

positive detections in the lowest 1 km likely due to the presence of boundary layer aerosols. This is likely due to ALCF being

tuned for usage over the near pristine aerosol environment of the Southern Ocean (Bhatti et al., 2023). Instead, a backscatter115

threshold of 4× 10−6m−1sr−1 was chosen as a good compromise between boundary layer aerosol false positives and high

altitude cirrus false negatives based on visual inspection. The ALCF cloud mask product was used as the starting point of the

depolarization ratio reference mask.

2.2.1 MPL Depolarization Ratio Reference Mask

Several previous studies to determine cloud phase from polarized lidar backscatter retrievals use the linear volume depolariza-120

tion ratio, VDR (Sassen, 1991; Lewis et al., 2020). The principle is described in Sect. 1. For the cloud phase reference mask

used in this study, we apply an algorithm similar to the one described by Lewis et al. (2020) for MPL measurements. In the
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Figure 1. Empirical cumulative distribution of VDR for clouds in a range of temperature intervals.

first step, mpl2nc-derived cross-polar Pcross and co-polar Pco normalised relative backscatter (NRB) profiles are regridded by

averaging to match the resolution of the ALCF and Polar WRF products. VDR δ at altitude z was calculated by

δ(z) =
Pcross(z)

Pco(z)
(1)125

for each bin in the detected cloud layer. Then, VDR is used to assign a cloud phase diagnostic (CPD), representing the likely

cloud phase for each altitude bin, as defined in Table 1. The thresholds to define liquid, mixed-phase and ice were chosen

following a sensitivity test on the values of VDR from all cloud bins in the dataset. The cumulative frequencies of VDR, as

a function of temperature, are shown in Figure 1. For warm bins (above 0◦C, and therefore nearly all liquid), Fig. 1 shows

that most bins have δ < 0.1. For bins in the mixed phase temperature regime (-40◦C to 0◦C), VDR increases with decreasing130

temperature. This is due to the increased presence of ice at colder temperatures, and the corresponding increase in VDR. For

bins less than the homogeneous freezing value (-40◦C) VDR is much higher, and nearly always δ > 0.4. Therefore, thresholds

of 0.1 and 0.4 were chosen to distinguish liquid, mixed phase and ice, respectively. The phase of an entire cloud layer was

assigned from the most frequent CPD of the altitude bins in that layer. Additionally, the WRF-derived temperature T for an

altitude bin was used to distinguish supercooled liquid water clouds (SLWC, T < 0◦C) and warm liquid water clouds (WLWC,135

T > 0◦C), and limit SLWC and MPC to T >−40◦C.
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CPD Definition

Liquid δ < 0.1

Mixed 0.1< δ < 0.4

Ice δ > 0.4

Undetermined All others

Table 1. Cloud phase diagnostic (CPD) determined from MPL-measured linear volume depolarization ratio δ.

2.3 Development of a data-driven cloud phase mask

The method described here follows the process detailed in Guyot et al. (2022) to develop a data-driven model for the classi-

fication of cloud as SLCC. The first step in the Guyot et al. (2022) methodology was to extract backscatter peak properties

from a single-polarization ceilometer. In our case, ALCF-derived attenuated volume backscatter coefficient β profiles from140

the MPL dataset were used in place of the single-polarization ceilometer backscatter profiles. Since ALCF applies consistent

calibration and resampling, the expectation is that the model developed here is applicable to any calibrated lidar data processed

with ALCF, using the default 50 m vertical and 5 minute temporal resolution.

Each profile of attenuated volume backscatter coefficient β was analysed using the signal processing tools in the SciPy

Python library (Virtanen et al., 2020) to identify peaks (local maxima). For each peak exceeding a minimum value of β >145

2×10−5m−1sr−1 and minimum width of 50 m, a set of properties were recorded: the value of backscatter at peak location (i.e.

the peak magnitude) β (m−1sr−1); peak width w (m); the peak prominence βprom (m−1sr−1) defined as the difference between

the peak and its lowest contour line; the ’peak width height’ βw (m−1sr−1) defined as the value of backscatter where peak

width is determined, calculated from βw = β− (0.5×βprom); the peak altitude z (m) above ground level; the total number of

peaks for a given profile n; and the peak order within that total number, in the range (0,n). These peak properties are the same150

as those used in the original study by Guyot et al. (2022), and readers should refer to Figure 6 in that study for an illustration

of the peak characteristics. In addition to the peak properties, the WRF-derived temperature for the peak’s altitude bin was also

recorded. The 8-feature dataset of peak properties was then labelled with the reference mask classification of the altitude bin

as SLWC, WLWC, MPC or ice cloud (IC).

Guyot et al. (2022) noted the importance of accounting for lidar extinction in multi-layer situations. When multiple cloud155

layers are present, the returned backscatter from higher layers is weaker due to attenuation of the lidar signal from lower layers.

Guyot et al. (2022) compared peak properties for primary peaks (where peak order = 0) and secondary peaks (where peak

order > 0), finding a statistically significant separation between primary and secondary peak magnitudes (Guyot et al., 2022,

Figure 3). They found peak magnitude values of both primary and secondary peaks to have normal distributions, and derived

an offset term for direct comparison of primary and secondary peaks. This offset was calculated as the absolute difference of160

the distributions’ medians, and was 4.2×10−5m−1sr−1 for their dataset. This was hypothesised to be the average reduction in

lidar backscatter due to extinction from the lower layer(s). For our Christchurch MPL dataset, we compared the distributions
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Figure 2. Histogram and kernel density estimation (KDE) plots of backscatter peak magnitudes for primary (peak order = 0) and secondary

(peak order > 0) peaks. Histograms are normalized such that the bar heights sum to 1. The median of each distribution, Q2prime and Q2second

respectively, are also plotted.

of primary and secondary peak properties, which are shown in Fig. 2. Unlike Guyot et al. (2022, Figure 3), the attenuated

backscatter peak magnitude values are not normally distributed, and both skew right to greater values of peak magnitude.

That is, in our dataset there are more peaks with higher values of backscatter coefficient. This effect is more pronounced for165

primary peaks. This disparity with the distributions of Guyot et al. (2022, Figure 3) could be because our dataset is significantly

larger (around 30,000 vs 3,700 primary peaks and 5,000 vs 570 secondary peaks) and therefore more varied; or because of

an instrumental effect (e.g. due to the different wavelength of the Davis ceilometer, or a calibration difference); or due to a

difference in environmental conditions (e.g. different aerosol concentrations causing more backscatter or more attenuation).

The difference in the primary and secondary medians was calculated to be 6.7× 10−5m−1sr−1 for our dataset. As shown in170

Fig. 2, the peak magnitude value corresponding to the maximum Kernel Density Estimate (KDE), i.e. the mode, is the same for

primary and secondary peaks, and there is significant overlap between the two distributions, unlike those in Guyot et al. (2022,

Figure 3). Therefore, we chose not to scale the magnitudes of secondary peaks by adding an offset.

The next step in the development of the cloud phase mask was to train and test a data-driven model that could perform

multi-class classification of each peak as SLWC, WLWC or neither. As in Guyot et al. (2022), we also chose XGBoost due to175

its excellent performance in a wide range of applications (Chen and Guestrin, 2016), often outperforming other decision tree

or boosting model approaches. XGBoost is an optimised version of gradient tree boosting, an ensemble supervised learning

algorithm. During training, XGBoost iteratively builds a series of ’weak’ learners (regression trees) that are fitted to minimise

the loss (i.e. error) of the resulting predictor, whilst also minimising complexity to avoid overfitting. XGBoost applies numerous

performance optimisation strategies when building and combining the trees, reducing computational costs and allowing it to180

be scalable to large datasets. The XGBoost model developed by Guyot et al. (2022) performed binary classification on each

peak as SLCC or not. In this study, due to the presence of warm liquid water > 0 ◦C, we apply a multi-class classification

of each peak as SLWC, WLWC or neither (implying the cloud is IC or MPC). The 8-feature dataset of peak properties was

passed to the model for training along with the target label, which was the reference mask’s classification of the peak as SLWC,
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WLWC or IC/MPC. Model training and testing was performed on the entire peak dataset, excluding peaks from an evaluation185

subset made up of 15 randomly selected days. The training dataset contained 34,542 peaks related to clouds from 211 days, of

which 23% were labelled SLWC, 56% were labelled WLWC, 2% were labelled MPC and 17% were labelled IC by the VDR

reference mask. Preliminary analysis on the peak dataset is presented in Section 3.1.

The XGB model was developed using the Python library XGBoost (Chen and Guestrin, 2016), with data preparation, cross

validation and hyperparameter testing implemented using the scikit-learn Python library (Pedregosa et al., 2011). To prevent190

overfitting during hyperparameter testing, we applied stratified group 3-fold cross validation. In k-fold cross validation, the

model is trained k times on k train/test folds. Test folds never share the same data with other folds, allowing k independent

validation scores and preventing overfitting of the model to a specific training set. In stratified k-fold cross validation, each

training and testing fold contains approximately the same proportion of each target class as the complete set. Finally, in

group k-fold cross validation, grouped data is split into train/test folds such that the same group is not represented in both the195

training and test set. In this case, groups were defined as the month in which the lidar measurement was made, thus creating

9 groups with approximately equal size and class ratio. This means that highly-correlated neighbouring measurements are

kept together in the same fold, ensuring each train/test fold is independent. Due to the class imbalance in our peaks dataset

(shown in Section 3.1) we used the balanced accuracy (described in more detail in Section 2.4) as the scoring method for cross

validation and hyperparameter testing. To find the optimal XGB hyperparameter combination, an extended grid search was200

applied, with 3-fold group stratified cross validation, over a range of hyperparameters including maximum depth and learning

rate (η). The depth of a regression tree is the number of splits (decisions) the tree makes before reaching a prediction. Therefore

the maximum depth hyperparameter controls how large a tree can grow, with larger values potentially improving predictive

performance but increasing complexity. Learning rate is the ’shrinking’ factor applied when trees are combined, and lower

values reduce each tree’s individual influence on the final prediction. Cross validation testing scores are presented in Section205

3.2.

The trained and tested XGB model was then used to predict the classification for all clouds in the MPL dataset. Each profile

of attenuated backscatter was processed sequentially: firstly, peaks were identified and their properties recorded for the given

profile. If no peaks were detected, that profile was labelled ’cloud free’. The detected peaks’ properties were passed to the

trained model for classification as SLWC, WLWC or IC/MPC. Following the peak classification, the corresponding altitude210

bin was labelled with the model prediction along with the surrounding bins, with the lower and upper bounds defined as twice

the peak width value, as per Guyot et al. (2022). Each profile was also labelled according to whether SLWC, WLWC, MPC or

IC was present anywhere in the profile. We hereafter refer to our trained model as G22-Christchurch, to reflect that the model

was trained on the Christchurch dataset. We applied the same method to create the G22-Davis cloud mask evaluated in this

study, for direct comparison with G22-Christchurch. Each peak was passed to the G22-Davis model for classification as SLCC215

or IC. For each peak classification, the corresponding altitude bin was labelled in the same process as described above.
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2.4 Model performance metrics

Model testing and evaluation against the reference mask involves the comparison of two one-dimensional Boolean vectors for

each class (SLWC and WLWC), representing the presence of cloud anywhere in the profile. Here we provide basic definitions

and describe metrics used for model evaluation in this study, which are similar to those used by Guyot et al. (2022). A true220

positive (TP) is defined as a test result indicating a correct prediction of a positive classification for a given class (e.g. presence

of SLWC), and a true negative (TN) is defined as a test result indicating a correct prediction of a negative classification (e.g.

absence of SLWC). A false positive (FP) is a test result indicating an incorrect prediction of a positive classification (e.g.

wrongly predicting the presence of SLWC) and a false negative (FN) is a test result indicating an incorrect prediction of a

negative classification (e.g. incorrectly predicting the absence of SLWC).225

Recall, or true positive rate, is defined by Equation 2 and represents the proportion of all true samples that are correctly

classified as true, i.e. the ability of the classification to find all the positive samples:

recall =
TP

TP+FN
(2)

Precision is defined by Equation 3 and represents the proportion of samples classified as true that are actually true, i.e. the

ability of the classification not to label as positive a negative sample:230

precision =
TP

TP+FP
(3)

For the multi-class classification we apply in this study, recall and precision scores are calculated for each class. Accuracy

is defined as the fraction of correct predictions out of the total number of samples, and is equivalent to the weighted mean

of the recalls of each class. However, when classes are imbalanced (as they are in this study), accuracy scores can be subject

to inflated performance estimates. The balanced accuracy is defined as the unweighted mean of the recall obtained on each235

class, and is a more appropriate scoring method for imbalanced datasets when each class is equally important (Brodersen et al.,

2010). In this study we primarily use balanced accuracy when describing the overall performance of the classification, and

recall/precision scores when describing the performance for each class.

3 Results

3.1 Peak properties dataset240

We first present analysis of the dataset of peak properties. The training dataset contained 34,542 peaks from 211 days, of which

23% (8,006 peaks) were labelled SLWC, 56% (19,288 peaks) were labelled WLWC, 2% (799 peaks) were labelled MPC, 17%

(5,945 peaks) were labelled IC and 1% (504 peaks) were labelled ’undetermined’ by the VDR reference mask. In Fig. 3 we

show kernel density estimation (KDE) plots showing the distribution of all the peak properties, separated by the reference
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Figure 3. Kernel density estimation (KDE) plots of peak property distributions for the full dataset, with the distribution’s median also plotted.

Peaks are separated by the reference mask’s cloud phase classification as liquid (WLWC and SLWC) or not (IC or MPC). For n Peaks and

Peak Order (g, h), histograms and median lines are omitted for clarity. The unit for peak width is a number of range-gates, which can be

converted to distance by multiplying by 50 m.

mask’s cloud phase classification as liquid (both SLWC and WLWC) or non-liquid (IC or MPC). In Fig. 4 we show similar245

KDE plots of liquid peak properties, this time separated by the reference mask’s classification of these liquid peaks as SLWC

or WLWC.

Fig. 3a shows that values of backscatter peak magnitude for liquid peaks are marginally higher than those for non-liquid

peaks. The same is true for peak width height (Fig. 3c) and peak prominence (Fig. 3d), which also have units of m−1sr−1 and

are strongly correlated with peak height, as we show later in Fig. 8. This supports our physical understanding that liquid water250

is associated with stronger backscatter returned signal, as found in previous studies (Guyot et al., 2022). Though, clear overlap

between these properties is observed in each set of distributions. It should also be noted that the difference in peak magnitude

between liquid and non-liquid peaks is small, and the distributions overlap. Peak width, shown in Fig. 3b, also separates liquid
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and non-liquid peaks, with narrow peaks associated with liquid, and wider peaks associated with IC and MPC. This is because

liquid water attenuates the lidar signal more rapidly, and this attenuation is represented in the returned backscatter as a thin255

cloud band. The number of peaks and the peak order, which are strongly correlated, show a slight separation between liquid

and non-liquid peaks, where most liquid peaks are associated with a small number (1-2) of peaks in a single profile. This

agrees with the findings of Guyot et al. (2022), who found that SLWC peaks tend to be associated with single-layer cloud most

frequently. This is potentially due to the attenuation effects of liquid layers that obscure higher altitude cloud in multi-layer

situations.260

Fig. 3e shows the altitude distribution of liquid and non-liquid peaks. It shows that liquid peaks are most strongly associated

with lower altitudes, with the frequency decreasing as altitude increases. The temperature distribution in Fig. 3f shows the

inverse is true of temperature: that liquid peaks are most strongly associated with warmer temperatures as we expect, and the

frequency of liquid peaks decreases as temperature decreases until the lower temperature limit of around -40 ◦C is reached,

below which homogeneous freezing occurs (DeMott and Rogers, 1990). Fig. 3f shows that ice peaks are present at temperatures265

as low as -70 ◦C. Overall, the temperature distribution in Fig. 3f is representative of SLWC temperature distributions in the

heterogeneous freezing temperature regime as identified in previous work (Murray et al., 2012; McErlich et al., 2021). This

provides further confidence that our VDR reference mask is accurately distinguishing liquid and ice in the heterogeneous

temperature range.

Fig. 4 shows the difference in average peak properties between peaks classified as SLWC and WLWC by the reference mask.270

Fig. 4a shows that WLWC peaks generally have higher values of backscatter magnitude than SLWC peaks, and the same is

true for peak width height and prominence. However, this result was found when looking at peaks from all altitudes. Given that

WLWC peaks are nearly always found at altitudes below 2 km, and SLWC peaks are always found above 0.5 km (as shown in

Fig. 4e), any altitude-dependent bias in attenuated volume backscatter would carry over to the SLWC and WLWC backscatter

magnitude distribution. A fair comparison would require all peaks to be in the same altitude range. By comparing the average275

peak properties over smaller altitude ranges (below 0.5 km, 0.5-1 km, 1-1.5 km, 1.5-2 km and above 2 km), we found that the

distributions of peak magnitude were roughly equal and similarly skewed between SLWC and WLWC peaks. It is possible,

then, that an altitude-dependent bias exists in the attenuated backscatter profile. This could be caused by an imperfect overlap

or range correction in the lidar processing. However, our analysis found that this potential bias made little difference to the

performance of the G22-Christchurch model and cloud mask.280

As expected, the temperature distribution shown in Fig. 4f shows that SLWC peaks have temperatures between around -40
◦C and 0 ◦C, with the mode just below 0 ◦C. On the other hand, WLWC peaks have temperatures above 0 ◦C, with the median

and mode around 10 ◦C. The altitude distribution shown in Fig. 4e shows that WLWC peaks are most frequently found at

altitudes below 2 km, and that SLWC peaks are found between around 0.5 km and 8 km. The overlap in the distributions of

SLWC and WLWC peak altitude between 0.5-2 km appears to be due to the seasonal and daily variation in the altitude of the285

0 ◦C isotherm.
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Figure 4. Kernel density estimation (KDE) plots of peak property distributions for the full dataset, with the distribution’s median also plotted.

Peaks are separated by the reference mask’s cloud phase classification as SLWC or WLWC. For n Peaks and Peak Order (g, h), histograms

and median lines are omitted for clarity.

3.2 Model performance evaluation

The XGBoost model was trained and tested with 3-fold stratified group cross-validation, as discussed previously. Accuracy

scores, as described in Section 2.4, are presented in Table 2 as the mean of the 3-fold training and testing scores, with the

uncertainties derived from the standard deviation. We also applied G22-Davis to our dataset of peak properties, and compared290

that model’s binary prediction of SLCC to our reference mask’s classification of each peak as SLCC. Accuracy scores for the

G22-Davis model performance are presented in Table 3. These results demonstrate that the G22-Davis model performed poorly

at SLCC classification in this environment relative to the excellent performance at Davis, where the model achieved accuracy

scores as high as 0.91 (Guyot et al., 2022).
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Balanced Accuracy WLWC SLWC IC/MPC

0.928± 0.001
Recall 0.999± 0.001 0.957± 0.009 0.828± 0.011

Precision 0.998± 0.001 0.870± 0.011 0.943± 0.014

Table 2. G22-Christchurch model balanced accuracy scores and recall/precision scores for each class from 3-fold group stratified cross-

validation.

Balanced Accuracy SLCC Non-SLCC

0.39
Recall 0.14 0.64

Precision 0.12 0.68

Table 3. G22-Davis model balanced accuracy scores and recall/precision scores for each class.

The performance of the G22-Christchurch cloud mask was then analysed by comparing the reference mask and the new295

model-generated SLWC mask, as described in Section 2.4. This involves the comparison of two one-dimensional Boolean

vectors, corresponding to the reference mask and the model-generated mask. We first evaluate the performance of the model

mask by comparing all profiles (time steps), and then compare only time steps where peaks meeting the minimum backscatter

and width thresholds were detected. For the full dataset with 66,240 time steps, there were 31,708 time steps (47.9%) where

peaks were detected. This is lower than the total number of peaks (34,542) since some time steps contained multiple peaks300

corresponding to multi-layer cloud. According to the reference mask, SLWC was present in 15.3% of all profiles, and 27.5% of

profiles with peaks. The recall (precision) of the G22-Christchurch SLWC mask was 0.76 (0.89) for all profiles, and 0.88 (0.89)

for profiles with peaks. The recall (precision) of the G22-Davis SLCC mask was 0.15 (0.15) for all profiles, and 0.18 (0.15)

for profiles with peaks. We repeated this analysis for WLWC detection by comparing the reference mask’s WLWC label to our

model’s WLWC mask. According to the reference mask, WLWC was present in 45.1% of all profiles, and 67.2% of profiles305

where peaks were detected. The recall (precision) of the G22-Christchurch WLWC mask was 0.63 (0.99) for all profiles, and

0.88 (0.99) for profiles with peaks.

3.3 Case studies

In this section we present results showing the application of both our mask and the G22-Davis mask to two case studies, in

order to interpret their performance. Backscatter peaks from these days were excluded from the training dataset, so these days310

represent unseen data.

3.3.1 2021-05-18 Case study

Observations from 18 May 2021 are shown in Fig. 5 as an example of a day with a distinct SLWC layer. Fig. 5 shows the ALCF-

calibrated attenuated volume backscatter (Fig. 5a), volume depolarization ratio VDR (Fig. 5b) and VDR reference cloud mask

(Fig. 5c-d), along with the G22-Davis cloud mask (Fig. 5e-f) and G22-Christchurch cloud mask (Fig. 5g-h) applied to the315
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Figure 5. MPL profile for 2021-05-18 over Christchurch showing attenuated volume backscatter coefficient (a), volume depolarization

ratio VDR (b), the VDR reference cloud mask (c), the G22-Davis cloud mask (e) and the G22-Christchurch cloud mask (g). Time-step

classifications of SLWC are shown in (d, f, h) for the reference mask, G22-Davis and G22-Christchurch respectively, along with time steps

for which peaks were identified. WRF air temperature contours are overlaid in (a) and (c).
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attenuated backscatter profiles. The cloud masks are presented as time × altitude grids (Fig. 5c, e, g) and time-step Booleans

(Fig. 5d, f, h) according to whether SLWC is present anywhere in that profile. This particular day shows a clear band of SLWC

between 06:00 and 12:00 UTC at 4km altitude, and again between 17:00 18/05 and 00:00 19/05 UTC between 3-6km. Other

cloud (identified as IC and MPC by the VDR reference mask) is present from 02:30 to 06:00 UTC between 2-8km altitude, and

again from 14:30 to 16:30 UTC. The first SLWC band is a multi-layered cloud region between 06:00 and 08:00 UTC. Clouds320

or precipitation can be observed below the second SLWC band at around 20:00 and 22:00 UTC. According to the reference

mask classification, a thin layer of WLWC below 1 km is also present from 19:00 UTC 18/05 to 00:00 UTC 19/05. However,

it is possible that this layer, which attenuates relatively little lidar signal as seen in Fig. 5a, could actually be an aerosol layer

that has been misidentified as cloud by the ALCF cloud mask, as discussed in Section 2.2.

The G22-Davis cloud mask identifies some of the SLWC layers correctly, but misses many. Comparing profile-to-profile325

SLCC classification to the reference mask, G22-Davis had recall (precision) scores of 0.19 (0.94) when considering all profiles,

and 0.20 (0.94) for profiles containing peaks. The new G22-Christchurch cloud mask performs better, and identifies most of

the SLWC layers. Compared to the reference mask’s SLWC classification for each time step, G22-Christchurch had recall

(precision) scores of 0.96 (0.94) for all profiles, and 0.97 (0.94) for profiles containing peaks.

3.3.2 2021-06-05 Case study330

MPL observations from 5 June 2021 are shown in Fig. 6. On this day, a wide band of IC is present at altitudes ranging from

3-10 km between 00:00 and 18:00 UTC, followed by a band of low-altitude (< 1 km) liquid water cloud between 18:00 UTC

05/06 and 00:00 UTC 06/06, and another layer of liquid water cloud at around 2-3 km altitude for a short period after 22:00

UTC. Layers of SLWC are present for short periods throughout the day (06:00, 10:00, 12:00 and 14:00 UTC) interspersed with

ice cloud (see Fig. 6c). Both G22-Davis and G22-Christchurch identify some of the short periods of SLWC between 06:00 and335

15:00 UTC. G22-Christchurch correctly distinguishes most of the SLWC, but also overestimates SLWC occurrence, making

false positive classifications at around 07:00, 09:00 and 14:00 UTC. Importantly, the low altitude WLWC band between 18:00

and 21:00 UTC is mistakenly identified as SLCC by G22-Davis. G22-Christchurch correctly identifies this layer as WLWC.

On this day, G22-Davis had recall (precision) scores of 0.09 (0.12) when compared to the reference mask’s SLCC classifica-

tion for all peaks, and also 0.09 (0.12) when comparing profiles containing peaks. Again, the new G22-Christchurch performed340

much better, with recall (precision) scores of 0.75 (0.64) for all profiles and 0.80 (0.64) for profiles containing peaks, compared

to the reference SLWC mask. These results show that the new model is a significant improvement to G22-Davis in environ-

ments that contain WLWC, but still has limitations at identifying SLWC when interspersed with IC, conditions this case study

represents. Despite this, these results indicate that the technique of Guyot et al. (2022) can be applied successfully to a new

location if appropriate site-specific training data is available.345
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Figure 6. MPL profile for 2021-06-05 over Christchurch showing attenuated volume backscatter coefficient (a), volume depolarization

ratio VDR (b), the VDR reference cloud mask (c), the G22-Davis cloud mask (e) and the G22-Christchurch cloud mask (g). Time-step

classifications of SLCC are shown in (d, f, h) for the reference mask, G22-Davis and G22-Christchurch respectively, along with time steps

for which peaks were identified. Also shown are balanced accuracy scores for G22-Davis and G22-Christchurch. WRF air temperature

contours are overlaid in (a) and (c).
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Figure 7. Cloud altitude distributions separated by cloud phase, according to the VDR reference mask (a), G22-Davis mask (b) and G22-

Christchurch mask (d). Precision and recall accuracy scores for SLCC/SLWC detection respectively, as a function of altitude, are also shown

for G22-Davis (c) and G22-Christchurch (e).

3.4 Cloud occurrence for the full observation period

The full dataset was analysed and cloud occurrence statistics computed to compare the accuracy of the G22-Davis and G22-

Christchurch cloud masks to our VDR reference mask. In this section, we present cloud fraction statistics and cloud phase

distribution as a function of altitude for each mask, and evaluate the performance of the G22-Christchurch cloud mask.

Cloud fraction was calculated by finding the proportion of profiles in which SLWC or WLWC was detected, across all time350

steps of the dataset. The cloud fraction from all types (calculated from the ALCF cloud detection mask) was 70% for the full

dataset of 257 equivalent days of MPL profiles. SLWC was detected in 15.3% of the reference mask profiles, 12.9% of the G22-

Christchurch mask profiles and 16.9% of the G22-Davis mask profiles. Meanwhile, the WLWC frequency was 45.1% for the

reference mask, but only 28.5% for G22-Christchurch. G22-Davis overestimated the frequency of SLCC occurrence because it

often misclassified WLWC layers as SLCC, such as between 18:00 to 21:00 UTC in Fig 6. G22-Christchurch, however, tends355

to underestimate both SLWC and WLWC occurrence relative to the reference mask.

Fig. 7 compares the cloud phase distributions as a function of altitude for G22-Davis and G22-Christchurch against the

reference mask. According to the reference mask Fig. 7a, liquid water cloud (WLWC and SLWC) is common at low altitudes,

and decreases in frequency with altitude to a maximum altitude of 8 km. Below 1 km, this is entirely WLWC, and above 3 km

it is entirely SLWC, with the overlap between 1-3 km likely corresponding to the variation of the 0 ◦C isotherm through the360

year. This pattern is consistent with the peak altitude distributions shown in Figs. 3e and 4e. Ice cloud frequency increases with

altitude to a maximum at 8 km, before decreasing to very low occurrences at 13 km.
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Fig. 7b shows that G22-Davis identifies SLCC at lower altitudes (0-4 km) than the reference mask (1-8 km). The recall and

precision scores as a function of altitude, in Fig 7c, are low for the G22-Davis model. This bias likely results from the Davis

training dataset, which would identify that SLCC could be present at low altitudes, despite the fact that temperatures at Davis365

for which SLCC were detected were much lower. This therefore provides evidence of the limitation of applying the G22-Davis

method, with training data from Davis, Antarctica, to mid-latitude sites with warmer air temperatures. This also shows the

relative importance of peak altitude in the SLCC classification for G22-Davis.

Fig. 7d shows cloud phase distributions according to the G22-Christchurch cloud mask. The frequency of SLWC is highest

at 1.5 km and gradually decreases with altitude until around 8 km, following a very similar pattern to the VDR reference mask’s370

SLWC occurrence. WLWC occurrence also closely follows the reference mask’s WLWC occurrence, with frequencies highest

at low altitudes, decreasing with altitude until around 2 km, but is still underestimated relative to the reference mask. In Fig.

7e, the precision and recall scores for SLWC detection as a function of altitude is relatively consistent and recall scores are

higher than the recall scores for G22-Davis in Fig. 7c, at all altitudes.

Both G22-Davis and G22-Christchurch underestimate total cloud fraction across all cloud phases. One factor that may375

account for this is that the criteria for a peak to be selected for classification (β > 2× 10−5) is stricter than the criteria for

ALCF and the reference mask to detect a cloud (β > 4× 10−6). We also found that the frequencies and accuracy scores in

Figs. 7d, e were sensitive to the width of the generated cloud mask layer as defined by the upper and lower bounds around the

peak location. Therefore, the cloud phase distributions in Fig. 7 provide qualitative evidence of the model’s performance, but

quantitative results are best determined by comparing time-step SLWC Booleans as in Section 3.2.380

3.5 XGBoost feature analysis with SHAP

The previous sections have shown that our model performs very well at classifying backscatter peaks as SLWC or WLWC and

reasonably well at generating cloud masks of SLWC/WLWC occurrence which are comparable to the reference VDR cloud

mask. In order to be confident the model can be applied in future work to ceilometer datasets from a range of locations, we need

to understand the relative importance of the input features to the XGBoost algorithm (our 8-feature set of peak properties).385

Fig. 8 shows correlation coefficients between each pair of peak properties, for all peaks in the dataset. This allows for a visual

analysis of the independence of the XGBoost input features. Fig. 8 shows that peak magnitude, width height and prominence

are strongly positively correlated, as we expect. Peak altitude and peak temperature are also strongly negatively correlated

because low altitudes are associated with warmer temperatures, and high altitudes are associated with colder temperatures. We

can also use Fig. 8 to select a subset of features that are independent by removing strongly correlated features. We use this390

information in Section 3.6 to train a modified model using a smaller range of independent input features.

Like Guyot et al. (2022), we apply the tree-based model explanation method by Lundberg et al. (2020) based on SHapley

Additive exPlanations (SHAP) values, which quantify the contributions to the model output from each feature. Such an analysis

is important for model interpretability, to ensure the model results are trustworthy, and to understand the relationships between

the input features (in this case, the dataset of peak properties) and model output. Figure 9 shows the SHAP value distribution395

for the input features to G22-Christchurch. In this stacked bar plot, features are ranked from top to bottom according to their
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Figure 8. Correlation coefficients between each pair of peak properties, for all peaks in the dataset.

mean absolute SHAP value, i.e. from most to least important for the model’s classification. The distribution of SHAP values

for the three most important features (peak temperature, altitude and width) are further shown in Fig. 10, which show SHAP

value scatter plots corresponding to each feature, for each class.

Temperature is shown in Fig. 9 to be the most important feature for classification across all classes, and the relationships400

shown in Figs. 10a, d and g reveal how XGBoost uses temperature to improve classifications. Fig. 10d shows that SHAP values

for SLWC classification are positive for temperatures between -40 ◦C and 0 ◦C, and negative outside this range. On the other

hand, the SHAP values for WLWC classification are positive above 0 ◦C and negative below 0 ◦C. The strong discontinuity at 0
◦C for both SLWC and WLWC classification occurs because the VDR reference mask uses that temperature for distinguishing

between SLWC and WLWC. Fig. 10g shows that the opposite is true for IC and MPC classification: SHAP values are strongly405

positive below around -40 ◦C (since only ice is found at these temperatures), are strongly negative above 0 ◦C, and have

intermediate values in the mixed-phase temperature regime.

Altitude and temperature are inversely correlated (as shown in Fig. 8) because low altitudes are associated with warmer

temperatures, and high altitudes are associated with colder temperatures. Fig. 9 shows peak altitude to be the second most

useful feature after temperature, with mean absolute SHAP values roughly equal across all classes. Fig. 10h shows that higher410

values of altitude were more strongly associated with IC, and that low altitudes had a negative impact on IC classification. Fig.

10b shows that for WLWC, low values of altitude have positive SHAP values and a positive impact on WLWC classification. As

altitude increases, SHAP values become more negative, meaning these values have a negative impact on WLWC classification,
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Figure 9. Mean absolute SHAP values for G22-Christchurch features, for each class (SLWC, WLWC and IC/MPC). Features are ranked

from top to bottom according to the sum of the mean absolute SHAP value across all classes, i.e. most to least important for the overall

classification.

as supported by the Fig. 7a that shows very little WLWC occurrence above 3 km. The SHAP value distribution for SLWC

classification (Fig. 10e) is more complex, but generally shows that as altitude increases, SHAP values tend to decrease, as415

supported by Fig. 7a showing a decreasing frequency of SLWC up to around 8 km. In Fig. 10e, for altitudes above 8 km, SHAP

values tend to zero, showing that these values have neither positive nor negative impact on SLWC classification.

Next, Fig. 9 shows peak width to be a highly useful feature. The SHAP value scatter plots shown in Fig. 10f and i show the

relationship between peak width and SLWC/IC classification. Fig. 10f displays that low values of peak width had a positive

impact on SLWC classification, and that high values had a negative impact. This agrees with our physical understanding of420

the properties of backscatter from liquid water cloud as discussed previously, namely that liquid water rapidly attenuates the

lidar signal leading to a narrow band of enhanced returned backscatter. The reverse is true for IC/MPC classification, shown in

Fig. 10i, where a low value of peak width is associated with a negative IC classification, and higher values of peak width had a

positive impact on IC classification.

While Fig. 3 shows that there was a slight separation in the distribution of liquid and non-liquid peak backscatter magnitudes,425

the SHAP values in Fig. 9 show that peak magnitude was not a highly useful feature for the G22-Christchurch model, in any

class. Peak prominence, which we show in Fig. 8 is strongly positively correlated with peak magnitude, has a higher mean

absolute SHAP value, indicating it is more useful than magnitude for classification. Scatter plots of SHAP values found that

low prominence peaks had a positive impact on IC classification, and high prominence peaks had a positive impact for SLWC

and WLWC classification (not shown). One possibility for why magnitude is less useful than prominence is that magnitude430
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Figure 10. SHAP value scatter plots for peak temperature, altitude and width for WLWC (a-c), SLWC (d-f) and IC/MPC (g-i).
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is already the main criteria used to select peaks. That is, we only analyse peaks that already exceed a backscatter threshold

of β > 2× 10−5m−1sr−1, which excludes most low-βpeaks associated with ICC. Peak prominence, however, provides a way

of separating peaks with a higher signal to noise ratio (SNR), and is therefore more useful than peak magnitude. The results

here differ from the results found by Guyot et al. (2022). In that study, peak magnitude was found to be the most significant

feature used by XGBoost for the classification of SLCC. However, the aim of the G22-Davis model was to distinguish SLCC435

and ice, while our aim is to distinguish SLWC, WLWC and IC. Therefore, it is logical that our highest-scoring features are

temperature and altitude, which are powerful at distinguishing SLWC and WLWC (as shown in Fig. 4); whereas Guyot et al.’s

highest-scoring features were peak magnitude, which was powerful at distinguishing SLCC and ice. Therefore, the SHAP value

differences between G22-Davis and G22-Christchurch are likely a consequence of the different classification objectives of the

two models.440

3.6 Reducing XGBoost feature dimensionality

Due to the strong correlation between input features, as shown in Fig. 8, we next investigate the effect of reducing the number

of input features to train a modified XGB model. Reducing the dimensionality of the training dataset has been shown to

improve model performance in general by reducing overfitting (Russell, 2010). Furthermore, excluding temperature would

remove the dependence on numerical weather prediction model inputs which clearly include uncertainty. We trained a new set445

of XGBoost models using a reduced set of input features, testing various combinations of those input features with the highest

mean absolute SHAP values, as detailed in Fig. 9, and removing ’duplicate’ features that are strongly correlated, as determined

in Fig. 8. For example, because peak magnitude, prominence and width height are strongly correlated, we only use one of

those features as input to a model. The same is true for peak altitude and temperature, which are strongly negatively correlated.

We also remove the number of peaks and peak order because they have low absolute SHAP values, as shown in Fig. 9. These450

results are presented in Table 4, which shows the various input features and accuracy scores of the corresponding XGBoost

models, again tested with 3-fold group stratified cross-validation in each case. The same set of hyperparameters were used

during the development of these models to allow a direct comparison with the original 8-feature model. The entire dataset of

peak properties was used for the development of these models, hence the difference from the scores presented in Table 2.

We see from Table 4 that the highest-scoring model used the input features temperature, peak width and peak prominence455

(T, w, βprom), and it performed equally well as the original model that used the complete set of 8 features. This is consistent

with the results in section 3.5, where we showed using SHAP values that these were among the most useful features for G22-

Christchurch. Replacing peak prominence with either peak magnitude or peak width height slightly reduced the accuracy, and

removing it entirely (without replacement) also only slightly reduced the accuracy. The model using just peak temperature as

an input still gave reasonable accuracy scores, although the drop of 0.17 in the SLWC recall score from the (T, w) model shows460

the importance of peak width as an input feature. Though, it is worth noting that peak width and magnitude are both essential

features for identifying clouds and therefore peaks in the first place. Replacing peak temperature with peak altitude reduced the

balanced accuracy by around 0.08 for all models, and reduced the recall scores by around 0.17 for SLWC and 0.07 for WLWC

across all models. This significant reduction in model performance shows that despite peak altitude and peak temperature being
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Balanced Accuracy
WLWC SLWC IC/MPC

Precision Recall Precision Recall Precision Recall

All Features 0.93± 0.01 0.99± 0.01 0.99± 0.01 0.87± 0.02 0.96± 0.01 0.94± 0.01 0.82± 0.04

T, w, β 0.91± 0.01 0.99± 0.01 0.99± 0.01 0.84± 0.01 0.95± 0.01 0.93± 0.01 0.78± 0.03

T, w, βprom 0.93± 0.01 0.99± 0.01 0.99± 0.01 0.87± 0.02 0.96± 0.01 0.94± 0.01 0.82± 0.04

T, w, βw 0.91± 0.01 0.99± 0.01 0.99± 0.01 0.83± 0.01 0.96± 0.01 0.94± 0.01 0.76± 0.03

T, w 0.91± 0.01 0.99± 0.01 0.99± 0.01 0.83± 0.01 0.96± 0.01 0.94± 0.01 0.76± 0.04

T 0.83± 0.01 0.99± 0.01 0.99± 0.01 0.77± 0.01 0.79± 0.02 0.73± 0.04 0.71± 0.04

z, w, β 0.83± 0.01 0.93± 0.02 0.93± 0.01 0.71± 0.01 0.78± 0.07 0.91± 0.03 0.78± 0.03

z, w, βprom 0.85± 0.01 0.93± 0.02 0.93± 0.01 0.74± 0.01 0.79± 0.07 0.92± 0.02 0.82± 0.04

z, w, βw 0.83± 0.01 0.93± 0.02 0.93± 0.01 0.71± 0.01 0.78± 0.07 0.91± 0.02 0.77± 0.03

z, w 0.83± 0.01 0.93± 0.02 0.93± 0.01 0.70± 0.01 0.79± 0.07 0.92± 0.02 0.76± 0.04

z 0.75± 0.01 0.93± 0.03 0.93± 0.02 0.60± 0.01 0.68± 0.06 0.77± 0.07 0.64± 0.03

w 0.65± 0.01 0.75± 0.01 0.88± 0.02 0.50± 0.03 0.41± 0.02 0.88± 0.03 0.68± 0.04

Table 4. Summary of the balanced accuracy scores and precision/recall scores for each class from 3-fold group stratified cross-validation,

for the adjusted models with reduced input features: peak temperature T , peak altitude z, peak width w, peak magnitude β, peak prominence

βprom and peak width height βw.

strongly negatively correlated, altitude was not a useful direct replacement for temperature. This confirms the importance of465

having either NWP temperature information or radiosonde temperature data for making accurate classifications of SLWC.

However, recall scores for WLWC were still high (>0.9) and generally unchanged for IC/MPC (around 0.8) when temperature

was replaced with altitude, indicating that liquid/ice classification can generally be made without temperature information (i.e.

without distinguishing SLWC and WLWC).

4 Conclusions470

In this study, we applied a method of supercooled liquid water cloud (SLWC) detection first introduced by Guyot et al. (2022)

to observations from a mid-latitude site. From a 9-month dataset of MicroPulse Lidar (MPL) copolarized backscatter peak

properties, we then trained an optimised gradient boosting model to classify backscatter peaks as SLWC, warm liquid water

cloud (WLCW) or ice/mixed-phase cloud (IC/MPC). Unlike the binary supercooled liquid water containing cloud (SLCC) clas-

sification model developed by Guyot et al. (2022), referred to as G22-Davis to reflect that the training dataset was from Davis475

Station, Antarctica, our model performed multi-class classification to distinguish SLWC from WLWC, which was common in

our lidar observations from Christchurch, New Zealand.

We first used MPL depolarization observations to build a reference cloud phase mask which uses volume depolarization ratio

(VDR) to distinguish ice and liquid, then used WRF-derived air temperatures to distinguish SLWC and WLWC. Applying G22-
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Davis to our dataset of copolarized backscatter peak properties to create a SLCC classification mask, we obtained recall scores480

of 0.15 when examining all lidar profiles, and 0.18 when examining only profiles with detection of strong backscatter signals.

We then trained and tested a modified XGBoost model, referred to as G22-Christchurch, and applied it to the same MPL dataset

to create a SLWC mask with recall scores of 0.76 for all profiles, and 0.88 for profiles with strong backscatter signals. G22-

Christchurch greatly improved classification of SLWC compared to G22-Davis, which often misclassified WLWC as SLCC

due to the absence of warm liquid water in the Davis training data.485

We also applied the tree-based model explanation method by Lundberg et al. (2020) based on SHapley Additive exPlanations

(SHAP) values to quantify the relative importance of each XGBoost input feature (Lundberg and Lee, 2017). We found that

temperature was the most important feature for SLWC and WLWC classification, due to the homogeneous freezing of liquid

water at around -40 ◦C and the definition that SLWC exists below 0 ◦C. Peak width was the most important peak property

for detecting liquid water of either type, because liquid water rapidly attenuates the lidar signal, causing a narrow peak in the490

returned backscatter profile. Peak prominence was also a useful feature for SLWC classification. We then developed a set of

models with reduced input features, and compared their accuracies with the original model. We found that using only peak

temperature, width and prominence as inputs, an XGBoost model could perform equally well as the original model trained using

the full set of peak properties. Despite being strongly negatively correlated with temperature, peak altitude was not a suitable

replacement for temperature for SLWC classification. This confirms the importance of air temperature data availability, such495

as from NWP models, for accurate detection of SLWC alongside ceilometer observations. This differs from the findings from

Guyot et al. (2022), however it is important to note that our objectives differ. In this study, features that distinguish SLWC

and WLWC are highlighted (i.e. temperature), whereas for Guyot et al. (2022), the best features that distinguished SLWC and

ice were identified (i.e. peak height). When using our model to distinguish ice from liquid (of either WLWC or SLWC), the

set of peak properties without temperature still gave good results, showing that liquid classification can be performed without500

relying on other sources for temperature information. For future work, such as the incorporation of this retrieval method in

ALCF, the default XGBoost model will only use peak width, prominence and temperature as inputs, while a model using

width, prominence and altitude as inputs will be an alternative for cases when temperature data is unavailable.

The frequency of SLWC occurrence was analysed for G22-Davis and G22-Christchurch and compared to our reference mask.

Cloud fraction according to the reference mask was 15% for SLWC and 45% for WLWC. WLWC was only present at low505

altitudes, below 2 km, and SLWC was present between 1-8 km. G22-Davis often misclassified WLWC as SLWC which caused

that model to incorrectly inflate SLWC occurrence below 2 km. On the other hand, G22-Christchurch replicated the reference

mask’s vertical structure of SLWC and WLWC occurrence, although cloud occurrence was still generally underestimated

across all phase categories.

The limitations of the relatively simple VDR reference mask should be noted. In come cases, high aerosol loads near the510

ground were falsely classified as WLWC by the reference mask. Precipitation and fog were not represented by the reference

mask and may have been misidentified as IC, MPC or WLWC. Previous methods (Tuononen et al., 2019; Guyot et al., 2022)

have classified precipitation and fog using attenuated backscatter thresholds and gradients, which was not performed in this

study. This may have artificially inflated the attenuated backscatter coefficient and therefore peak magnitudes in WLWC and IC
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clouds. The effects of multiple scattering may also have caused some liquid layers to be misclassified as IC. On the other hand,515

horizontally aligned ice crystals may have caused some ice cloud to be misidentified as liquid, since the MPL was oriented

toward the zenith. This effect may have also caused ice particles to return higher than normal copolarized attenuated backscatter

(Hogan and Illingworth, 2003), potentially influencing the distribution of IC peak properties and therefore the usefulness of

peak magnitude for G22-Christchurch in distinguishing liquid and ice. The reference mask classification of SLWC and WLWC

relies on WRF-derived temperature data, which has its own associated uncertainty. In future work, more focus should be520

given towards quantifying that error, such as using in-situ (e.g. radiosondes) or remote measurements of cloud temperature.

Additionally, it should be noted that the minimum detection height of the MPL is 100 m. Therefore, the MPL analysis in this

work potentially misses low-level cloud, which Griesche et al. (2024) identified as an important polar cloud regime for future

observational studies.

The aim of this study was to understand the limitations of G22-Davis in a mid-latitude site where both supercooled liquid525

and warm liquid water clouds exist. Ceilometers, being relatively common and low-cost, have the potential to be a useful

tool for the detection of SLWC, and have particular value in regions where observations are sparse, such as Antarctica and

the Southern Ocean. Ground-based ceilometer observations, complementary to satellite observations, have the potential to

improve cloud phase products. We found that while the methodology of G22-Davis was successful when used with a local

training dataset, the original Davis-trained model was not effective at classifying SLWC over Christchurch. This confirms530

the need for further testing in different regions under different environmental conditions. The G22-Christchurch model and

algorithm will be incorporated in future versions of ALCF, so that future work can apply this retrieval technique to other lidar

and ceilometer datasets.

Code and data availability. The ALCF is open-source and available at https://alcf.peterkuma.net (last access: 19 May 2023) as well as a

permanent archive of code and technical documentation on Zenodo at https://doi.org/10.5281/zenodo.5153867 (Kuma et al., 2021a, b). A535

tool for converting MicroPulse Lidar data files to netCDF, mpl2nc, is open-source and available at https://doi.org/10.5281/zenodo.4409731

(Kuma, 2020). AMPS data was downloaded from https://www2.mmm.ucar.edu/rt/amps/ (last access: 19 May 2023). The observational data

(ALCF-processed netCDF MPL and cloud mask files) will be available on Zenodo by the end of 2024. The G22-Christchurch algorithm and

processing code will be included in future versions of ALCF.
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