Supplementary Information

Distinct Photochemistry in Glycine Particles Mixed with Different Atmospheric Nitrate Salts

Zhancong Liang¹,², Zhihao Cheng¹, Ruifeng Zhang¹,², Chak K. Chan¹,³*

¹School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
²City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
³Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia

Correspondence to: Chak K. Chan (chak.k.chan@cityu.edu.hk; chak.chan@kaust.edu.sa)

Content

Figure S1. The schematic of the aerosol flow-cell system.

Figure S2. The schematic of the aqueous reactor system.

Figure S3. The Full width at half maxima of nitrate peak and glycine peak in AN+GC particles at different RHs.

Figure S4. The Raman characteristic peak of GSN.

Figure S5. Ionic chromatography of Fresh and UV-aged AN+GC and SN+GC particles extract.

Figure S6. Raman spectrum of ammonium acetate solution.

Figure S7. The decay kinetics of nitrate in AN+GC and SN+GC particles at 80% RH.

Figure S8. Raman spectrum of AN+Ala and SN+Ala mixed particles after 0 and 8 h irradiation at 80%RH.
Figure S1. The schematic of the aerosol flow-cell system.

Figure S2. The schematic of the aqueous reactor system.
Figure S3. The Full width at half maxima of nitrate peak (at ~1050 cm$^{-1}$) and glycine peak (~900 cm$^{-1}$) in AN+GC particles at different RHs.

Figure S4. The Raman characteristic peak of GSN.
Figure S5. Ionic chromatography of Fresh and UV-aged (8 h) AN+GC and SN+GC particles extract. The particles were aged at 80%RH.

Figure S6. Raman spectrum of ammonium acetate solution.
Figure S7. The decay kinetics of nitrate in AN+GC and SN+GC particles at 80% RH.

Figure S8. Raman spectrum of AN+Ala and SN+Ala mixed particles after 0 and 8 h irradiation at 80% RH.