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Abstract. Urban overheating, and its ongoing exacerbation due to global warming and urban development, leads to increased 10 

exposure to urban heat and increased thermal discomfort and heat stress. To quantify thermal stress, specific indices have been 11 

proposed that depend on air temperature, mean radiant temperature (MRT), wind speed, and relative humidity. While 12 

temperature and humidity vary on scales of hundreds of meters, MRT and wind speed are strongly affected by individual 13 

buildings and trees, and vary at the meter scale. Therefore, most numerical thermal comfort studies apply micro-scale models 14 

to limited spatial domains (commonly representing urban neighborhoods with building blocks) with resolutions on the order 15 

of 1 m and a few hours of simulation. This prevents the analysis of the impact of city-scale adaptation/mitigation strategies on 16 

thermal stress and comfort. To solve this problem, we develop a methodology to estimate thermal stress indicators and their 17 

subgrid variability in mesoscale models - here applied to the multilayer urban canopy parametrization BEP-BEM within the 18 

WRF model. The new scheme (consisting of three main steps) can readily assess intra-neighborhood scale heat stress 19 

distributions across whole cities and for time scales of minutes to years. The first key component of the approach is the 20 

estimation of MRT in several locations within streets for different street orientations. Second, mean wind speed, and its subgrid 21 

variability, are downscaled as a function of the local urban morphology based on relations derived from a set of microscale 22 

LES and RANS simulations across a wide range of realistic and idealized urban morphologies. Lastly, we compute the 23 

distributions of two thermal stress indices for each grid square combining all the subgrid values of MRT, wind speed, air 24 

temperature, and absolute humidity. From these distributions, we quantify the high and low tails of the heat stress distribution 25 

in each grid square across the city, representing the thermal diversity experienced in street canyons. In this contribution, we 26 

present the core methodology as well as simulation results for Madrid (Spain), which illustrate strong differences between heat 27 

stress indices and common heat metrics like air or surface temperature, both across the city and over the diurnal cycle. 28 

 29 
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1 Introduction 30 

The combination of urban development and climate change has increased heat exposure in cities in recent decades (Tuholske 31 

et al., 2021) and a continuation of these trends in the 21st century would be difficult to offset locally from an air temperature 32 

perspective (Broadbent et al., 2020; Krayenhoff et al., 2018; Zhao et al., 2021). Adaptation options that target contributions to 33 

heat exposure other than the air temperature, such as radiation (e.g., via shade) and wind (e.g. via improved street ventilation), 34 

should therefore be considered. Quantification of these contributions relative to air temperature requires the application of 35 

comprehensive thermo-physiological heat stress metrics such as the Universal Thermal Climate Index, UTCI (Jendritzky et 36 

al., 2012), the Physiological Equivalent Temperature, PET (Höppe, 1999), or the Standard Effective Temperature, SET (Gagge 37 

et al., 1986). Moreover, exposure to heat hazards is moderated by infrastructure-based and social/mobility-based adaptations 38 

to heat, and by buildings and associated cooling mechanisms. Here, the focus is the development of a tool to quantify the 39 

outdoor component of heat exposure in cities, accounting for all relevant meteorological variables.  40 

Heat exposure in urban areas is affected by several meteorological variables that vary on different spatial and temporal scales 41 

(Nazarian et al., 2022). While temperature and humidity vary on spatial scales on the order of hundreds of meters, shortwave 42 

and longwave radiation and wind speed are strongly affected by individual buildings and vary at the scale of a few meters.  For 43 

this reason, most numerical thermal comfort studies in urban areas apply micro-scale models with resolutions on the order of 44 

one m and spatial domains that are limited to an urban block or neighborhood (Nazarian et al., 2017; Zhang et al., 2022; Geletič 45 

et al., 2018). While these studies include substantial detail at the micro-scale, they are very expensive computationally and 46 

therefore can be applied only to a few neighborhoods and they neglect the interactions with larger scale meteorological 47 

phenomena (e.g., land/sea breezes, mountain/valley winds, urban breezes) that often play a relevant role in outdoor thermal 48 

comfort and its variation across cities. On the other hand, contemporary meso-scale numerical models can be applied to the 49 

whole urban area and surrounding regions, and therefore capture these larger-scale phenomena, but have spatial resolutions of 50 

several hundred meters at best. These models use a grid mesh that does not resolve buildings and is therefore too coarse to 51 

capture the fine-scale variation of radiation and wind flow of relevance to outdoor heat exposure and ultimately thermal 52 

comfort. 53 

The objective of this work is to fill the aforementioned gap by developing a model that includes the most crucial capabilities 54 

of micro-scale assessments of thermal exposure within meso-scale models. This new model will quantify the spatial variability 55 

(i.e., statistical representation of the microscale distribution) for longwave and shortwave radiation as well as wind speed 56 

within each meso-scale grid square. Subsequently, it will capture the range of thermal exposure, as quantified by the UTCI 57 

and SET thermal stress metrics, within each urban grid square across a city at each time of day. The focus here is on the range 58 

of thermal exposure, such that we identify the cool and hot spots within the grid cell without having to resolve the entire spatial 59 

distribution. We argue that this represents the most crucial information for heat management and urban design interventions, 60 

as it identifies whether people can move and search for optimal thermal conditions. For example, if hot spots are experiencing 61 

extreme heat stress but the cool spots are at slight heat stress, pedestrians have the opportunity, and autonomy, to seek shade 62 

https://paperpile.com/c/LZQJNL/Wdwt
https://paperpile.com/c/LZQJNL/Wdwt
https://paperpile.com/c/LZQJNL/kQNU+8pja+LPYQ
https://paperpile.com/c/LZQJNL/my4l
https://paperpile.com/c/LZQJNL/my4l
https://paperpile.com/c/LZQJNL/3wYv
https://paperpile.com/c/LZQJNL/k9Qp
https://paperpile.com/c/LZQJNL/k9Qp
https://paperpile.com/c/LZQJNL/yZUN
https://paperpile.com/c/LZQJNL/pQ2I+2XlG+H513
https://paperpile.com/c/LZQJNL/pQ2I+2XlG+H513
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and thermal respite (i.e., temporal and spatial autonomy as described in Nazarian et al. (2019)). Conversely, if the conditions 63 

in the cool spot are already in extreme heat stress, this can be used to inform urban design interventions or heat advisories to 64 

vulnerable populations to avoid being outside at that place and time. Overall, representing the range of heat exposure at the 65 

neighborhood scale while covering regional-scale phenomena is key to human-centric assessments of urban overheating 66 

(Nazarian et al., 2022).  67 

The new model is embedded in the multi-layer urban canopy parameterization BEP-BEM (Martilli et al., 2002; Salamanca et 68 

al., 2010) which simulates the local-scale meteorological effects of the grid-average urban morphology within the Weather 69 

Research and Forecasting (WRF) mesoscale model (Skamarock et al., 2019 version 4.3 has been used in this study). Here, 70 

BEP-BEM is extended to quantify the spatial variation of the mean radiant temperature and wind speed within the grid square 71 

at the pedestrian level. To our knowledge, three schemes in the published literature have attempted to capture thermal exposure 72 

in an urban canopy model. Pigliautile (2020) implemented a scheme to estimate human thermal exposure in the Princeton 73 

Single-Layer Urban Canopy Model. However, the scheme has not been run within a mesoscale model. Jin et al. (2022) calculate 74 

urban mean radiant temperature (MRT) in a mesoscale model, while Lemonsu (2015) and Leroyer et al. (2018) assess UTCI 75 

in mesoscale modeling applications within Paris and Toronto, respectively. Moreover, Giannaros et al (2018, 2023), made an 76 

offline coupling of WRF-BEP_BEM with RayMan (Matzarakis et al. 2007). However, none of these approaches account for 77 

the within-grid spatial variation of wind speed, and their assessment of sub-grid spatial variation of radiation exposure (i.e., 78 

mean radiant temperature) is limited. Here, we further extend the BEP-BEM model embedded in the WRF meso-scale model 79 

to overcome these limitations and better assess spatial variation of thermal exposure within each urban grid square.  80 

In section 2, the methodology is described in detail, with a focus on model development and implementation in WRF. In 81 

Section 3, we present an example of the type of outputs that can be produced. Conclusions are in section 4. 82 

2 Methodology 83 

The most complete thermal stress indices invariably depend on four meteorological variables: air temperature, mean radiant 84 

temperature (MRT), relative humidity, and wind speed. Among these, MRT and wind speed have the largest spatial variability 85 

in the urban canopy, and this variability is often captured with 3D micro-scale models of urban airflow and radiative heat 86 

transfer. At the meso-scale, however, it is not feasible to incorporate such models, motivating the simplified urban canopy 87 

parameterizations developed here. Below we detail how the BEP-BEM urban canopy model is modified to a) introduce a 88 

simplified model for MRT variation within a meso-scale grid cell (Sec. 2.1) and b) parameterize airflow variability (Sec. 2.2) 89 

in the urban canopy within a grid cell, and make a simple estimate of air temperature variability. These meteorological 90 

parameters are then used to estimate the sub-grid scale variation of thermal stress indices (Sec. 2.3), namely SET and UTCI, 91 

as two of the most commonly used indices for outdoor environments (Potchter et al 2018). Lastly, we discuss how multi-scale 92 

https://paperpile.com/c/LZQJNL/k7Ia/?noauthor=1
https://paperpile.com/c/LZQJNL/yZUN
https://paperpile.com/c/LZQJNL/egT3+LfJx
https://paperpile.com/c/LZQJNL/egT3+LfJx
https://paperpile.com/c/LZQJNL/GHI0
https://paperpile.com/c/LZQJNL/GHI0
https://paperpile.com/c/LZQJNL/GHI0
https://paperpile.com/c/LZQJNL/erCM/?noauthor=1
https://paperpile.com/c/LZQJNL/TtZQ/?noauthor=1
https://paperpile.com/c/LZQJNL/MQyr/?noauthor=1
https://paperpile.com/c/LZQJNL/88bb/?noauthor=1
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temporal and spatial variabilities in thermal exposure can be effectively communicated using the outcomes of the updated 93 

WRF-BEP-BEM model.  94 

2.1 A simplified model for MRT variability in the urban canopy  95 

The mean radiant temperature is a measure of the total radiation flux absorbed by the human body, including both shortwave 96 

(from the sun, either directly or after reflection on the walls or road) and longwave (emitted from solid bodies like walls or 97 

road, or from the sky) radiation. Whether pedestrians are shaded or in the sunshine, as well as their distance from warm surfaces 98 

emitting radiation, is therefore very important. BEP-BEM applies a simple urban morphology: two street canyons of different 99 

orientations, each with the same street width and building height distribution on each side of the canyon (Martilli et al. 2002). 100 

To capture the within-grid spatial extremes of mean radiant temperature, we assess pedestrian locations at the center of the 101 

street for two canyon orientations considered in BEP-BEM and at positions located at a distance of 1.5 m from the building 102 

wall on each side of the street, representing the sidewalks. Thus, there are 6 positions (three for each street direction) in each 103 

urban grid square where we compute the mean radiant temperature (shown for the example of North-South and East-West 104 

streets in Fig. 1). For shortwave and longwave radiation exchange, the standard BEP view factor and shading routines (Martilli 105 

et al. 2002) are used to estimate the amount of shortwave (direct and diffuse) and longwave radiation reaching a vertical 106 

segment 1.80 m tall and located in each of the six positions previously mentioned (Fig. 1, Appendix A). Reflection of shortwave 107 

radiation and emission and reflection of longwave radiation from both building walls and the street surface are accounted for 108 

via these view factors. The pedestrian is “transparent” from the perspective of the urban facets, meaning that its presence does 109 

not alter the shortwave and longwave radiation reaching the building walls and road. The mean radiant temperature is computed 110 

by weighting the radiation reaching each side of the vertical segment by 0.44, and the radiation reaching the downward- and 111 

upward-facing (at 1.80 m height) surfaces of the pedestrian by 0.06 each. This approach follows the six-directional weighting 112 

method (Thorsson et al. 2007) and aggregates the four lateral weightings of 0.22 into two lateral weightings of 0.44 since BEP-113 

BEM is a two-dimensional model (e. g. the streets are considered infinitely long). Namely, 114 

         (1) 115 

where, for a N-S oriented street, i=1,2 are for the vertical sides of the pedestrian looking East, and West respectively, and i=3,4 116 

are for the top and bottom. Therefore, W1,2=0.44, while W3,4=0.06, while the absorptivity of the pedestrian in the shortwave 117 

and longwave, aK (the absorption coefficient for shortwave radiation of the human body) and aL (the absorption coefficient for 118 

long-wave radiation, or emissivity,  of  the  human  body), respectively, are aK=0.7, and aL=0.97, K1,2 and L1,2  are the short and 119 

longwave radiation reaching the vertical segment, and K3,4 and L3,4 are short and longwave radiation reaching the top and 120 

bottom respectively, and σ is the Stefan-Boltzmann constant (see Appendix A for details about how the radiation components 121 

are computed). 122 
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Figure 1: Two street directions (left: E-W canyon, right: N-S canyon) and pedestrian locations considered for Mean 

Radiant Temperature calculations. 

The diurnal progression of the mean radiant temperature computed by this new model in BEP-BEM is subsequently compared 123 

with that obtained from TUF-Pedestrian, a more detailed three-dimensional model that has been evaluated against 124 

measurements (Lachapelle et al. 2022; Jiang et al. 2023). TUF-Pedestrian is configured with identical input parameters and 125 

meteorological forcing, and with long canyons that approximate the two-dimensional BEP-BEM canyon geometry. The new 126 

model clearly captures the relevant details of the diurnal progression of MRT at all six locations (Fig. 2), with a mean absolute 127 

difference of 3.4 K, and a root mean square difference of 4.3 K across all locations. A comparison of the shortwave radiation 128 

loading on the pedestrian between the two models reveals very good agreement (Appendix B Fig. B1, B2), considering the 129 

highly simplified urban morphology used by BEP-BEM, with biggest errors limited to short periods of time; thus, most of the 130 

model disagreement arises from differences between longwave loading on the pedestrian as a result of different methods for 131 

computation of surface temperature between the models. Overall, the new model of mean radiation temperature in BEP-BEM 132 

provides satisfactory results. 133 

 134 
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 135 

Figure 2: Comparison of diurnal variation of Mean Radiant Temperature (MRT) between the new model in BEP-BEM and TUF-136 

Pedestrian for each of the six locations in Fig. 1. TUF pedestrian acts here as a reference. 137 
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2.2 Parameterize airflow variability in the urban canopy 138 

Mesoscale models solve conservation equations for the three components of momentum. From these, it is possible to derive 139 

the spatially averaged wind velocity in each grid cell, at the grid resolution of the mesoscale model, commonly of the order of 140 

300m-1km. The spatially averaged wind velocity in the urban canopy 〈𝑉〉, close to the pedestrian height (~2.5m), is the square 141 

root of the sum of the spatial average of the two horizontal components u, and v, (neglecting the vertical component, which is 142 

usually at least one or two orders of magnitude smaller than the horizontal), 143 

〈𝑉〉 =
1

𝑉𝑎𝑖𝑟
√(∫ 𝑢𝑑𝑉

𝑉𝑎𝑖𝑟
)

2

+ (∫ 𝑣𝑑𝑉
𝑉𝑎𝑖𝑟

)
2

     (2) 144 

where here Vair is the volume of the grid cell occupied by air (e. g. without the buildings) 145 

However, the wind velocity calculated in mesoscale models is different from the average wind speed that would be experienced 146 

by a person in the grid cell. This is better represented by the spatial average of the wind speed 〈𝑈〉 (e. g. the modulus of the 147 

vector), written as 148 

〈𝑈〉 =
1

𝑉𝑎𝑖𝑟
∫ √𝑢2 + 𝑣2𝑑𝑉

𝑉𝑎𝑖𝑟
      (3) 149 

To assess the impact of airflow on human thermal comfort, the wind speed should be estimated from the wind velocity 150 

computed in the mesoscale models. Additionally, it is critical to parameterize and estimate the spatial variability of mean wind 151 

speed in the urban canopy. Accounting for these factors, the range of wind speed variability at the pedestrian level is estimated, 152 

which is critical for the quantification of spatial variability of outdoor thermal stress and comfort.  153 

Here, we describe the parameterization of a) wind speed-to-velocity ratio and b) wind speed distribution, based on urban 154 

density parameters. Data are considered from over 173 microscale CFD simulations of urban airflow over realistic and 155 

idealized urban configurations, spanning a wide range of building plan area (λP), frontal area (λF), and wall area (λw) densities 156 

representative of realistic urban neighbourhoods in different types of cities. CFD simulations are conducted using 162 large-157 

eddy simulations (LES) and 11 Reynolds-averaged Navier–Stokes (RANS) schemes detailed in Appendix C.  158 

Mean wind velocity 〈𝑉〉, speed 〈𝑈〉  and its spatial standard deviation (σU)  are computed at a horizontal cross-section at 159 

pedestrian height for each CFD simulation and used for deriving parameterizations (Fig. 3). An additional data point is added 160 

at λP=λw=0, ensuring that wind speed is equal to wind velocity, and its standard deviation is set to zero, for the non-urban case. 161 

It is important to remark here, that we are dealing with the standard deviation of the spatial distribution of the mean wind 162 

speed. With the term mean we indicate the result of an ensemble (over many realizations) or time average (over time scales 163 

larger than the turbulence time scale, but smaller than the time scale of the mesoscale motions), but not a spatial average. The 164 

urban canopy in fact is spatially heterogeneous, and, for this reason, the time and ensemble averages are different than the 165 

spatial average. Only when λP=λw=0 (e. g.  there are no buildings), and the horizontal homogeneity is recovered, must the 166 
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variability be zero. This σU, therefore, should not be confounded with the turbulent σ, which indicates the variability in 167 

instantaneous wind speed induced by turbulent motions, which indeed is not zero even when there are no buildings. 168 

 169 

  

  

Figure 3: Relationship between 1-<V>/<U> (bottom row), and σU/<U> (top row), and two morphological parameters, λP (left column), and 170 

λW (right column) based on the CFD simulations. Dots represent the average of the value among all the simulations that share the same 171 

morphological parameter, and the vertical bar indicates the standard deviation. The dashed line and the formula indicate the best fit. 172 

 173 
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Parameterizations are derived (shown in Fig. 3) for two density parameters (λP=Ap/Atot, and λw=Aw/Atot, where Ap is the 174 

area of the horizontal surface occupied by buildings, or the roof area, Aw is the area of vertical (wall) surfaces, and Atot is the 175 

total horizontal area). We find that λw better predicts mean wind speed and its spatial variability at the pedestrian height, 176 

because it represents both horizontal and vertical heterogeneities in the urban canopy. Note that λF has not been included in 177 

the study, given the difficulty to estimate it for real urban areas, and to translate it to the simplified 2D urban morphology used 178 

by BEP-BEM. In any case, λF is closely related to λw. Therefore, the following parameterizations are implemented at the 179 

pedestrian height as a function of the wall area density λw 180 

 181 

〈𝑈〉 =
〈𝑉〉

1−0.49𝜆𝑤
0.4       (4) 182 

𝜎𝑈 = 〈𝑈〉(0.25𝜆𝑤
0.55 )      (5) 183 

We, therefore, assign three values of wind speed in each grid cell, 184 

〈𝑠𝑝𝑒𝑒𝑑〉1 = 𝑚𝑎𝑥(0.01, 〈𝑈〉(1 − 0.25𝜆𝑤
0.55))    185 

〈𝑠𝑝𝑒𝑒𝑑〉2 = 〈𝑈〉       (6) 186 

〈𝑠𝑝𝑒𝑒𝑑〉3 = 〈𝑈〉(1 + 0.25𝜆𝑤
0.55)   187 

Note that here we consider the three values equally likely, in order to realistically span the range of possible values that the 188 

wind speed can take in each grid cell. Since UTCI has been designed for 10m wind speeds, a simple log law is used to 189 

rescale wind speed at 10m, before passing it to the UTCI routine. 190 

2.3 Calculation of the thermal comfort index  191 

To represent the subgrid spatial variability of air temperature, detailed CFD simulations are not available, so we simply use a 192 

variability of 1 degree Celsius, which we consider to be a conservative estimate of the spatial variability of air temperature 193 

over a spatial scale of the order of one km2This value is consistent with the range obtained in the few non-netural simulations 194 

available, like Santiago et al.  (2014), and Nazarian et al. (2018) over idealized arrays, as well as that obtained by Rivas-195 

Ramos over a realistic neighbourhood of Madrid (2024, personal communication). A better determination of the variability is 196 

left to future studies. Therefore, for each grid cell, we have three values for air temperature: 197 

𝑇𝑒𝑚𝑝1 = 𝑇𝑒𝑚𝑝𝑊𝑅𝐹 − 1 198 

𝑇𝑒𝑚𝑝2 = 𝑇𝑒𝑚𝑝𝑊𝑅𝐹            (7) 199 

𝑇𝑒𝑚𝑝3 = 𝑇𝑒𝑚𝑝𝑊𝑅𝐹 + 1 200 

where 𝑇𝑒𝑚𝑝𝑊𝑅𝐹  is the air temperature provided by WRF. 201 
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We therefore have, for each urban grid cell, three values of wind speed, three values of temperature, and six values of mean 202 

radiant temperature. No variability of the absolute humidity is considered, but the relative humidity is computed using the 203 

three values of air temperature.  204 

Based on the variation of these climate variables, assumed uncorrelated, 54 possible combinations of the air temperature, mean 205 

radiant temperature, and wind speed values can be formed. For each one of these combinations, we calculate the corresponding 206 

SET or UTCI value. Based on the resulting distribution, we estimate the value of the 10th, 50th, and 90th percentile SET or 207 

UTCI for each grid square (at each output time). Increasing the number of points where the mean radiant temperature is 208 

computed, or adding more values for the wind speed, does not change significantly the values of the percentiles (not shown). 209 

3. Characterization of thermal comfort in regional-scale models: Madrid case   210 

To illustrate the capabilities of the new scheme, a typical heat wave day in the city of Madrid (Spain) is simulated with WRF. 211 

Madrid is located on a plateau at 500-700m above sea level, in the middle of the Iberian Peninsula. It experiences hot summers, 212 

with frequent heat waves that increasing cause severe heat stress in the population, and it is therefore considered a relevant 213 

case study. Four nested domains have been used, with resolutions of 27, 9, 3, and 1km respectively. The city morphology (Fig. 214 

4) is derived from high-resolution LIDAR data that covers most of the metropolitan area of Madrid (Martilli et al., 2022), 215 

while the morphology of the surrounding towns is determined based on Local Climate Zone maps (Brousse et al., 2016). It is 216 

also important to mention that the city is located on a hilly terrain, with higher elevations in the N-W part of the urban area 217 

(around 700m a.s.l.) dropping to 500m a.s.l. or less in the S-E. Moreover, there are two topographical depressions on the two 218 

sides of the city centre, caused by the rivers Jarama and Manzanares (for a detailed description of the topography see also 219 

Martilli et al. 2022, where the same set-up was used). Other model configurations are the NOAH vegetation model for the 220 

non-urban grid points and the Bougeault and Lacarrere (1989) PBL scheme for turbulence parameterization. WRF coupled 221 

with BEP-BEM has previously been successfully used to simulate a heat wave period in Madrid (Salamanca et al., 2012). The 222 

period used in this paper is three days (14-16 July 2015). In particular, the analysis will focus on the 15th, when the maximum 223 

simulated temperature was above 40 Celsius. More information about the validation and a sensitivity study to select the optimal 224 

set-up can be found in Rodriguez-Sanchez (2020).  225 

https://paperpile.com/c/LZQJNL/hotC
https://paperpile.com/c/LZQJNL/bkFN
https://paperpile.com/c/LZQJNL/uzSD/?noauthor=1
https://paperpile.com/c/LZQJNL/37QV
https://paperpile.com/c/LZQJNL/mq0n/?noauthor=1
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 226 

Figure 4. Map of the plan area building density over the Madrid region. The underlying map was created with Mapbox OpenStreetMap. 227 

The map is oriented such that left is west, and up is north; the size is 50x50km. 228 

3.1 Sub-grid scale variability of MRT and thermal comfort. 229 

In order to understand how urban morphology affects the simulated heat stress, we focus on two grid points with very different 230 

urban morphology. One is located in the dense core of the city, with a building plan area density of λP =0.69, and a height-to-231 

width ratio (H/W) value of 1.6. The second is located in the southern part of the urban area, in a residential neighbourhood 232 

with a much lower building density (λP =0.2) and a H/W=0.1. 233 

In Figure 5, the diurnal evolution of the mean radiant temperature in the six points (three per street direction) is presented for 234 

the high urban density point and the low urban density point. During the daytime, the impact of the shadowing is clear, with 235 

reduced mean radiant temperature in the high-density point compared to the more exposed low-density. On the other hand, 236 

during night-time, the reduced sky-view factor in the high-density point slows down the cooling compared to the more open 237 

low-density location. 238 
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 239 

Figure 5. Diurnal evolution of MRT for 6 points in the urban canopy. The top row (white background) corresponds to a grid point with the 240 

highest building density in the centre of Madrid (λP =0.69) while the bottom row (with grey background) shows MRT in a low-density 241 

neighbourhood (λP =0.19). The left column is for an N-S street, while the right column shows an E-W street. 242 

This behaviour helps to explain the heat stress index (Figure 6), which is introduced here as an example of an index that can 243 

be computed with standard outputs from meteorological models, i.e., without information related to the radiation environment 244 
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(e.g., MRT) and urban morphology. The air temperature indicates hotter values both during the day and the night in the high 245 

urban density point compared to the low-density location. The Heat Index, which considers air temperature and humidity only, 246 

and does not include mean radiant temperature or wind, shows the same tendency. On the other hand, the UTCI behaviour 247 

communicates a different and more complete result. In the low-density neighbourhood, more exposed to the sun, the UTCI 248 

shows a stronger sub-grid spatial variability, in particular during the morning and afternoon, with the potential for stronger 249 

heat stress than in the high-density neighbourhood. During night-time, the spatial variability is reduced, due to reduced MRT 250 

variation as the shadowing effect disappears, and higher UTCI values are found at the high urban density location. This 251 

difference in behaviour between the two locations can be seen also in Fig. 7, where the fractions of the 10th percentile of UTCI 252 

values (i.e. representative of one of the coolest spots in the grid cell) and the 90th percentile (i.e., one of the hottest) in the 253 

different heat stress regimes are shown for the two points. Here we can see that in the low-density urban point, the cool location 254 

is in a comfortable UTCI range most of the time, while the hot (90th percentile UTCI) sub grid location is under stress most 255 

of the time. On the other hand, less variability is present in the high-density neighbourhood, with fewer extreme values, and 256 

most of the time in the strong or moderate heat stress regime for both the cool and hot locations within the grid square. This 257 

kind of detail is not available from the Heat Index distribution which does not account for the mean radiant temperature, wind, 258 

or their variabilities (Fig. 8).    259 
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 260 

Figure 6. Diurnal evolution of UTCI compared with 2-m air temperature and Heat Index calculated from air temperature and relative 261 

humidity at each grid point). The UTCI boxplot at each hour represents the subgrid-scale distribution calculated based on 6 MRT, 3 wind 262 

speeds, and 3 air temperature values (54 combinations in total). The horizontal lines represent the thermal comfort zones for UTCI (i.e. 263 

above +46C: extreme heat stress; +38 to +46: very strong heat stress; +32 to +38: strong heat stress; +26 to +32: moderate heat stress; and 264 

+9 to +26: no thermal stress).  265 
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 266 

 267 

Figure 7. From top to bottom, the frequency of UTCI class over a 24-hour period, for a subgrid location that is cooler (i.e. 10th percentile 268 

of UTCI in the urban canopy, top), and for a subgrid location that is hotter (i.e. 90th percentile of UTCI in the urban canopy, bottom), for 269 

the high-density (left) and low-density (right) points. 270 

 271 

Figure 8. same as Figure 7, but for the Heat Index 272 

 273 
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 3.2 City-scale maps of outdoor thermal comfort and heat stress indicators. 274 

The previous analysis helps to understand the spatial distribution of the different variables presented in Fig. 9 at 10 and 16 275 

UTC (note that Madrid is at Longitude 3W, so UTC is essentially equal to solar time). In the dense city centre, the distribution 276 

of 2m air temperature at 0900 UTC shows a hot region, with cooler areas in the less dense regions around it. This effect is due 277 

to the fact that in the dense region, the reduced sky-view factor of the streets (high H/W), as well as the larger thermal storage 278 

capacity in the buildings, reduce the nocturnal cooling, and increase the vertical mixing in that part of the city compared to the 279 

surroundings. Such a difference is still visible in the morning. The higher temperatures in the S-E part of the urban area, and 280 

cool temperatures in the N-W are the result of the topographical differences. The spatial distribution of air temperature is 281 

qualitatively similar to the spatial distribution of the 10-percentile of UTCI (e. g. the cool spot in the grid cell), even if the 282 

differences between the centre and the surrounding urban areas are not as intense as for 2m air temperature. On the other hand, 283 

the 90-percentile map (hot spot), shows a completely different pattern; on the city centre, at that time of the day, the whole 284 

street is still in the shadow, while in the surrounding, less dense urban areas, there are points completely exposed to the sun. 285 

As a comparison, the map of surface temperature (a variable often used to represent the spatial distribution of heat in cities) as 286 

seen from a satellite, i.e. based only on a weighted average of roof, street, and vegetation temperatures (see full equations in 287 

Martilli et al. 2021), does not show a clear pattern, and it is uncorrelated with the other maps. This is a clear indication that 288 

this variable should not be used for the assessment of the heat hazard or heat stress in urban areas. 289 

At 1600 UTC the air temperature shows again higher values in the city centre, lower in the urban surroundings, and a gradient 290 

from hotter S-E at lower elevations to cooler N-W at higher elevations (Fig. 10). Such a tendency is present also for the 10th 291 

percentile (cool spot), but with less variability. The 90th percentile map (hot spot) indicates that the area with elevated heat 292 

stress extends well beyond the city centre, including lower-density regions that, even if they have lower air temperatures, are 293 

fully exposed to the sun. Finally, as it was the case for 0900 UTC, the surface temperatures have a map uncorrelated with 294 

neither the air temperatures nor the UTCI maps.  295 

 296 

 297 
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 298 

Figure 9. Spatial maps at 0900 UTC for 2-m air temperature (top left), surface temperature (top right), UTCI cool spot e. g. the 10 299 

percentile of UTCI captured in the urban canopy model (bottom left), and UTCI  hot spot e. g. 90 percentile of UTCI in the urban canopy 300 

(bottom right).  Surface temperature is equivalent to that seen by a nadir-view satellite sensor (i.e., an area-weighted average of canopy 301 

ground temperature, roof temperature, and vegetation temperature in non-urban fractions is considered). The underlying maps were created 302 

with Mapbox OpenStreetMap 303 

 304 
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 306 

  

  

 307 

Figure 10. Same as Figure 9, but at 1600 UTC.  308 

4. Limitations 309 



19 

 

The main limitation of the approach we propose here to account for the sub-grid variability of mean radiant temperature is the 310 

idealization of the urban morphology adopted by the urban canopy parameterization BEP-BEM. This consists of representing 311 

the urban morphology as a series of infinite urban canyons, all with the same width, separated by buildings of constant width, 312 

and variable building height. Two street orientations are considered for each grid cell: North-South, and East-West. The 313 

dimensions of the buildings and street canyons are determined such that the building plan area density, the density of urban 314 

vertical surfaces per horizontal area, and the mean building height are equal to those of the real morphology of the grid cell. 315 

As a result, the total surface areas of walls, roads and roofs in the idealized morphology used by BEP-BEM closely approximate 316 

the corresponding surface areas in the real neighbourhood, and – to a certain extent – the street and buildings of the idealized 317 

morphology can be considered representatives of an average street and set of buildings present in the grid cell. The advantage 318 

of this approach, common among the most widely-used urban canopy parameterizations (Masson, 2000, Kusaka et al. 2001), 319 

is that it allows accurate estimation of shadowing and radiation trapping effects in the urban canopy with low computational 320 

cost, without considering the real urban morphology. Keeping the computational cost low was an essential requirement 321 

considering the computational resources available when these urban canopy parametrizations were developed (about 20 years 322 

ago). With today’s computational resources, there may be potential to account for more complexity in the urban morphology. 323 

However, this would require deep changes in the structure of the urban canopy parametrization BEP-BEM that are beyond the 324 

scope of the present article. For this reason we decided to keep the idealized morphology of BEP-BEM and estimate the mean 325 

radiant temperature in six locations representative of the middle of the street and the sidewalks. So, the mean radiant 326 

temperatures computed are representatives of those six points of an “average” street in the grid cell. Indeed, in a grid cell of a 327 

mesoscale model (that typically has a size of the order of one km2) there is a variety of street and building dimensions and 328 

orientations, so the present approach cannot capture the full spatial variability of mean radiant temperature, a variability that 329 

increases with the heterogeneity of the real urban morphology. Nevertheless, it represents a step forward, since it accounts for 330 

the range (and to some extent, the variability) of mean radiant temperature within the “average” idealized street canyon, that 331 

can be reasonably considered the most likely street typology within the grid cell, something that previous approaches does not. 332 

Overall, the current approach is likely to accurately quantify the mean radiant temperature of at least one “average” shaded 333 

pedestrian and one “average” sunlit pedestrian (during periods with direct shortwave irradiance), and thus capture the largest 334 

source of spatial variation of both MRT and UTCI (Middel and Krayenhoff, 2019). Another limitation of the approach 335 

presented here is the lack of street trees. Currently work is in progress to introduce trees in the version of BEP-BEM 336 

implemented in WRF via implementation of the BEP-Tree model (Krayenhoff et al. 2020), and in this way account for their 337 

impacts on mean radiant temperature as well as on air temperature, humidity, and wind. 338 

The approach used to estimate the mean wind speed and its sub-grid variability is grounded on a large number of CFD 339 

simulations over a variety of urban morphologies. Indeed, as shown in Fig. 3, the sub-grid variability of wind speed can be 340 

quite large, and certainly strongly influenced by the relative arrangements of buildings and streets. So, the approach presented 341 

here will likely underestimate the sub-grid variability of wind speed – and this is why we decided to give the same likelihood 342 
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to the three values of wind speed estimated in (6), instead of assuming a Gaussian or Weibull distribution of the probabilities 343 

of wind speed in the grid cell. To fully capture this variability a complete coupling between the mesoscale and a detailed CFD 344 

model would be needed - something that we may be able to do in the near future, but is still unavailable with current 345 

computational resources. Another limitation of the present approach is that the CFD simulations used to build the database 346 

from which the parametrization has been derived are all for a neutral atmosphere, so thermal effects on wind speed and its sub-347 

grid variability are neglected.  348 

5. Conclusions 349 

A new parameterization to quantify intra-neighbourhood heat stress variability in urban areas using a mesoscale model is 350 

presented. This approach is based on two primary developments: 1) calculation of mean radiant temperature at several locations 351 

within the idealized urban morphology used by the urban canopy model BEP-BEM; and 2) parameterization of mean wind 352 

speed and its sub-grid spatial variability as a function of the local urban morphology and the mean wind velocity computed by 353 

the WRF mesoscale model, using relations developed from a large suite of CFD simulations over a range of realistic and 354 

idealized urban neighbourhoods. The components of the new parameterization have been validated against microscale model 355 

results. From this approach the sub-grid variability of a heat stress index (i.e. UTCI or SET) can be computed for every grid 356 

point, permitting quantification of the heat exposure at both cool and hot locations within each grid square at each time.  357 

The new parameterization has been implemented in the multilayer scheme BEP-BEM in WRF and used to simulate a heatwave 358 

day over Madrid (Spain) as proof of concept. The results of this initial application demonstrate the following: 359 

I. The new parameterization gives information that is more suitable for the evaluation of heat stress than the air 360 

temperature, being based on an index (UTCI or SET) that also combines air humidity, wind speed, and mean radiant 361 

temperature.  362 

II. The new parameterization provides substantively more information than air temperature alone (or any other index 363 

that does not account for the mean radiant temperature). It provides information about the sub-grid variability (such 364 

that heat stress in both cool and hot locations in each grid square is quantified). To our knowledge, this has not been 365 

done before with a mesoscale model. 366 

III. The results for the investigated case indicate a strong intraurban variability, both in air temperature and UTCI values, 367 

that can be linked to the differences in urban morphology and elevation above sea level. The ability to assess the 368 

differential impacts of urban morphology on heat stress is key to the provision of guidance for urban planning 369 

strategies that mitigate urban overheating. 370 

IV. Nadir-view surface temperature (i.e., as seen from a satellite-mounted remote sensor) is poorly correlated with both 371 

air temperature and UTCI maps, indicating that, despite its ubiquitous use at present, it is unlikely to be an adequate 372 

metric for heat impact assessment studies. 373 
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Finally, we consider that this new development introduces a new methodology for deploying mesoscale models to assess urban 374 

overheating mitigation strategies. 375 

  376 
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 529 

Appendix A. Computation of Radiation for Mean Radiant Temperature 530 

As explained in the text, the mean radiant temperature at pedestrian level is represented using formula (1). The full expression 531 

of the longwave radiation components for the vertical faces of the pedestrian (𝐿1, 𝐿2 ), for the case of an urban morphology 532 

with buildings of constant height and walls with no windows, is as follows: 533 

𝐿1 = ∑ 𝜓1𝑖,𝑝𝜀𝑊(𝑅𝑙1𝑊𝑖
+ 𝜎𝑇1𝑖

4 ) + 𝜓1𝐺,𝑝𝜀𝐺(𝑅𝑙𝐺 + 𝜎𝑇𝐺
4) + 𝜓1𝑆,𝑝𝑅𝑙𝑆

𝑖=1,𝑛

 534 

  𝐿2 = ∑ 𝜓2𝑖,𝑝𝜀𝑊(𝑅𝑙2𝑊𝑖
+ 𝜎𝑇2𝑖

4 ) + 𝜓2𝐺,𝑝𝜀𝐺(𝑅𝑙𝐺 + 𝜎𝑇𝐺
4) + 𝜓2𝑆,𝑝𝑅𝑙𝑆𝑖=1,𝑛  535 

Where (see Fig A1).: 536 

𝜓1𝑖,𝑝= is the view factor from wall section i of building 1 to the side 1 of the pedestrian  537 

𝜀𝑊= is the emissivity of the wall 538 

𝑅𝑙1𝑊𝑖
= is the long wave radiation reaching the section i of the wall of building 1 539 

𝑇1𝑖  = is the surface temperature of the section i of the wall of building 1 540 

𝜓1𝐺,𝑝 = is the view factor from the ground (or street) to the side 1 of the pedestrian 541 

𝜀𝐺= is the emissivity of the ground 542 

𝑅𝑙𝐺=is the longwave radiation reaching the ground (street) 543 

𝑇𝐺  = is the surface temperature of the ground (street) 544 

𝜓1𝑆,𝑝= is the view factor from the sky to side 1 of the pedestrian 545 

𝑅𝑙𝑆= longwave radiation from the sky 546 

𝜎= is the Stefan-Boltzmann constant. 547 
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 548 

Figure A1. Schematic of the Street canyon. 549 

Similar meaning applies for side and building 2. 550 

The values of the surface temperatures and the longwave radiations are computed with BEP_BEM. The view factors are 551 

estimated based on formulas A13-A19 of Martilli et al. 2002, using a height for the pedestrian of 1.8 m. 552 

For the longwave radiation reaching the top of the pedestrian, we made the simple assumption that it is equal to the radiation 553 

coming from the sky, 𝐿3 = 𝑅𝑙𝑆, while for the longwave radiation reaching the bottom of the pedestrian, the assumption is that 554 

it is equal to the radiation  emitted and reflected by the ground, or 𝐿4 = 𝜀𝐺𝑅𝑙𝐺 + 𝜀𝐺𝜎𝑇𝐺
4. We consider that these assumptions 555 

are reasonable, giving that the contribution of the radiation reaching the top and bottom of the pedestrian is only 6% each to 556 

the final value of the mean radiant temperature. 557 

A similar approach is followed for the short wave radiation, leading to: 558 

 559 

𝐾1 = ∑ 𝜓1𝑖,𝑝𝛼𝑖𝑅𝑠1𝑊𝑖
+ 𝜓1𝐺,𝑝𝛼𝐺𝑅𝑠𝐺 + 𝑅𝑠1𝑆

𝑖=1,𝑛

 560 

  𝐾2 = ∑ 𝜓2𝑖,𝑝𝛼𝑖𝑅𝑠2𝑊𝑖
+ 𝜓2𝐺,𝑝𝛼𝐺𝑅𝑠𝐺 + 𝑅𝑠2𝑆𝑖=1,𝑛  561 

Where  562 

𝑅𝑠1𝑊𝑖
=short wave radiation reaching the section i of the wall of building 1 563 

𝛼𝑖=albedo of the section i of the wall of the building 564 

𝑅𝑠𝐺= is the short wave radiation reaching the ground 565 



30 

 

𝛼𝐺 = is the albedo of the ground 566 

𝑅𝑠1𝑆= is the short wave radiation from the sun reaching directly side 1 of the pedestrian, computed using formula A10 of 567 

Martilli et al. 2002,  using a height of the pedestrian of 1.8m. 568 

Similar meaning for side and wall 2. 569 

Regarding the radiation reaching the top of the pedestrian, 𝐾3, for simplicity only the radiation coming directly from the sun 570 

is considered, without accounting for the reflection from the walls. So the value is zero if the pedestrian is in full shadow, and 571 

to estimate it, the formula used is from A11 of Martilli et al. 2002. The value of the radiation reaching the bottom of the 572 

pedestrian is the value reflected by the ground, or 𝐾3 = 𝛼𝐺𝑅𝑠𝐺 , 573 

 574 

  575 
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 576 

Appendix B. Comparison of Short wave calculation in BEP-BEM and TUF-pedestrian. 577 

Short wave radiation is an essential component of the MRT. Below we compare the short wave radiation reaching the vertical 578 

sides of the segment representing the human body computed by BEP-BEM vs those estimated with the more detailed model 579 

TUF-pedestrian. 580 
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 581 
Figure B1. Comparison of short wave radiation at the two sides of the vertical segment representing the pedestrian for the N-582 

S oriented street. Solid line is the WRF, while diamonds are TUF. Short 1 means the side 1 of the pedestrian, while Short 2 583 

the side 2. 584 
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 585 

 586 

Figure B2. Same as B1, but for an E-W oriented street 587 

 588 
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 589 

Appendix C. CFD simulations for wind speed variability  590 

Data from over 173 microscales CFD simulations of urban airflow are considered over realistic and idealized urban 591 

configurations, spanning a wide range of building plan area (λP), frontal area (λF), and wall area (λw) densities representative 592 

of realistic urban neighborhoods in different types of cities. CFD simulations are conducted using 162 large-eddy simulations 593 

(LES) and 11 Reynolds-averaged Navier–Stokes (RANS) schemes detailed in Table B.1.  594 

Table B.1 Details of CFD microscale simulation cases considered in this study. Simulations are classified based on the 

configuration (urban form) used. These classifications include UA (Uniform height with Aligned configuration), US 

(Uniform height with Staggered configuration), VA (Variable height with Aligned configuration), VS (Variable height 

with Staggered configuration), UR (Uniform height with Realistic configuration), and VR-WD (Variable height with 

Realistic configuration and multiple Wind Directions considered). 

 

 595 

In the LES simulations, airflow over idealized and realistic urban arrays to determine the model parameters (Nazarian et al., 596 

2020; Lu et al., 2022, 2023).  Realistic urban layouts are prepared by rasterizing building footprints from an open-source 597 

dataset OpenStreetMap using OSM2LES (Lu et al., 2022). 64 realistic urban neighbourhoods were obtained assuming uniform 598 

building height (Table B.1) from several major cities such as Sydney and Melbourne (Australia), Barcelona (Spain), Detroit, 599 

https://paperpile.com/c/LZQJNL/6SiY+qXzj+EINX
https://paperpile.com/c/LZQJNL/6SiY+qXzj+EINX
https://paperpile.com/c/LZQJNL/qXzj
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Los Angeles, and Chicago (United States). Idealized urban arrays are considered in aligned and staggered arrangement that 600 

follows (Coceal et al., 2007)  with varying urban density (𝜆𝑝 in [0.0625,0.64]) and height variability (𝐻𝑠𝑡𝑑=[0m,2.8m,5.6m]). 601 

Simulations are conducted in the Parallelized Large-eddy Simulation Model (PALM, version r4554) (Maronga et al., 2020) 602 

following the same setup in (Nazarian et al., 2020), which has validated results against Direct Numerical Simulation (Coceal 603 

et al., 2007) and wind tunnel experiments (Brown et al., 2001). The computational domain is discretized using the second-604 

order central differences (Piacsek and Williams, 1970) where the horizontal grid spacing is uniform and the vertical spacing 605 

follows the staggered Arakawa C-grid. The minimal storage scheme is employed in the time integration to solve the filtered 606 

prognostic incompressible Boussinesq equations where the pressure perturbation was calculated in Poisson's equation and was 607 

solved by the FFTW scheme (Frigo and Johnson, 1998).  608 

The RANS dataset is derived from steady-state CFD-RANS simulations performed with the Realizable k- ε turbulence model 609 

(STAR-CCM+, Siemens) over realistic urban areas. The size of the computational domains is determined following the best 610 

practice guideline of COST Action 732 (Franke et al., 2010). The horizontal area covers around 1-1.5 km2 and the domain top 611 

is at around 8H, being H the mean height of buildings. The resolution of the irregular polyhedral mesh used in all CFD-RANS 612 

simulations goes from 0.5 m close to buildings to 6 m out of the built-up area, which results in between 3 and 8 million grid 613 

points depending on the complexity of the geometry. Inlet vertical profiles for wind speed, turbulent kinetic energy (k), and 614 

its dissipation (ε), are established in neutral atmospheric conditions. The evaluation of the CFD-RANS simulations was 615 

addressed in previous studies summarized in Table B2 and more information is provided in previous publications. 616 

 617 

https://paperpile.com/c/LZQJNL/Giip
https://paperpile.com/c/LZQJNL/5Wn1
https://paperpile.com/c/LZQJNL/6SiY
https://paperpile.com/c/LZQJNL/Giip
https://paperpile.com/c/LZQJNL/Giip
https://paperpile.com/c/LZQJNL/oXGP
https://paperpile.com/c/LZQJNL/YnOs
https://paperpile.com/c/LZQJNL/6mbj
https://paperpile.com/c/LZQJNL/iNmt

