

1 **1. Title page**2 **Sequestering carbon in the subsoil benefits crop transpiration at the**
3 **onset of drought**4
5 Maria Eliza Turek^{1,2,*}, Attila Nemes^{3,4}, Annelie Holzkämper^{1,2}6
7 ¹ Agroscope, Division of Agroecology and Environment, Zürich, Switzerland8 ² University of Bern, Oeschger Centre for Climate Change Research, Bern, Switzerland9 ³ Norwegian University of Life Sciences, Faculty of Environment and Natural Resource
10 Management, Ås, Norway11 ⁴ Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural
12 Resources, Ås, Norway

13 *Corresponding author

14 E-mail: mariaeliza.turek@agroscope.admin.ch15 Attila.Nemes@nibio.no

16 annelie.holzkaemper@agroscope.admin.ch

17

18

19

20 **2. Abstract**

21 Increasing soil organic carbon is promoted as a negative emission technology for the
22 agricultural sector with a potential co-benefit for climate adaptation due to increased soil
23 water retention. Field-scale hydrological models are powerful tools to evaluate how the
24 agricultural systems would respond to the changing climate in upcoming years and
25 decades, to predict impacts, and look for measures that help decrease drought-driven crop
26 stress under current and future climatic conditions. We quantified how different levels of
27 soil organic carbon (SOC) additions at varied soil depths are expected to influence
28 drought-induced transpiration reduction (T_{redry}) in maize cultivated in Switzerland.
29 Parameterization of the model based on a pedotransfer function (PTF) was validated
30 against soil moisture data from a long-term lysimeter experiment with a typical Swiss soil
31 and the model was subsequently applied under climate forcing between 1981 until 2099
32 representative of three distinct climatic sites of Switzerland. We used the same PTF to
33 indirectly assess the effects of SOC additions in different depths on soil hydraulic
34 properties. We found a threshold in both added amount of SOC (2% added) and in the
35 depth of sequestering that SOC (top 65cm) beyond which any additional benefit appears
36 to be substantially reduced. However, adding at least 2% SOC down to at least 65 cm
37 depth can reduce T_{redry} in maize, i.e. increase transpiration annually, but mostly at the
38 onset of summer drought by almost 40 mm. We argue that SOC increases in subsoils can
39 play a supporting role in mitigating drought impacts in rain-fed cropping in Switzerland.
40

41 Keywords: climate change adaptation; water use efficiency; soil management;
42 pedotransfer functions, simulation modeling; SWAP

43

3. Introduction

44 Over the last few decades, scientific studies have increasingly emphasized the
45 need and explored potentials for soil carbon sequestration in agricultural soils to mitigate
46 climate change (e.g. Lal (2001, 2004); Minasny et al. (2017); Smith et al. (2008)). In this
47 context, other possible impacts of increasing soil organic carbon (SOC) on important soil
48 functions and services have also been highlighted (e.g. on soil biodiversity, soil structure,
49 soil water retention and infiltration capacity; see Lal (2004); Murphy (2015)).
50 Management practices such as application of organic amendments (i.e. compost, manure,
51 biochar), cover cropping, crop diversification and the adoption of conservation tillage
52 systems are commonly considered beneficial for increasing SOC (Crystal-Ornelas et al.,
53 2021). With an increase in soil organic carbon in quantity, quality and chemical diversity,
54 soil communities are promoted and biotic-abiotic interactions are enhanced, with positive
55 impacts on the formation and storage of soil organic matter (Zhang et al., 2021). Physical
56 properties of the soil are altered directly by soil organic carbon increase and indirectly
57 through the activity of soil fauna (e.g. Arthur et al. (2015); Rivier et al. (2022); Nemes et
58 al. (2005); Rawls et al. (2004)). Soil structure has major influence on the natural soil water
59 retention capacity, an essential regulating ecosystem service provided by soils that may
60 play an increasingly crucial role in mitigating drought-induced limitations as climate
61 change progresses (Liu et al., 2021). Soil texture also strongly affects how soil hydraulic
62 properties respond to organic amendments, as shown by a meta-analysis from Edeh et al.
63 (2020), who reported decreased hydraulic conductivity of sandy soils and increased the
64 hydraulic conductivity of clayey soils after biochar additions. A recent meta-analysis
65 performed for Europe has also shown that the adoption of organic amendments and
66 “continuous living cover” benefit the soil water regulation functions (Blanchy et al.,
67 2023).

68 With that in mind, the potential for achieving synergies between climate
69 mitigation and adaptation seem promising. However, empirical evidence on benefits from
70 increasing soil organic carbon for reducing drought limitations in crops is inconclusive.
71 For example, Minasny and Mcbratney (2017) performed a meta-analysis with globally
72 distributed soil data combined with the development of pedotransfer functions (PTFs) and
73 found that 1% increase in SOC has a minor effect on available water capacity (AWC),
74 with more pronounced differences in sandy soils than fine textured soils. Libohova et al.
75 (2018), however, evaluated the effect of SOC on AWC using the National Cooperative
76 Soil Survey (NCSS) Soil Characterization Database and found that a 1% increase in soil
77 organic matter content increased AWC up to 1.5% times its weight, depending on soil
78 texture and clay mineralogy. Also, a global metanalysis of 17 long-term field experiments
79 conducted by Eden et al. (2017) found that plant available water increased significantly
80 with the addition of organic material to the topsoil.

81 So far, only few model-based analyses have explored benefits of SOC increases
82 on soil water availability systematically. Thereby, assumption on SOC influences on soil
83 hydraulic properties were based on evidence from pedotransfer functions (PTFs). Feng et
84 al. (2022) applied the crop model APSIM at a regional scale in China to model yield
85 variability of maize and identified a statistically significant relationship between SOC and
86 temperature-sensitivity of maize yields, suggesting that SOC contributes to climate
87 resilience. A different model-based study design was implemented by Bonfante et al.
88 (2020), who applied the SWAP model (Kroes et al., 2017) to 6 different Italian soils with
89 assumed increased soil organic matter up to 2-4% in the topsoil. They found only minor
90 increases in moisture supply capacity to be achieved with additional organic matter in the
91 soil. In contrast to this, Ankenbauer and Loheide (2017), who applied a 1-D variably
92 saturated groundwater flow model, found that increases in soil organic matter can

93 contribute as much as 88 mm to transpiration, or 35 additional water-stress free days,
94 during a dry summer. Discrepancies in these studies' findings may be attributable to
95 differences in pedo-climatic conditions as well as to model setups and the chosen levels
96 and depths of SOC increase.

97 A systematic analysis of the impacts of SOC increase on drought stress reduction
98 depending on depth of SOC increase is lacking so far. It is thus the aim of this study to
99 systematically evaluate and quantify the potential benefits of increasing SOC for drought
100 limitations in a regional context not only under current, but also under projected future
101 climatic conditions. As a study case, we chose to evaluate how changes on SOC to
102 different depths affect the drought stress experienced by maize at the Swiss Central
103 Plateau region, where agricultural land use dominates and for which region climate
104 projections suggest a decrease in summer precipitation and an increase in winter
105 precipitation as climate change progresses (CH2018, Kotlarski and Rajczak (2018)).
106 Annual precipitation sums are expected to remain largely the same over the projection
107 period until the end of the century, ranging from 997 mm in the southwest to 1013 mm in
108 the northeast. As previous studies have shown, drought stress is already limiting grain
109 maize productivity under current conditions (Holzkämper et al., 2013; Holzkämper et al.,
110 2015b) and this limitation is expected to become more significant as climate change
111 progresses. According to Holzkämper (2020), irrigation demands for grain maize might
112 increase by up to 20% by the end of this century, in comparison with the reference period
113 of 1981-2000, assuming that the duration of the growth season remains constant. If late-
114 maturing varieties would be grown, given the possibility of an extended growth season
115 with increasing temperatures, irrigation water demand may even increase by 40%
116 (Holzkämper, 2020). This raises concerns about the availability of irrigation water in the
117 Swiss Central Plateau, where reoccurring irrigation bans have challenged farmers more

118 and more frequently in recent drought years (Bafu, 2019, 2016). Solutions to make Swiss
119 production systems less reliant on supplementary irrigation are urgently needed.

120

121 **4. Data and methods**

122 To systematically evaluate the benefits of increasing soil organic carbon (SOC)
123 for reducing drought limitations on a typical agricultural soil in the Swiss Central Plateau,
124 we apply a field-scale agro-hydrological model that is deemed a suitable tool to interpret
125 interactions between crops and the environment (Maharjan et al., 2018). The soil
126 component of the model was parameterized using a recently developed pedo-transfer
127 function and the model setup is validated against measurements of soil moisture dynamics
128 in two lysimeters of a lysimeter station. Subsequently, the model is applied based on
129 downscaled climate projection data in combination with scenarios of soil carbon
130 increases.

131

132 **4.1 Agro-hydrological modelling with SWAP**

133 The Soil Water Atmosphere Plant model (SWAP, version 4.0.1) (Kroes et al.,
134 2017) is a physically based agro-hydrological model that simulates the transport of water,
135 solutes, and heat in the unsaturated (vadose) zone and optionally the upper part of the
136 saturated (groundwater) zone with the upper boundary condition defined by atmospheric
137 conditions. Major arable crops and grasslands can be explicitly simulated in SWAP via
138 incorporation of the WOFOST (WOOrld FOod STudies, De Wit et al. (2019)) model or by
139 using a simple crop module.

140 In interaction with the crop development, the model simulates the heat and solute
 141 transport dynamics of variably saturated soils by employing the Richards equation in the
 142 vertical direction, including a sink term for root water uptake:

$$C(h) \frac{\partial h}{\partial t} = \frac{\partial \left[K(h) \frac{\partial(h+z)}{\partial z} \right]}{\partial z} - S_a(h) \quad [1]$$

143 where $C(h)$ (cm^{-1}) is the specific water capacity, the derivative of the soil water retention
 144 function $\theta(h)$, which describes the relation between water content θ ($\text{cm}^3 \text{cm}^{-3}$) and soil
 145 water suction h (cm, defined as positive at unsaturated conditions), t (d) is time, $K(h)$
 146 (cm d^{-1}) is the hydraulic conductivity as a function of h , z (cm) is the vertical spatial
 147 coordinate (negative downwards), and $S_a(h)$ (d^{-1}) is a sink term representing the rate of
 148 soil water extraction by plant roots.

149 The relationship $\theta(h)$ and $K(h)$ are defined by the van
 150 Genuchten (1980) - Mualem (1976) (VGM) equations:

$$\theta(h) = \theta_r + \frac{(\theta_s - \theta_r)}{[1 - |\alpha h|^n]^m} \quad [2]$$

$$K(h) = K_s \theta^l \left[1 - \left(1 - \theta^{\frac{1}{m}} \right)^m \right]^2$$

151 where θ_s and θ_r are the saturated and residual soil water content ($\text{cm}^3 \text{cm}^{-3}$), α (cm^{-1}), n , m
 152 ($m = 1-1/n$), and l are empirical shape parameters, K_s is the saturated hydraulic
 153 conductivity (cm d^{-1}) and the relative degree of saturation, θ , is expressed as
 154 $\theta = (\theta - \theta_r)/(\theta_s - \theta_r)$.

155 In our study, the model used crop properties and atmospheric conditions on a
 156 daily basis to calculate the potential evapotranspiration based on the Penman-Monteith
 157 equation. Water stress was evaluated according to the reduction function by Feddes
 158 (1978), with the optimal root water uptake in the h ranges of -325.0 cm (h_{3H}) or -600 cm

159 (h_{3L}) to -30 cm (h₂), oxygen stress linearly increasing for h higher than -15 cm (h₁) and
 160 drought stress linearly increasing for h smaller than -8000 cm (h₄). The crop growth
 161 module considers that the actual transpiration can be reduced by drought (too dry), $\alpha_d(z)$,
 162 lack of oxygen (too wet), $\alpha_o(z)$, or too saline conditions (physiological drought), $\alpha_s(z)$,
 163 which factors are known to reduce crop growth. The actual root water flux, $S_a(z)$ (d⁻¹), is
 164 then a function of all considered stresses:

$$S_a(z) = \alpha_d(z)\alpha_o(z)\alpha_s(z)S_p(z) \quad [3]$$

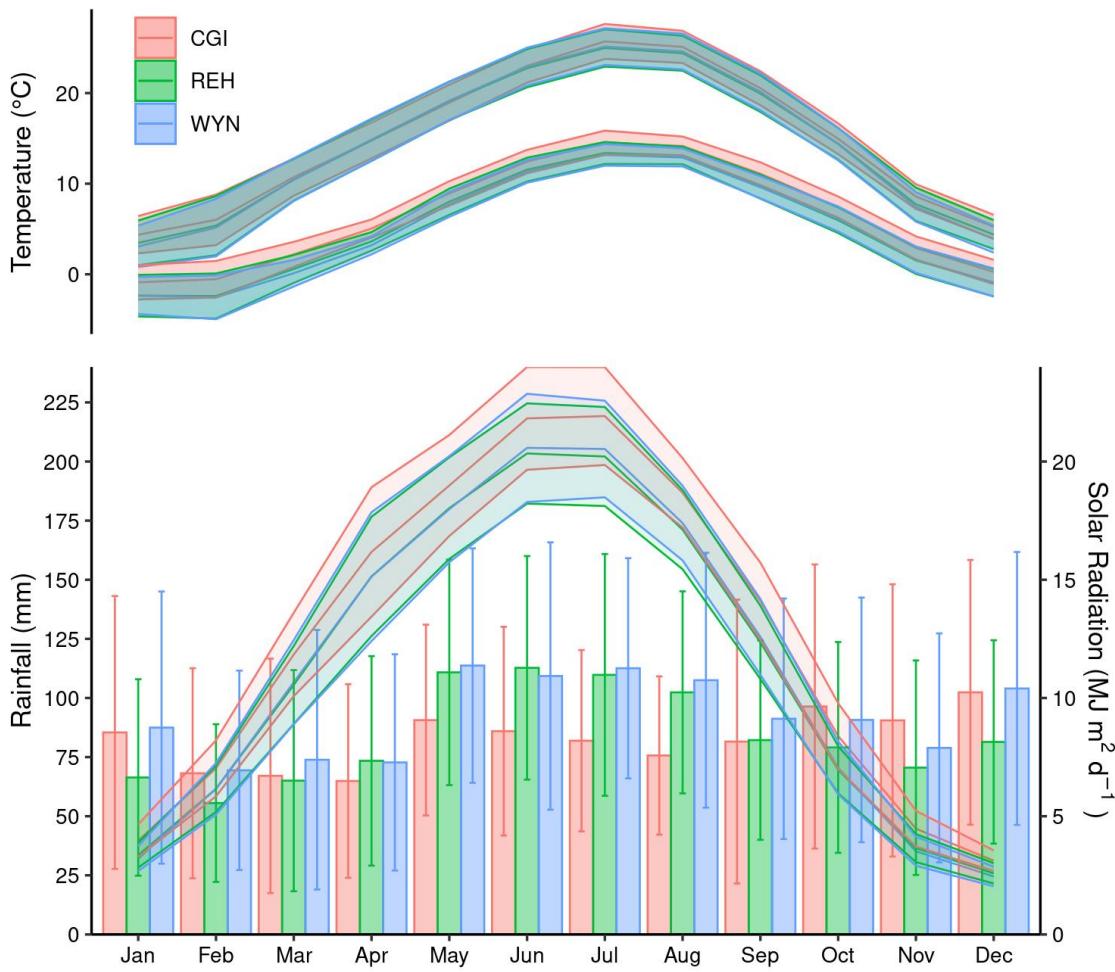
165 where $S_p(z)$ is the potential root water extraction rate at a certain depth. The actual
 166 transpiration, T_a (cm d⁻¹), is calculated by integrating the root water flux over the root
 167 zone:

$$T_a = \int_{-D_{root}}^0 S_a(z) \partial z \quad [4]$$

168 where D_{root} is the root layer thickness (cm).

169 In our simulations, we did not consider stresses caused by saline conditions and
 170 focused on the drought-induced transpiration reduction (T_{redry}) as an indicator of
 171 drought stress during the cropping period.

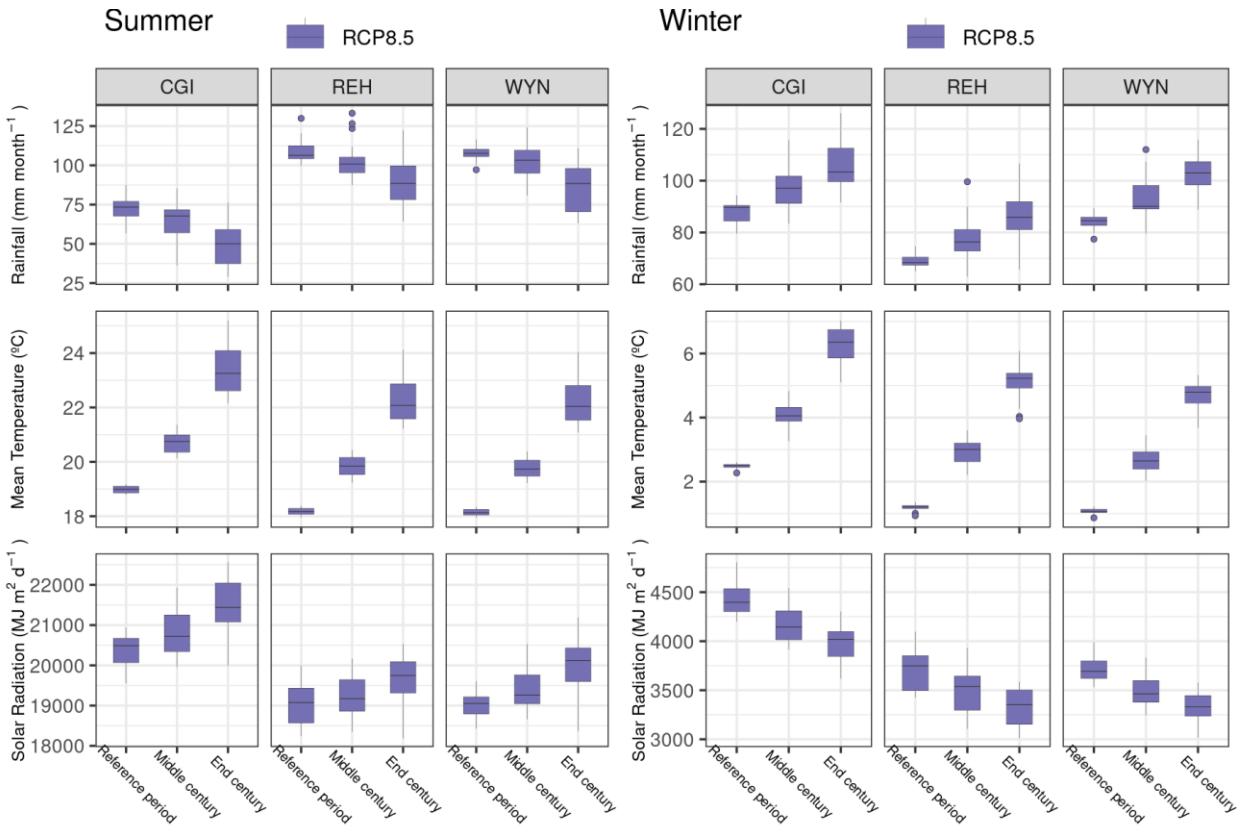
172 **4.2 Climate data of three distinct study sites from measured and projected**
 173 **scenarios**


174 Typical Swiss agricultural conditions were evaluated at three distinct sites
 175 distributed along the Swiss Central Plateau (the main agricultural production zone in
 176 Switzerland): Nyon-Changins (CGI), Zürich-Reckenholz (REH), and Wynau (WYN).
 177 Measured climatic variables from meteorological stations were obtained from
 178 MeteoSwiss. Table 1 contains annual mean values of the meteorological variables
 179 required by SWAP, while Figure 1 presents their seasonal variation. While the three sites

180 have similar altitude, on average, the CGI site has the driest and warmest climate, with
 181 higher solar radiation and wind speed. WYN is on average the wettest and coldest. In all
 182 sites the rainfall is relatively well distributed during the year, with higher precipitation,
 183 temperature and solar radiation in the summer season.

184 Table 1 Site description and climatic variables based on mean \pm standard deviation values
 185 observed between 1981 and 2022 from MeteoSwiss.

	Meteorological station		
	CGI (Changins)	REH (Reckenholz)	WYN (Wynau)
Altitude (m)	455	443	422
Latitude	46.4 N	47.4 N	47.3 N
Longitude	6.2 E	8.5 E	7.8 E
Rainfall (mm y ⁻¹)	997 \pm 147	1013 \pm 146	1117 \pm 188
T _{min} (°C)	6.5 \pm 5.7	5.1 \pm 5.9	5.0 \pm 5.9
T _{max} (°C)	14.8 \pm 7.8	14.3 \pm 8.0	14.3 \pm 8.2
Solar radiation (MJ m ² d ⁻¹)	12541.5 \pm 7035.4	11372.0 \pm 6738.6	11437.9 \pm 6865.4
Vapour pressure (kPa)	0.98 \pm 0.36	0.98 \pm 0.38	0.99 \pm 0.38
Wind speed (m s ⁻¹)	2.4 \pm 0.2	1.8 \pm 0.3	1.7 \pm 0.3


186

187 Figure 1 Seasonal variability of climatic variables considering monthly mean \pm standard
 188 deviation (shades and bars) values observed at the meteorological stations between 1981
 189 and 2022. Rainfall corresponds to monthly sums, while other variables represent daily
 190 values averaged by month. Minimum (bottom lines) and maximum (upper lines)
 191 temperatures are presented.

192
 193 Future scenarios were evaluated using climate projections developed by the
 194 National Centre for Climate Services (NCCS) in Switzerland (Kotlarski and Rajczak,
 195 2018). The dataset contains transient daily time series for the period 1981-2099 for several
 196 variables at individual Swiss stations (DAILY-LOCAL), produced by applying a
 197 statistical downscaling and bias-correction method (Quantile Mapping, QM) to the
 198 original output of all EURO-CORDEX climate model simulations employed in CH2018
 199 (Kotlarski and Rajczak, 2018). From all available projections with different
 200

201 Representative Concentration Pathways (RCP), we selected the ones that presented the
202 dataset with all required input variables for SWAP, as listed in [Table 1](#). In total, we used
203 22 projections for RCP8.5, 17 for RCP4.5, and 8 for RCP2.6. For more details about
204 selected model chains, see Supplementary Material (Section S1). [Figure 2](#) presents an
205 overview of the projected climate variables for the summer (JJA) and winter (DJF)
206 months during the baseline (1981-2020), mid-century (2031-2060) and end-of-century
207 (2081-2099) periods for each of the RCP8.5. More details about the other RCPs as
208 Supplementary Material (Section S2). With the most pessimistic assumption about the
209 evolution of greenhouse gas emissions (RCP8.5), climate projections estimate lower
210 precipitation, higher temperature and higher solar radiation for future summers, while
211 they predict higher precipitation, higher temperature and lower solar radiation for winters
212 at the end of the century.

213

214 Figure 2 Summary of climatic variables considering monthly mean values at the stations
 215 Changins (CGI), Reckenholz (REH), and Wynau (WYN) for the projections RCP8.5.
 216 Summer was considered as the months June, July and August, winter corresponds to
 217 December, January and February. Reference period: 1981-2020, mid-century: 2031-
 218 2060, end-of-century: 2071-2099. Rainfall corresponds to monthly sums, mean
 219 temperature is the mean between maximum and minimum temperature per day, averaged
 220 by month, solar radiation corresponds to daily values averaged by month.

221 **4.3 Model reference data and setup**

222 Reference information on soil water dynamics at four different depths (10, 30,
223 60, and 90 cm) were available from lysimeters of 135cm depth and 1m² surface area at
224 the lysimeter facility of Agroscope Zürich-Reckenholz (Prasuhn et al., 2016). Soil
225 moisture was monitored from 2009 to 2022 using frequency domain reflectometry sensors
226 (FDR; ThetaProbe ML2x, Delta-T Devices) at the depths of 10, 30, 60, and 90 cm. In
227 each of the lysimeters two identical sensors were installed at each depth with a time
228 resolution of one hour. We utilize the data of two lysimeters that contain similar soil
229 monoliths from a typical agricultural soil nearby (Loamy-silty Cambisol above ground
230 moraine (Fao, 2015), see [Table 2](#) for the soil profile description). The monoliths have a
231 15 cm layer of purified quartz sand and gravel at the bottom that help facilitate free
232 drainage.

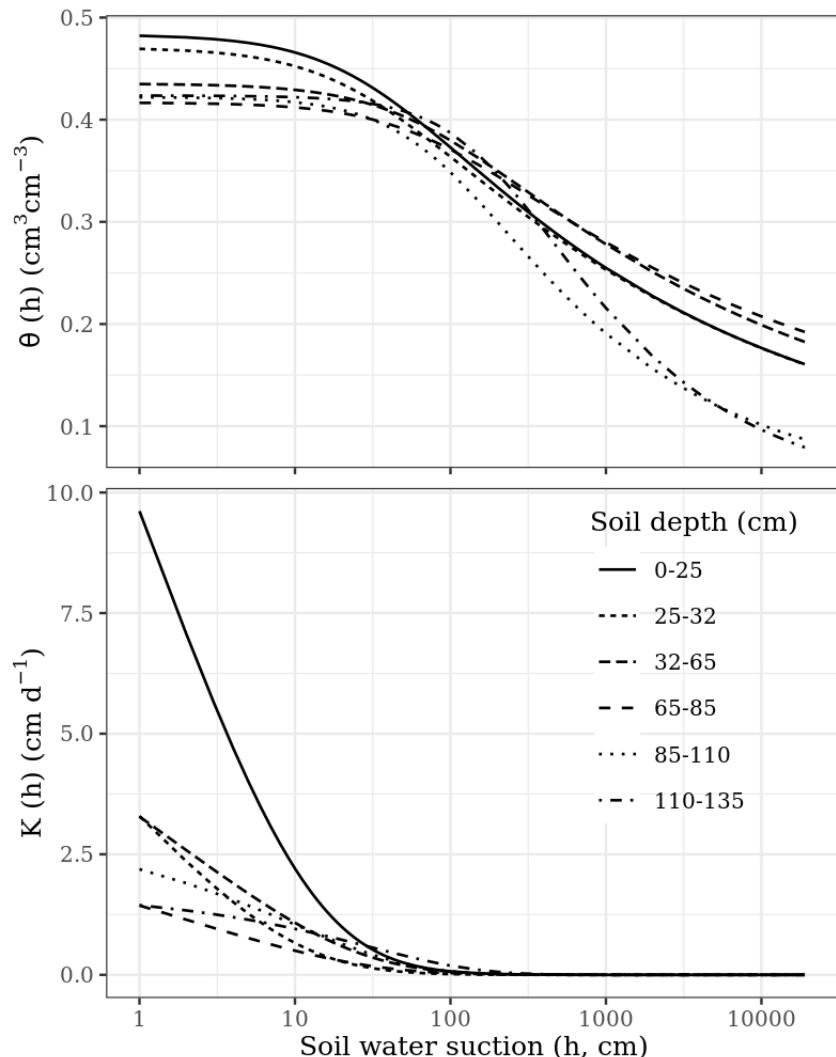
233 For the model setup, the measured physical and chemical soil parameters ([Table](#)
234 [2](#)) were used in combination with the pedotransfer function (PTF) developed by Szabó et
235 al. (2021), using the R package in which the euptfv2 is implemented (Weber et al., 2020).
236 The euptfv2 is a Random Forest-based PTF with various options for inputs and output
237 parameters, and has proven to be one of the most accurate PTFs to estimate soil hydraulic
238 properties for Europe when tested on diverse datasets (Nasta et al., 2021). As the standard
239 setup for all simulations, we used option ‘PTF02’, which requires the depth of the soil
240 layer, soil texture, and soil organic carbon content (SOC) as input, and estimates the VGM
241 parameters for the soil water retention [$\theta(h)$] and hydraulic conductivity [$K(h)$] functions
242 (Eq. [\[2\]](#)).

243

244

245 Table 2 Soil physical and chemical properties of the evaluated typical Swiss agricultural
 246 profile at the Lysimeter facility at Agroscope Reckenholz. SOC: soil organic carbon, BD:
 247 bulk density, PD: particle density, CEC: cation exchange capacity. Soil class and horizon
 248 description according to Prasuhn et al. (2016).

Horizon	Depth cm	Clay %	Silt %	Sand %	SOC %	BD g cm ⁻³	pH _{H₂O}	pH _{CaCl₂}	PD g cm ⁻³	CaCO ₃ %	CEC cmol+ kg ⁻¹
Ahp	0-25	25	50	25	1.48	1.36	6.8	6.4	2.63	0.1	16.2
Abcn	25-32	24	54	22	1.09	1.44	7.1	6.6	2.68	0.2	15.67
Bcn(g)(x)	32-65	31	50	19	0.43	1.44	7.2	6.5	2.7	0.1	17.61
Bg	65-85	33	46	21	0.32	1.44	7.5	6.6	2.7	0.1	18.77
BCg	85-105	19	61	20	0.10	1.39	8.6	7.7	2.7	40.2	10.93
Cg	105-135	18	65	17	0.02	1.61	8.6	7.8	2.71	54.4	7.49


249

250 [Table 3](#) presents the parameters of Eq. [\[2\]](#) at the evaluated soil profile from the
 251 Lysimeter station, calculated using the chosen PTF. The soil water retention and hydraulic
 252 conductivity curves are visualized in [Figure 3](#).

253 Table 3 Soil hydraulic parameters calculated using the euptfv2 at the original soil profile,
 254 considering option ‘PTF02’ that uses soil texture, soil carbon content and soil depth as
 255 input.

Soil	Layer	Depth cm	θ_r cm ³ cm ⁻³	θ_s cm ³ cm ⁻³	α cm ⁻¹	n -	K _s cm d ⁻¹	l -
Reckenholz	1	0-25	0.053	0.483	0.034	1.215	35.61	-1.59
	2	25-32	0.038	0.471	0.037	1.193	14.78	-0.70
	3	32-65	0.059	0.435	0.015	1.196	10.41	-0.62
	4	65-85	0.078	0.417	0.014	1.196	4.41	-1.23
	5	85-105	0.034	0.422	0.011	1.370	3.34	0.23
	6	105-135	0.026	0.424	0.005	1.441	1.77	0.09

256

257

258 Figure 3 Soil water retention (θ) and soil hydraulic conductivity (K) as function of the
 259 soil water suction (h) at the evaluated soil profile estimated by the euptfv2 (option
 260 'PTF02').

261 The validation of SWAP with the lysimeter information included three cropping
 262 periods with grain or silage maize in 2009, 2015 and 2020, with annual precipitation of
 263 1018.9, 831.5 and 855.2 cm, respectively. Daily time step was adopted and vertically, the
 264 top soil layer up to 65 cm was discretized using 1.0 cm sub-compartments, while
 265 subsequent layers were discretized with 5 and 10 cm sub-compartments. The boundary
 266 condition was set to 'free outflow at soil-air interface', which is considered as a valid
 267 option for lysimeters. The evapotranspiration was calculated using weather data and
 268 application of the Penman-Monteith equation. No macropore flow, lateral drainage or

269 solute dispersion was simulated. For the validation, the daily averaged values of measured
270 soil water content at each replicate sensor and depth (eight time series per lysimeter) were
271 compared to the modeled values by SWAP. As validation metrics, we used the root mean
272 square error (RMSE) and the Pearson correlation (r). See Supplementary Material S3 for
273 details on model setup.

274 **4.4 Design of simulation experiments**

275 In the absence of consistent and comparable data from long term and holistic
276 studies that account for the impacts of management on soil hydraulic properties,
277 pedotransfer functions (PTFs) are seen as a suitable choice to systematically account for
278 linkages between SOC and soil hydraulic properties. We thus used the chosen PTF to
279 systematically capture secondary effects of SOC instead of directly inferring the effects
280 of specific drivers of change on the soil hydraulic properties due to the uncertain
281 interaction effects between SOC, soil type, climate and management.

282 We assumed that management improvements have led to increased SOC from
283 the beginning of the simulation period and that SOC remained stable over the simulation
284 period, thereby testing different scenarios of successful carbon sequestration. The model
285 parametrization included three distinct depth scenarios: i) changes in SOC occur only
286 within the top 0-25 cm, ii) changes in SOC occur to 0-65 cm depth and, iii) changes in
287 SOC are achieved for the entire soil profile. In terms of SOC change, we simulated the
288 addition of up to 4% SOC to current SOC levels by 1% increments in the (i) and (ii) depth
289 scenarios, but applied reduction factors of 0.8 and 0.6 for the 65-105 cm and 105-135 cm
290 depths respectively in depth scenario (iii). This approach considers that obtaining greater
291 SOC via management likely affects the topsoil more than the deeper soil layers. The
292 outlined depth and SOC level scenarios are listed in Table 4 for easier comprehension.

293 It should be emphasized that the levels of SOC in the soil are dependent on
 294 several factors including land use and management, climate, geomorphology, which were
 295 considered as empirical relationships in this work.

296 Table 4 Description of %SOC levels added per depth and final values of SOC considering
 297 the described scenarios i), ii), and iii). Shaded values represent the layers where changes
 298 on SOC were applied.

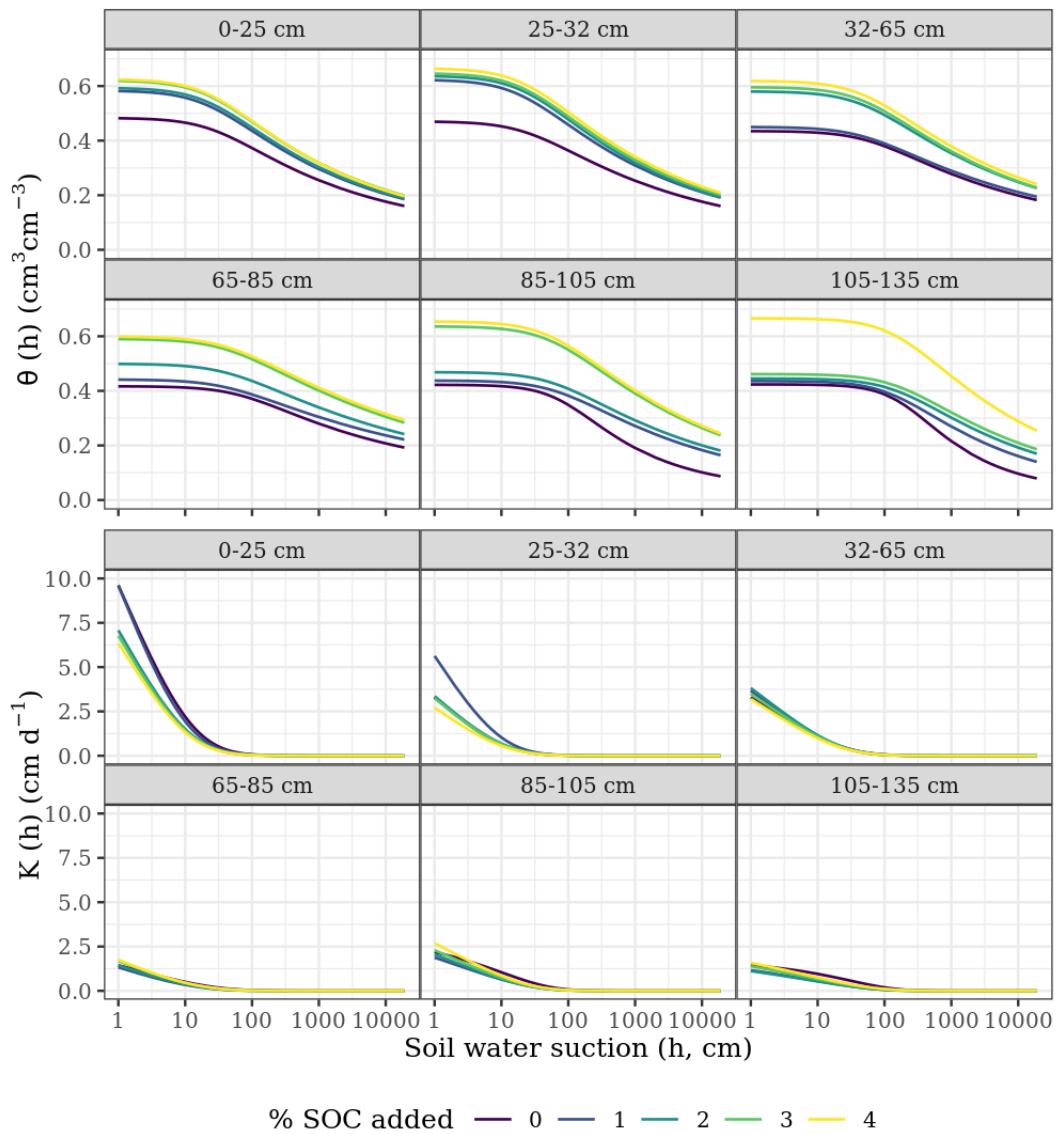
Scenario	Soil depth (cm)	SOC added (%)	Effective depth of changes (cm)		
			i) 0-25	ii) 0-65	iii) 0 -135
0%	0-25	0	1.48	1.48	1.48
	25-32	0	1.09	1.09	1.09
	32-65	0	0.43	0.43	0.43
	65-85	0	0.32	0.32	0.32
	85-105	0	0.10	0.10	0.10
	105-135	0	0.02	0.02	0.02
1%	0-25	1	2.48	2.48	2.48
	25-32	1	1.09	2.09	2.09
	32-65	1	0.43	1.43	1.43
	65-85	0.8	0.32	0.32	1.12
	85-105	0.8	0.10	0.10	0.90
	105-135	0.6	0.02	0.02	0.62
2%	0-25	2	3.48	3.48	3.48
	25-32	2	1.09	3.09	3.09
	32-65	2	0.43	2.43	2.43
	65-85	1.6	0.32	0.32	1.92
	85-105	1.6	0.10	0.10	1.7
	105-135	1.2	0.02	0.02	1.22
3%	0-25	3	4.48	4.48	4.48
	25-32	3	1.09	4.09	4.09
	32-65	3	0.43	3.43	3.43
	65-85	2.4	0.32	0.32	2.72
	85-105	2.4	0.10	0.10	2.5
	105-135	1.8	0.02	0.02	1.82
4%	0-25	4	5.48	5.48	5.48
	25-32	4	1.09	5.09	5.09
	32-65	4	0.43	4.43	4.43
	65-85	3.2	0.32	0.32	3.52
	85-105	3.2	0.10	0.10	3.3
	105-135	2.4	0.02	0.02	2.42

299

300 To quantify the impacts of increasing SOC on drought stress in maize under
301 climate change, SWAP was applied to the 22 climate projections at the three sites
302 Changins (CGI), Reckenholz (REH), and Wynau (WYN) in combination with the
303 scenarios of SOC increase listed in Table 4. We assumed grain maize to be sown on 6th
304 May (DOY 126) and harvested on 17th Oct (DOY 290) as registered in the Swiss variety
305 trial data for a medium-late variety type (Agroscope, 2023). The bottom boundary
306 condition was set as free drainage, representing a soil profile with deep groundwater
307 levels. For details of general SWAP parameterization see Supplementary Material S3.

308 All simulations considered rain fed conditions and were performed using the
309 simple crop growth module for a static crop, which simulates a fixed development of leaf
310 area index and rooting depth, independent of climatic conditions, in order to keep the
311 cropping period fixed for all scenarios. In this study we worked with 165 days of crop
312 growing period; the crop component's parameterization is described in Supplementary
313 Material S4.

314 Overall, we conducted a total of 990 simulation runs (5 levels of SOC \times 3 soil
315 depths \times 3 sites \times 22 climate projections) for the period 1981-2099, and used cumulative
316 amounts of drought-induced transpiration reduction (T_{redry}) as an indicator of drought
317 stress during the cropping period. The 10-year moving average of T_{redry} was calculated
318 to represent decadal changes and exclude interannual variability. The range of T_{redry}
319 values among the available climate projections were represented by the 0.05 quantile
320 ($q_{0.05}$) and the 0.95 quantile ($q_{0.95}$) as upper and bottom boundaries, respectively. The
321 difference between management scenarios in terms of crop transpiration, defined as the
322 average transpiration gain (ATG) with SOC increase, was calculated as the difference
323 between the scenario with no addition of SOC (0%) and the one with the maximum
324 addition of SOC (4%).

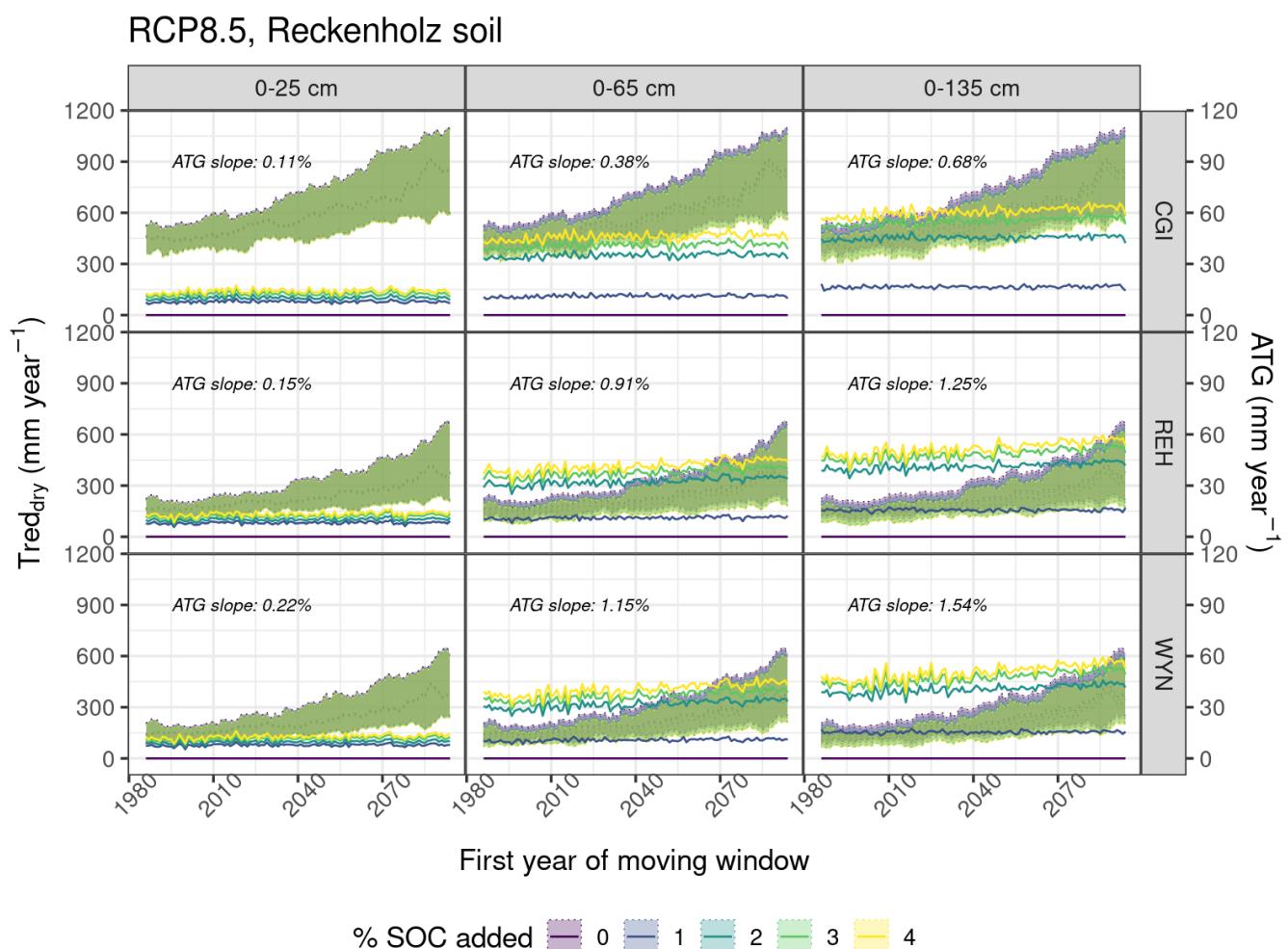

325 **5. Results**326 **5.1 Model validation**

327 Using the soil hydraulic parameters from [Table 3](#), we simulated soil water
 328 content in the lysimeter soil profiles and compared them with moisture data measured by
 329 FDR sensors. The lumped values of the two lysimeters, considering all maize cropping
 330 periods (2009, 2015, and 2020), all depths (10, 30, 60, and 90 cm) with duplicated
 331 sensors, resulted in a median ($q_{0.5}$) RMSE of $0.066 \text{ cm}^3 \text{ cm}^{-3}$ ($q_{0.05}=0.050 \text{ cm}^3 \text{ cm}^{-3}$,
 332 $q_{0.75}=0.098$) and correlation median correlation r of 0.79 ($q_{0.05}=0.68$, $q_{0.75}=0.84$). In
 333 general, the simulations were more accurate for the deeper layers as compared to the
 334 topsoil. At 10 cm, the RMSE was on average $0.11 \text{ cm}^3 \text{ cm}^{-3}$, whereas it was $0.04 \text{ cm}^3 \text{ cm}^{-3}$
 335 at the bottom.

336

337 **5.2 Effect of increasing SOC on the soil hydraulic properties and soil water
 338 balance**

339 The effects of adding different amounts of SOC at different soil layers ([Figure](#)
 340 [4](#)) are reflected in PTF estimates of soil hydraulic properties with updated SOC contents.
 341 The “0%” line, corresponding to the VGM parameters in [Table 3](#), represent the properties
 342 of the different soil layers with current SOC. For the soil water retention curve, the effects
 343 of the increase in SOC reflected an estimated increase in pore space, whose expression
 344 varied with soil depth and added SOC. In the topsoil, the differences between the addition
 345 of 1% and 4% SOC were not as remarkable as in the subsoil layers, where an addition of
 346 1% SOC lead to a substantial increase in estimated pore space. For saturated hydraulic
 347 conductivity, the overall trend was a reduction in conductivity with the increase in SOC,
 348 with the biggest contrasts found in the topsoil.



349

350 Figure 4 Effects of SOC increase on the soil water retention (θ) and soil hydraulic
 351 conductivity (K) as function of the soil water suction (h) as predicted by euptfv2, option
 352 'PTF02'.

353 Considering effects of adding SOC at different soil depths, Figure 5 presents an
 354 overview of the transient simulations between 1980 and 2099 with the most unfavorable
 355 climate scenario projections (RCP8.5). For each year of simulation, a range of values of
 356 T_{redry} was generated by the 22 climate projections, which are being represented by a
 357 band defined by the lines $q_{0.05}$ and $q_{0.95}$ quantiles, and the $q_{0.5}$ quantile (median) is
 358 represented by a line within that band. The average transpiration gain (ATG) line is the
 359 difference between the median ($q_{0.5}$) values of the original Reckenholz soil profile (i.e.

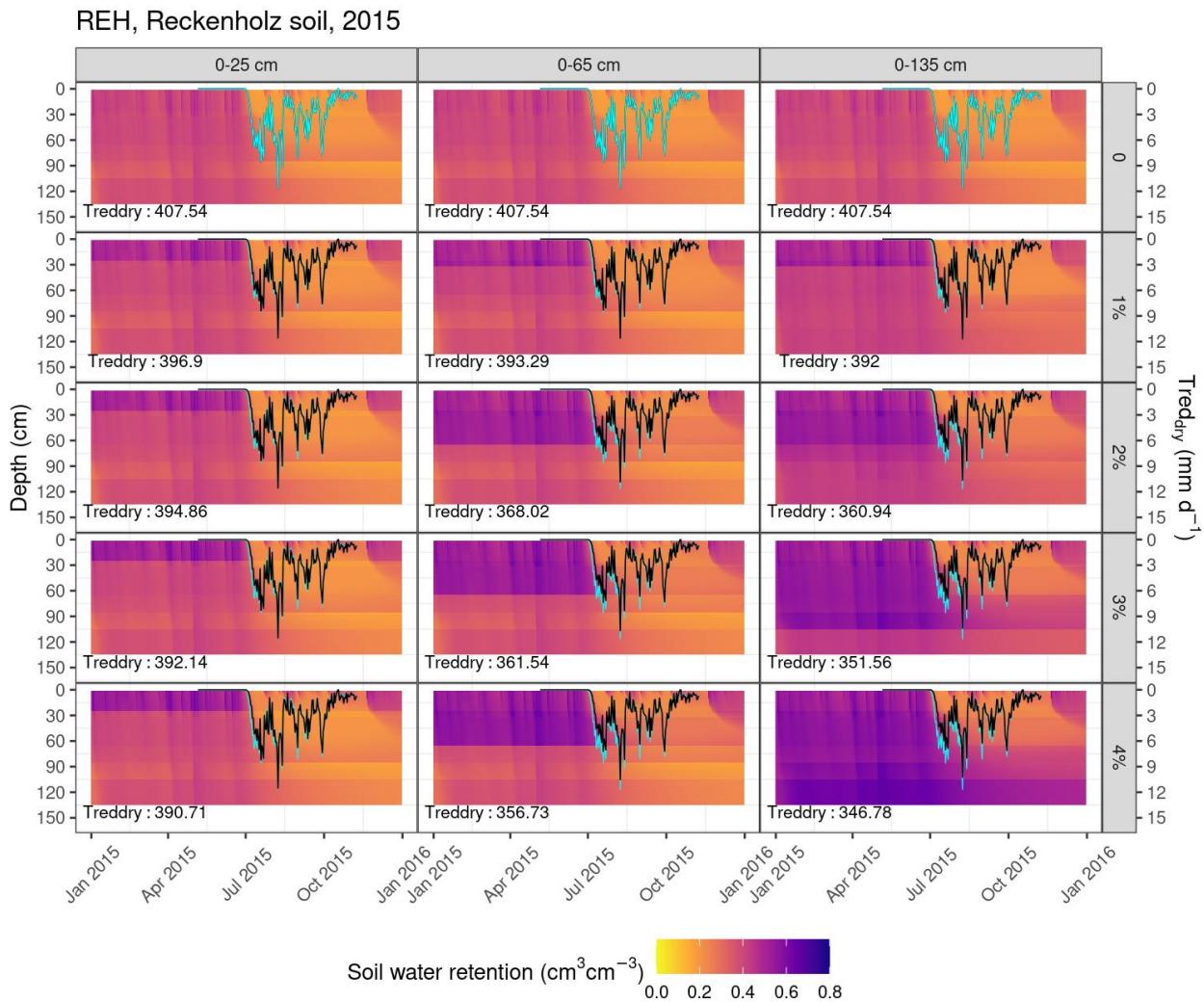
360 0% SOC addition) and the one that had 4% SOC added. The ATG can be interpreted as
 361 the amount of seasonal transpiration gained in response to increased SOC. The absolute
 362 increase in T_{redry} comparing the reference period with the end of the century was on
 363 average 269, 207, and 269 mm at CGI, REH and WYN, respectively. Additional results
 364 considering other Representative Climate Projections (RCP 2.6 and 4.5) are presented in
 365 the Supplementary Material (Section S5).

366

367 Figure 5 Transpiration reduction due to drought stress (T_{redry}) (left axis, green band) for
 368 actual and future climate conditions considering different levels of SOC increase in the
 369 soil at different effective soil depths; and average transpiration gain, ATG, (right axis,
 370 colored lines) between 0 and 4% addition of SOC. Climate projections considered the
 371 RCP8.5 pathway and were averaged for every 10 years. The green shaded area of T_{redry}
 372 refers to the values between (dotted) quantiles $q_{0.05}$ and $q_{0.95}$ of the climate projections.
 373 ATG is interpretable as average seasonal gain in transpiration due to SOC increase, and
 374 ATG slope refers to the slope of the ATG line between 0 and 4% SOC addition.

375

376 According to the simulated scenarios, the main driver of the absolute values of
 377 T_{redry} is the climate, with more drought stress under the climate of the drier site (CGI)
 378 and very similar stress levels under the climate of the other two sites, REH and WYN,
 379 that are wetter and appear to be somewhat resembling. There was a clear tendency of
 380 increased stress towards the end of the century, driven by more unfavorable climatic
 381 conditions during the cropping period (Figure 2). The ATGs were very similar amongst
 382 the three considered climates, with maximum values around 60 mm year^{-1} , and slightly
 383 higher in the CGI climate. The ATG slopes calculated between the beginning and the end
 384 of the century were higher at REH and WYN, which are the sites with less water stress
 385 under current conditions. This is an implication of not considering a gradual build-up
 386 period for increased SOC, but considering the same levels of SOC addition for the entire
 387 simulation period.


388 The simulations were performed considering the addition of SOC down to three
 389 different depths (25, 65, and 135 cm). The addition of SOC to the top 25 cm seems to
 390 have a modest effect on T_{redry} . The effects of increasing SOC all the way to 135 cm are
 391 the greatest, but are comparable to the intermediate option of adding SOC till 65 cm
 392 depth. In general, adding 2% SOC already lead to considerable reduction in T_{redry} , and
 393 is a more realistic, easier-to-implement alternative to adding 4% SOC.

394

395 **5.3 Detailed soil water dynamics and drought stress over the cropping
 396 period**

397 Figure 6 depicts, as an example, how the soil moisture profile develops and how
 398 the ATG in moisture deficit builds up during the simulated 2015 cropping year at the REH

399 site, with the different increased SOC levels in the entire soil profile (depth scenario iii).
400 The addition of SOC leads to a clear pattern of increasing soil water retention.. The blue
401 line depicts the daily simulated crop transpiration deficit (T_{redry}) of the 0% added SOC
402 scenario, while the black lines depict the same obtained for the relevant depth and SOC
403 addition scenario in each plot. Their difference, when cumulated for the year, yields the
404 transpiration deficit ATG for the given year and scenario. The most remarkable seasonal
405 ATGs were observed in the beginning of the cropping season, and could be linked to
406 increased soil water retention capacity combined with the availability of water in that
407 season. According to Figure 4, increased SOC content generally yielded increased soil
408 water retention capacity relative to the base scenario of no SOC addition. In the early
409 cropping season this increased capacity is capitalized on in the form of retaining more
410 water in the system by the end of the recharge-period in the wet and cold winter and spring
411 season. The simulated extra amount of water is clearly demonstrated in Figure 6. During
412 the early part of the growing season, this excess water then becomes available to the crop,
413 dampening the effects of any drought-stress, or at least delaying its onset. The soil will
414 also not dry out to the same degree during the later half of the season, or at least not to
415 the same depth. Similar results for the other evaluated sites are presented in the
416 Supplementary Material (Section S6).

417

418 Figure 6 Detailed profile of soil water content (left axis)
 419 and Treddry (right axis, black lines)
 420 according to the different added SOC levels at the Reckenholz site (REH) in the
 421 year of 2015. The blue line represents Treddry for the original soil profile (0% SOC).
 422 When cumulated for the year, their difference yields the annual ATG in crop transpiration
 deficit that is due to the addition of carbon to the soil.

423 **6. Discussion**424 **6.1 Increasing soil organic carbon reduces drought stress in maize**

425 We observed that according to the predictions of the used PTF, an increase of
426 SOC has a small effect on, but generally decreases soil hydraulic conductivity ([Figure 4](#)).
427 This may be counter-intuitive in that textbook knowledge connects greater SOC content
428 with better soil structure formation, greater porosity, and in turn to enhanced water
429 transport properties (hydraulic conductivity) (Nemes et al., 2005). However, several
430 studies have now emerged that correlated greater SOC content with lower hydraulic
431 conductivity. These studies include both experimental data and the mining of several
432 extended databases using machine-learning (Nemes et al., 2005; Wang et al., 2009; Jarvis
433 et al., 2013; Larsbo et al., 2016). The rationale behind this notion is that when SOC
434 content increases, there is enhanced porosity, but the tortuosity of conductive pathways
435 may increase due to enhanced microbial activity and the formation of more complex
436 aggregates, resulting in better water retention but reduced hydraulic conductivity. Some
437 of these authors noted increased predicted water retention in the effective porosity (i.e.
438 the range between field capacity and saturation), which supports the proposed notion.

439 Results from this simulation study suggest that increases in SOC would generally
440 decrease drought stress in maize cultivated on a typical agricultural soil in Switzerland.
441 The summer season precipitation amount at the evaluated sites is expected to be decreased
442 by around 60-65 mm till the end of the century ([Figure 2](#)). In this scenario, a 2% addition
443 of SOC can reduce drought stress of maize by 10.5 to 40 mm during the cropping season
444 and potentially compensate part of the rainfall reduction with climate change. Bonfante
445 et al. (2020) suggests that the effect of SOC on moisture supply capacity should be
446 evaluated in more climatic zones in order to obtain a broader picture of its potential

447 impact. What we observed in this work was that the degree of decrease in T_{redry} was
448 only minimally dependent on regional climatic conditions, with the wettest site (WYN)
449 benefitting least from the SOC increases under current climate conditions. As conditions
450 get drier, as projected with climate change for the Swiss Central Plateau, the transpiration
451 gain increases, but reaches a maximum at 60 mm with SOC increase down to 135 cm.

452 Our study suggests minor benefits of increasing SOC in the topsoil (maximum
453 ATG reached is 15 mm, Figure 5). However, if SOC was increased down to at least
454 65 cm, this beneficial effect can be considerably higher (maximum ATG reached is
455 45 mm, Figure 5). Overall, the maximum ATG of T_{redry} quantified in this study was
456 60 mm (at the end of the century, with SOC increase down to 135 cm), suggesting that
457 without supplementary irrigation, seasonal crop transpiration can be up to 60 mm greater
458 with increased SOC, compared to the reference situation. This amount is comparable to
459 1-2 irrigation dosages and makes up for roughly 30% of the average theoretical irrigation
460 water demand estimated by Holzkämper (2020) for the region between Wynau (WYN)
461 and Changins (CGI). The productivity gain to be achieved will strongly depend on the
462 period in the cropping cycle when this extra water will be available. Considering that
463 transpiration benefits are greatest at the onset of drought during early summer (Figure 6),
464 the productivity gains may be particularly high if the effect coincides with the critical
465 reproductive phase of the crop. This might imply that transpiration gains achieved with
466 increases in SOC have a significant potential to increase yield stability, particularly in
467 situations where and when irrigation is not an option.

468 The positive slopes of calculated ATGs of T_{redry} (i.e. transpiration gained with
469 SOC increase) in Figure 5 suggest that the benefits of SOC additions could slightly
470 increase with projected future climate change – especially at WYN, the least water-
471 limited site under current conditions. At the driest site, CGI, the ATG (i.e. benefit of SOC

472 increase) reached under current climatic conditions is roughly at the same level as it is at
473 WYN at the end of the century. These findings imply that the benefits of SOC
474 accumulation may increase as water input (precipitation) during the cropping period
475 decreases over time. However, there appears to be a threshold beyond which benefits are
476 not seen as $T_{red, dry}$ further increases (the *ATG slope* in Figure 5 decreases from the wettest
477 to the driest site). The benefit of “extra water availability” comes from the balance of two
478 elements: available water and available storage capacity. It appears that the available
479 storage capacity component is enhanced by the addition of some SOC (i.e. 2% addition
480 in our simulations), but the system becomes water-limited by the end of the century. The
481 extra storage capacity that additional SOC may yield will not be filled up by the actual
482 water input, and the potential extra benefit cannot be realized. The within-year occurrence
483 of the same phenomenon is observable in [Figure 6](#). The biggest reduction in $T_{red, dry}$ occurs
484 in the beginning of the cropping season, when the increased retention capacity was present
485 at the same time when ample amount of water was recharging the system during and after
486 the cold, rainy season, with little or no plant water uptake.

487 A similar balance is likely to apply when the outcome of a 135 cm deep
488 application of added SOC is interpreted. When simulating SOC addition to 135 cm depth
489 vs. only 65 cm, the added benefit in terms of reduced crop $T_{red, dry}$ appears to be limited.
490 We argue that while some excess water storage capacity is simulated, there is little actual
491 benefit realized from that, given the reduced amount of predicted precipitation by the end
492 of the century. In addition, few, if any, crop roots reach that depth, which means that the
493 only way the crop has direct benefit from water stored in the deeper soil layers in the
494 growing season is if water redistributed upwards via capillary and vapor transport.

495

496 **6.2 Possibilities to increase soil organic carbon**

497 Results from our study suggest that the beneficial effects of increasing SOC are
 498 small if SOC is only increased in the top-soil (0-25 cm), but become more significant if
 499 SOC is increased to only 65 cm depth by at least 2%. We assumed that such SOC
 500 increases can be achieved, while different management adaptations and combinations
 501 thereof may be suitable to reach this target. Commonly considered strategies to increase
 502 SOC include additions of organic amendments, planting of deep-rooting crops, cover-
 503 cropping, intercropping, mulching with organic material, retaining crop residues in the
 504 field and reduced tillage or no-till (Topa et al., 2021; Ipcc, 2019). No-till or reduced tillage
 505 decreases the carbon oxidation process and soil disturbance with the loss of soil organic
 506 carbon and nutrient availability (Modak et al., 2019; Kan et al., 2020). Also, Angers and
 507 Eriksen-Hamel (2008) found that tillage affects the distribution of SOC over the depth of
 508 the soil profile with important implications in crop water availability. A meta-analysis on
 509 effects of tillage on SOC (Krauss et al., 2022) has shown that it is not uncommon that
 510 depletion in SOC of a subsoil layer co-occurs with increased SOC levels in the topsoil.
 511 We tested this with the particular soil and PTF used in our study, and found that the
 512 hydrological effects of reducing SOC at the depth of 25-32 cm were almost identical to
 513 the scenario in which the same amount of SOC increase in the depth of 0-25 cm was
 514 simulated but without subsoil SOC depletion (Figure 5). We emphasize that, from the
 515 point of view of water availability to plants with deep roots, management strategies should
 516 aim at increasing SOC content deeper than only in the topsoil.

517 According to Bai et al. (2019), reduced tillage or no-till increases SOC mostly
 518 in the top 10 cm and also in the sub-soil below 50 cm. The same study found that cover-
 519 cropping could increase SOC down to 70 cm depth. Incorporation of perennial grasses
 520 into crop rotations could help increase SOC to 60 cm depth, beyond the plough layer

521 (Carter and Gregorich, 2010). Evidence of this under Swiss conditions was provided by
522 Guillaume et al. (2021); Guillaume et al. (2022). Overall, such strategies were found to
523 be most beneficial to SOC accumulation near the soil surface (Bai et al., 2019). One
524 management operation that could effectively contribute to an accumulation of SOC in
525 deeper soil layers is deep ploughing (Alcántara et al., 2016). However, when the soil is
526 loosened the SOC oxidation process is enhanced, as well as erosion may be triggered,
527 which has to be accounted for when planning such interventions.

528 We have tested the scenario of incorporating extra amount of SOC in the soil
529 down to a depth of 135 cm. This is a scenario that would require similar strategies as the
530 previously discussed scenario, but it is likely rather difficult to implement, especially with
531 greater amounts of SOC stored. Our study showed that in terms of water-availability to
532 the (maize) crop, this scenario has little extra benefit to offer over the scenario of having
533 extra SOC sequestered to 65 cm depth. Hence, any investment in sequestering SOC into
534 such depths should not be driven by high expectation of hydrological benefits.

535

536 **6.3 Limitations and further work**

537 Our study, as well as previous modelling studies exploring impacts of SOC
538 additions on soil water availability (e.g. Ankenbauer and Loheide (2017), Bonfante et al.
539 (2020), Feng et al. (2022)), build on pedotransfer functions that are believed to be best in
540 estimating soil hydraulic parameters for the study area based on levels of SOC and other
541 soil properties. The selection of PTFs, however, may play a crucial role in the outcome
542 of simulated scenarios. While recent studies confirm the validity of the equations used
543 (e.g. Nasta et al. (2021); Wagner et al. (2004)), uncertainties in derived estimates may
544 still be large (Fatichi et al., 2020). PTF structure may also have an influence in that more

545 advanced (aka. “better”) PTFs are usually products of refined machine learning
546 algorithms that may produce strong results in general but may have different estimation
547 qualities in different parts of the data domain. Since such local performance is rarely
548 evaluated, future work should thus explore the sensitivity of SOC benefits via using an
549 ensemble of PTFs. Moreover, measurements of soil hydraulic properties in combination
550 with SOC, texture and bulk density in long term field trials investigating management
551 alternatives affecting SOC would provide very useful evidence to help disentangle the
552 effects of land use and management on the relationships between soil texture and
553 hydraulic properties. By integrating management and also local climate information in
554 PTFs, their uncertainties in predicting soil hydraulic properties in specific context could
555 be reduced (Van Looy et al., 2017). Many historic records do not provide sufficient
556 information on how certain measurements were performed, or when the samples were
557 taken. Also, the timing of field sampling is likely to play a role here, as it is known that
558 soil hydraulic properties vary in time and are influenced e.g. by precipitation regime or
559 land use and management (Caplan et al., 2019; Lu et al., 2020).

560 In this study, we focused on transpiration reduction, which is likely to imply
561 biomass reduction, but may not necessarily imply yield reduction – depending on the
562 timing of water stress. Other studies have investigated impacts of CC on yields for grain
563 maize in Switzerland (Holzkämper, 2020; Holzkämper et al., 2015a) and it was found that
564 yield trends differ depending on the choice of varieties assumed to be planted. In our
565 study here, we focus on drought impacts on crop transpiration alone. Subsequent yield
566 formation will be affected by crop transpiration, but also by various other drivers (e.g.
567 temperature & radiation limitations, timing of stresses, heat stress). In order to obtain a
568 clearer view on the impacts of SOC increases on crop transpiration, we elected not to
569 consider the multitude of such interactive effects in the presented study. In future work,

570 it will be interesting to explore possibilities to further increase the benefits of SOC
571 additions by combining that strategy with other adaptations of crop and soil management
572 (e.g. earlier maturing varieties, cover cropping, mulching of soil to reduce evaporation).
573 In this context, it will be advisable to also account for a dynamic development of
574 phenology and thus leaf area index to account for possible interactions between crop
575 growth and soil moisture conditions.

576 While our study focused solely on the impacts of SOC additions on soil water
577 dynamics, SOC increases could have additional benefits for crop productivity and yield
578 stability by feeding and supporting beneficial microbial communities in the soil (e.g.
579 rhizobacteria, nitrogen-fixing bacteria, and mycorrhizal fungi), which increase the crops'
580 ability to take up water and nutrients (Coban et al., 2022; Renwick et al., 2021;
581 Kallenbach and Grandy, 2011). Such aspects could be addressed in future field
582 experimental studies. Beyond that, future field- and model-based studies may also
583 evaluate trade-offs or synergies of SOC promoting management strategies with regard to
584 other soil-related ecosystem service indicators such as nitrate leaching, soil loss or runoff
585 generation to provide insights regarding the possibilities to increase the sustainability of
586 agricultural production overall (Bonfante et al., 2019). Alternative modelling approaches
587 considering dynamic changes in soil hydraulic properties could also be applied in the
588 future to investigate the influence of soil structural dynamics on the adaptation benefits
589 of SOC accumulation (e.g. based on Meurer et al. (2020b), Meurer et al. (2020a)), as to
590 our understanding, current models do not facilitate the representation of soil as a
591 temporally variable medium.

592

593 **7. Conclusions**

594 Our study is the first to investigate the possibilities to reduce T_{redry} , an indicator
 595 of drought stress, in maize cultivated in the Swiss Central Plateau through increasing SOC
 596 in the top- and subsoil. Our simulations showed that T_{redry} in maize is expected to
 597 increase with climate change in the Swiss Central Plateau region, by around 60-65 mm
 598 irrespective of SOC increase. Increasing SOC in a typical agricultural soil in Switzerland,
 599 however, is beneficial to reduce drought limitations in maize, showed by consistently
 600 positive average transpiration gains. These benefits are minimal if SOC is only increased
 601 in the top 25 cm, but become considerable if SOC is increased down to 65- or 135 cm
 602 depth. With a 2% addition of SOC down to 65cm depth, a considerable average
 603 transpiration gain of 40 mm can be reached. This scenario can be achievable considering
 604 management adaptations such as cover cropping or compost applications. It appears that
 605 a greater or deeper SOC addition would not return substantial extra benefits in terms of
 606 offsetting more crop drought stress rooting in the changing climate.

607

608 **8. Author contribution**

609 Conceptualization^{1,3}, Data curation¹, Formal analysis^{1,3}, Funding acquisition³,
 610 Investigation^{1,2,3}, Methodology^{1,3}, Resources³, Software¹, Visualization¹, Writing –
 611 original draft preparation^{1,3}, Writing – review & editing^{1,2,3}.

612 ¹MET; ²AN; ³AH

613 **9. Competing interests**

614 The authors declare that they have no conflict of interest.

615 **10. Acknowledgments**

616 This project was developed in the framework of the OPTAIN and SoilX-EJP SOIL
 617 projects. OPTAIN (OPTimal strategies to retAIN and re-use water and nutrients in small
 618 agricultural catchments across different soil-climatic regions in Europe, cordis.europa.eu)

619 has received funding from the European Union's Horizon 2020 research and innovation
 620 programme (Grant Agreement N° 862756). SoilX is part of the European Joint Program
 621 for SOIL "Towards climate-smart sustainable management of agricultural soils" (EJP
 622 SOIL) funded by the European Union Horizon 2020 research and innovation programme
 623 (Grant Agreement N° 862695). The authors thank Dr. Volker Prasuhn for providing full
 624 assistance with the lysimeter data.

625 **11. References**

626 Agroscope: Sortenversuche - Resultate Mais (In German), 2023.

627 Alcántara, V., Don, A., Well, R., and Nieder, R.: Deep ploughing increases agricultural
 628 soil organic matter stocks, *Global Change Biology*, 22, 2939-2956,
 629 <https://doi.org/10.1111/gcb.13289>, 2016.

630 Angers, D. A. and Eriksen-Hamel, N. S.: Full-Inversion Tillage and Organic Carbon
 631 Distribution in Soil Profiles: A Meta-Analysis, *Soil Science Society of America Journal*,
 632 72, 1370-1374, <https://doi.org/10.2136/sssaj2007.0342>, 2008.

633 Ankenbauer, K. J. and Loheide, S. P.: The effects of soil organic matter on soil water
 634 retention and plant water use in a meadow of the Sierra Nevada, CA, *Hydrological
 635 Processes*, 31, 891-901, 10.1002/hyp.11070, 2017.

636 Arthur, E., Tuller, M., Moldrup, P., and de Jonge, L. W.: Effects of biochar and manure
 637 amendments on water vapor sorption in a sandy loam soil, *Geoderma*, 243-244, 175-
 638 182, <https://doi.org/10.1016/j.geoderma.2015.01.001>, 2015.

639 BAFU: Hitze und Trockenheit im Sommer 2015. Auswirkungen auf Mensch und
 640 Umwelt, Bern, 2016.

641 BAFU: Hitze und Trockenheit im Sommer 2018, Bern, 91, 2019.

642 Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.-A., Tao, B., Hui, D., Yang, J., and
 643 Matocha, C.: Responses of soil carbon sequestration to climate-smart agriculture
 644 practices: A meta-analysis, *Global Change Biology*, 25, 2591-2606,
 645 <https://doi.org/10.1111/gcb.14658>, 2019.

646 Blanchy, G., Bragato, G., Di Bene, C., Jarvis, N., Larsbo, M., Meurer, K., and Garré, S.:
 647 Soil and crop management practices and the water regulation functions of soils: a
 648 qualitative synthesis of meta-analyses relevant to European agriculture, *SOIL*, 9, 1-20,
 649 10.5194/soil-9-1-2023, 2023.

650 Bonfante, A., Basile, A., and Bouma, J.: Exploring the effect of varying soil organic
 651 matter contents on current and future moisture supply capacities of six Italian soils,
 652 *Geoderma*, 361, 10.1016/j.geoderma.2019.114079, 2020.

653 Bonfante, A., Terribile, F., and Bouma, J.: Refining physical aspects of soil quality and
 654 soil health when exploring the effects of soil degradation and climate change on
 655 biomass production: an Italian case study, *SOIL*, 5, 1-14, 10.5194/soil-5-1-2019, 2019.

656 Caplan, J. S., Giménez, D., Hirmas, D. R., Brunsell, N. A., Blair, J. M., and Knapp, A.
 657 K.: Decadal-scale shifts in soil hydraulic properties induced by altered precipitation,
 658 *Sci. Adv.*, 5, 2019.

659 Carter, M. R. and Gregorich, E. G.: Carbon and nitrogen storage by deep-rooted tall
 660 fescue (*Lolium arundinaceum*) in the surface and subsurface soil of a fine sandy loam in
 661 eastern Canada, *Agriculture, Ecosystems & Environment*, 136, 125-132,
 662 <https://doi.org/10.1016/j.agee.2009.12.005>, 2010.

663 Coban, O., De Deyn, G. B., and van der Ploeg, M.: Soil microbiota as game-changers in
 664 restoration of degraded lands, *Science*, 375, abe0725, doi:10.1126/science.abe0725,
 665 2022.

666 Crystal-Ornelas, R., Thapa, R., and Tully, K. L.: Soil organic carbon is affected by
 667 organic amendments, conservation tillage, and cover cropping in organic farming
 668 systems: A meta-analysis, *Agriculture, Ecosystems & Environment*, 312, 107356,
 669 <https://doi.org/10.1016/j.agee.2021.107356>, 2021.

670 de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D.,
 671 Supit, I., van der Wijngaart, R., and van Diepen, K.: 25 years of the WOFOST cropping
 672 systems model, *Agricultural Systems*, 168, 154-167,
 673 <https://doi.org/10.1016/j.agsy.2018.06.018>, 2019.

674 Edeh, I. G., Mašek, O., and Buss, W.: A meta-analysis on biochar's effects on soil water
 675 properties – New insights and future research challenges, *Science of The Total
 676 Environment*, 714, 136857, <https://doi.org/10.1016/j.scitotenv.2020.136857>, 2020.

677 Eden, M., Gerke, H. H., and Houot, S.: Organic waste recycling in agriculture and
 678 related effects on soil water retention and plant available water: a review, *Agronomy for
 679 Sustainable Development*, 37, 11, 10.1007/s13593-017-0419-9, 2017.

680 FAO: World reference base for soil resources 2014. International soil classification
 681 system for naming soils and creating legends for soil maps, FAO, 2015.

682 Faticchi, S., Or, D., Walko, R., Vereecken, H., Young, M. H., Ghezzehei, T. A., Hengl,
 683 T., Kollet, S., Agam, N., and Avissar, R.: Soil structure is an important omission in
 684 Earth System Models, *Nature Communications*, 11, 522, 10.1038/s41467-020-14411-z,
 685 2020.

686 Feddes, R. A., Kowalik, P.J., Zaradny, H.: *Simulation of Field Water Use and Crop
 687 Yield*, Wageningen, The Netherlands, 1978.

688 Feng, P., Wang, B., Harrison, M. T., Wang, J., Liu, K., Huang, M., Liu, D. L., Yu, Q.,
 689 and Hu, K.: Soil properties resulting in superior maize yields upon climate warming,
 690 *Agronomy for Sustainable Development*, 42, 85, 10.1007/s13593-022-00818-z, 2022.

691 Guillaume, T., Bragazza, L., Levasseur, C., Libohova, Z., and Sinaj, S.: Long-term soil
 692 organic carbon dynamics in temperate cropland-grassland systems, *Agriculture,
 693 Ecosystems & Environment*, 305, 107184, <https://doi.org/10.1016/j.agee.2020.107184>,
 694 2021.

695 Guillaume, T., Makowski, D., Libohova, Z., Bragazza, L., Sallaku, F., and Sinaj, S.:
 696 Soil organic carbon saturation in cropland-grassland systems: Storage potential and soil
 697 quality, *Geoderma*, 406, 115529, <https://doi.org/10.1016/j.geoderma.2021.115529>,
 698 2022.

699 Holzkämper, A.: Varietal adaptations matter for agricultural water use – a simulation
 700 study on grain maize in Western Switzerland, *Agricultural Water Management*, 237,
 701 106202, <https://doi.org/10.1016/j.agwat.2020.106202>, 2020.

702 Holzkämper, A., Calanca, P., and Fuhrer, J.: Identifying climatic limitations to grain
 703 maize yield potentials using a suitability evaluation approach, *Agricultural and Forest
 704 Meteorology*, 168, 149-159, <https://doi.org/10.1016/j.agrformet.2012.09.004>, 2013.

705 Holzkämper, A., Calanca, P., Honti, M., and Fuhrer, J.: Projecting climate change
 706 impacts on grain maize based on three different crop model approaches, *Agricultural
 707 and Forest Meteorology*, 214-215, 219-230,
 708 <https://doi.org/10.1016/j.agrformet.2015.08.263>, 2015a.

709 Holzkämper, A., Fossati, D., Hiltbrunner, J., and Fuhrer, J.: Spatial and temporal trends
 710 in agro-climatic limitations to production potentials for grain maize and winter wheat in
 711 Switzerland, *Regional Environmental Change*, 15, 109-122, 10.1007/s10113-014-0627-
 72 7, 2015b.

713 IPCC: P.R. Shukla, J. Skea, R. Slade, R. van Diemen, E. Haughey, J. Malley, M.
 714 Pathak, J. Portugal Pereira (Eds.). Technical Summary, in: *Climate Change and Land:
 715 an IPCC special report on climate change, desertification, land degradation, sustainable*

716 land management, food security, and greenhouse gas fluxes in terrestrial ecosystems,
 717 edited by: Shukla, P. R., Skea, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H.-O.,
 718 Roberts, D. C., Zhai, P., Slade, R., Connors, S., Diemen, R. v., Ferrat, M., Haughey, E.,
 719 Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J. P., Vyas, P., Huntley, E., Kissick,
 720 K., Belkacemi, M., and Malley, J., In press, 2019.

721 Jarvis, N., Koestel, J., Messing, I., Moeys, J., and Lindahl, A.: Influence of soil, land
 722 use and climatic factors on the hydraulic conductivity of soil, *Hydrol. Earth Syst. Sci.*,
 723 17, 5185-5195, 10.5194/hess-17-5185-2013, 2013.

724 Kallenbach, C. and Grandy, A. S.: Controls over soil microbial biomass responses to
 725 carbon amendments in agricultural systems: A meta-analysis, *Agriculture, Ecosystems
 726 & Environment*, 144, 241-252, <https://doi.org/10.1016/j.agee.2011.08.020>, 2011.

727 Kan, Z.-R., Ma, S.-T., Liu, Q.-Y., Liu, B.-Y., Virk, A. L., Qi, J.-Y., Zhao, X., Lal, R.,
 728 and Zhang, H.-L.: Carbon sequestration and mineralization in soil aggregates under
 729 long-term conservation tillage in the North China Plain, *CATENA*, 188, 104428,
 730 <https://doi.org/10.1016/j.catena.2019.104428>, 2020.

731 Kotlarski, S. and Rajczak, J.: CH2018 - Climate Scenarios for Switzerland.
 732 Documentation of the localized CH2018 datasets., National Centre for Climate Services
 733 - Switzerland, 2018.

734 Krauss, M., Wiesmeier, M., Don, A., Cuperus, F., Gattinger, A., Gruber, S., Haagsma,
 735 W. K., Peigné, J., Palazzoli, M. C., Schulz, F., van der Heijden, M. G. A., Vincent-
 736 Caboud, L., Wittwer, R. A., Zikeli, S., and Steffens, M.: Reduced tillage in organic
 737 farming affects soil organic carbon stocks in temperate Europe, *Soil and Tillage
 738 Research*, 216, 105262, <https://doi.org/10.1016/j.still.2021.105262>, 2022.

739 Kroes, J. G., Dam, J. C. v., Bartholomeus, R. P., Groenendijk, P., Heinen, M., Hendriks,
 740 R. F. A., Mulder, H. M., Supit, I., and Walsum, P. E. V. v.: SWAP version 4 Theory
 741 description and user manual, Report 2780, 2017.

742 Lal, R.: World cropland soils as a source or sink for atmospheric carbon, in: *Advances
 743 in Agronomy*, Academic Press, 145-191, [https://doi.org/10.1016/S0065-2113\(01\)71014-0](https://doi.org/10.1016/S0065-2113(01)71014-0), 2001.

745 Lal, R.: Soil carbon sequestration to mitigate climate change, *Geoderma*, 123, 1-22,
 746 <https://doi.org/10.1016/j.geoderma.2004.01.032>, 2004.

747 Larsbo, M., Koestel, J., Kätterer, T., and Jarvis, N.: Preferential Transport in
 748 Macropores is Reduced by Soil Organic Carbon, *Vadose Zone Journal*, 15,
 749 vzb2016.2003.0021, <https://doi.org/10.2136/vzb2016.03.0021>, 2016.

750 Libohova, Z., Seybold, C., Wysocki, D., Wills, S., Schoeneberger, P., Williams, C.,
 751 Lindbo, D., Stott, D., and Owens, P. R.: Reevaluating the effects of soil organic matter
 752 and other properties on available water-holding capacity using the National Cooperative
 753 Soil Survey Characterization Database, *Journal of Soil and Water Conservation*, 73,
 754 411-421, 10.2489/jswc.73.4.411, 2018.

755 Liu, S., Lei, Y., Zhao, J., Yu, S., and Wang, L.: Research on ecosystem services of
 756 water conservation and soil retention: a bibliometric analysis, *Environmental Science
 757 and Pollution Research*, 28, 2995-3007, 10.1007/s11356-020-10712-4, 2021.

758 Lu, J., Zhang, Q., Werner, A. D., Li, Y., Jiang, S., and Tan, Z.: Root-induced changes of
 759 soil hydraulic properties – A review, *Journal of Hydrology*, 589, 125203,
 760 <https://doi.org/10.1016/j.jhydrol.2020.125203>, 2020.

761 Maharjan, G. R., Prescher, A.-K., Nendel, C., Ewert, F., Mboh, C. M., Gaiser, T., and
 762 Seidel, S. J.: Approaches to model the impact of tillage implements on soil physical and
 763 nutrient properties in different agro-ecosystem models, *Soil and Tillage Research*, 180,
 764 210-221, <https://doi.org/10.1016/j.still.2018.03.009>, 2018.

765 Meurer, K. H. E., Chenu, C., Coucheney, E., Herrmann, A. M., Keller, T., Kätterer, T.,
 766 Nimblad Svensson, D., and Jarvis, N.: Modelling dynamic interactions between soil
 767 structure and the storage and turnover of soil organic matter, *Biogeosciences*, 17, 5025-
 768 5042, 10.5194/bg-17-5025-2020, 2020a.

769 Meurer, K. H. E., Barron, J., Chenu, C., Coucheney, E., Fielding, M., Hallett, P.,
 770 Herrmann, A. M., Keller, T., Koestel, J., Larsbo, M., Lewan, E., Or, D., Parsons, D.,
 771 Parvin, N., Taylor, A., Vereecken, H., and Jarvis, N.: A framework for modelling soil
 772 structure dynamics induced by biological activity, *Global Change Biology*, 26, 5382-
 773 5403, <https://doi.org/10.1111/gcb.15289>, 2020b.

774 Minasny, B. and McBratney, A. B.: Limited effect of organic matter on soil available
 775 water capacity, *European Journal of Soil Science*, 69, 39-47, 10.1111/ejss.12475, 2017.

776 Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers,
 777 A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C.
 778 B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V.
 779 L., O'Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G.,
 780 Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen,
 781 T.-G., van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, *Geoderma*, 292,
 782 59-86, <https://doi.org/10.1016/j.geoderma.2017.01.002>, 2017.

783 Modak, K., Ghosh, A., Bhattacharyya, R., Biswas, D. R., Das, T. K., Das, S., and Singh,
 784 G.: Response of oxidative stability of aggregate-associated soil organic carbon and deep
 785 soil carbon sequestration to zero-tillage in subtropical India, *Soil and Tillage Research*,
 786 195, 104370, <https://doi.org/10.1016/j.still.2019.104370>, 2019.

787 Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated
 788 porous media, *Water Resources Research*, 12, 513-522,
 789 <https://doi.org/10.1029/WR012i003p00513>, 1976.

790 Murphy, B.: Key soil functional properties affected by soil organic matter - evidence
 791 from published literature, *IOP Conference Series: Earth and Environmental Science*, 25,
 792 012008, 10.1088/1755-1315/25/1/012008, 2015.

793 Nasta, P., Szabó, B., and Romano, N.: Evaluation of pedotransfer functions for
 794 predicting soil hydraulic properties: A voyage from regional to field scales across
 795 Europe, *Journal of Hydrology: Regional Studies*, 37, 10.1016/j.ejrh.2021.100903, 2021.

796 Nemes, A., Rawls, W. J., and Pachepsky, Y. A.: Influence of Organic Matter on the
 797 Estimation of Saturated Hydraulic Conductivity, *Soil Science Society of America
 798 Journal*, 69, 1330-1337, <https://doi.org/10.2136/sssaj2004.0055>, 2005.

799 Prasuhn, V., Humphys, C., and Spiess, E.: Seventy-Two Lysimeters for Measuring
 800 Water Flows and Nitrate Leaching under Arable Land, *NAS International Workshop on
 801 Applying the Lysimeter Systems to Water and Nutrient Dynamics*, Wanju, Korea,
 802 Rawls, W. J., Nemes, A., and Pachepsky, Y.: Effect of soil organic carbon on soil
 803 hydraulic properties, in: *Developments in Soil Science*, Elsevier, 95-114,
 804 [https://doi.org/10.1016/S0166-2481\(04\)30006-1](https://doi.org/10.1016/S0166-2481(04)30006-1), 2004.

805 Renwick, L. L. R., Deen, W., Silva, L., Gilbert, M. E., Maxwell, T., Bowles, T. M., and
 806 Gaudin, A. C. M.: Long-term crop rotation diversification enhances maize drought
 807 resistance through soil organic matter, *Environmental Research Letters*, 16, 084067,
 808 10.1088/1748-9326/ac1468, 2021.

809 Rivier, P.-A., Jamniczky, D., Nemes, A., Makó, A., Barna, G., Uzinger, N., Rékási, M.,
 810 and Farkas, C.: Short-term effects of compost amendments to soil on soil structure,
 811 hydraulic properties, and water regime, *Journal of Hydrology and Hydromechanics*, 70,
 812 74-88, doi:10.2478/johh-2022-0004, 2022.

813 Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S.,
 814 O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G.,

815 Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., and Smith, J.:
816 Greenhouse gas mitigation in agriculture, Philosophical Transactions of the Royal
817 Society B: Biological Sciences, 363, 789-813, doi:10.1098/rstb.2007.2184, 2008.
818 Szabó, B., Weynans, M., and Weber, T. K. D.: Updated European hydraulic
819 pedotransfer functions with communicated uncertainties in the predicted variables
820 (euptfv2), Geoscientific Model Development, 14, 151-175, 10.5194/gmd-14-151-2021,
821 2021.
822 Topa, D., Cara, I. G., and Jităreanu, G.: Long term impact of different tillage systems on
823 carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-
824 analysis, CATENA, 199, 105102, <https://doi.org/10.1016/j.catena.2020.105102>, 2021.
825 van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
826 Conductivity of Unsaturated Soils, Soil Science Society of America Journal, 44, 892-
827 898, 10.2136/sssaj1980.03615995004400050002x, 1980.
828 Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka,
829 C., Nemes, A., Pachepsky, Y. A., Padarian, J., Schaap, M. G., Tóth, B., Verhoef, A.,
830 Vanderborght, J., van der Ploeg, M. J., Weihermüller, L., Zacharias, S., Zhang, Y., and
831 Vereecken, H.: Pedotransfer Functions in Earth System Science: Challenges and
832 Perspectives, Reviews of Geophysics, 55, 1199-1256,
833 <https://doi.org/10.1002/2017RG000581>, 2017.
834 Wagner, B., Tarnawski, V. R., and Stöckl, M.: Evaluation of pedotransfer functions
835 predicting hydraulic properties of soils and deeper sediments, Journal of Plant Nutrition
836 and Soil Science, 167, 236-245, <https://doi.org/10.1002/jpln.200321251>, 2004.
837 Wang, T., Wedin, D., and Zlotnik, V. A.: Field evidence of a negative correlation
838 between saturated hydraulic conductivity and soil carbon in a sandy soil, Water
839 Resources Research, 45, <https://doi.org/10.1029/2008WR006865>, 2009.
840 Weber, T. K. D., Weynans, M., and Szabó, B.: R package of updated European
841 hydraulic pedotransfer functions (euptf2), 10.5281/zenodo.4281045, 2020.
842 Zhang, X., Jia, J., Chen, L., Chu, H., He, J.-S., Zhang, Y., and Feng, X.: Aridity and
843 NPP constrain contribution of microbial necromass to soil organic carbon in the
844 Qinghai-Tibet alpine grasslands, Soil Biology and Biochemistry, 156, 108213,
845 <https://doi.org/10.1016/j.soilbio.2021.108213>, 2021.
846
847