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Abstract. The use of depolarization lidar to measure atmospheric volume depolarization ratio (VDR) is a common technique to

classify cloud phase (liquid or ice). Previous work using a machine learning framework, applied to peak properties derived from

co-polarised attenuated backscatter data, has been demonstrated to effectively detect supercooled liquid water containing clouds

(SLCC). However, the training data from Davis Station, Antarctica, includes no warm liquid water clouds (WLCC
:::::::
WLWC),

potentially limiting the model’s accuracy in regions where WLCC
::::::
WLWC

:
are present. In this work, we apply the Davis model5

::::
same

::::::::::
framework

::::
used

:::
on

:::
the

:::::
Davis

::::
data

:
to a 9-month Micro Pulse Lidar dataset collected in Christchurch, New Zealand,

a location which includes WLCC
:::::::
WLWC. We then evaluate the results relative to a reference VDR cloud phase mask. We

found that the Davis model performed relatively poorly at detecting SLCC with an accuracy of 0.62
:
a

:::::
recall

:::::
score

::
of

::::
0.18,

often misclassifying WLCC
::::::
WLWC

:
as SLCC. We then trained a

:::
The

::::::::::
performance

::
of
::::

our new model,
::::::
trained using data from

Christchurch, to perform SLCC detection on the same set of co-polarized attenuated backscatter peak properties. Our new10

model performed well, with accuracy
::::::
displays

:::::
recall

:
scores as high as 0.89, highlighting the

:::
0.88

:::
for

:::::::::::
identification

:::
of

::::::
SLCC,

:::::::
although

::::::::
generally

:::::::::::::
underestimates

:::::
SLCC

::::::::::
occurrence.

::::
The

::::::
overall

::::::::::
performance

:::
of

:::
the

::::
new

:::::
model

:::::::::
highlights

:::
the effectiveness

of the machine learning technique when appropriate training data relevant to the location is used.

1 Introduction

Supercooled liquid water (SLW) droplets exist in clouds at temperatures below 0◦C and above the homogeneous nucleation15

freezing temperature of around -40 ◦C (DeMott and Rogers, 1990)
::::::::::::::::::::::::::::::::::::::::::::::
(e.g. DeMott and Rogers, 1990; Khain and Pinsky, 2018)

. Heterogeneous nucleation of ice in clouds occurs
:
at

:::::::::::
temperatures

::::::::
between

:::
-40

:

◦
:
C

::::
and

:
0
:

◦
:
C
:

when SLW droplets collide

::::::
interact

:
with ice nucleating particles (INPs) such as dust and other aerosols, or other ice particles (Khain and Pinsky, 2018)

:::::::::::::::::::::
(Hoose and Möhler, 2012). Regions in which INPs are scarce thus favour increased amounts of SLW cloud (Murray et al., 2012)

::::::::
quantities

::
of

::::
SLW

::::::
clouds

:::::::::::::::::
(Murray et al., 2012)

:
,
::::::::
hereafter

::::::
referred

::
to
:::
as

:::::
SLWC. In mixed-phase clouds between around

::::::
(MPC)20

:::::::
between -40 ◦C and 0 ◦C, SLW droplets and ice particles are both present. In this study, we refer to

:::
use

:::
the

::::
term

:
’supercooled

liquid water-containing clouds
:
’ (SLCC) to describe clouds that could be mixed phase or SLW

::::
refer

::
to

::::::
clouds

:::
that

::::
may

:::
be

:::::
either

::::::::::
mixed-phase

::
or

:::::::::
composed

:::::
solely

::
of

:::::::::::
supercooled

:::::
liquid

:::::
water

:::::::
droplets.
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Previous work has shown that SLW and mixed-phase cloud
:::::
SLWC

::::
and

::::
MPC

:
are common over the Southern Hemisphere,

particularly the Southern Ocean, using satellite (Hogan et al., 2004; Hu et al., 2010; Morrison et al., 2011; Huang et al., 2012)25

and in situ observations (Chubb et al., 2013), and that these clouds are under represented in climate models (Forbes and Ahlgrimm, 2014; Mason et al., 2015; Schuddeboom and McDonald, 2021)

. The important role of clouds in the Earth’s energy balance means
::::::::
numerical

:::::::
weather

::::::::
prediction

:::::::
(NWP)

::::::::::::::::::::::::
(Forbes and Ahlgrimm, 2014)

:::
and

::::::
climate

:::::::
models

::::::::::::::::::::::::::::::::::::::::::::::
(Mason et al., 2015; Schuddeboom and McDonald, 2021)

:
.
::::
This uncertainty in cloud occurrence and cloud

phase has a large impact on models’ radiation budgets (Bodas-Salcedo et al., 2016; Vergara-Temprado et al., 2018). When

SLW clouds
::::::
SLWC are under represented in models, too much sunlight warms the Southern Ocean instead of being reflected30

from cloud tops back to space, causing an artificial heating . This has been shown to be
::
of

:::
the

:::
sea

:::::::
surface.

::::
This

::
is

:
the main

contributor to sea surface temperature (SST) biases observed in many CMIP5 models (Hyder et al., 2018). Understanding the

formation processes of supercooled liquid clouds
:::::
SLWC

:
is therefore an important topic of research to reduce biases in the

radiation budget in
::::
NWP

:::
and

:
global climate models over the Southern Hemisphere.

Moreover, recent work has shown that satellite-based measurements
::::::::::
identification

:
of low-altitude SLW cloud

:::::
SLCC are35

prone to errors due to attenuation from higher-altitude cloud
:::::
clouds

:
(Blanchard et al., 2014; Protat et al., 2014; Liu et al., 2017;

Alexander and Protat, 2018; McErlich et al., 2021). Therefore, while satellite-based measurements allow for global analysis of

high-altitude SLW cloud
:::::
SLWC

:
occurrence, ground-based remote sensing observations are essential for accurate measurement

of low-level clouds that are imperfectly measured from space.

Lidar is an active remote sensing technique that involves the emission
:::::::::::
transmission of laser pulses into the atmosphere, and40

the measurement of returned radiation backscatter from liquid drops, ice crystals, aerosols and other atmospheric constituents

(Emeis, 2011). Automatic lidars and ceilometers (ALCs)are ground-based lidar instruments, as opposed to satellite-based

instruments. Some ALCs, such as the MicroPulse Lidar used in this study, have
::
In

:::
this

::::::
study

:::
we

:::
use

::
a

::::::::::
MicroPulse

:::::
Lidar

::::::
(MPL),

:::::
which

:::
has

::
a depolarization capability that allows for the calculation of the linear volume depolarization ratio δ, hereafter

referred to as VDR, as calculated in Equation 1. This value includes contributions from both particle and molecular backscatter45

within a volume, and differs from the linear particle depolarization ratio (Lewis et al., 2020). The utility of the VDR to

determine cloud phase was first identified by Schotland et al. (1971) and has been used in numerous studies since to classify

liquid water and ice-phase clouds (Sassen, 1991; Lewis et al., 2020; Ricaud et al., 2022). The physical principle behind this

difference is that
::::
VDR

:::::::::
difference

:::::::
between

::::::::
different

:::::
phase

:::::
clouds

::::::
occurs

:::::::
because

:
spherically symmetric liquid water droplets

produce little to no depolarization, whereas backscatter from complex ice crystals tends to be depolarized and thus have50

higher VDR. Various studies have derived different thresholds to distinguish liquid- and ice-phase cloud, but most agree that

δ < 0.1 is characteristic of liquid water clouds, with δ > 0.4 for ice clouds and intermediate values representing mixed phase

clouds (Sassen, 1991). It should be noted, however, that horizontally aligned ice crystals can produce specular reflections and

decreased values of VDR, meaning such clouds can be falsely classified
::::::::::
misclassified

:
as liquid. This is usually mitigated by

orienting the lidar off-zenith (Hogan and Illingworth, 2003). Furthermore, multiple scattering from multiple layers of liquid55

cloud can sometimes causes
:::::
clouds

:::
can

::::::::::
sometimes

::::
cause

:
cross-polarized reflection and thus higher VDR, causing some liquid

clouds to be falsely classified as ice.
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Using only co-polarised backscatter, as measured by ceilometers,
::::::::::
Ceilometers

:::
are

:::::::
simpler

:::::::::
automatic

:::::
lidars

::::
that

::
do

::::
not

::::
have

::::::::::::
depolarization

:::::::::
capability,

::::
and

::::
only

:::::::
measure

::::
the

::::::::::
co-polarized

:::::
lidar

::::::::::
backscatter.

::
A

:::::::::::
methodology

:
to detect SLCC

::::
from

::::::::::
ceilometers,

:::::
using

::::
only

:::::::::::
co-polarised

::::::::::
backscatter,

:
would allow for SLCC occurrence to be analysed using widely-used ex-60

isting ceilometer networks, negating the need for polarized lidar systems. Moreover, application to historical data sets would

allow cloud phase retrieval
:::::::
retrievals to be extended to past records. Previous work by Hogan and Illingworth (1999) proposed a

method of SLCC detection using ceilometers, and further studies developed new algorithms (Hogan et al., 2003; Hogan and O’Connor, 2004; Illingworth et al., 2007; Tuononen et al., 2019)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hogan et al., 2003; Hogan and O’Connor, 2004; Tuononen et al., 2019) for scientific and operational usage. Illingworth et al. (2007)

and Tuononen et al. (2019) used a SLCC classification scheme examining the attenuated backscatter coefficient profile and65

setting
:::::::::
Operational

::::::::
networks

::
of
:::::::::::::

comprehensive
:::::::::
observing

:::::::
systems,

::::
such

::
as
::::

the
::::::::::
Atmospheric

:::::::::
Radiation

:::::::::::
Measurement

:::::::
(ARM)

::::::
Climate

::::::::
Research

:::::::
Facility

::::::::::::::::::::::
(Mather and Voyles, 2013)

:::
and

:::::::
Cloudnet

::::::::::::::::::::
(Illingworth et al., 2007)

:
,
:::
use

:::::::::
synergistic

:::::::::
radar-lidar

:::::::::
algorithms

::
to

::::::
retrieve

:::::
cloud

::::::::
properties

::::::::
including

:::::
cloud

::::::
phase.

::::::
Within

::
the

::::::::
Cloudnet

::::::::
retrieval,

:::::
liquid

:::::
water

:::::::
detection

::
is

:::::
based

:::
on empirically-

derived thresholds
::::::::
thresholds

::
of

::::
lidar

::::::::
attenuated

::::::::::
backscatter

::::::::::::::::::::::::::::::::::::
(Hogan et al., 2003; Illingworth et al., 2007)

:::
and

::
in

:::::
recent

::::::::
versions,

::
the

:::::::::
attenuated

::::::::::
backscatter

:::::
profile

:::::
shape

::::::::::::::::::::::::::::::::::::::
(Tuononen et al., 2019; Tukiainen et al., 2020).70

More recently, Guyot et al. (2022) implemented a data-driven classification model from
:::::::
machine

::::::::
learning

:::::::::::
classification

:::::
model

:::::::
applied

::
to

:
lidar observations collected at Davis Station, Antarctica

:
,
:::
and

::::::
found

:::
that

::
it
::::::::::::
outperformed

:::
the

::::::::
technique

:::
of

::::::::::::::::::
Tuononen et al. (2019). A reference cloud phase mask was created from a merged depolarization lidar and W-band cloud radar

product, and used to train an extreme gradient boosting (XGBoost) model (Chen and Guestrin, 2016) with single-polarization

ceilometer backscatter peak properties. The model was named G22-Davis to reflect that the training data was from Davis. Guyot75

et al. (2022) found that G22-Davis outperformed previous methods of SLCC detection, with accuracy scores as high as 0.91

compared to 0.84 for the application of the Tuononen et al. (2019) approach. A
::::::::
However,

:
a
:
key consideration is that at Davis,

virtually all liquid water will be in the supercooled state. No warm liquid water was detected over a year-long period based

on ceilometer observations and the G22-Davis retrieval at Davis (Guyot et al., 2022). It is therefore important to determine

whether the G22-Davis model can be applied to mid-latitude and lower latitude sites, where ’warm’ liquid water clouds with80

temperatures greater than 0 ◦C exist. Furthermore, for the G22-Davis technique to be practical for wider use, it should be

evaluated in a variety of conditions and regions. This provides the central motivation for this study.

The aims of this study are to: (i) evaluate the performance of G22-Davis for our dataset of MPL observations from Christchurch,

::::
New

:::::::
Zealand; (ii) using the same methodology as Guyot et al. (2022)

::::::::::::::::
(Guyot et al., 2022), develop a new model for SLCC

classification
::::::
SLWC

:::::::::::
identification trained using Christchurch MPL measurements; and (iii) apply the resulting cloud phase85

masks to produce a climatology of SLCC
:::::
SLWC

:
for Christchurch.
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2 Data sets and Methodology

2.1 Data sets

2.1.1 Christchurch MPL Observation Campaign

For the Christchurch field campaign, a Droplet Measurement Technologies Mini MicroPulse Lidar (MPL) was installed and90

operated from May 2021 to January 2022 on the roof of the Ernest Rutherford building on the University of Canterbury campus

(43.5225◦S, 172.5841◦E) at an altitude of 45 m. The MPL is a compact dual-polarization elastic backscatter lidar that operates

at a wavelength of 532 nm, and has a range of 30 km. For the Christchurch deployment, the vertical range resolution was set

to 15 m, and the averaging time was set to 30 s. The
::::::::
minimum

:::::
range

:::
and

::::::::
detection

::::::
height

::
of

:::
the

:::::
MPL

:
is
::::
100

::
m.

::::
The

:
scanning

head of the MPL enclosure was set to a fixed vertical scanning mode with elevation angle 90◦.95

Post-processing of the raw MPL data is completed with version 1.2.1 of the Automatic Lidar and Ceilometer Framework

(ALCF), a Linux software package detailed in Kuma et al. (2021b). While individual ceilometers typically implement post-

processing in their firmware, ALCF allows
:::::::
provides a consistent noise-reduction and calibration method that can be applied to

different ceilometer types, and has been applied in previous studies using ceilometer datasets in Antarctica (Guyot et al., 2022)

and the Southern Ocean (Kremser et al., 2021; Pei et al., 2023)
::::::::::::::::::::::::::::::::::::::::::::::
(Kuma et al., 2020; Kremser et al., 2021; Pei et al., 2023). First,100

raw MPL data was converted with the mpl2nc tool (Kuma, 2020), which performs after-pulse, overlap and dead-time calibra-

tion and calculates cross- and co-polarized normalized relative backscatter (NRB) from cross- and co-polarized raw backscatter

counts. ALCF performs noise reduction, absolute calibration and cloud detection from the mpl2nc-derived NRB, including re-

sampling of the data to a common 5 minute temporal and 50 m vertical resolution. More details on ALCF methodologies are

provided by Kuma et al. (2021b).105

2.1.2 AMPS

The Antarctic Mesoscale Prediction System (AMPS) is a real-time limited area numerical weather prediction (NWP) model
::::::
system,

based on the Polar Weather Research and Forecasting (Polar WRF) model (Powers et al., 2012; Hines and Bromwich, 2008).

AMPS
:::
The

::::::
AMPS

::::::::::
forecasting

::::::
system

:
is used for scientific and logistical purposes in Antarctica, and extends to cover New

Zealand because Christchurch is a gateway cityto Antarctica
::
of

::::::::::::
Christchurch’s

:::::
status

::
as
:::

an
::::::::
Antarctic

:::::::
gateway

::::
city, providing110

access to Scott Base and McMurdo Station. The AMPS NZ grid has a 6 km spatial resolution on 21 pressure levels, available

in 3-hourly intervals initialised at 00:00 and 12:00 UTC. Real-time AMPS forecasts are available online in GRIB1 format,

and were set to automatically download during the study period and convert to NetCDF (NC). Due to occasional download

errors, AMPS data was not available for 29 days of the 9-month study period. Temperature data was extracted for the nearest

neighbour grid cell corresponding to the University of Canterbury site. The 2-dimensional time × pressure level temperature115

field was cubic spline interpolated to a finer grid size and the hydrostatic balance equation, assuming an isothermal atmosphere,

was applied to resample to a 2-d time × altitude grid to match the resolution of the ALCF-derived products. Isotherms at 0 ◦C

and -40 ◦C were also determined from the AMPS
::::
Polar

:::::
WRF

:
output.
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2.2 Cloud Phase Masks

ALCF performs cloud detection using an attenuated volume backscatter coefficient threshold algorithm (Kuma et al., 2021b).120

The cloud mask was determined to be positive where the attenuated volume backscatter coefficient was greater than a tunable

threshold plus 5 standard deviations of noise. The default backscatter threshold for ALCF of 2×10−6m−1sr−1 was used during

preliminary analysis of the Christchurch MPL dataset, but was found to be too low and resulted in a significant number of false

positive detections in the lowest 1 km likely due to the presence of boundary layer aerosols.
::::
This

::
is

:::::
likely

:::
due

::
to

::::::
ALCF

:::::
being

::::
tuned

:::
for

::::::
usage

::::
over

:::
the

::::
near

::::::
pristine

:::::::
aerosol

::::::::::
environment

:::
of

:::
the

:::::::
Southern

::::::
Ocean

::::::::::::::::
(Bhatti et al., 2023)

:
. Instead, a backscatter125

threshold of 4× 10−6m−1sr−1 was chosen as a good compromise between boundary layer aerosol false positives and high

altitude cirrus false negatives based on visual inspection. The ALCF cloud mask product was used as the starting point of the

depolarization ratio reference mask.

2.2.1 MPL Depolarization Ratio Reference Mask

Several previous studies to determine cloud phase from polarized lidar backscatter retrievals use the linear volume depolariza-130

tion ratio, VDR (Sassen, 1991)
:::::::::::::::::::::::::::
(Sassen, 1991; Lewis et al., 2020). The principle is described in Sect. 1. VDR was calculated

from
:::
For

:::
the

:::::
cloud

:::::
phase

:::::::
reference

:::::
mask

::::
used

::
in

:::
this

:::::
study,

:::
we

:::::
apply

::
an

::::::::
algorithm

::::::
similar

::
to

:::
the

:::
one

::::::::
described

:::
by

::::::::::::::::
Lewis et al. (2020)

::
for

:::::
MPL

:::::::::::::
measurements.

::
In

:::
the

::::
first

::::
step,

:
mpl2nc-derived cross-polar

::::
Pcross and co-polar

:::
Pco:normalised relative backscatter

(NRB) using:

δ(z) =
P⊥(z)

P∥(z)
135

where δ(z) is the VDR at altitude z, and P⊥(z) and P∥(z) are the cross-polar and co-polar components of NRB respectively.

Since the mpl2nc-derived NRB products had not undergone re-sampling and noise reduction, VDR was sub-sampled to 50 m

vertical and 5 minute temporal resolution to
::::::
profiles

:::
are

:::::::::
regridded

::
by

::::::::
averaging

::
to
:
match the resolution of the ALCF products.

In this way VDR, AMPS-derived temperature and 2-dimensional ALCF productsshare a common time × altitude grid. VDR

bins for which the corresponding ALCF-derived cloud mask is 0 (i.e. no cloud) were set to not-a-number (NaN). To remove140

noise, values outside the range δ ∈ (0,1) were also removed, and
:::::
Polar

:::::
WRF

:::::::
products.

:::::
VDR

:
δ was averaged over consecutive

cloud mask altitude bins to reduce speckle found in preliminary analysis. As per previous studies (Ricaud et al., 2022; Guyot et al., 2022)

, the threshold below which clouds were classified as liquid was set to δLCC = 0.1, where LCC refers to liquid water-containing

cloud. Limitations to this simplification should be noted, especially associated with specular reflection from ice and multiple

scattering leading to false classifications. The bin at altitude index i and time step index j with δ = δi,j was then labelled145

LCC if δi,j ≤ δLCC and ICC (ice-containing cloud)if δi,j > δLCC. If AMPS data was available, LCC-labelled bins were further

classified as supercooled liquid water (SLCC)or warm liquid water containing clouds (WLCC) according to the AMPS-derived

temperature at that bin, Ti,j . If Ti,j ≤ 0 ◦C that altitude bin was labelled SLCC and if Ti,j > 0 ◦C the bin was labelled WLCC.

We define SLCC as such because SLW and mixed-phased clouds cannot be distinguished using this method. However, WLCC
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Figure 1. Empirical cumulative distribution of VDR for clouds in a range of temperature intervals.

must contain only liquidwater, since icecannot exist above
::
at

::::::
altitude

::
z

:::
was

:::::::::
calculated

::
by

:
150

δ(z) =
Pcross(z)

Pco(z)
:::::::::::::

(1)

::
for

:::::
each

:::
bin

::
in

:::
the

:::::::
detected

:::::
cloud

:::::
layer.

:::::
Then,

:::::
VDR

::
is

::::
used

::
to

::::::
assign

:
a
:::::
cloud

:::::
phase

:::::::::
diagnostic

::::::
(CPD),

:::::::::::
representing

:::
the

:::::
likely

::::
cloud

::::::
phase

:::
for

::::
each

:::::::
altitude

::::
bin,

::
as

::::::
defined

:::
in

:::::
Table

::
1.

::::
The

:::::::::
thresholds

::
to

::::::
define

:::::
liquid,

:::::::::::
mixed-phase

::::
and

:::
ice

::::
were

:::::::
chosen

::::::::
following

:
a
:::::::::
sensitivity

:::
test

:::
on

:::
the

::::::
values

::
of

:::::
VDR

::::
from

:::
all

:::::
cloud

::::
bins

::
in

:::
the

:::::::
dataset.

::::
The

:::::::::
cumulative

::::::::::
frequencies

::
of

:::::
VDR,

:::
as

:
a
:::::::
function

:::
of

::::::::::
temperature,

:::
are

::::::
shown

:::
in

:::::
Figure

:::
1.

:::
For

:::::
warm

::::
bins

::::::
(above

:
0C. A profile at time step index j was assigned a155

Boolean value Sj for the presence of SLCC anywhere in that profile. Likewise, Wj ::

◦C,
:
and Ij were assigned Boolean values

for the presence of WLCC and ICC, respectively
:::::::
therefore

::::::
nearly

:::
all

::::::
liquid),

::::
Fig.

::
1
::::::
shows

:::
that

:::::
most

::::
bins

::::
have

:::::::
δ < 0.1.

::::
For

:::
bins

:::
in

:::
the

:::::
mixed

:::::
phase

::::::::::
temperature

:::::::
regime

::::::
(-40◦C

::
to

:::::
0◦C),

:::::
VDR

::::::::
increases

::::
with

:::::::::
decreasing

:::::::::::
temperature.

::::
This

::
is

:::
due

:::
to

:::
the

::::::::
increased

:::::::
presence

::
of

:::
ice

::
at

::::::
colder

:::::::::::
temperatures,

:::
and

:::
the

::::::::::::
corresponding

:::::::
increase

::
in

::::::
VDR.

:::
For

::::
bins

:::
less

::::
than

:::
the

::::::::::::
homogeneous

:::::::
freezing

::::
value

:::::::
(-40◦C)

:::::
VDR

::
is

:::::
much

::::::
higher,

::::
and

:::::
nearly

::::::
always

:::::::
δ > 0.4.

:::::::::
Therefore,

:::::::::
thresholds

::
of

:::
0.1

::::
and

:::
0.4

::::
were

:::::::
chosen

::
to160

:::::::::
distinguish

::::::
liquid,

:::::
mixed

:::::
phase

::::
and

:::
ice,

::::::::::
respectively.

::::
The

:::::
phase

::
of

:::
an

:::::
entire

:::::
cloud

:::::
layer

:::
was

::::::::
assigned

::::
from

:::
the

:::::
most

:::::::
frequent

::::
CPD

::
of

:::
the

::::::
altitude

::::
bins

::
in

::::
that

:::::
layer.

:::::::::::
Additionally,

:::
the

:::::::::::
WRF-derived

::::::::::
temperature

::
T

:::
for

::
an

:::::::
altitude

:::
bin

:::
was

::::
used

::
to
::::::::::
distinguish

::::::::::
supercooled

:::::
liquid

:::::
water

::::::
clouds

:::::::
(SLWC,

::::::::
T < 0◦C)

::::
and

:::::
warm

:::::
liquid

:::::
water

::::::
clouds

::::::::
(WLWC,

:::::::::
T > 0◦C),

::::
and

::::
limit

::::::
SLWC

::::
and

::::
MPC

::
to

::::::::::
T >−40◦C.

6



::::
CPD

:::::::
Definition

:

:::::
Liquid

:::::
δ < 0.1

:

:::::
Mixed

::::::::::
0.1< δ < 0.4

:

::
Ice

: :::::
δ > 0.4

:

::::::::::
Undetermined

: ::
All

:::::
others

:

Table 1.
:::::
Cloud

::::
phase

::::::::
diagnostic

:::::
(CPD)

:::::::::
determined

::::
from

::::::::::::
MPL-measured

::::
linear

::::::
volume

:::::::::::
depolarization

:::
ratio

::
δ.

2.3 Development of a data-driven cloud phase mask165

The method described here follows the process of
:::::::
detailed

::
in

:
Guyot et al. (2022) to develop a data-driven model for the

classification of cloud as SLCC. The first step in the Guyot et al. (2022) methodology was to extract backscatter peak properties

from a single-polarization ceilometer. In our case, ALCF-derived attenuated volume backscatter coefficient β profiles from the

MPL dataset were used in place of the single-polarization ceilometer backscatter profiles. Since ALCF applies consistent

calibration and resampling, the expectation is that the model developed here is applicable to any calibrated lidar data processed170

with ALCF, using the default 50 m vertical and 5 minute temporal resolution.

Each profile of attenuated volume backscatter coefficient β was analysed using the signal processing tools of the Python

library SciPy
::
in

:::
the

:::::
SciPy

::::::
Python

::::::
library

:
(Virtanen et al., 2020) to identify peaks (local maxima). Peaks exceeding a tunable

:::
For

::::
each

::::
peak

:::::::::
exceeding

::
a minimum value of β > 2× 10−5m−1sr−1 with

:::
and minimum width of 50 mwere found, and the

following
:
,
:
a
:::
set

::
of

:
properties were recorded: the peak height

:::::
value

::
of

:::::::::
backscatter

::
at
:::::

peak
:::::::
location

::::
(i.e.

:::
the

::::
peak

::::::::::
magnitude)175

β (m−1sr−1), the peak ;
::::
peak

:
width w (m), the peak width height βw (m−1sr−1) defined as the height at which the peak width

is evaluated, the peak
:
;
:::
the

::::
peak prominence βprom (m−1sr−1) defined as the difference between the peak and

::
its

:::::
lowest

:::::::
contour

::::
line;

:::
the

:::::
’peak

:::::
width

::::::
height’

:::::::::::::
βw (m−1sr−1)

::::::
defined

:::
as

:::
the

:::::
value

::
of

::::::::::
backscatter

:::::
where

:::::
peak

:::::
width

::
is

::::::::::
determined,

:::::::::
calculated

::::
from

::::::::::::::::::::
βw = β− (0.5×βprom); the surrounding baseline, the peak altitude z (m) above ground level, ;

:
the total number of peaks

for a given profile n
:
;
:
and the peak order within that total number,

:
in the range (0,n). The peak width height was calculated180

as : βw = β− (0.5×βprom). For a given profile with time step index j, the corresponding AMPS-derived air temperature Ti,j

corresponding to the specific altitude bin i of that peak,
:::::
These

::::
peak

:::::::::
properties

:::
are

::::
the

::::
same

:::
as

:::::
those

::::
used

:::
in

:::
the

:::::::
original

::::
study

:::
by

::::::::::::::::
Guyot et al. (2022),

::::
and

::::::
readers

::::::
should

::::
refer

:::
to

:::::
Figure

::
6
::
in

::::
that

:::::
study

:::
for

::
an

:::::::::
illustration

:::
of

:::
the

::::
peak

:::::::::::::
characteristics.

::
In

:::::::
addition

::
to

:::
the

::::
peak

:::::::::
properties,

::::
the

:::::::::::
WRF-derived

::::::::::
temperature

:::
for

:::
the

::::::
peak’s

::::::
altitude

::::
bin was also recorded. The 8-feature

dataset of peak properties was then labelled with the reference mask classification of the altitude bin as ’SLCC’, ’WLCC’ or185

’ICC’, evaluated from the variables Sij , Wij and Iij ::::::
SLWC,

:::::::
WLWC,

:::::
MPC

::
or

:::
ice

:::::
cloud

:::
(IC).

Guyot et al. (2022) noted the importance of accounting for lidar extinction in multi-layer situations. Returned backscatter

from higher altitude cloud where multiple
:::::
When

:::::::
multiple

:::::
cloud

:
layers are presentwill be weaker given the extinction

:
,
:::
the

:::::::
returned

:::::::::
backscatter

:::::
from

::::::
higher

::::::
layers

::
is

::::::
weaker

::::
due

:::
to

:::::::::
attenuation

:
of the lidar signal from lower altitude cloud. They

compared the value of peak backscatter
:::::
layers.

::::::::::::::::
Guyot et al. (2022)

::::::::
compared

:::::
peak

::::::::
properties

:
for primary peaks (where peak190
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Figure 2. Histogram and kernel density estimation (KDE) plots of backscatter peak heights
::::::::
magnitudes

:
for primary (peak order = 0) and

secondary (peak order > 0) peaks. Histograms are normalized such that the bar heights sum to 1. The median of each distribution, Q2prime

and Q2second respectively, are also plotted.

order = 0) and secondary peaks (where peak order > 0), finding a clear
:::::::::
statistically

:::::::::
significant

:
separation between pri-

mary peak and secondary peak backscatter heights (Guyot et al., 2022, Figure 3). That work found peak height
:::::::::
magnitudes

:::::::::::::::::::::::
(Guyot et al., 2022, Figure 3)

:
.
:::::
They

:::::
found

::::
peak

:::::::::
magnitude

:
values of both primary and secondary peaks to have normal distri-

butionsand added an offset to the secondary peak heights, ,
::::
and

::::::
derived

:::
an

:::::
offset

::::
term

:::
for

:::::
direct

::::::::::
comparison

::
of

:::::::
primary

::::
and

::::::::
secondary

::::::
peaks.

::::
This

:::::
offset

::::
was

:
calculated as the absolute difference of the distributions’ medians, for direct comparison.195

This offset of 4.2× 10−5m−1sr−1
:::
and

:::
was

:::::::::::::::::
4.2× 10−5m−1sr−1

:::
for

:::::
their

:::::::
dataset.

::::
This

:
was hypothesised to be the average

extinction due to the presence of the lower layer. We
::::::::
reduction

::
in

::::
lidar

::::::::::
backscatter

:::
due

::
to
:::::::::
extinction

::::
from

:::
the

::::::
lower

:::::::
layer(s).

:::
For

:::
our

:::::::::::
Christchurch

:::::
MPL

:::::::
dataset,

::
we

:
compared the distributions of primary and secondary peak propertiesfor our dataset,

which are shown in Fig. 2. Unlike Guyot et al. (2022, Figure 3), the peak height
::::::::
attenuated

::::::::::
backscatter

::::
peak

:::::::::
magnitude

:
values

are not normally distributed, and both skew right to greater values of attenuated backscatter peak height
::::
peak

:::::::::
magnitude. That200

is, in our dataset there are more peaks with higher values of backscatter coefficient. This effect is more pronounced for primary

peaks. This disparity from
:::
with

:
the distributions of Guyot et al. (2022, Figure 3) could be because our dataset is significantly

larger (around 35
::
30,000 vs 3,700 primary peaks and 7

:
5,000 vs 570 secondary peaks) and therefore more varied; or because of

an instrumental effect (e.g. due to the different wavelength of the Davis ceilometer, or a calibration difference); or due to a dif-

ference in environmental conditions (e.g. different aerosol concentrations causing more backscatter or more attenuation). The205

difference in the primary and secondary medians was calculated to be 6.6× 10−5m−1sr−1
::::::::::::::::
6.7× 10−5m−1sr−1

:::
for

:::
our

::::::
dataset.

As shown in Fig. 2, the backscatter height
:::
peak

::::::::::
magnitude value corresponding to the maximum Kernel Density Estimate

(KDE), i.e. the mode, is the same for primary and secondary peaks, and there is significant overlap between the two distribu-

tions, unlike those in Guyot et al. (2022, Figure 3). Therefore, we chose not to scale the heights
:::::::::
magnitudes of secondary peaks

by adding an offset.210

The next step in the Guyot et al. (2022) processing scheme
::::::::::
development

::
of

:::
the

:::::
cloud

:::::
phase

:::::
mask was to train and test a data-

driven model that could perform multi-class classification of each peak as SLCC, LCC
::::::
SLWC,

:::::::
WLWC or neither. As in Guyot
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et al. (2022), we also chose XGBoost due to its excellent performance in a wide range of applications (Chen and Guestrin,

2016), often outperforming other decision tree or boosting model approaches. XGBoost is an optimised version of gradient tree

boosting, an ensemble supervised learning algorithm. During training, XGBoost iteratively builds a series of ’weak’ learners215

(regression trees) that are fitted to minimise the loss (i.e. error) of the resulting predictor, whilst also minimising complexity

to avoid overfitting. XGBoost applies numerous performance optimisation strategies when building and combining the trees,

reducing computational costs and allowing it to be scalable to large datasets. The XGBoost model developed by Guyot et al.

(2022) performed binary classification on each peak as SLCC or not. In this study, due to the presence of warm liquid water >

0 ◦C, we apply a multi-class classification of each peak as SLCC, WLCC
::::::
SLWC,

::::::
WLWC

:
or neither (implying the cloud phase220

is ice
::
is

::
IC

::
or

:::::
MPC). The 8-feature dataset of peak properties was passed to the model for training along with the target label,

which was the reference mask’s classification of the peak as SLCC, WLCC or ICC
::::::
SLWC,

::::::
WLWC

:::
or

:::::::
IC/MPC. Model training

and testing was performed on the entire peak datasetfor which AMPS temperature data was available, excluding peaks from two

case study daysdetailed later
::
an

::::::::
evaluation

::::::
subset

:::::
made

::
up

::
of

:::
15

::::::::
randomly

:::::::
selected

::::
days. The training dataset contained 36,767

::::::
34,542 peaks related to clouds from 223

:::
211

:
days, of which 21

::
23% were labelled SLCC, 54

::::::
SLWC,

:::
56% were labelled WLCC225

and 25
:::::::
WLWC,

:::
2%

:::::
were

:::::::
labelled

:::::
MPC

:::
and

:::
17% were labelled ICC

::
IC

:
by the VDR reference mask. Preliminary analysis on

the peak dataset is presented in Section 3.1.

Data preparation and cross validation were implemented
:::
The

:::::
XGB

:::::
model

:::
was

:::::::::
developed using the Python library scikit-learn

(Pedregosa et al., 2011), and the XGB model was developed using the Python library XGBoost Chen and Guestrin (2016)

::::::::
XGBoost

::::::::::::::::::::::
(Chen and Guestrin, 2016),

::::
with

::::
data

:::::::::::
preparation,

::::
cross

:::::::::
validation

:::
and

::::::::::::::
hyperparameter

::::::
testing

:::::::::::
implemented

:::::
using230

::
the

::::::::::
scikit-learn

::::::
Python

::::::
library

::::::::::::::::::::
(Pedregosa et al., 2011). To prevent overfitting we applied

:::::
during

:::::::::::::
hyperparameter

:::::::
testing,

:::
we

::::::
applied

:::::::
stratified

::::::
group

:::::
3-fold

:::::
cross

:::::::::
validation.

::
In k-fold cross validation, in which the model is trained k times on k train/test

folds. Test folds never share the same data with other folds, allowing k independent validation scores and preventing overfitting

of the model to a specific training set. In the stratified k-fold cross validationused in this study, each training and testing

fold contains approximately the same proportion of each target class as the complete set. Furthermore,
::::::
Finally,

::
in

:
group k-235

fold cross validationmeans
:
, grouped data is split into train/test folds such that the same group is not represented in both the

training and test set. We used stratified group 3-fold cross validation. Groups were assigned by month
::
In

:::
this

::::
case,

::::::
groups

:::::
were

::::::
defined

::
as

:::
the

::::::
month

::
in
::::::

which
:::
the

::::
lidar

::::::::::::
measurement

:::
was

:::::
made, thus creating 9 groups with approximately equal size and

class ratio. This method meant neighbouring peaks were generally kept together , whilst it also preserved class ratios in the

:::::
means

::::
that

::::::::::::::
highly-correlated

:::::::::::
neighbouring

::::::::::::
measurements

:::
are

::::
kept

:::::::
together

::
in

:::
the

::::
same

::::
fold,

::::::::
ensuring

::::
each train/test sets

:::
fold

::
is240

::::::::::
independent. Due to the class imbalance in our peaks dataset (shown in Section 3.1) we used the balanced accuracy (described

in more detail in Section 2.4) as the scoring method for cross validation and hyperparameter testing. Preliminary analysis to

find optimal XGB hyperparameters was completed by applying
::
To

::::
find

:::
the

:::::::
optimal

:::::
XGB

:::::::::::::
hyperparameter

:::::::::::
combination,

:
an

extended grid search
:::
was

::::::
applied, with 3-fold group stratified cross validation, over a range of

:::::::::::::
hyperparameters

:::::::::
including

maximum depth and learning rate (η)values. The depth of a regression tree is the number of splits (decisions) the tree makes245

before reaching a prediction. Therefore the maximum depth hyperparameter controls how large a tree can grow, with larger

values potentially improving predictive performance but increasing complexity. Learning rate is the ’shrinking’ factor applied
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when trees are combined, and lower values reduce each tree’s individual influence on the final prediction. Maximum depth

values of 3, 6, 9and learning rate values of 0.01, 0.02, 0.1, 0.3were explored, and the optimal combination (max depth of 3

and learning rate of 0.1) was found to yield very little improvement in classification to any other hyperparameter set: balanced250

accuracy scores increased by less than 0.01. Due to this insignificant improvement we continued using default XGBoost

hyperparameters values (max depth of 6 and learning rate of 0.3).
::::
Cross

:::::::::
validation

::::::
testing

:::::
scores

:::
are

::::::::
presented

::
in

:::::::
Section

:::
3.2.

:

The trained and tested XGBoost
::::
XGB model was then applied

::::
used to predict the classification for all peaks

::::::
clouds in the

MPL datasetof attenuated backscatter. These model results were then used to create a cloud mask Zij and Zj by processing

each profile j
:
.
:::::
Each

:::::
profile

:
of attenuated backscatter

:::
was

:::::::::
processed sequentially: firstly, peak properties were calculated and255

:::::
peaks

::::
were

::::::::
identified

::::
and

::::
their

:::::::::
properties recorded for the given profile. If no peaks were detected, that profile was labelled

Zj = 0 or cloud free
:::::
’cloud

::::
free’. The detected peaks’ properties were passed to the trained model for classification as ICC,

SLCC or WLCC. If the classification was SLCC or WLCC
:::::
SLWC,

:::::::
WLWC

::
or

::::::::
IC/MPC.

:::::::::
Following

:::
the

::::
peak

:::::::::::
classification, the

corresponding bin at peak altitude Zij ::::::
altitude

:::
bin

:
was labelled with that classification

:::
the

::::::
model

::::::::
prediction

:
along with the

surrounding bins, with the lower and upper bounds defined as twice the peak width value, as per Guyot et al. (2022). This260

created a cloud mask for detected layers of SLCC and WLCC. The ICC mask was determined from the cloud mask product

from ALCF, with SLCC and WLCC layers subtracted. A profile Zj ::::
Each

::::::
profile was also labelled according to whether ICC,

SLCC or WLCC were
::::::
SLWC,

:::::::
WLWC,

:::::
MPC

::
or

::
IC

::::
was present anywhere in the profile. We hereafter refer to our trained model

as G22-Christchurch, to reflect that the model was trained on the Christchurch dataset. We applied the same method to create

the G22-Davis cloud mask evaluated in this study, for direct comparison with G22-Christchurch. Each peak was passed to265

the G22-Davis model for classification as SLCC or ICC. If the classificationwas SLCC
:::
IC.

:::
For

:::::
each

::::
peak

:::::::::::
classification, the

corresponding altitude bin was labelled SLCC in the same process as described above. Again, the ICC mask was created by

taking the ALCF cloud mask and ’subtracting’ the SLCC layers.

2.4 Model performance metrics

Model testing and evaluation against the reference mask involves the comparison of two one-dimensional Boolean vectors for270

each class (ICC, SLCC and WLCC)
:::::
SLWC

::::
and

::::::::
WLWC),

::::::::::
representing

:::
the

::::::::
presence

::
of

:::::
cloud

::::::::
anywhere

::
in

:::
the

::::::
profile. Here we

provide basic definitions and describe metrics used for model evaluation in this study, which are similar to those used by Guyot

et al. (2022). A true positive (TP) is defined as a test result indicating a correct prediction of a positive classification for a given

class (e.g. presence of SLCC
:::::
SLWC), and a true negative (TN) is defined as a test result indicating a correct prediction of a

negative classification (e.g. absence of SLCC
:::::
SLWC). A false positive (FP) is a test result indicating an incorrect prediction of a275

positive classification (e.g. wrongly predicting the presence of SLCC
:::::
SLWC) and a false negative (FN) is a test result indicating

an incorrect prediction of a negative classification (e.g. incorrectly predicting the absence of SLCC
:::::
SLWC).

Recall, or true positive rate, is defined by Equation 2 and represents the proportion of all true samples that are correctly

classified as true, i.e. the ability of the classification to find all the positive samples:
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recall =
TP

TP+FN
(2)280

Precision is defined by Equation 3 and represents the proportion of samples classified as true that are actually true, i.e. the

ability of the classification not to label as positive a negative sample:

precision =
TP

TP+FP
(3)

The f1 score is defined as the harmonic mean of the precision and recall defined in Equation ??:

f1 = 2 · precision · recall
precision+ recall

285

For the multi-class classification we apply in this study, precision, recall and f1:::::
recall

:::
and

::::::::
precision scores are calculated for

each class. Accuracy is defined as the fraction of correct predictions out of the total number of samples
:
,
:::
and

::
is

:::::::::
equivalent

::
to

:::
the

:::::::
weighted

:::::
mean

::
of

:::
the

::::::
recalls

::
of

:::::
each

::::
class. However, when classes are imbalanced (as they are in this study), accuracy scores

can be subject to inflated performance estimates. The balanced accuracy is defined as the arithmetic
::::::::::
unweighted mean of the

recall obtained on each class, and is a more appropriate scoring method for imbalanced datasets
::::
when

:::::
each

::::
class

::
is
:::::::
equally290

::::::::
important (Brodersen et al., 2010). In this study we primarily use balanced accuracy when describing the overall performance

of the classification, and f1:::::::::::::
recall/precision scores when describing the performance for each class.

3 Results

3.1 Peak properties dataset

We first present analysis of the dataset of peak properties. The training dataset contained 36,767 peaks from 223
::::::
34,542

:::::
peaks295

::::
from

:::
211

:
days, of which 21% (7,889

:::
23%

::::::
(8,006 peaks) were labelled SLCC, 54

::::::
SLWC,

::
56% (19,822

:::
288 peaks) were labelled

WLCC and 25% (9, 056
:::::::
WLWC,

:::
2%

::::
(799

::::::
peaks)

::::
were

:::::::
labelled

::::::
MPC,

::::
17%

:::::
(5,945

:
peaks) were labelled ICC

::
IC

:::
and

::::
1%

::::
(504

:::::
peaks)

:::::
were

:::::::
labelled

:::::::::::::
’undetermined’ by the VDR reference mask. In Fig. 3 we show kernel density estimation (KDE) plots

showing the distribution of all the peak properties, separated by the reference mask’s cloud phase classification as LCC (both

SLCC and WLCC) or ICC
::::
liquid

:::::
(both

::::::
SLWC

:::
and

::::::::
WLWC)

::
or

:::::::::
non-liquid

:::
(IC

::
or

::::::
MPC). In Fig. 4 we show similar KDE plots300

of LCC
:::::
liquid peak properties, this time separated by the reference mask’s classification of these LCC peaks as SLCC or

WLCC
::::
liquid

:::::
peaks

:::
as

::::::
SLWC

::
or

::::::
WLWC.

Fig. 3a shows that values of backscatter peak height for LCC
::::::::
magnitude

:::
for

:::::
liquid peaks are marginally higher than those for

ICC
::::::::
non-liquid

:
peaks. The same is true for peak width height (Fig. 3c) and peak prominence (Fig. 3d), which also have units

of m−1sr−1 and are strongly correlated with peak height, as we show later in Fig. 8. This supports our physical understand-305

ing that liquid water is associated with stronger backscatter returned signal, as found in previous studies Guyot et al. (2022)
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Figure 3. Kernel density estimation (KDE) plots of peak property distributions for the full dataset, with the distribution’s median also plotted.

Peaks are separated by the reference mask’s cloud phase classification as liquid (WLWC and SLWC) or not (IC or MPC). For n Peaks and

Peak Order (g, h), histograms and median lines are omitted for clarity. The unit for peak width is a number of range-gates, which can be

converted to distance by multiplying by 50 m.
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::::::::::::::::
(Guyot et al., 2022). Though, clear overlap between these cases

::::::::
properties is observed in each set of distributions. It should also

be noted that the difference in peak height between LCC and ICC
:::::::::
magnitude

:::::::
between

:::::
liquid

:::
and

:::::::::
non-liquid

:
peaks is small, and

the distributions are poorly separated
::::::
overlap. Peak width, shown in Fig. 3b, also separates LCC and ICC

:::::
liquid

:::
and

:::::::::
non-liquid

peaks, with narrow peaks associated with LCC
:::::
liquid, and wider peaks associated with ICC

::
IC

::::
and

::::
MPC. This is because liquid310

water attenuates the lidar signal more rapidly, and this attenuation is represented in the returned backscatter as a thin
:::::
cloud

band. The number of peaks and the peak order, which are strongly correlated, show a slight separation between LCC and ICC

:::::
liquid

:::
and

:::::::::
non-liquid peaks, where most LCC

::::
liquid

:
peaks are associated with a small number (1-2) of peaks in a single profile.

This agrees with the findings of Guyot et al. (2022), who found that SLCC
::::::
SLWC peaks tend to be associated with single-layer

cloud most frequently. This is likely
:::::::::
potentially due to the attenuation effects of LCC

:::::
liquid

:
layers that obscure the view of315

higher altitude cloud in multi-layer situations.

Fig. 3e shows the altitude distribution of LCC and ICC
:::::
liquid

:::
and

:::::::::
non-liquid peaks. It shows that LCC

::::
liquid

:
peaks are most

strongly associated with lower altitudes, with the frequency decreasing as altitude increases. The temperature distribution in

Fig. 3f shows the inverse is true of temperature: that LCC
:::::
liquid

:
peaks are most strongly associated with warmer temperatures

as we expect, and the frequency of LCC
:::::
liquid peaks decreases as temperature decreases until the lower temperature limit320

of around -40 ◦C is reached, below which homogeneous freezing occurs (DeMott and Rogers, 1990). Fig. 3f shows that ice

peaks are present at temperatures as low as -70 ◦C, and also above 0 C. However, it is likely that this ’warm’ ICC is actually

LCC that was misclassified by the reference mask as ICC due to multiple scattering. It should be reiterated that the AMPS

temperature information was only used in the VDR reference mask to distinguish SLCC and WLCC. Temperature was not

used to discriminate LCC and ICC, and only the volume depolarization ratio δ was used for that separation. .
:

Overall, the325

temperature distribution in Fig. 3f is representative of SLCC
:::::
SLWC

:
temperature distributions in the heterogeneous freezing

temperature regime as identified in previous work (Murray et al., 2012; McErlich et al., 2021). This gives us
:::::::
provides

::::::
further

confidence that our VDR reference mask is accurately distinguishing SLCC and ICC
:::::
liquid

::::
and

:::
ice

:
in the heterogeneous

temperature range.

Fig. 4 shows the difference in average peak properties between peaks classified as SLCC and WLCC
:::::
SLWC

::::
and

::::::
WLWC

:
by330

the reference mask. Fig. 4a shows that WLCC
:::::::
WLWC peaks generally have higher values of backscatter height than SLCC

::::::::
magnitude

::::
than

::::::
SLWC

:
peaks, and the same is true for peak width height and prominence. However, this result was found when

looking at peaks from all altitudes. Given that WLCC
::::::
WLWC peaks are nearly always found at altitudes below 2 km, and SLCC

:::::
SLWC

:
peaks are always found above 0.5 km (as shown in Fig. 4e), any altitude-dependent bias in attenuated volume backscatter

would carry over to the SLCC and WLCC backscatter height
:::::
SLWC

:::
and

:::::::
WLWC

::::::::::
backscatter

:::::::::
magnitude

:
distribution. A fair335

comparison would require all peaks to be in the same altitude range. By comparing the average peak properties over smaller

altitude ranges (below 0.5 km, 0.5-1 km, 1-1.5 km, 1.5-2 km and above 2 km), we found that the distributions of peak height

::::::::
magnitude

:
were roughly equal and similarly skewed between SLCC and WLCC

::::::
SLWC

:::
and

:::::::
WLWC

:
peaks. It is possible,

then, that an altitude-dependent bias exists in the attenuated backscatter profile. This could be caused by an imperfect overlap

or range correction in the lidar processing. However, our analysis found that this
:::::::
potential bias made little difference to the340

performance of the G22-Christchurch model and cloud mask.
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Figure 4. Kernel density estimation (KDE) plots of peak property distributions for the full dataset, with the distribution’s median also plotted.

Peaks are separated by the reference mask’s cloud phase classification as SLWC or WLWC. For n Peaks and Peak Order (g, h), histograms

and median lines are omitted for clarity.

As expected, the temperature distribution shown in Fig. 4f shows that SLCC
::::::
SLWC peaks have temperatures between around

-40 ◦C and 0 ◦C, and WLCC
:::
with

:::
the

:::::
mode

::::
just

:::::
below

:
0
:

◦
::
C.

:::
On

:::
the

::::
other

:::::
hand,

:::::::
WLWC peaks have temperatures above 0 ◦C

:
,

::::
with

::
the

:::::::
median

:::
and

:::::
mode

::::::
around

:::
10 ◦

:
C. The altitude distribution shown in Fig. 4e shows that WLCC

::::::
WLWC

:
peaks are most

frequently found in
::
at altitudes below 2 km, and that SLCC

::::::
SLWC peaks are found between around 0.5 km and 8 km. The345

overlap in the distributions of SLCC and WLCC
:::::
SLWC

:::
and

:::::::
WLWC

:
peak altitude between 0.5-2 km appears to be due to the

seasonal and daily variation in the altitude of the 0 ◦C isotherm.

3.2 Model performance evaluation

The XGBoost model was trained and tested with 3-fold stratified group cross-validation, as discussed previously. Accuracy

scores, as described in Section 2.4, are presented here
::
in

:::::
Table

:
2
:
as the mean of the 3-fold training and testing scores, with the350
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uncertainties derived from the standard deviation. The balanced accuracy score was 0.872± 0.018, and the f1 scores for each

class were: 0.788± 0.035 for ICC, 0.847± 0.022 for SLCC and 0.980± 0.003 for WLCC for the G22-Christchurch analysis.

We also applied G22-Davis to our dataset of peak properties, and compared that model’s binary prediction
::
of

:::::
SLCC

:
to our

reference mask’s classification of each peak as either SLCCor LCC. Compared to the reference mask’s SLCC classification, the

::::::
SLCC.

::::::::
Accuracy

:::::
scores

:::
for

:::
the G22-Davis balanced accuracy score was only 0.41 and the f1 score for the SLCC class (positive355

binary classification) was 0.13. Compared to the reference mask’s LCC classification, the G22-Davis balanced accuracy score

was 0.66 with f1 score 0.54 for LCC (i.e. both SLCC and WLCC)
:::::
model

::::::::::
performance

:::
are

::::::::
presented

:::
in

:::::
Table

:
3. These results

demonstrate that the G22-Davis model performed poorly at SLCC and LCC classification in this environment relative to the

excellent performance at Davis, where the model achieved accuracy scores as high as 0.91 (Guyot et al., 2022).

:::::::
Balanced

:::::::
Accuracy

: ::::::
WLWC

:::::
SLWC

::::::
IC/MPC

0.928± 0.001 :::::
Recall

:::::::::::
0.999± 0.001

:::::::::::
0.957± 0.009

:::::::::::
0.828± 0.011

:::::::
Precision

:::::::::::
0.998± 0.001

:::::::::::
0.870± 0.011

:::::::::::
0.943± 0.014

Table 2.
:::::::::::::
G22-Christchurch

::::::
model

:::::::
balanced

::::::::
accuracy

:::::
scores

:::
and

::::::::::::
recall/precision

::::::
scores

:::
for

::::
each

:::::
class

::::
from

:::::
3-fold

:::::
group

::::::::
stratified

::::::::::::
cross-validation.

:::::::
Balanced

:::::::
Accuracy

: :::::
SLCC

::::::::
Non-SLCC

0.39 :::::
Recall

:::
0.14

:::
0.64

:::::::
Precision

:::
0.12

:::
0.68

Table 3.
::::::::
G22-Davis

:::::
model

:::::::
balanced

:::::::
accuracy

:::::
scores

:::
and

::::::::::::
recall/precision

::::
scores

:::
for

::::
each

::::
class.

The performance of the SLCC
::::::::::::::
G22-Christchurch

:::::
cloud

:
mask was then analysed by comparing the reference mask ’s SLCC360

label Sj to the model’s SLCC masklabel Zj . Balanced accuracy scores were again derived, given the class imbalance
:::
and

:::
the

:::
new

::::::::::::::
model-generated

::::::
SLWC

:::::
mask,

::
as

::::::::
described

:::
in

::::::
Section

:::
2.4.

::::
This

::::::::
involves

::
the

::::::::::
comparison

::
of

::::
two

::::::::::::::
one-dimensional

:::::::
Boolean

::::::
vectors,

::::::::::::
corresponding

::
to
:::
the

::::::::
reference

:::::
mask

::::
and

:::
the

::::::::::::::
model-generated

:::::
mask. We first evaluate the performance of the model

mask by comparing all profiles (time steps), and then compare only time steps where peaks meeting the minimum backscatter

and width thresholds were detected. For the full dataset with 66,240 time steps, there were 31,708 time steps (47.9%) where365

peaks were detected. This is lower than the total number of peaks (36,767
::::::
34,542) since some time steps contained multiple

peaks corresponding to multi-layer cloud. According to the reference mask, SLCC
::::::
SLWC

:
was present in 14.2

:::
15.3% of all

profiles, and 25.4
::::
27.5% of profiles with peaks. The balanced accuracy of

::::
recall

:::::::::
(precision)

:::
of

:::
the

:
G22-Christchurch SLCC

mask was 0.85
:::::
SLWC

:::::
mask

::::
was

::::
0.76

:::::
(0.89)

:
for all profiles, and

::::
0.88

:
(0.89

:
)
:
for profiles with peaks. The balanced accuracy

for
::::
recall

::::::::::
(precision)

::
of

:
the G22-Davis SLCC mask , compared to the reference mask, was only 0.62

:::
was

::::
0.15

:::::
(0.15)

:
for all370

profiles, and 0.55
:::
0.18

::::::
(0.15) for profiles with peaks. We repeated this analysis for WLCC

::::::
WLWC

:
detection by comparing

the reference mask’s WLCC label Wj:::::::
WLWC

::::
label

:
to our model’s WLCC

::::::
WLWC mask. According to the reference mask,

WLCC
::::::
WLWC

:
was present in 44.6

:::
45.1% of all profiles, and 66.1

:::
67.2% of profiles where peaks were detected. The balanced
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accuracy
::::
recall

:::::::::
(precision)

:
of the G22-Christchurch WLCC mask was 0.73

::::::
WLWC

:::::
mask

:::
was

::::
0.63

::::::
(0.99) for all profiles, and

0.81
::::
0.88

:::::
(0.99) for profiles with peaks.375

3.3 Case studies

In this section we present results showing the application of both our mask and the G22-Davis mask to two case studies, in

order to interpret their performance. Backscatter peaks from these days were excluded from the training dataset, so these days

represent unseen data.

3.3.1 2021-05-18 Case study380

Observations from 18 May 2021 are shown in Fig. 5 as an example of a day with a distinct LCC
::::::
SLWC layer. Fig. 5 shows

the ALCF-calibrated attenuated volume backscatter (Fig. 5a), volume depolarization ratio VDR (Fig. 5b) and VDR reference

cloud mask (Fig. 5c-d), along with the G22-Davis cloud mask (Fig. 5e-f) and G22-Christchurch cloud mask (Fig. 5g-h) applied

to the attenuated backscatter profiles. The cloud masks are presented as time × altitude grids Zij (Fig. 5c, e, g) and time-step

Booleans Zj (Fig. 5d, f, h) according to whether SLCC
:::::
SLWC

:
is present anywhere in that profile. This particular day shows a385

clear band of SLCC
:::::
SLWC

:
between 06:00 and 12:00 UTC at 4km altitude, and again between 17:00 18/05 and 00:00 19/05

UTC between 3-6km. Other cloud (identified as ice
::
IC

:::
and

:::::
MPC

:
by the VDR reference mask) is present from 02:30 to 06:00

UTC between 2-8km altitude, and again from 14:30 to 16:30 UTC. The first SLCC
::::::
SLWC band is a multi-layered cloud region

between 06:00 and 08:00 UTC. Clouds or precipitation can be observed below the second SLCC
:::::
SLWC

:
band at around 20:00

and 22:00 UTC. A
::::::::
According

::
to

:::
the

::::::::
reference

:::::
mask

::::::::::::
classification,

:
a
:
thin layer of WLCC

:::::::
WLWC below 1 km is also present390

from 19:00 UTC 18/05 to 00:00 UTC 19/05.
:::::::
However,

::
it
::
is

:::::::
possible

:::
that

::::
this

:::::
layer,

:::::
which

::::::::
attenuates

::::::::
relatively

::::
little

::::
lidar

::::::
signal

::
as

::::
seen

::
in

:::
Fig.

:::
5a,

:::::
could

:::::::
actually

::
be

::
an

:::::::
aerosol

::::
layer

:::
that

::::
has

::::
been

:::::::::::
misidentified

::
as

:::::
cloud

::
by

:::
the

:::::
ALCF

:::::
cloud

::::::
mask,

::
as

::::::::
discussed

::
in

::::::
Section

::::
2.2.

Both
::::
The G22-Davis and our model’s cloud masks correctly identify the second SLCC band. The first SLCC band, which

appears slightly thicker, is poorly represented in the G22-Davis cloud mask , but correctly identified using our model
::::::::
identifies395

::::
some

::
of

:::
the

::::::
SLWC

::::::
layers

::::::::
correctly,

:::
but

::::::
misses

:::::
many. Comparing profile-to-profile SLCC classification (i.e. comparing Figs.

5d, f, h),
:
to

:::
the

::::::::
reference

:::::
mask,

:
G22-Davis had a balanced accuracy score of 0.76 for

::::
recall

:::::::::
(precision)

::::::
scores

::
of

::::
0.19

::::::
(0.94)

::::
when

::::::::::
considering

:
all profiles, and 0.68

::::
0.20

:::::
(0.94)

:
for profiles containing peaks. Our model performed betterwith balanced

accuracy scores of 0.93
:::
The

::::
new

::::::::::::::::
G22-Christchurch

:::::
cloud

:::::
mask

::::::::
performs

::::::
better,

:::
and

::::::::
identifies

:::::
most

::
of

::::
the

::::::
SLWC

::::::
layers.

::::::::
Compared

::
to
:::

the
::::::::

reference
:::::::

mask’s
::::::
SLWC

:::::::::::
classification

:::
for

::::
each

::::
time

::::
step,

:::::::::::::::
G22-Christchurch

::::
had

:::::
recall

:::::::::
(precision)

:::::
scores

:::
of400

::::
0.96

:::::
(0.94) for all profilesand 0.84

:
,
:::
and

::::
0.97

:::::
(0.94)

:
for profiles containing peaks, for this case study.

3.3.2 2021-06-05 Case study

MPL observations from 5 June 2021 are shown in Fig. 6. On this day, a thick band of ice cloud
::::
wide

:::::
band

::
of

:::
IC is present at

altitudes ranging from 3-10 km between 00:00 and 18:00 UTC, followed by a band of low-altitude (< 1 km) liquid water cloud
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Figure 5. MPL profile for 2021-05-18 over Christchurch showing attenuated volume backscatter coefficient (a), volume depolarization

ratio VDR (b), the VDR reference cloud mask (c), the G22-Davis cloud mask (e) and the G22-Christchurch cloud mask (g). Time-step

classifications of SLWC are shown in (d, f, h) for the reference mask, G22-Davis and G22-Christchurch respectively, along with time steps

for which peaks were identified. WRF air temperature contours are overlaid in (a) and (c).
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Figure 6. MPL profile for 2021-06-05 over Christchurch showing attenuated volume backscatter coefficient (a), volume depolarization

ratio VDR (b), the VDR reference cloud mask (c), the G22-Davis cloud mask (e) and the G22-Christchurch cloud mask (g). Time-step

classifications of SLCC are shown in (d, f, h) for the reference mask, G22-Davis and G22-Christchurch respectively, along with time steps

for which peaks were identified. Also shown are balanced accuracy scores for G22-Davis and G22-Christchurch. WRF air temperature

contours are overlaid in (a) and (c).
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between 18:00 UTC 05/06 and 00:00 UTC 06/06, and another layer of liquid water cloud at around 2-3 km altitude for a short405

period after 22:00 UTC. Layers of SLCC
:::::
SLWC

:
are present for short periods throughout the day (06:00, 10:00, 12:00 and

14:00 UTC) interspersed with ice cloud .
:::
(see

::::
Fig.

::::
6c). Both G22-Davis and our model

::::::::::::::
G22-Christchurch

:
identify some of the

short periods of SLCC
:::::
SLWC

:
between 06:00 and 15:00 UTC. Our model also

:::::::::::::::
G22-Christchurch correctly distinguishes most

of the SLCC
::::::
SLWC, but also overestimates SLCC

::::::
SLWC occurrence, making false positive classifications at around 07:00,

09:00 and 14:00 UTC. G22-Davis does not identify
::::::::::
Importantly, the low altitude WLCC

::::::
WLWC

:::::
band between 18:00 UTC410

05/06 and 00
:::
and

::
21:00 UTC 06/06 as SLCC . Our model correctly identifies some of

:
is
::::::::::

mistakenly
::::::::
identified

::
as

::::::
SLCC

:::
by

:::::::::
G22-Davis.

:::::::::::::::
G22-Christchurch

::::::::
correctly

::::::::
identifies

:
this layer as WLCC, although much of the layer is missed. For this case

study
:::::::
WLWC.

:

::
On

::::
this

:::
day, G22-Davis had a balanced accuracy score of 0.64 when comparing all profiles, and 0.65

::::
recall

:::::::::
(precision)

::::::
scores

::
of

::::
0.09

:::::
(0.12)

:::::
when

::::::::
compared

::
to

:::
the

::::::::
reference

::::::
mask’s

::::::
SLCC

:::::::::::
classification

::
for

:::
all

:::::
peaks,

::::
and

::::
also

::::
0.09

:::::
(0.12) when comparing415

profiles containing peaks. Again, our model performed
::
the

::::
new

:::::::::::::::
G22-Christchurch

:::::::::
performed

:::::
much

:
better, with a balanced

accuracy of 0.79
::::
recall

:::::::::
(precision)

::::::
scores

::
of

::::
0.75

:::::
(0.64) for all profiles and 0.81

::::
0.80

:::::
(0.64) for profiles containing peaks. Peaks

were detected in 98% of the profiles for this day, hence the similarities between scores for all profiles and profiles with peaks
:
,

::::::::
compared

::
to

:::
the

::::::::
reference

::::::
SLWC

:::::
mask. These results show that our model performed very well, and indicates

::
the

::::
new

::::::
model

:
is
::
a
:::::::::
significant

:::::::::::
improvement

::
to

:::::::::
G22-Davis

::
in

::::::::::::
environments

:::
that

::::::
contain

::::::::
WLWC,

:::
but

:::
still

:::
has

::::::::::
limitations

:
at
::::::::::

identifying
::::::
SLWC420

::::
when

::::::::::
interspersed

::::
with

:::
IC,

:::::::::
conditions

::::
this

:::
case

:::::
study

:::::::::
represents.

:::::::
Despite

::::
this,

::::
these

::::::
results

:::::::
indicate that the technique of Guyot

et al. (2022) can be applied successfully to a new location if appropriate site-specific training data is available.

3.4 Cloud occurrence for the full observation period

The full dataset was analysed and cloud occurrence statistics computed to compare the accuracy of the G22-Davis and G22-

Christchurch cloud masks to our VDR reference mask. In this section, we present cloud fraction statistics and cloud phase425

distribution as a function of altitude for each mask, and evaluate the performance of the G22-Christchurch cloud mask.

Cloud fraction was calculated by finding the proportion of profiles in which SLCC or WLCC
:::::
SLWC

::
or

:::::::
WLWC was detected,

across all time steps of the dataset. The cloud fraction from all types (calculated from the ALCF cloud detection mask) was

70% for the full dataset of 257 equivalent days of MPL profiles. SLCC
::::::
SLWC was detected in 14.2

::::
15.3% of the reference mask

profiles, 12.2
::::
12.9% of the G22-Christchurch mask profiles and 17.3

:::
16.9% of the G22-Davis mask profiles. Meanwhile, WLCC430

frequency was 44.6
::
the

:::::::
WLWC

:::::::::
frequency

:::
was

::::
45.1% for the reference maskand 20.5,

:::
but

:::::
only

::::
28.5% for G22-Christchurch.

As we discuss later in this section, G22-Davis overestimated the frequency of SLCC occurrence because it often misclassified

WLCC
::::::
WLWC

:
layers as SLCCat this mid-latitude site. G22-Christchurch, however, tends to underestimate SLCC and WLCC

occurrence, although the WLCC underestimation is more significant. From visual analysis of WLCC layers, such as the low

altitude layer
:
,
::::
such

::
as between 18:00 and

::
to 21:00 UTC in Fig . 6, we found that peaks were occasionally misclassified by

::
6.435

G22-Christchurchas non-WLCC, leading to a ’speckle’ pattern and over-representation of ICC in these layers. Because these

layers have temperatures greater than 0 C (shown by the relative position of the 0 C isotherm), we would naturally expect

them to be warm liquid water, by definition. Therefore, it is a shortcoming of the G22-Christchurch model that ICC is detected
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in this temperature region. However, sometimes the VDR reference mask also detected ICC in this temperature region. This

might be attributed to multiple scattering in WLCC layers having the effect of increasing VDR and thus causing classification440

as ICC. In the example in Fig. 6c, a short period of ’ICC’ is present at 21:00 UTC. From Fig. 6b, however, this cloud has

a VDR value of around δ = 0.15, only slightly higher than the δLCC = 0.1 threshold. This demonstrates the sensitivity of the

reference mask, and thus the G22-Christchurch model, to the VDR threshold δLCC, and suggests that δLCC should be increased.

It is therefore possible that the G22-Christchurch model erroneously learnt, from the reference mask, that ICC could be present

at warm temperatures and low altitudes,
::::::::

however,
:::::
tends

::
to

::::::::::::
underestimate

::::
both

::::::
SLWC

::::
and

:::::::
WLWC

:::::::::
occurrence

::::::
relative

:::
to

:::
the445

:::::::
reference

:::::
mask.

Another potential reason for the underestimation of WLCC and overestimation of ICC in low-level cloud by the G22-Christchurch

cloud mask is that the method for creating the cloud mask from the classified peaks is potentially sub-optimal. As described

in Section 2.3, we defined ICC based on the ALCF-derived cloud mask with SLCC and WLCC layers subtracted. This is

similar to the method used by Guyot et al. (2022), in which the ice cloud mask is derived using the method detailed in450

Tuononen et al. (2019). For the G22-Christchurch mask, in the SLCC temperature region, non-SLCC layers are unambiguously

labelled ICC. However, in the WLCC temperature region, non-WLCC layers are labelled ICC, even though ice cannot exist in

temperatures greater than 0 C. This may thus lead to mislabelling of precipitation and fog. This is demonstrated once again in

Fig. 6g in the low altitude WLCC layer between 18:00 and 21:00 UTC. The G22-Christchurch mask erroneously identifies a

large amount of this cloud as ICC. This is due, in part, to the model incorrectly classifying some peaks as ICC, as discussed455

previously. However, other parts of the cloud are identified as ICC by the mask because there are either no peaks detected (so

the cloudy bins in that profile are conservatively labelled ICC by default) or because the cloudy bins above or below a WLCC

peak are labelled ICC.

Fig. 7 compares the cloud phase distributions as a function of altitude for G22-Davis and our model
:::::::::::::::
G22-Christchurch

against the reference mask. According to the reference mask Fig. 7a, LCC
::::
liquid

:::::
water

:::::
cloud

:::::::
(WLWC

::::
and

::::::
SLWC)

:
is common460

at low altitudes, and decreases in frequency with altitude to a maximum altitude of 8 km. Below 1 km, this LCC is entirely

WLCC
:
is

:::::::
entirely

::::::
WLWC, and above 3 km it is entirely SLCC

::::::
SLWC, with the overlap between 1-3 km likely corresponding to

the variation of the 0 ◦C isotherm through the year. This pattern is consistent with the peak altitude distributions shown in Figs.

3e and 4e. Ice cloud frequency increases with altitude to a maximum at 8 km, before decreasing to very low occurrences at 13

km. The reference mask also shows a low frequency of ice cloud occurrence at low altitudes, which is also present in the peak465

altitude distribution in Fig. 3e. However, it seems likely that this is LCC that has been misclassified as ICC due to the effects

of multiple scattering, as discussed earlier in this section.

Fig. 7b shows that G22-Davis identifies SLCC at lower altitudes (0-4 km) than the reference mask (1-8 km). The f1 score

::::
recall

::::
and

::::::::
precision

::::::
scores as a function of altitude, in Fig 7c, is relatively low and reduces to zero in the lowest 2 km for

this reason. This error is likely because the model learnt
::
are

::::
low

:::
for

:::
the

:::::::::
G22-Davis

::::::
model.

::::
This

::::
bias

:::::
likely

::::::
results

:
from the470

Davis training dataset
:
,
:::::
which

::::::
would

:::::::
identify that SLCC could be present at low altitudes, despite the fact that temperatures

::
at

:::::
Davis for which SLCC was

::::
were

:
detected were much lower. This therefore provides evidence of the limitation of applying the
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Figure 7. Cloud altitude distributions separated by cloud phase, according to the VDR reference mask (a), G22-Davis mask (b) and G22-

Christchurch mask (d). Precision and recall accuracy scores for SLCC/SLWC detection respectively, as a function of altitude, are also shown

for G22-Davis (c) and G22-Christchurch (e).

G22-Davis method, with training data from Davis, Antarctica, to mid-latitude sites with warmer air temperatures. This also

shows the relative importance of peak altitude in the SLCC classification for G22-Davis.

Fig. 7d shows cloud phase distributions according to the G22-Christchurch cloud mask. The frequency of SLCC
::::::
SLWC is475

highest at 1.5 km and gradually decreases with altitude until around 7
:
8 km, following a very similar pattern to the VDR refer-

ence mask’s SLCC occurrence. WLCC
::::::
SLWC

:::::::::
occurrence.

:::::::
WLWC occurrence also closely follows the reference mask’s WLCC

::::::
WLWC

:
occurrence, with frequencies highest at low altitudes, decreasing with altitude until around 2 km. As discussed earlier

in this section, visual analysis of the G22-Christchurch cloud mask found that WLCC layers were occasionally misclassified

as ICC. Fig. 7d confirms this is true throughout the dataset, shown by the large apparent peak in ICC frequency below 2 km.480

By comparison with the reference maskin Fig. 7a, it is clear that this should be WLCC. ,
:::
but

::
is

:::
still

:::::::::::::
underestimated

:::::::
relative

::
to

::
the

::::::::
reference

::::::
mask. In Fig. 7e, the f1 score for SLCC

::::::::
precision

:::
and

:::::
recall

::::::
scores

::
for

::::::
SLWC

:
detection as a function of altitude

is relatively consistent and is
::::
recall

::::::
scores

:::
are higher than the f1 score

:::::
recall

:::::
scores

:
for G22-Davis in Fig. 7c, at all altitudes.

Below 1 km there are no SLCC clouds present in either the VDR reference or the

::::
Both

:::::::::
G22-Davis

:::
and

:
G22-Christchurch masks to allow comparison, so the F1 score drops to zero.

:::::::::::
underestimate

::::
total

:::::
cloud485

::::::
fraction

::::::
across

::
all

:::::
cloud

::::::
phases.

::::
One

:::::
factor

:::
that

::::
may

:::::::
account

::
for

::::
this

::
is

:::
that

:::
the

::::::
criteria

:::
for

:
a
::::
peak

::
to

::
be

:::::::
selected

:::
for

:::::::::::
classification

::::::::::::
(β > 2× 10−5)

::
is
::::::
stricter

::::
than

:::
the

:::::::
criteria

::
for

::::::
ALCF

::::
and

:::
the

::::::::
reference

::::
mask

::
to
::::::
detect

:
a
:::::
cloud

::::::::::::::
(β > 4× 10−6).

:::
We

::::
also

:::::
found

:::
that

:::
the

::::::::::
frequencies

:::
and

::::::::
accuracy

:::::
scores

::
in

:::::
Figs.

:::
7d,

:
e
::::
were

::::::::
sensitive

::
to

:::
the

:::::
width

::
of

:::
the

::::::::
generated

:::::
cloud

:::::
mask

::::
layer

::
as

:::::::
defined

::
by

:::
the

:::::
upper

:::
and

:::::
lower

:::::::
bounds

::::::
around

:::
the

::::
peak

::::::::
location.

::::::::
Therefore,

:::
the

:::::
cloud

:::::
phase

:::::::::::
distributions

::
in

::::
Fig.

:
7
:::::::
provide

:::::::::
qualitative
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Figure 8. Correlation coefficients between each pair of peak properties, for all peaks in the dataset.

:::::::
evidence

::
of

:::
the

:::::::
model’s

:::::::::::
performance,

:::
but

::::::::::
quantitative

::::::
results

:::
are

::::
best

:::::::::
determined

:::
by

:::::::::
comparing

::::::::
time-step

::::::
SLWC

::::::::
Booleans

::
as490

::
in

::::::
Section

::::
3.2.

3.5 XGBoost feature analysis with SHAP

The previous sections have shown that our model performs very well at classifying backscatter peaks as SLCC or WLCC
::::::
SLWC

::
or

::::::
WLWC

:
and reasonably well at generating cloud masks of SLCC

::::::
SLWC/WLCC

:::::::
WLWC occurrence which are comparable to

the reference VDR cloud mask. In order to be confident the models
:::::
model

:
can be applied in future work to ceilometer datasets495

from a range of locations, we need to understand the relative importance of the input features to the XGBoost algorithm (our

8-feature set of peak properties).

Fig. 8 shows correlation coefficients between each pair of peak properties, for all peaks in the dataset. This allows for a

visual analysis of the independence of the XGBoost input features. Fig. 8 shows that peak height
::::::::
magnitude, width height and

prominence are strongly positively correlated, as we expect. Peak altitude and peak temperature are also strongly negatively500

correlated because low altitudes are associated with warmer temperatures, and high altitudes are associated with colder tem-

peratures. We can also use Fig. 8 to select a subset of features that are independent by removing strongly correlated features.

We use this information in Section 3.6 to train a modified model using a smaller range of independent input features.

Like Guyot et al. (2022), we apply the tree-based model explanation method by Lundberg et al. (2020) based on SHapley

Additive exPlanations (SHAP) values, which quantify the contributions to the model output from each feature.
::::
Such

::
an

:::::::
analysis505
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Figure 9. Mean absolute SHAP values for G22-Christchurch features, for each class (SLWC, WLWC and IC/MPC). Features are ranked

from top to bottom according to the sum of the mean absolute SHAP value across all classes, i.e. most to least important for the overall

classification.

:
is
:::::::::
important

::
for

::::::
model

:::::::::::::
interpretability,

::
to

:::::
ensure

:::
the

::::::
model

:::::
results

:::
are

::::::::::
trustworthy,

::::
and

::
to

:::::::::
understand

:::
the

:::::::::::
relationships

:::::::
between

::
the

:::::
input

:::::::
features

:::
(in

:::
this

:::::
case,

:::
the

::::::
dataset

::
of

::::
peak

::::::::::
properties)

:::
and

::::::
model

::::::
output. Figure 9 shows the SHAP value distribution

for the input features to G22-Christchurch. In this stacked bar plot, features are ranked from top to bottom according to their

mean absolute SHAP value, i.e. from most to least important for the model’s classification. The distribution of SHAP values for

the three most important features (peak width
:::::::::
temperature, altitude and temperature

::::
width) are further shown in Fig. 10, which510

show SHAP value scatter plots corresponding to each feature, for each class.

Temperature is shown in Fig. 9 to be the most important feature for SLCC and WLCC classification
::::::::::
classification

::::::
across

::
all

::::::
classes, and the relationships shown in Figs. 10c, f and i

::
a,

:
d
::::

and
::
g

:
reveal how XGBoost uses temperature to improve

classifications. Fig. 10f
:
d shows that SHAP values for SLCC

::::::
SLWC classification are positive for temperatures between -

40 ◦C and 0 ◦C, and negative outside this range. On the other hand, the SHAP values for WLCC
:::::::
WLWC classification are515

positive above 0 ◦C and negative below 0 ◦C. The strong discontinuity at 0 ◦C for both SLCC and WLCC
::::::
SLWC

:::
and

:::::::
WLWC

classification occurs because the VDR reference mask uses that temperature for distinguishing between SLCC and WLCC.

However, the strong discontinuity at around -40 C is purely due to the distribution of peak temperatures in the training dataset,

since no SLCC peaks were found below this temperature. This agrees with our physical understanding that SLW can exist

at temperatures as low as around -40 C, below which homogeneous freezing occurs (DeMott and Rogers, 1990).
:::::
SLWC

::::
and520

:::::::
WLWC. Fig. 10c

:
g
:
shows that the opposite is true for ICC

::
IC

::::
and

::::
MPC

:
classification: SHAP values are strongly positive below
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Figure 10. SHAP value scatter plots for peak temperature, altitude and width for WLWC (a-c), SLWC (d-f) and IC/MPC (g-i).
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around -40 ◦C (since only ice is found at these temperatures), and sometimes slightly positive for higher temperatures
:::
are

:::::::
strongly

:::::::
negative

:::::
above

:
0
:

◦
::
C,

:::
and

::::
have

:::::::::::
intermediate

:::::
values

::
in
:::
the

:::::::::::
mixed-phase

::::::::::
temperature

::::::
regime.

Altitude and temperature are inversely correlated (as shown in Fig. 8) because low altitudes are associated with warmer

temperatures, and high altitudes are associated with colder temperatures. Fig. 9 shows peak altitude to be the second-most525

::::::
second

::::
most

:
useful feature after temperature, with mean absolute SHAP values roughly equal across all classes. Fig. 10b

:
h

shows that higher values of altitude were more strongly associated with ICC
::
IC, and that low altitudes had a negative impact on

ICC classification. The SHAP value distribution for SLCC classification (
::
IC

::::::::::::
classification. Fig. 10e) shows that SHAP values

decrease with altitude above around 1 km, due to decreasing SLCC frequency with altitude in the training dataset. Below 1

km, a strong discontinuity means low altitudes
:
b

:::::
shows

::::
that

::
for

::::::::
WLWC,

:::
low

::::::
values

::
of

::::::
altitude

::::
have

:::::::
positive

::::::
SHAP

:::::
values

::::
and530

:
a
:::::::
positive

::::::
impact

::
on

:::::::
WLWC

::::::::::::
classification.

::
As

:::::::
altitude

::::::::
increases,

::::::
SHAP

::::::
values

:::::::
become

::::
more

::::::::
negative,

:::::::
meaning

:::::
these

::::::
values

have a negative impact on SLCC
::::::
WLWC classification, as expected (since SLCC was rarely found at low altitudes).

::::::::
supported

::
by

:::
the

::::
Fig.

::
7a

::::
that

::::::
shows

::::
very

::::
little

:::::::
WLWC

::::::::::
occurrence

:::::
above

::
3

:::
km.

::::
The

::::::
SHAP

:::::
value

::::::::::
distribution

:::
for

::::::
SLWC

:::::::::::
classification

:
(Fig. 10h shows the inverse is true for WLCC: low values of altitude with positive SHAP values are associated with a positive

impact on WLCC classification, and these SHAP values decrease with altitude. As altitude increases,
:
e)

::
is
:::::
more

::::::::
complex,

:::
but535

:::::::
generally

::::::
shows

:::
that

::
as

:::::::
altitude

::::::::
increases,

:
SHAP values become more negative, meaning

:::
tend

::
to

::::::::
decrease,

::
as

:::::::::
supported

::
by

::::
Fig.

::
7a

:::::::
showing

::
a

:::::::::
decreasing

::::::::
frequency

:::
of

::::::
SLWC

::
up

::
to

::::::
around

::
8
::::
km.

::
In

::::
Fig.

::::
10e,

::
for

::::::::
altitudes

:::::
above

::
8

:::
km,

::::::
SHAP

::::::
values

::::
tend

::
to

::::
zero,

:::::::
showing

::::
that these values have a

:::::
neither

:::::::
positive

:::
nor

:
negative impact on WLCC

:::::
SLWC

:
classification.

Next, Fig. 9 shows peak width to be a highly useful feature. The SHAP value scatter plots shown in Fig. 10a and d
:
f
::::
and

:
i

show the relationship between peak width and ICC
:::::
SLWC/SLCC

::
IC

:
classification. Fig. 10d shows

:
f
:::::::
displays

:
that low values of540

peak width had a positive impact on SLCC
:::::
SLWC

:
classification, and that high values had a negative impact. This agrees with

our physical understanding of the properties of backscatter from LCC
:::::
liquid

:::::
water

:::::
cloud

:
as discussed previously, namely that

liquid water rapidly attenuates the lidar signal leading to a narrow band of enhanced returned backscatter. The reverse is true

for ICC
:::::::
IC/MPC classification, shown in Fig. 10a, here

:
i,
::::::
where a low value of peak width is associated with a negative ICC

::
IC

:
classification, and higher values of peak width had a positive impact on ICC

::
IC classification.545

While Fig. 3 shows that there was a slight separation in the distribution of LCC and ICC peak backscatter heights
:::::
liquid

:::
and

:::::::::
non-liquid

::::
peak

::::::::::
backscatter

::::::::::
magnitudes, the SHAP values in Fig. 9 show that peak height

::::::::
magnitude

:
was not a highly

useful feature for XGBoost
:::
the

:::::::::::::::
G22-Christchurch

:::::
model, in any class. Peak prominence, which we show in Fig. 8 is strongly

positively correlated with peak height
::::::::
magnitude, has a higher mean absolute SHAP value, indicating it is more useful than

peak height
::::::::
magnitude

:
for classification. Scatter plots of SHAP values found that low prominence peaks had a positive impact550

on ICC classification
::
IC

:::::::::::
classification,

::::
and

::::
high

::::::::::
prominence

:::::
peaks

:::
had

::
a
:::::::
positive

::::::
impact

:::
for

::::::
SLWC

:::
and

:::::::
WLWC

:::::::::::
classification

(not shown). One possibility for why peak height
::::::::
magnitude

:
is less useful than peak prominence is that peak height

:::::::::
magnitude

is already the main criteria used to select peaks. That is, we only analyse peaks that already exceed a backscatter threshold

of β > 2× 10−5m−1sr−1, which excludes most low-βpeaks associated with ICC. Peak prominence, however, provides a way

of separating peaks with a higher signal to noise ratio (SNR), and is therefore more useful than peak height
::::::::
magnitude. The555

results here differ from the results found by Guyot et al. (2022). In that study, peak height
:::::::::
magnitude was found to be the
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most significant feature used by XGBoost for the classification of SLCC. However, the aim of the G22-Davis model was to

distinguish SLCC and ice, while our aim is to distinguish SLCC, WLCC and ice
::::::
SLWC,

:::::::
WLWC

:::
and

:::
IC. Therefore, it makes

sense
:
is
::::::
logical

:
that our highest-scoring features are temperature and altitude, which are powerful at distinguishing SLCC and

WLCC
::::::
SLWC

:::
and

:::::::
WLWC (as shown in Fig. 4); whereas Guyot et al.’s highest-scoring features were peak height

::::::::
magnitude,560

which was powerful at distinguishing SLCC and ice. Therefore, the SHAP value differences between G22-Davis and G22-

Christchurch are likely a consequence of the different classification objectives of the two models.

3.6 Reducing XGBoost feature dimensionality

Due to the strong correlation between input features, as shown in Fig. 8, we next investigate the effect of reducing the number of

input features to train a modified XGB model. Reducing the dimensionality of the training dataset has been shown to improve565

model performance in general by reducing overfitting (Russell, 2010). Furthermore, excluding temperature would remove

the dependence on AMPS or other numerical weather prediction model inputs which clearly include significant uncertainty.

We trained a new set of
::::::::
XGBoost models using a reduced set of input features, testing various combinations of those input

features with the highest mean absolute SHAP values, as detailed in Fig. 9, and removing ’duplicate’ features that are strongly

correlated, as determined in Fig. 8. For example, because peak height
::::::::
magnitude, prominence and width height are strongly570

correlated, we only use one of those features as input to a model. The same is true for peak altitude and temperature, which

are strongly negatively correlated. We also remove the number of peaks and peak order because they have low absolute SHAP

values, as shown in Fig. 9. Table 4
::::
These

::::::
results

:::
are

:::::::::
presented

::
in

:::::
Table

::
4,

::::::
which

:
shows the various input features and the

balanced accuracy scores of the corresponding XGBoost models, again tested with 3-fold group stratified cross-validation in

each case. No hyperparameter tuning was completed
:::
The

:::::
same

:::
set

::
of

::::::::::::::
hyperparameters

:::::
were

::::
used during the development of575

these models to allow a direct comparison with the original 8-feature model.
:::
The

:::::
entire

::::::
dataset

:::
of

::::
peak

::::::::
properties

::::
was

::::
used

:::
for

::
the

:::::::::::
development

::
of

:::::
these

:::::::
models,

:::::
hence

:::
the

::::::::
difference

:::::
from

:::
the

:::::
scores

::::::::
presented

::
in
:::::
Table

::
2.
:

We see from Table 4 that the model with the best performing set of reduced input features
::::::::::::
highest-scoring

:::::
model

:::::
used

:::
the

::::
input

:::::::
features

::::::::::
temperature,

:::::
peak

:::::
width

:::
and

::::
peak

::::::::::
prominence (T, w, βprom)

:
,
:::
and

::
it performed equally well as the original model

that used the complete set of 8 features. This model used peak temperature, peak width and peak prominence, which we had580

previously shown
::
is

::::::::
consistent

::::
with

:::
the

::::::
results

::
in

::::::
section

:::
3.5,

:::::
where

:::
we

:::::::
showed using SHAP values to be

:::
that

:::::
these

::::
were among

the most useful features
::
for

:::::::::::::::
G22-Christchurch. Replacing peak prominence with either peak height

::::::::
magnitude

:
or peak width

height slightly reduced the accuracy, and removing it entirely (without replacement) also only slightly reduced the accuracy. In

fact, the balanced accuracy and SLCC f1 score for the (T, w) model was slightly higher than those scores for the (T, w, βw)

model, indicating that βw on average made the classification worse (although this is not a significant difference). The model585

using just peak temperature as an input still gave reasonable accuracy scores, although the drop of 0.09 in the SLCC f1 ::::
0.17

::
in

::
the

::::::
SLWC

:::::
recall

:
score from the (T, w) model shows the importance of peak width as an input feature. It

:::::::
Though,

::
it is worth

noting , of course, that peak width and height
::::::::
magnitude

:
are both essential features for identifying clouds and therefore peaks

in the first place. Replacing peak temperature with peak altitude reduced the balanced accuracy by around 0.08 for all models,

and reduced the f1 scores by
:::::
recall

:::::
scores

::
by

::::::
around

:
0.17 for SLCC

:::::
SLWC

:
and 0.07 for WLCC

::::::
WLWC

:
across all models. This590
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Balanced Accuracy
WLWC SLWC IC/MPC

ICC
:::::::
Precision

:
SLCC

:::::
Recall WLCC

:::::::
Precision

::::
Recall

: ::::::
Precision

: :::::
Recall

All Features
::::::::
0.93± 0.01

: ::::::::
0.99± 0.01

: ::::::::
0.99± 0.01

:
0.87± 0.02 0.79± 0.04

:::::::::
0.96± 0.01 0.85± 0.02

:::::::::
0.94± 0.01 0.980± 0.003

:::::::::
0.82± 0.04

T, w, β 0.86± 0.02
:::::::::
0.91± 0.01 0.77± 0.04

:::::::::
0.99± 0.01 0.83± 0.02

:::::::::
0.99± 0.01 0.980± 0.003

:::::::::
0.84± 0.01

::::::::
0.95± 0.01

: ::::::::
0.93± 0.01

: ::::::::
0.78± 0.03

:

T, w, βprom ::::::::
0.93± 0.01

: ::::::::
0.99± 0.01

: ::::::::
0.99± 0.01

:
0.87± 0.02 0.79± 0.04

:::::::::
0.96± 0.01 0.85± 0.02

:::::::::
0.94± 0.01 0.980± 0.003

:::::::::
0.82± 0.04

T, w, βw 0.85± 0.02
:::::::::
0.91± 0.01 0.76± 0.04

:::::::::
0.99± 0.01 0.82± 0.02

:::::::::
0.99± 0.01 0.980± 0.003

:::::::::
0.83± 0.01

::::::::
0.96± 0.01

: ::::::::
0.94± 0.01

: ::::::::
0.76± 0.03

:

T, w 0.86± 0.02
:::::::::
0.91± 0.01 0.75± 0.04

:::::::::
0.99± 0.01 0.83± 0.02

:::::::::
0.99± 0.01 0.980± 0.003

:::::::::
0.83± 0.01

::::::::
0.96± 0.01

: ::::::::
0.94± 0.01

: ::::::::
0.76± 0.04

:

T 0.80± 0.02
:::::::::
0.83± 0.01 0.69± 0.04

:::::::::
0.99± 0.01 0.74± 0.03

:::::::::
0.99± 0.01 0.980± 0.004

:::::::::
0.77± 0.01

::::::::
0.79± 0.02

: ::::::::
0.73± 0.04

: ::::::::
0.71± 0.04

:

z, w, β 0.78± 0.007
::::::::
0.83± 0.01

:
0.76± 0.03

:::::::::
0.93± 0.02 0.66± 0.1

::::::::
0.93± 0.01

:
0.915± 0.002

:::::::::
0.71± 0.01

::::::::
0.78± 0.07

: ::::::::
0.91± 0.03

: ::::::::
0.78± 0.03

:

z, w, βprom 0.791± 0.005
:::::::::
0.85± 0.01 0.79± 0.03

:::::::::
0.93± 0.02 0.68± 0.01

:::::::::
0.93± 0.01 0.915± 0.002

:::::::::
0.74± 0.01

::::::::
0.79± 0.07

: ::::::::
0.92± 0.02

: ::::::::
0.82± 0.04

:

z, w, βw 0.77± 0.01
:::::::::
0.83± 0.01 0.75± 0.03

:::::::::
0.93± 0.02 0.65± 0.01

:::::::::
0.93± 0.01 0.914± 0.003

:::::::::
0.71± 0.01

::::::::
0.78± 0.07

: ::::::::
0.91± 0.02

: ::::::::
0.77± 0.03

:

z, w 0.77± 0.006
::::::::
0.83± 0.01

:
0.75± 0.04

:::::::::
0.93± 0.02 0.66± 0.01

:::::::::
0.93± 0.01 0.915± 0.005

:::::::::
0.70± 0.01

::::::::
0.79± 0.07

: ::::::::
0.92± 0.02

: ::::::::
0.76± 0.04

:

z 0.72± 0.01
:::::::::
0.75± 0.01 0.71± 0.03

:::::::::
0.93± 0.03 0.54± 0.01

:::::::::
0.93± 0.02 0.916± 0.005

:::::::::
0.60± 0.01

::::::::
0.68± 0.06

: ::::::::
0.77± 0.07

: ::::::::
0.64± 0.03

:

w 0.60± 0.01
:::::::::
0.65± 0.01 0.69± 0.03

:::::::::
0.75± 0.01 0.36± 0.01

:::::::::
0.88± 0.02 0.80± 0.01

:::::::::
0.50± 0.03

::::::::
0.41± 0.02

: ::::::::
0.88± 0.03

: ::::::::
0.68± 0.04

:

Table 4. Summary of the balanced accuracy scores and f1 :::::::::::
precision/recall

:
scores for each class from 3-fold group stratified cross-validation,

for the adjusted models with reduced input features: peak temperature T , peak altitude z, peak width w, peak backscatter height
::::::::
magnitude

β, peak prominence βprom and peak width height βw.

significant reduction in model performance shows that despite peak altitude and peak temperature being strongly negatively

correlated, altitude was not a useful direct replacement for temperature. This confirms the importance of having either NWP

temperature information or radiosonde temperature data for making accurate classifications of SLCC
:::::
SLWC. However, f1

scores for WLCC
::::
recall

::::::
scores

::
for

:::::::
WLWC

:
were still high (>0.9) and unchanged for ICC (around 0.75

::::::::
generally

:::::::::
unchanged

:::
for

:::::::
IC/MPC

:::::::
(around

:::
0.8) when temperature was replaced with altitude, indicating that LCC

::::::::
liquid/ice classification can generally595

be made without temperature information (i.e. without distinguishing SLCC
:::::
SLWC

::::
and

::::::
WLWC).

4 Conclusions

In this study, we applied a method of supercooled liquid water containing cloud (SLCC
::::
cloud

:::::::
(SLWC) detection first introduced

by Guyot et al. (2022) to observations from a mid-latitude site. From a 9-month dataset of MicroPulse Lidar (MPL) copolarized

backscatter peak properties, we then trained an optimised gradient boosting model to classify backscatter peaks as SLCC
:::::
SLWC,600

warm liquid water containing cloud (WLCC
:::::
cloud

:::::::
(WLCW) or icecontaining cloud (ICC

:::::::::::
/mixed-phase

:::::
cloud

::::::::
(IC/MPC). Unlike

the binary SLCC
:::::::::
supercooled

:::::
liquid

::::::
water

:::::::::
containing

:::::
cloud

:::::::
(SLCC) classification model developed by Guyot et al. (2022),

referred to as G22-Davis to reflect that the training dataset was from Davis Station, Antarctica, our model performed multi-

class classification to distinguish SLCC from WLCC
:::::
SLWC

::::
from

:::::::
WLWC, which was common in our lidar observations from

Christchurch, New Zealand.605
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We first used MPL depolarization observations to build a reference cloud phase mask which uses volume depolarization

ratio (VDR) to separate ice and LCC, then uses Antarctic Mesoscale Prediction System (AMPS)
::::::::
distinguish

:::
ice

::::
and

::::::
liquid,

:::
then

:::::
used

:::::::::::
WRF-derived

:
air temperatures to distinguish SLCC and WLCC

:::::
SLWC

::::
and

:::::::
WLWC. Applying G22-Davis to our

dataset of copolarized backscatter peak properties to create a SLCC classification mask, we obtained an overall balanced

accuracy of 0.62, and balanced accuracy of 0.55 for days
::::
recall

:::::
scores

:::
of

:::
0.15

:::::
when

:::::::::
examining

:::
all

::::
lidar

:::::::
profiles,

:::
and

::::
0.18

:::::
when610

::::::::
examining

:::::
only

::::::
profiles

:
with detection of strong backscatter signals. We then trained and tested a modified XGBoost model,

referred to as G22-Christchurch, and applied it to the full
::::
same

:::::
MPL dataset to create a SLCC mask with overall balanced

accuracy of 0.85, and balanced accuracy for days with detection of
:::::
SLWC

:::::
mask

::::
with

::::::
recall

:::::
scores

:::
of

::::
0.76

:::
for

:::
all

:::::::
profiles,

:::
and

::::
0.88

:::
for

::::::
profiles

::::
with

:
strong backscatter signalsof 0.89. G22-Christchurch greatly improved classification of SLCC

::::::
SLWC

compared to G22-Davis, which often misclassified WLCC
::::::
WLWC

:
as SLCC due to the absence of warm liquid water in the615

Davis training data.

We also applied the tree-based model explanation method by Lundberg et al. (2020) based on SHapley Additive exPlanations

(SHAP) values to quantify the relative importance of each XGBoost input feature (Lundberg and Lee, 2017). We found that

temperature was the most important feature for SLCC and WLCC
:::::
SLWC

:::
and

:::::::
WLWC

:
classification, due to the homogeneous

freezing of liquid water at around -40 ◦C and the definition that SLCC
:::::
SLWC

:
exists below 0 ◦C. Peak width was the most620

important peak property for detecting liquid water of either type, because liquid water rapidly attenuates the lidar signal, causing

a narrow peak in the returned backscatter profile. Peak prominence was also a useful feature for SLCC
:::::
SLWC

:
classification.

We then developed a set of models with reduced input features, and compared their accuracies with the original model. We

found that using only peak temperature, width and prominence as inputs, an XGBoost model could perform equally well as

the original model trained using the full set of peak properties. Despite being strongly negatively correlated with temperature,625

peak altitude was not a suitable replacement for temperature for SLCC
:::::
SLWC

:
classification. This confirms the importance

of air temperature data availability, such as from NWP models, for accurate detection of SLCC
:::::
SLWC

:
alongside ceilometer

observations. This differs from the findings from Guyot et al. (2022), however it is important to note that our objectives differ.

In this study, features that distinguish SLCC and WLCC
:::::
SLWC

::::
and

:::::::
WLWC are highlighted (i.e. temperature), whereas for

Guyot et al. (2022), the best features that distinguished SLCC
::::::
SLWC and ice were identified (i.e. peak height). When using our630

model to distinguish ice from LCC
:::::
liquid (of either type

::::::
WLWC

::
or

::::::
SLWC), the set of peak properties without temperature still

gave good results, showing that LCC
:::::
liquid

:
classification can be performed without relying on other sources for temperature

information.
:::
For

:::::
future

:::::
work,

:::::
such

::
as

:::
the

:::::::::::
incorporation

::
of

:::
this

:::::::
retrieval

:::::::
method

::
in

::::::
ALCF,

:::
the

::::::
default

::::::::
XGBoost

:::::
model

::::
will

::::
only

:::
use

::::
peak

::::::
width,

::::::::::
prominence

:::
and

::::::::::
temperature

::
as

::::::
inputs,

:::::
while

::
a
:::::
model

:::::
using

::::::
width,

::::::::::
prominence

:::
and

:::::::
altitude

::
as

::::::
inputs

:::
will

:::
be

::
an

:::::::::
alternative

:::
for

::::
cases

:::::
when

::::::::::
temperature

::::
data

::
is

::::::::::
unavailable.635

The frequency of SLCC
:::::
SLWC

:
occurrence was analysed for G22-Davis and G22-Christchurch and compared to our refer-

ence mask. Cloud fraction according to the reference mask was 14% for SLCC
::::
15%

:::
for

::::::
SLWC

:
and 45% for WLCC. WLCC

:::::::
WLWC.

::::::
WLWC

:
was only present at low altitudes, below 2 km, and SLCC

:::::
SLWC

:
was present between 1-8 km. G22-Davis

often misclassified WLCC as SLCC
::::::
WLWC

:::
as

:::::
SLWC

:
which caused that model to incorrectly inflate SLCC

:::::
SLWC

:
occurrence

below 2 km. On the other hand, G22-Christchurch replicated the reference mask’s vertical structure of SLCC and WLCC640
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:::::
SLWC

::::
and

:::::::
WLWC

:
occurrence, although WLCC

::::
cloud

:
occurrence was still underestimated. We hypothesise that this was

due to misclassification of WLCC by the reference mask, and problems with the cloud mask generation technique.
::::::::
generally

::::::::::::
underestimated

::::::
across

::
all

:::::
phase

:::::::::
categories.

:

The limitations of the relatively simple VDR reference mask should be noted.
::
In

:::::
come

:::::
cases,

::::
high

:::::::
aerosol

:::::
loads

::::
near

:::
the

::::::
ground

::::
were

::::::
falsely

::::::::
classified

::
as

:::::::
WLWC

:::
by

:::
the

::::::::
reference

:::::
mask.

:
Precipitation and fog were not represented by the reference645

mask and may have been misidentified as ICC or WLCC
::
IC,

:::::
MPC

:::
or

:::::::
WLWC. Previous methods (Tuononen et al., 2019;

Guyot et al., 2022) have classified precipitation and fog using attenuated backscatter thresholds and gradients, which was not

performed in this study. This may have artificially inflated the attenuated backscatter coefficient and therefore peak heights in

WLCC and ICC
:::::::::
magnitudes

::
in

:::::::
WLWC

::::
and

::
IC

:
clouds. The effects of multiple scattering may also have caused some liquid

layers to be misclassified as ICC
::
IC. On the other hand, horizontally aligned ice crystals likely

:::
may

:::::
have caused some ice650

cloud to be misidentified as LCC
::::
liquid, since the MPL was oriented toward the zenith. This effect may have also caused

ice particles to return higher than normal copolarized attenuated backscatter (as described by Hogan and Illingworth, 2003

)
::::::::::::::::::::::::
(Hogan and Illingworth, 2003), potentially influencing the distribution of ICC

::
IC

:
peak properties and therefore the usefulness

of peak height
::::::::
magnitude

:
for G22-Christchurch in distinguishing LCC and ICC

::::
liquid

::::
and

::
ice. The reference mask classification

of SLCC and WLCC relies on AMPS
:::::
SLWC

::::
and

::::::
WLWC

:::::
relies

::
on

::::::::::::
WRF-derived temperature data, which has its own associated655

uncertainty. In future work, more focus should be given towards quantifying that error, such as using in-situ (e.g. radiosondes)

or remote measurements of cloud temperature.

While G22-Christchurch was generally successful at reproducing the reference mask’s classification for a peak, more work is

needed to accurately create a cloud mask product. The G22-Christchurch cloud mask was shown to underestimate the amount

of WLCC and overestimate the amount of ICC at low altitudes. While this can be partially attributed to misclassification of660

WLCC by the model, it was also
::::::::::
Additionally,

::
it

::::::
should

::
be

:
noted that the cloud mask generation technique was flawed. Every

non-LCC cloudy bin was labelled ICC, which was a problem when either no peaks were detected or when the cloud mask had

not generated a broad enough LCC layer to cover the surrounding ICC bins, as discussed in Section 3.4. The G22-Christchurch

technique is still useful, however, for identifying layers of LCC cloud from below and can be used to complement other

ground-based or satellite cloud masking products
::::::::
minimum

::::::::
detection

:::::
height

::
of

:::
the

:::::
MPL

::
is

:::
100

:::
m.

::::::::
Therefore,

:::
the

:::::
MPL

:::::::
analysis665

::
in

:::
this

:::::
work

:::::::::
potentially

::::::
misses

:::::::
low-level

::::::
cloud,

:::::
which

:::::::::::::::::::
Griesche et al. (2024)

:::::::
identified

::
as
:::

an
::::::::
important

:::::
polar

:::::
cloud

::::::
regime

:::
for

:::::
future

:::::::::::
observational

::::::
studies.

The aim of this study was to understand the limitations of G22-Davis in a mid-latitude site where both supercooled liquid

and warm liquid water clouds exist. Ceilometers, being relatively common and low-cost, have the potential to be a useful

tool for the detection of SLCC
:::::
SLWC, and have particular value in regions where observations are sparse, such as Antarctica670

and the Southern Ocean. Ground-based ceilometer observations, complementary to satellite observations, have the potential

to improve cloud phase products. We found that while the methodology of G22-Davis was successful when used with a

local training dataset, the original Davis-trained model was not effective at classifying SLCC
:::::
SLWC

:
over Christchurch. This

confirms the need for further testing in different regions under different environmental conditions. Future work could apply

G22-Christchurch to other ceilometer datasets from mid-latitude sites
:::
The

:::::::::::::::
G22-Christchurch

::::::
model

::::
and

::::::::
algorithm

::::
will

:::
be675
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::::::::::
incorporated

::
in

::::::
future

:::::::
versions

::
of

::::::
ALCF,

:::
so

:::
that

::::::
future

::::
work

::::
can

:::::
apply

:::
this

::::::::
retrieval

::::::::
technique

::
to

:::::
other

::::
lidar

::::
and

:::::::::
ceilometer

::::::
datasets.

Code and data availability. The ALCF is open-source and available at https://alcf.peterkuma.net (last access: 19 May 2023) as well as a

permanent archive of code and technical documentation on Zenodo at https://doi.org/10.5281/zenodo.5153867 (Kuma et al., 2021a, b). A

tool for converting MicroPulse Lidar data files to netCDF, mpl2nc, is open-source and available at https://doi.org/10.5281/zenodo.4409731680

(Kuma, 2020). AMPS data was downloaded from https://www2.mmm.ucar.edu/rt/amps/ (last access: 19 May 2023). The observational data

(ALCF-processed netCDF MPL and cloud mask files) will be available on Zenodo by the end of 2024. The G22-Christchurch algorithm and

processing code will be included in future versions of ALCF.
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