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2. Abstract

Increasing soil organic carbon is promoted as a negative emission technology for the
agricultural sector with a potential co-benefit for climate adaptation due to increased soil
water retention. Field-scale hydrological models are powerful tools to evaluate how the
agricultural systems would respond to the changing climate in upcoming years and
decades, to predict impacts, and look for measures that help decrease drought-driven crop
stress under current and future climatic conditions. We quantified how different levels of
soil organic carbon (SOC) additions at varied soil depths are expected to influence
drought-induced transpiration reduction (Tredary) in maize cultivated in Switzerland.
Parameterization of the model based on a pedotransfer function (PTF) was validated
against soil moisture data from a long-term lysimeter experiment with a typical Swiss soil
and the model was subsequently applied under climate forcing between 1981 until 2099
representative of three distinct climatic sites of Switzerland. We used the same PTF to
indirectly assess the effects of SOC additions in different depths on soil hydraulic
properties. We found a threshold in both added amount of SOC (2% added) and in the
depth of sequestering that SOC (top 65cm) beyond which any additional benefit appears
to be substantially reduced. However, adding at least 2% SOC down to at least 65 cm
depth can reduce Treddry in maize, i.e. increase transpiration annually, but mostly at the
onset of summer drought by almost 40 mm. We argue that SOC increases in subsoils can

play a supporting role in mitigating drought impacts in rain-fed cropping in Switzerland.

Keywords: climate change adaptation; water use efficiency; soil management;

pedotransfer functions, simulation modeling; SWAP
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3. Introduction

Over the last few decades, scientific studies have increasingly emphasized the
need and explored potentials for soil carbon sequestration in agricultural soils to mitigate
climate change (e.g. Lal (2001, 2004); Minasny et al. (2017); Smith et al. (2008)). In this
context, other possible impacts of increasing soil organic carbon (SOC) on important soil
functions and services have also been highlighted (e.g. on soil biodiversity, soil structure,
soil water retention and infiltration capacity; see Lal (2004); Murphy (2015)).
Management practices such as application of organic amendments (i.e. compost, manure,
biochar), cover cropping, crop diversification and the adoption of conservation tillage
systems are commonly considered beneficial for increasing SOC (Crystal-Ornelas et al.,
2021). With an increase in soil organic carbon in quantity, quality and chemical diversity,
soil communities are promoted and biotic-abiotic interactions are enhanced, with positive
impacts on the formation and storage of soil organic matter (Zhang et al., 2021). Physical
properties of the soil are altered directly by soil organic carbon increase and indirectly
through the activity of soil fauna (e.g. Arthur et al. (2015); Rivier et al. (2022); Nemes et
al. (2005); Rawls et al. (2004)). Soil structure has major influence on the natural soil water
retention capacity, an essential regulating ecosystem service provided by soils that may
play an increasingly crucial role in mitigating drought-induced limitations as climate

change progresses (Liu et al., 2021). Soil texture also strongly affects how soil hydraulic

properties respond to organic amendments, as shown by a meta-analysis from Edeh et al.

(2020), who reported decreased hydraulic conductivity of sandy soils and increased the

hydraulic conductivity of clayey soils after biochar additions. A recent meta-analysis

performed for Europe has also shown that the adoption of organic amendments and

“continuous living cover” benefit the soil water regulation functions (Blanchy et al.,

2023).
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With that in mind, the potential for achieving synergies between climate
mitigation and adaptation seem promising. However, empirical evidence on benefits from
increasing soil organic carbon for reducing drought limitations in crops is inconclusive.
For example, Minasny and Mcbratney (2017) performed a meta-analysis with globally
distributed soil data combined with the development of pedotransfer functions (PTFs) and
found that 1% increase in SOC has a minor effect on available water capacity (AWC),
with more pronounced differences in sandy soils than fine textured soils. Libohova et al.
(2018), however, evaluated the effect of SOC on AWC using the National Cooperative
Soil Survey (NCSS) Soil Characterization Database and found that a 1% increase in soil
organic matter content increased AWC up to 1.5% times its weight, depending on soil
texture and clay mineralogy. Also, a global metanalysis of 17 long-term field experiments
conducted by Eden et al. (2017) found that plant available water increased significantly

with the addition of organic material to the topsoil.

So far, only few model-based analyses have explored benefits of SOC increases
on soil water availability systematically. Thereby, assumption on SOC influences on soil
hydraulic properties were based on evidence from pedotransfer functions (PTFs). Feng et
al. (2022) applied the crop model APSIM at a regional scale in China to model yield
variability of maize and identified a statistically significant relationship between SOC and
temperature-sensitivity of maize yields, suggesting that SOC contributes to climate
resilience. A different model-based study design was implemented by Bonfante et al.
(2020), who applied the SWAP model (Kroes et al., 2017) to 6 different Italian soils with
assumed increased soil organic matter up to 2-4% in the topsoil. They found only minor
increases in moisture supply capacity to be achieved with additional organic matter in the
soil. In contrast to this, Ankenbauer and Loheide (2017), who applied a 1-D variably

saturated groundwater flow model, found that increases in soil organic matter can
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contribute as much as 88 mm to transpiration, or 35 additional water-stress free days,
during a dry summer. Discrepancies in these studies’ findings may be attributable to
differences in pedo-climatic conditions as well as to model setups and the chosen levels

and depths of SOC increase.

A systematic analysis of the impacts of SOC increase on drought stress reduction
depending on depth of SOC increase is lacking so far. It is thus the aim of this study to
systematically evaluate and quantify the potential benefits of increasing SOC for drought
limitations in a regional context not only under current, but also under projected future
climatic conditions. As a study case, we chose to evaluate how changes on SOC to
different depths affect the drought stress experienced by maize at the Swiss Central
Plateau region, where agricultural land use dominates and for which region climate
projections suggest a decrease in summer precipitation and an increase in winter
precipitation as climate change progresses (CH2018, Kotlarski and Rajczak (2018)).
Annual precipitation sums are expected to remain largely the same over the projection
period until the end of the century, ranging from 997 mm in the southwest to 1013 mm in
the northeast. As previous studies have shown, drought stress is already limiting grain
maize productivity under current conditions (Holzk&mper et al., 2013; Holzk&mper et al.,
2015b) and this limitation is expected to become more significant as climate change
progresses. According to Holzk&mper (2020), irrigation demands for grain maize might
increase by up to 20% by the end of this century, in comparison with the reference period
of 1981-2000, assuming that the duration of the growth season remains constant. If late-
maturing varieties would be grown, given the possibility of an extended growth season
with increasing temperatures, irrigation water demand may even increase by 40%
(Holzkamper, 2020). This raises concerns about the availability of irrigation water in the

Swiss Central Plateau, where reoccurring irrigation bans have challenged farmers more
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and more frequently in recent drought years (Bafu, 2019, 2016). Solutions to make Swiss

production systems less reliant on supplementary irrigation are urgently needed.

4. Data and methods

To systematically evaluate the benefits of increasing soil organic carbon (SOC)
for reducing drought limitations on a typical agricultural soil in the Swiss Central Plateau,
we apply a field-scale agro-hydrological model that is deemed a suitable tool to interpret
interactions between crops and the environment (Maharjan et al., 2018). The soil
component of the model was parameterized using a recently developed pedo-transfer
function and the model setup is validated against measurements of soil moisture dynamics
in two lysimeters of a lysimeter station. Subsequently, the model is applied based on
downscaled climate projection data in combination with scenarios of soil carbon

increases.

4.1  Agro-hydrological modelling with SWAP

The Soil Water Atmosphere Plant model (SWAP, version 4.0.1) (Kroes et al.,
2017) is a physically based agro-hydrological model that simulates the transport of water,
solutes, and heat in the unsaturated (vadose) zone and optionally the upper part of the
saturated (groundwater) zone with the upper boundary condition defined by atmospheric
conditions. Major arable crops and grasslands can be explicitly simulated in SWAP via
incorporation of the WOFOST (WOrld FOod STudies, De Wit et al. (2019)) model or by

using a simple crop module.
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In interaction with the crop development, the model simulates the heat and solute
transport dynamics of variably saturated soils by employing the Richards equation in the

vertical direction, including a sink term for root water uptake:

d(h+2)
o 0k 2Bta)
FOKE | = ]—Sa(h) -

where C(h) (cm™) is the specific water capacity, the derivative of the soil water retention
function 0(h), which describes the relation between water content 6 (cm® cm) and soil
water suction h (cm, defined as positive at unsaturated conditions), t (d) is time, K(h)
(cm d?) is the hydraulic conductivity as a function of h, z (cm) is the vertical spatial
coordinate (negative downwards), and Sa(h) (d?) is a sink term representing the rate of

soil water extraction by plant roots.

The relationship 6(h) and K(h) are defined by the van
Genuchten (1980) - Mualem (1976) (VGM) equations:

(95 - er)

o(h) =06, + = jah|" ™ b ]

[2]

K(h) = K0! |1 - (1 - @%)m]z

where 0s and 0, are the saturated and residual soil water content (cm® cm), a. (cm™), n, m
(m=1-1/n), and | are empirical shape parameters, Ks is the saturated hydraulic

conductivity (cmd?) and the relative degree of saturation, @, is expressed as

9:(0- er)/(es'er).

In our study, the model used crop properties and atmospheric conditions on a
daily basis to calculate the potential evapotranspiration based on the Penman-Monteith

equation. Water stress was evaluated according to_the reduction function by Feddes

(1978), with the optimal root water uptake in the h ranges of -325.0 cm (hsn) or -600 cm
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(hsL) to -30 cm (h2), oxygen stress linearly increasing for h higher than -15 cm (h1) and
drought stress linearly increasing for h smaller than -8000 cm (hs). The crop growth
module considers that the actual transpiration can be reduced by drought (too dry), o4 (2),
lack of oxygen (too wet). o, (z), or too saline conditions (physiological drought), os (z),

which factors are known to reduce crop growth. The actual root water flux, Sa(z) (d*%), is

then a function of all considered stresses:

Sa(2) = aq(2)a,(2)as(2)S,(2) [3]

where Sp(z) is the potential root water extraction rate at a certain depth. The actual

transpiration, Ta (cm d™), is calculated by integrating the root water flux over the root

Zone:

T, = j Sa(2)0z [4]

Droot

where Droot is the root layer thickness (cm).

In our simulations, we did not consider stresses caused by saline conditions and

focused on the drought-induced transpiration reduction (Treddry) as an indicator of

drought stress during the cropping period.

4.2  Climate data of three distinct study sites from measured and projected

scenarios

Typical Swiss agricultural conditions were evaluated at three distinct sites
distributed along the Swiss Central Plateau (the main agricultural production zone in
Switzerland): Nyon-Changins (CGl), Zirich-Reckenholz (REH), and Wynau (WYN).
Measured climatic variables from meteorological stations were obtained from
MeteoSwiss. Table 1 contains annual mean values of the meteorological variables

required by SWAP, while Figure 1 presents their seasonal variation. While the three sites
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have similar altitude, on average, the CGI site has the driest and warmest climate, with
higher solar radiation and wind speed. WYN is on average the wettest and coldest. In all
sites the rainfall is relatively well distributed during the year, with higher precipitation,

temperature and solar radiation in the summer season.

Table 1 Site description and climatic variables based on mean + standard deviation values
observed between 1981 and 2022 from MeteoSwiss.

Meteorological station

CGl REH WYN

(Changins) (Reckenholz) (Wynau)
Altitude (m) 455 443 422
Latitude 46.4 N 474N 47.3 N
Longitude 6.2 E 85E 78E
Rainfall (mm y?) 997 + 147 1013 + 146 1117 + 188
Tmin (°C) 6.5+5.7 51+£59 50+5.9
Tmax (°C) 148+7.8 14.3+8.0 14.3+8.2
Solar radiation (MJ m?d?) 12541.5 + 7035.4 11372.0 £ 6738.6 11437.9 + 6865.4
Vapour pressure (kPa) 0.98 £0.36 0.98 £0.38 0.99+£0.38
Wind speed (m s?) 24+0.2 1.8+03 1.7+£03
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Figure 1 Seasonal variability of climatic variables considering monthly mean + standard
deviation (shades and bars) values observed at the meteorological stations between 1981
and 2022. Rainfall corresponds to monthly sums, while other variables represent daily
values averaged by month. Minimum (bottom lines) and maximum (upper lines)
temperatures are presented.

Future scenarios were evaluated using climate projections developed by the
National Centre for Climate Services (NCCS) in Switzerland (Kotlarski and Rajczak,
2018). The dataset contains transient daily time series for the period 1981-2099 for several
variables at individual Swiss stations (DAILY-LOCAL), produced by applying a
statistical downscaling and bias-correction method (Quantile Mapping, QM) to the
original output of all EURO-CORDEX climate model simulations employed in CH2018

(Kotlarski and Rajczak, 2018). From all available projections with different



201

202

203

204

205

206

207

208

209

210

211

212

11

Representative Concentration Pathways (RCP), we selected the ones that presented the

dataset with all required input variables for SWAP, as listed in Table 1. In total, we used
22 projections for RCP8.5, 17 for RCP4.5, and 8 for RCP2.6. For more details about
selected model chains, see Supplementary Material (Section S1). Figure 2 presents an
overview of the projected climate variables for the summer (JJA) and winter (DJF)
months during the baseline (1981-2020), mid-century (2031-2060) and end-of-century
(2081-2099) periods for each of the RCP8.5. More details about the other RCPs as
Supplementary Material (Section S2). With the most pessimistic assumption about the
evolution of greenhouse gas emissions (RCP8.5), climate projections estimate lower
precipitation, higher temperature and higher solar radiation for future summers, while
they predict higher precipitation, higher temperature and lower solar radiation for winters

at the end of the century.
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Figure 2 Summary of climatic variables considering monthly mean values at the stations
Changins (CGl), Reckenholz (REH), and Wynau (WYN) for the projections RCP8.5.
Summer was considered as the months June, July and August, winter corresponds to
December, January and February. Reference period: 1981-2020, mid-century: 2031-
2060, end-of-century: 2071-2099. Rainfall corresponds to monthly sums, mean
temperature is the mean between maximum and minimum temperature per day, averaged
by month, solar radiation corresponds to daily values averaged by month.
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4.3  Model reference data and setup

Reference information on soil water dynamics at four different depths (10, 30,
60, and 90 cm) were available from lysimeters of 135cm depth and 1m? surface area at
the lysimeter facility of Agroscope Zirich-Reckenholz (Prasuhn et al., 2016). Soil
moisture was monitored from 2009 to 2022 using frequency domain reflectometry sensors
(FDR; ThetaProbe ML2x, Delta-T Devices) at the depths of 10, 30, 60, and 90 cm. In
each of the lysimeters two identical sensors were installed at each depth with a time
resolution of one hour. We utilize the data of two lysimeters that contain similar soil
monoliths from a typical agricultural soil nearby (Loamy-silty Cambisol above ground
moraine (Fao, 2015), see Table 2 for the soil profile description). The monoliths have a
15 cm layer of purified quartz sand and gravel at the bottom that help facilitate free

drainage.

For the model setup, the measured physical and chemical soil parameters (Table
2) were used in combination with the pedotransfer function (PTF) developed by Szabd et
al. (2021), using the R package in which the euptfv2 is implemented (Weber et al., 2020).
The euptfv2 is a Random Forest-based PTF with various options for inputs and output
parameters, and has proven to be one of the most accurate PTFs to estimate soil hydraulic
properties for Europe when tested on diverse datasets (Nasta et al., 2021). As the standard
setup for all simulations, we used option ‘PTF02’, which requires the depth of the soil
layer, soil texture, and soil organic carbon content (SOC) as input, and estimates the VGM

parameters for the soil water retention [0(h)] and hydraulic conductivity [K(h)] functions

(Eq. [2]).
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245  Table 2 Soil physical and chemical properties of the evaluated typical Swiss agricultural
246  profile at the Lysimeter facility at Agroscope Reckenholz. SOC: soil organic carbon, BD:
247  bulk density, PD: particle density, CEC: cation exchange capacity. Soil class and horizon
248  description according to Prasuhn et al. (2016).

Horizon Depth Clay Silt Sand SOC BD pHH2o pHcacz PD CaCOs CEC

cm % % % % gcm gem3 % cmol+ kgt
Ahp 0-25 25 50 25 148 136 68 64 263 01 16.2
Aben 25-32 24 54 22 109 144 71 66 268 02 15.67
Ben(g)(x) 3265 31 50 19 043 144 72 65 27 01 17.61
Bg 65-85 33 46 21 032 144 75 66 27 01 18.77
BCg 85-105 19 61 20 010 139 86 7.7 27 402 1093
Cg 105-135 18 65 17 002 161 86 7.8 271 544 749
249
250 Table 3 presents the parameters of Eq. [2] at the evaluated soil profile from the

251  Lysimeter station, calculated using the chosen PTF. The soil water retention and hydraulic

P52  conductivity curves are visualized in Figure 3.

253  Table 3 Soil hydraulic parameters calculated using the euptfv2 at the original soil profile,
254  considering option ‘PTF02’ that uses soil texture, soil carbon content and soil depth as
255  input.

Soil Layer Depth Or 0s o n Ks I
cm cm®cm® cmicm® cm?t - cmd?! -
Reckenholz 0-25 0.053 0.483 0.034 1.215 3561 -1.59

1

2 25-32 0.038 0471 0.037 1193 14.78 -0.70
3 32-65 0.059 0.435 0.015 1196 1041 -0.62
4 65-85 0.078 0.417 0.014 1196 441 -1.23
5 85-105 0.034 0.422 0.011 1370 3.34 0.23
6 105-135 0.026 0.424 0.005 1441 1.77 0.09

256
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Figure 3 Soil water retention (0) and soil hydraulic conductivity (K) as function of the
soil water suction (h) at the evaluated soil profile estimated by the euptfv2 (option
‘PTF02°).

The validation of SWAP with the lysimeter information included three cropping
periods with grain or silage maize in 2009, 2015 and 2020, with annual precipitation of
1018.9, 831.5 and 855.2 cm, respectively. Daily time step was adopted and vertically, the
top soil layer up to 65 cm was discretized using 1.0 cm sub-compartments, while
subsequent layers were discretized with 5 and 10 cm sub-compartments. The boundary
condition was set to ‘free outflow at soil-air interface’, which is considered as a valid
option for lysimeters. The evapotranspiration was calculated using weather data and

application of the Penman-Monteith equation. No macropore flow, lateral drainage or
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solute dispersion was simulated. For the validation, the daily averaged values of measured
soil water content at each replicate sensor and depth (eight time series per lysimeter) were
compared to the modeled values by SWAP. As validation metrics, we used the root mean
square error (RMSE) and the Pearson correlation (r). See Supplementary Material S3 for

details on model setup.

4.4  Design of simulation experiments

In the absence of consistent and comparable data from long term and holistic
studies that account for the impacts of management on soil hydraulic properties,
pedotransfer functions (PTFs) are seen as a suitable choice to systematically account for
linkages between SOC and soil hydraulic properties. We thus used the chosen PTF to
systematically capture secondary effects of SOC instead of directly inferring the effects
of specific drivers of change on the soil hydraulic properties due to the uncertain

interaction effects between SOC, soil type, climate and management.

We assumed that management improvements have led to increased SOC from

the beginning of the simulation period and that SOC remained stable over the simulation

period, thereby testing different scenarios of successful carbon sequestration. The model

parametrization included three distinct depth scenarios: i) changes in SOC occur only
within the top 0-25 cm, ii) changes in SOC occur to 0-65 cm depth and, iii) changes in
SOC are achieved for the entire soil profile. In terms of SOC change, we simulated the
addition of up to 4% SOC to current SOC levels by 1% increments in the (i) and (ii) depth
scenarios, but applied reduction factors of 0.8 and 0.6 for the 65-105 cm and 105-135 cm
depths respectively in depth scenario (iii). This approach considers that obtaining greater
SOC via management likely affects the topsoil more than the deeper soil layers. The

outlined depth and SOC level scenarios are listed in Table 4 for easier comprehension.
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It should be emphasized that the levels of SOC in the soil are dependent on

several factors including land use and management, climate, geomorphology, which were

considered as empirical relationships in this work.

Table 4 Description of %SOC levels added per depth and final values of SOC considering
the described scenarios i), ii), and iii). Shaded values represent the layers where changes
on SOC were applied.

Effective depth of changes (cm) i) 0-25 i) 0-65 | iii) 0-135
Scenario  Soil depth SOC added SOC final
(cm) (%) (%)
0% 0-25 0 1.48 1.48 1.48
25-32 0 1.09 1.09 1.09
32-65 0 0.43 0.43 0.43
65-85 0 0.32 0.32 0.32
85-105 0 0.10 0.10 0.10
105-135 0 0.02 0.02 0.02
1% 0-25 1 2.48 2.48 2.48
25-32 1 1.09 2.09 2.09
32-65 1 0.43 1.43 1.43
65-85 0.8 0.32 0.32 1.12
85-105 0.8 0.10 0.10 0.90
105-135 0.6 0.02 0.02 0.62
2% 0-25 2 3.48 3.48 3.48
25-32 2 1.09 3.09 3.09
32-65 2 0.43 2.43 2.43
65-85 1.6 0.32 0.32 1.92
85-105 1.6 0.10 0.10 1.7
105-135 1.2 0.02 0.02 1.22
3% 0-25 3 4.48 4.48 4.48
25-32 3 1.09 4.09 4.09
32-65 3 0.43 3.43 3.43
65-85 2.4 0.32 0.32 2.72
85-105 2.4 0.10 0.10 2.5
105-135 1.8 0.02 0.02 1.82
4% 0-25 4 5.48 5.48 5.48
25-32 4 1.09 5.09 5.09
32-65 4 0.43 4.43 4.43
65-85 3.2 0.32 0.32 3.52
85-105 3.2 0.10 0.10 3.3
105-135 2.4 0.02 0.02 2.42
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To quantify the impacts of increasing SOC on drought stress in maize under
climate change, SWAP was applied to the 22 climate projections at the three sites
Changins (CGI), Reckenholz (REH), and Wynau (WYN) in combination with the
scenarios of SOC increase listed in Table 4. We assumed grain maize to be sown on 6%
May (DOY 126) and harvested on 17" Oct (DOY 290) as registered in the Swiss variety

trial data for a medium-late variety type (Agroscope, 2023). The bottom boundary

condition was set as free drainage, representing a soil profile with deep groundwater

levels. For details of general SWAP parameterization see Supplementary Material S3.

All simulations considered rain fed conditions and were performed using the
simple crop growth module for a static crop, which simulates a fixed development of leaf
area index and rooting depth, independent of climatic conditions, in order to keep the

cropping period fixed for all scenarios. In this study we worked with 165 days of crop

growing period; the crop component’s parameterization is described in Supplementary

Material S4.

Overall, we conducted a total of 990 simulation runs (5 levels of SOC x 3 soil
depths x 3 sites x 22 climate projections) for the period 1981-2099, and used cumulative
amounts of drought-induced transpiration reduction (Tredary) as an indicator of drought
stress during the cropping period. The 10-year moving average of Tredqry was calculated
to represent decadal changes and exclude interannual variability. The range of Tredgry
values among the available climate projections were represented by the 0.05 quantile
(go.05) and the 0.95 quantile (go.os) as upper and bottom boundaries, respectively. The

difference between management scenarios_in terms of crop transpiration, defined as the

average transpiration gain (ATG) with SOC increase, was calculated as the difference

between the scenario with no addition of SOC (0%) and the one with the maximum

addition of SOC (4%).
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5. Results

51 Model validation

Using the soil hydraulic parameters from Table 3, we simulated soil water
content in the lysimeter soil profiles and compared them with moisture data measured by
FDR sensors. The lumped values of the two lysimeters, considering all maize cropping
periods (2009, 2015, and 2020), all depths (10, 30, 60, and 90 cm) with duplicated
sensors, resulted in a median (gos) RMSE of 0.066 cm® cm™ (0jo.0s=0.050 cm® cm™,
Jo.75=0.098) and correlation median correlation r of 0.79 (qo.05=0.68, Qo.75=0.84). In
general, the simulations were more accurate for the deeper layers as compared to the
topsoil. At 10 cm, the RMSE was on average 0.11 cm® cm™, whereas it was 0.04 cm® cm®

at the bottom.

5.2  Effect of increasing SOC on the soil hydraulic properties and soil water

balance

The effects of adding different amounts of SOC at different soil layers (Figure
4) are reflected in PTF estimates of soil hydraulic properties with updated SOC contents.
The “0%” line, corresponding to the VGM parameters in Table 3, represent the properties
of the different soil layers with current SOC. For the soil water retention curve, the effects
of the increase in SOC reflected an estimated increase in pore space, whose expression
varied with soil depth and added SOC. In the topsoil, the differences between the addition
of 1% and 4% SOC were not as remarkable as in the subsoil layers, where an addition of
1% SOC lead to a substantial increase in estimated pore space. For saturated hydraulic
conductivity, the overall trend was a reduction in conductivity with the increase in SOC,

with the biggest contrasts found in the topsoil.
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Figure 4 Effects of SOC increase on the soil water retention (6) and soil hydraulic
conductivity (K) as function of the soil water suction (h) as predicted by euptfv2, option
‘PTFO02’.

Considering effects of adding SOC at different soil depths, Figure 5 presents an
overview of the transient simulations between 1980 and 2099 with the most unfavorable
climate scenario projections (RCP8.5). For each year of simulation, a range of values of
Tredary Was generated by the 22 climate projections, which are being represented by a
band defined by the lines qoos and qoos quantiles, and the qos quantile (median) is

represented by a line within that band. The average transpiration gain (ATG) line is the

difference between the median (qos) values of the original Reckenholz soil profile (i.e.
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0% SOC addition) and the one that had 4% SOC added. The ATG can be interpreted as
the amount of seasonal transpiration gained in response to increased SOC. The absolute
increase in Treddry comparing the reference period with the end of the century was on
average 269, 207, and 269 mm at CGI, REH and WYN, respectively. Additional results
considering other Representative Climate Projections (RCP 2.6 and 4.5) are presented in

the Supplementary Material (Section S5).

RCP8.5, Reckenholz sail

0-25 cm 0-65 cm 0-135 cm

120

ATG slope: 0.11% A0

ATG slope: 0.38% and ATG slope: 0.68%

192

900 H ATG slope: 0.15% ATG slope: 0.91% ATG slope: 1.25%

Tredgry (mm year_1)

H3d

900 + ATG slope: 0.22% ATG slope: 1.15% ATG slope: 1.54%

NAM

Figure 5 Transpiration reduction due to drought stress (Tredqry) (left axis, green band) for
actual and future climate conditions considering different levels of SOC increase in the
soil at different effective soil depths; and average transpiration gain, ATG, (right axis,
colored lines) between 0 and 4% addition of SOC. Climate projections considered the
RCP8.5 pathway and were averaged for every 10 years. The green shaded area of Tredary
refers to the values between (dotted) quantiles go.os and go.9s of the climate projections.
ATG is interpretable as average seasonal gain in transpiration due to SOC increase, and
ATG slope refers to the slope of the ATG line between 0 and 4% SOC addition.
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According to the simulated scenarios, the main driver of the absolute values of
Tredary is the climate, with more drought stress under the climate of the drier site (CGI)
and very similar stress levels under the climate of the other two sites, REH and WYN,
that are wetter and appear to be somewhat resembling. There was a clear tendency of
increased stress towards the end of the century, driven by more unfavorable climatic
conditions during the cropping period (Figure 2). The ATGs were very similar amongst
the three considered climates, with maximum values around 60 mm year™, and slightly
higher in the CGI climate. The ATG slopes calculated between the beginning and the end
of the century were higher at REH and WYN, which are the sites with less water stress
under current conditions. This is an implication of not considering a gradual build-up
period for increased SOC, but considering the same levels of SOC addition for the entire

simulation period.

The simulations were performed considering the addition of SOC down to three
different depths (25, 65, and 135 cm). The addition of SOC to the top 25 cm seems to
have a modest effect on Tredary. The effects of increasing SOC all the way to 135 cm are
the greatest, but are comparable to the intermediate option of adding SOC till 65 cm
depth. In general, adding 2% SOC already lead to considerable reduction in Tredary, and

is a more realistic, easier-to-implement alternative to adding 4% SOC.

5.3  Detailed soil water dynamics and drought stress over the cropping

period

Figure 6 depicts, as an example, how the soil moisture profile develops and how

the ATG in moisture deficit builds up during the simulated 2015 cropping year at the REH
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site, with the different increased SOC levels in the entire soil profile (depth scenario iii).
The addition of SOC leads to a clear pattern of increasing soil water retention.. The blue
line depicts the daily simulated crop transpiration deficit (Tredary) of the 0% added SOC
scenario, while the black lines depict the same obtained for the relevant depth and SOC
addition scenario in each plot. Their difference, when cumulated for the year, yields the
transpiration deficit ATG for the given year and scenario. The most remarkarble seasonal
ATGs were observed in the beginning of the cropping season, and could be linked to
increased soil water retention capacity combined with the availability of water in that
season. According to Figure 4, increased SOC content generally yielded increased soil
water retention capacity relative to the base scenario of no SOC addition. In the early
cropping season this increased capacity is capitalized on in the form of retaining more
water in the system by the end of the recharge-period in the wet and cold winter and spring
season. The simulated extra amount of water is clearly demonstrated in Figure 6. During
the early part of the growing season, this excess water then becomes available to the crop,
dampening the effects of any drought-stress, or at least delaying its onset. The soil will
also not dry out to the same degree during the later half of the season, or at least not to
the same depth. Similar results for the other evaluated sites are presented in the

Supplementary Material (Section S6).
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Figure 6 Detailed profile of soil water content (left axis) and Tredary (right axis, black
lines) according to the different added SOC levels at the Reckenholz site (REH) in the
year of 2015. The blue line represents Tredary for the original soil profile (0% SOC).
When cumulated for the year, their difference yields the annual ATG in crop transpiration
deficit that is due to the addition of carbon to the soil.
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6. Discussion

6.1 Increasing soil organic carbon reduces drought stress in maize

We observed that according to the predictions of the used PTF, an increase of
SOC has a small effect on, but generally decreases soil hydraulic conductivity (Figure 4).
This may be counter-intuitive in that textbook knowledge connects greater SOC content
with better soil structure formation, greater porosity, and in turn to enhanced water
transport properties (hydraulic conductivity) (Nemes et al., 2005). However, several
studies have now emerged that correlated greater SOC content with lower hydraulic
conductivity. These studies include both experimental data and the mining of several
extended databases using machine-learning (Nemes et al., 2005; Wang et al., 2009; Jarvis
et al., 2013; Larsbo et al., 2016). The rationale behind this notion is that when SOC
content increases, there is enhanced porosity, but the tortuosity of conductive pathways
may increase due to enhanced microbial activity and the formation of more complex
aggregates, resulting in better water retention but reduced hydraulic conductivity. Some
of these authors noted increased predicted water retention in the effective porosity (i.e.

the range between field capacity and saturation), which supports the proposed notion.

Results from this simulation study suggest that increases in SOC would generally
decrease drought stress in maize cultivated on a typical agricultural soil in Switzerland.
The summer season precipitation amount at the evaluated sites is expected to be decreased
by around 60-65 mm till the end of the century (Figure 2). In this scenario, a 2% addition
of SOC can reduce drought stress of maize by 10.5 to 40 mm during the cropping season
and potentially compensate part of the rainfall reduction with climate change. Bonfante
et al. (2020) suggests that the effect of SOC on moisture supply capacity should be

evaluated in more climatic zones in order to obtain a broader picture of its potential
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impact. What we observed in this work was that the degree of decrease in Tredqry Was
only minimally dependent on regional climatic conditions, with the wettest site (WYN)
benefitting least from the SOC increases under current climate conditions. As conditions
get drier, as projected with climate change for the Swiss Central Plateau, the transpiration

gain increases, but reaches a maximum at 60 mm with SOC increase down to 135 cm.

Our study suggests minor benefits of increasing SOC in the topsoil (maximum
ATG reached is 15 mm, Figure 5). However, if SOC was increased down to at least
65 cm, this beneficial effect can be considerably higher (maximum ATG reached is
45 mm, Figure 5). Overall, the maximum ATG of Tredqry quantified in this study was
60 mm (at the end of the century, with SOC increase down to 135 cm), suggesting that
without supplementary irrigation, seasonal crop transpiration can be up to 60 mm greater
with increased SOC, compared to the reference situation. This amount is comparable to
1-2 irrigation dosages and makes up for roughly 30% of the average theoretical irrigation
water demand estimated by Holzk&mper (2020) for the region between Wynau (WY N)
and Changins (CGl). The productivity gain to be achieved will strongly depend on the
period in the cropping cycle when this extra water will be available. Considering that
transpiration benefits are greatest at the onset of drought during early summer (Figure 6),
the productivity gains may be particularly high if the effect coincides with the critical
reproductive phase of the crop. This might imply that transpiration gains achieved with
increases in SOC have a significant potential to increase yield stability, particularly in

situations where and when irrigation is not an option.

The positive slopes of calculated ATGs of Tredary (i.e. transpiration gained with
SOC increase) in Figure 5 suggest that the benefits of SOC additions could slightly
increase with projected future climate change — especially at WYN, the least water-

limited site under current conditions. At the driest site, CGl, the ATG (i.e. benefit of SOC
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increase) reached under current climatic conditions is roughly at the same level as it is at
WYN at the end of the century. These findings imply that the benefits of SOC
accumulation may increase as water input (precipitation) during the cropping period
decreases over time. However, there appears to be a threshold beyond which benefits are
not seen as Tredary further increases (the ATG slope in Figure 5 decreases from the wettest
to the driest site). The benefit of “extra water availability” comes from the balance of two
elements: available water and available storage capacity. It appears that the available
storage capacity component is enhanced by the addition of some SOC (i.e. 2% addition
in our simulations), but the system becomes water-limited by the end of the century. The
extra storage capacity that additional SOC may yield will not be filled up by the actual
water input, and the potential extra benefit cannot be realized. The within-year occurrence
of the same phenomenon is observable in Figure 6. The biggest reduction in Tredary 0ccurs
in the beginning of the cropping season, when the increased retention capacity was present
at the same time when ample amount of water was recharging the system during and after

the cold, rainy season, with little or no plant water uptake.

A similar balance is likely to apply when the outcome of a 135 cm deep
application of added SOC is interpreted. When simulating SOC addition to 135 cm depth
vs. only 65 cm, the added benefit in terms of reduced crop Tredary appears to be limited.
We argue that while some excess water storage capacity is simulated, there is little actual
benefit realized from that, given the reduced amount of predicted precipitation by the end
of the century. In addition, few, if any, crop roots reach that depth, which means that the
only way the crop has direct benefit from water stored in the deeper soil layers in the

growing season is if water redistributed upwards via capillary and vapor transport.
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6.2 Possibilities to increase soil organic carbon

Results from our study suggest that the beneficial effects of increasing SOC are

small if SOC is only increased in the top-soil (0-25 cm), but become more significant if

SOC is increased to only 65 cm depth by at least 2%. We assumed that such SOC

increases can be achieved, while different management adaptations and combinations

thereof may be suitable to reach this target. Commonly considered strategies to increase
SOC include additions of organic amendments, planting of deep-rooting crops, cover-
cropping, intercropping, mulching with organic material, retaining crop residues in the
field and reduced tillage or no-till (Topaetal., 2021; Ipcc, 2019). No-till or reduced tillage
decreases the carbon oxidation process and soil disturbance with the loss of soil organic
carbon and nutrient availability (Modak et al., 2019; Kan et al., 2020). Also, Angers and
Eriksen-Hamel (2008) found that tillage affects the distribution of SOC over the depth of

the soil profile with important implications in crop water availability. A meta-analysis on

effects of tillage on SOC (Krauss et al., 2022)_has shown that it is not uncommon that

depletion in SOC of a subsoil layer co-occurs with increased SOC levels in the topsoil.

We tested this with the particular soil and PTF used in our study, and found that the

hydrological effects of reducing SOC at the depth of 25-32 cm were almost identical to

the scenario in which the same amount of SOC increase in the depth of 0-25 cm was

simulated but without subsoil SOC depletion (Figure 5). We emphasize that, from the

point of view of water availability to plants with deep roots, management strategies should

aim at increasing SOC content deeper than only in the topsoil.

According to Bai et al. (2019), reduced tillage or no-till increases SOC mostly
in the top 10 cm and also in the sub-soil below 50 cm. The same study found that cover-
cropping could increase SOC down to 70 cm depth. Incorporation of perennial grasses

into crop rotations could help increase SOC to 60 cm depth, beyond the plough layer


https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/reduced-tillage
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(Carter and Gregorich, 2010). Evidence of this under Swiss conditions was provided by
Guillaume et al. (2021); Guillaume et al. (2022). Overall, such strategies were found to
be most beneficial to SOC accumulation near the soil surface (Bai et al., 2019). One
management operation that could effectively contribute to an accumulation of SOC in
deeper soil layers is deep ploughing (Alcantara et al., 2016). However, when the soil is
loosened the SOC oxidation process is enhanced, as well as erosion may be triggered,

which has to be accounted for when planning such interventions.

We have tested the scenario of incorporating extra amount of SOC in the soil
down to a depth of 135 cm. This is a scenario that would require similar strategies as the
previously discussed scenario, but it is likely rather difficult to implement, especially with
greater amounts of SOC stored. Our study showed that in terms of water-availability to
the (maize) crop, this scenario has little extra benefit to offer over the scenario of having
extra SOC sequestered to 65 cm depth. Hence, any investment in sequestering SOC into

such depths should not be driven by high expectation of hydrological benefits.

6.3 Limitations and further work

Our study, as well as previous modelling studies exploring impacts of SOC
additions on soil water availability (e.g. Ankenbauer and Loheide (2017), Bonfante et al.
(2020), Feng et al. (2022)), build on pedotransfer functions that are believed to be best in
estimating soil hydraulic parameters for the study area based on levels of SOC and other
soil properties. The selection of PTFs, however, may play a crucial role in the outcome
of simulated scenarios. While recent studies confirm the validity of the equations used
(e.g. Nasta et al. (2021); Wagner et al. (2004)), uncertainties in derived estimates may

still be large (Fatichi et al., 2020). PTF structure may also have an influence in that more
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advanced (aka. “better”) PTFs are usually products of refined machine learning
algorithms that may produce strong results in general but may have different estimation
qualities in different parts of the data domain. Since such local performance is rarely
evaluated, future work should thus explore the sensitivity of SOC benefits via using an
ensemble of PTFs. Moreover, measurements of soil hydraulic properties in combination
with SOC, texture and bulk density in long term field trials investigating management
alternatives affecting SOC would provide very useful evidence to help disentangle the
effects of land use and management on the relationships between soil texture and
hydraulic properties. By integrating management and also local climate information in
PTFs, their uncertainties in predicting soil hydraulic properties in specific context could
be reduced (Van Looy et al., 2017). Many historic records do not provide sufficient
information on how certain measurements were performed, or when the samples were
taken. Also, the timing of field sampling is likely to play a role here, as it is known that
soil hydraulic properties vary in time and are influenced e.g. by precipitation regime or

land use and management (Caplan et al., 2019; Lu et al., 2020).

In this study, we focused on transpiration reduction, which is likely to imply

biomass reduction, but may not necessarily imply vield reduction — depending on the

timing of water stress. Other studies have investigated impacts of CC on vyields for grain

maize in Switzerland (Holzk&mper, 2020; Holzk&mper et al., 2015a) and it was found that

yield trends differ depending on the choice of varieties assumed to be planted. In our

study here, we focus on drought impacts on crop transpiration alone. Subsequent yield

formation will be affected by crop transpiration, but also by various other drivers (e.qg.

temperature & radiation limitations, timing of stresses, heat stress). In order to obtain a

clearer view on the impacts of SOC increases on crop transpiration, we elected not to

consider the multitude of such interactive effects in the presented study. In future work,
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it will be interesting to explore possibilities to further increase the benefits of SOC
additions by combining that strategy with other adaptations of crop and soil management
(e.g. earlier maturing varieties, cover cropping, mulching of soil to reduce evaporation).

In this context, it will be advisable to also account for a dynamic development of

phenology and thus leaf area index to account for possible interactions between crop

growth and soil moisture conditions.

While our study focused solely on the impacts of SOC additions on soil water
dynamics, SOC increases could have additional benefits for crop productivity and yield
stability by feeding and supporting beneficial microbial communities in the soil (e.g.
rhizobacteria, nitrogen-fixing bacteria, and mycorrhizal fungi), which increase the crops’
ability to take up water and nutrients (Coban et al., 2022; Renwick et al., 2021,
Kallenbach and Grandy, 2011). Such aspects could be addressed in future field
experimental studies. Beyond that, future field- and model-based studies may also
evaluate trade-offs or synergies of SOC promoting management strategies with regard to
other soil-related ecosystem service indicators such as nitrate leaching, soil loss or runoff
generation to provide insights regarding the possibilities to increase the sustainability of
agricultural production overall (Bonfante et al., 2019). Alternative modelling approaches
considering dynamic changes in soil hydraulic properties could also be applied in the
future to investigate the influence of soil structural dynamics on the adaptation benefits
of SOC accumulation (e.g. based on Meurer et al. (2020b), Meurer et al. (2020a)), as to
our understanding, current models do not facilitate the representation of soil as a

temporally variable medium.
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7. Conclusions

Our study is the first to investigate the possibilities to reduce Tredary, an indicator
of drought stress, in maize cultivated in the Swiss Central Plateau through increasing SOC
in the top- and subsoil. Our simulations showed that Tredqry in maize is expected to
increase with climate change in the Swiss Central Plateau region, by around 60-65 mm
irrespective of SOC increase. Increasing SOC in a typical agricultural soil in Switzerland,
however, is beneficial to reduce drought limitations in maize, showed by consistently

positive average transpiration gains. These benefits are minimal if SOC is only increased

in the top 25 cm, but become considerable if SOC is increased down to 65- or 135 cm
depth. With a 2% addition of SOC down to 65cm depth, a considerable average
transpiration gain of 40 mm can be reached. This scenario can be achievable considering
management adaptations such as cover cropping or compost applications. It appears that
a greater or deeper SOC addition would not return substantial extra benefits in terms of

offsetting more crop drought stress rooting in the changing climate.
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