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Abstract. Urban overheating, and its ongoing exacerbation due to global warming and urban development, leads to increased 10 

exposure to urban heat and increased thermal discomfort and heat stress. To quantify thermal stress, specific indices have been 11 

proposed that depend on air temperature, mean radiant temperature (MRT), wind speed, and relative humidity. While 12 

temperature and humidity vary on scales of hundreds of meters, MRT and wind speed are strongly affected by individual 13 

buildings and trees, and vary at the meter scale. Therefore, most numerical thermal comfort studies apply micro-scale models 14 

to limited spatial domains (commonly representing urban neighborhoods with building blocks) with resolutions on the order 15 

of 1 m and a few hours of simulation. This prevents the analysis of the impact of city-scale adaptation/mitigation strategies on 16 

thermal stress and comfort. To solve this problem, we develop a methodology to estimate thermal stress indicators and their 17 

subgrid variability in mesoscale models - here applied to the multilayer urban canopy parametrization BEP-BEM within the 18 

WRF model. The new scheme (consisting of three main steps) can readily assess intra-neighborhood scale heat stress 19 

distributions across whole cities and for time scales of minutes to years. The first key component of the approach is the 20 

estimation of MRT in several locations within streets for different street orientations. Second, mean wind speed, and its subgrid 21 

variability, are parameterized as a function of the local urban morphology based on relations derived from a set of microscale 22 

LES and RANS simulations across a wide range of realistic and idealized urban morphologies. Lastly, we compute the 23 

distributions of two thermal stress indices for each grid square combining all the subgrid values of MRT, wind speed, air 24 

temperature, and absolute humidity. From these distributions, we quantify the high and low tails of the heat stress distribution 25 

in each grid square across the city, representing the thermal diversity experienced in street canyons. In this contribution, we 26 

present the core methodology as well as simulation results for Madrid (Spain), which illustrate strong differences between heat 27 

stress indices and common heat metrics like air or surface temperature, both across the city and over the diurnal cycle. 28 

 29 
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1 Introduction 30 

The combination of urban development and climate change has increased heat exposure in cities in recent decades (Tuholske 31 

et al., 2021) and a continuation of these trends in the 21st century would be difficult to offset locally from an air temperature 32 

perspective (Broadbent et al., 2020; Krayenhoff et al., 2018; Zhao et al., 2021). Adaptation options that target contributions to 33 

heat exposure other than the air temperature, such as radiation (e.g., via shade) and wind (e.g. via improved street ventilation), 34 

should therefore be considered. Quantification of these contributions relative to air temperature requires the application of 35 

comprehensive thermo-physiological heat stress metrics such as the Universal Thermal Climate Index, UTCI (Jendritzky et 36 

al., 2012), the Physiological Equivalent Temperature, PET (Höppe, 1999), or the Standard Effective Temperature, SET (Gagge 37 

et al., 1986). Moreover, exposure to heat hazards is moderated by infrastructure-based and social/mobility-based adaptations 38 

to heat, and by buildings and associated cooling mechanisms. Here, the focus is the development of a tool to quantify the 39 

outdoor component of heat exposure in cities, accounting for all relevant meteorological variables.  40 

Heat exposure in urban areas is affected by several meteorological variables that vary on different spatial and temporal scales 41 

(Nazarian et al., 2022). While temperature and humidity vary on spatial scales on the order of hundreds of meters, shortwave 42 

and longwave radiation and wind speed are strongly affected by individual buildings and vary at the scale of a few meters.  For 43 

this reason, most numerical thermal comfort studies in urban areas apply micro-scale models with resolutions on the order of 44 

one1 m and spatial domains that are limited to an urban block or neighborhood (Nazarian et al., 2017; Zhang et al., 2022; 45 

Geletič et al., 2018). While these studies include substantial detail at the micro-scale, they are very expensive computationally 46 

and therefore can be applied only to a few neighborhoods and they neglect the interactions with larger scale meteorological 47 

phenomena (e.g., land/sea breezes, mountain/valley winds, urban breezes) that often play a relevant role in outdoor thermal 48 

comfort and its variation across cities. On the other hand, contemporary meso-scale numerical models can be applied to the 49 

whole urban area and surrounding regions, and therefore capture these larger-scale phenomena, but have spatial resolutions of 50 

several hundred meters at best. These models use a grid mesh that does not resolve buildings and is therefore too coarse to 51 

capture the fine-scale variation of radiation and wind flow of relevance to outdoor heat exposure and ultimately thermal 52 

comfort. 53 

The objective of this work is to fill the aforementioned gap by developing a model that includes the most crucial capabilities 54 

of micro-scale assessments of thermal exposure within meso-scale models. This new model will quantify the spatial variability 55 

(i.e., statistical representation of the microscale distribution) for longwave and shortwave radiation as well as wind speed 56 

within each meso-scale grid square. Subsequently, it will capture the range of thermal exposure, as quantified by the UTCI 57 

and SET thermal stress metrics, within each urban grid square across a city at each time of day. The focus here is on the range 58 

of thermal exposure, such that we identify the cool and hot spots within the grid cell without having to resolve the entire spatial 59 

distribution. We argue that this represents the most crucial information for heat management and urban design interventions, 60 

as it identifies whether people can move and search for optimal thermal conditions. For example, if hot spots are experiencing 61 

extreme heat stress but the cool spots are at slight heat stress, pedestrians have the opportunity, and autonomy, to seek shade 62 

https://paperpile.com/c/LZQJNL/Wdwt
https://paperpile.com/c/LZQJNL/Wdwt
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https://paperpile.com/c/LZQJNL/3wYv
https://paperpile.com/c/LZQJNL/k9Qp
https://paperpile.com/c/LZQJNL/k9Qp
https://paperpile.com/c/LZQJNL/yZUN
https://paperpile.com/c/LZQJNL/pQ2I+2XlG+H513
https://paperpile.com/c/LZQJNL/pQ2I+2XlG+H513
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and thermal respite (i.e., temporal and spatial autonomy as described in Nazarian et al. (2019)). Conversely, if the conditions 63 

in the cool spot are already in extreme heat stress, this can be used to inform urban design interventions or heat advisories to 64 

vulnerable populations to avoid being outside at that place and time. Overall, representing the range of heat exposure at the 65 

neighborhood scale while covering regional-scale phenomena is key to human-centric assessments of urban overheating 66 

(Nazarian et al., 2022).  67 

The new model is embedded in the multi-layer urban canopy parameterization BEP-BEM (Martilli et al., 2002; Salamanca et 68 

al., 2010) which simulates the local-scale meteorological effects of the grid- average urban morphology within the Weather 69 

Research and Forecasting (WRF) mesoscale model (Skamarock et al., 2019 version 4.3 has been used in this study). Here, 70 

BEP-BEM is extended to quantify the spatial variation of the mean radiant temperature and wind speed within the grid square 71 

at the pedestrian level. To our knowledge, three schemes in the published literature have attempted to capture thermal exposure 72 

in an urban canopy model. Pigliautile (2020) implemented a scheme to estimate human thermal exposure in the Princeton 73 

Single-Layer Urban Canopy Model. However, the scheme has not been run within a mesoscale model. Jin et al. (2022) calculate 74 

urban mean radiant temperature (MRT) in a mesoscale model, while Lemonsu (2015) and Leroyer et al. (2018) assess UTCI 75 

in mesoscale modeling applications within Paris and Toronto, respectively. Moreover, Giannaros et al (2018, 2023), made an 76 

offline coupling of WRF-BEP_BEM with RayMan (Matzarakis et al. 2007). However, none of these approaches account for 77 

the within-grid spatial variation of wind speed, and their assessment of sub-grid spatial variation of radiation exposure (i.e., 78 

mean radiant temperature) is limited. Here, we further extend the BEP-BEM model embedded in the WRF meso-scale model 79 

to overcome these limitations and more fully assess spatial variation of thermal exposure within each urban grid square.  80 

In section 2, the methodology is described in detail, with a focus on model development and implementation in WRF. In 81 

Section 3, we present an example of the type of outputs that can be produced. Conclusions are in section 4. 82 

2 Methodology 83 

The most complete thermal stress indices invariably depend on four meteorological variables: air temperature, mean radiant 84 

temperature (MRT), relative humidity, and wind speed. Among these, MRT and wind speed have the largest spatial variability 85 

in the urban canopy, and this variability is often captured with 3D micro-scale models of urban airflow and radiative heat 86 

transfer. At the meso-scale, however, it is not feasible to incorporate such models, motivating the simplified urban canopy 87 

parameterizations developed here. Below we detail how the BEP-BEM urban canopy model is modified to a) introduce a 88 

simplified model for MRT variation within a meso-scale grid cell (Sec. 2.1) and b) parameterize airflow variability (Sec. 2.2) 89 

in the urban canopy within a grid cell, and make a simple estimate of air temperature variability. These meteorological 90 

parameters are then used to estimate the sub-grid scale variation of thermal stress indices (Sec. 2.3), namely SET and UTCI, 91 

as two of the most commonly used indices for outdoor environments (Potchter et al 2018). Lastly, we discuss how multi-scale 92 

https://paperpile.com/c/LZQJNL/k7Ia/?noauthor=1
https://paperpile.com/c/LZQJNL/yZUN
https://paperpile.com/c/LZQJNL/egT3+LfJx
https://paperpile.com/c/LZQJNL/egT3+LfJx
https://paperpile.com/c/LZQJNL/GHI0
https://paperpile.com/c/LZQJNL/GHI0
https://paperpile.com/c/LZQJNL/GHI0
https://paperpile.com/c/LZQJNL/erCM/?noauthor=1
https://paperpile.com/c/LZQJNL/TtZQ/?noauthor=1
https://paperpile.com/c/LZQJNL/MQyr/?noauthor=1
https://paperpile.com/c/LZQJNL/88bb/?noauthor=1
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temporal and spatial variabilities in thermal exposure can be effectively communicated using the outcomes of the updated 93 

WRF-BEP-BEM model.  94 

2.1 A simplified model for MRT variability in the urban canopy  95 

The mean radiant temperature is a measure of the total radiation flux absorbed by the human body, including both shortwave 96 

(from the sun, either directly or after reflection on the walls or road) and longwave (emitted from solid bodies like walls or 97 

road, or from the sky) radiation. Whether pedestrians are shaded or in the sunshine, as well as their distance from warm surfaces 98 

emitting radiation, is therefore very important. BEP-BEM applies a simple urban morphology: two street canyons of different 99 

orientations, each with the same street width and building height distribution on each side of the canyon (Martilli et al. 2002). 100 

To capture the within-grid spatial extremes of mean radiant temperature, we assess pedestrian locations at the center of the 101 

street for two canyon orientations considered in BEP-BEM and at positions located at a distance of 1.5 m from the building 102 

wall on each side of the street, representing the sidewalks. Thus, there are 6 positions (three for each street direction) in each 103 

urban grid square where we compute the mean radiant temperature (shown for the example of North-South and East-West 104 

streets in Fig. 1). For shortwave reflection and longwave emission and reflection radiation exchange, the standard BEP view 105 

factor and shading routines (Martilli et al. 2002) are used to estimate the amount of shortwave (direct and diffuse) and longwave 106 

radiation reaching a vertical segment 1.80 m tall and located in each of the six positions previously mentioned (Fig. 1, Appendix 107 

A). Reflection of shortwave radiation and emission and reflection of longwave radiation from both building walls and the 108 

street surface are accounted for via these view factors. The pedestrian is “transparent” from the perspective of the urban facets, 109 

meaning that its presence does not alter the shortwave and longwave radiation reaching the building walls and road. The mean 110 

radiant temperature is computed by weighting the radiation reaching each side of the vertical segment by 0.44, and the radiation 111 

reaching the downward- and upward-facing (at 1.80 m height) surfaces of the pedestrian by 0.06 each. This approach follows 112 

the six-directional weighting method (Thorsson et al. 2007) and aggregates the four lateral weightings of 0.22 into two lateral 113 

weightings of 0.44 since BEP-BEM is a two-dimensional model (e. g. the streets are considered infinitely long). Namely, 114 

         (1) 115 

where, for an N-S oriented street, i=1,2 are for the vertical sides of the pedestrian looking East, and West respectively, and 116 

i=3,4 are for the top and bottom. Therefore, W1,2=0.44, while W3,4=0.06, while the absorptivity of the pedestrian in the 117 

shortwave and longwave,two constants aK and aL , respectively, are aK=0., and aL=0.97 the absorption coefficient for long-118 

wave radiation, or emissivity,  of  the  human  body), K1,2 and L1,2  are the short and longwave radiation reaching the vertical 119 

segment, and K3,4 and L3,4 are short and longwave radiation reaching the top and bottom respectively, and σ is the Stefan-120 

Boltzmann constant (see Appendix A for details about how the radiation components are computed). 121 

Con formato: Fuente: Cursiva
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Con formato: Fuente: Cursiva, Subíndice 
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Figure 1: Two street directions (left: E-W canyon, right: N-S canyon) and pedestrian locations considered for Mean 

Radiant Temperature calculations. 

The diurnal progression of the mean radiant temperature computed by this new model in BEP-BEM is subsequently compared 122 

with that obtained from TUF-Pedestrian, a more detailed three-dimensional model that has been evaluated against 123 

measurements (Lachapelle et al. 2022; Jiang et al. 2023). TUF-Pedestrian is configured with identical input parameters and 124 

meteorological forcing, and with long canyons that approximate the two-dimensional BEP-BEM canyon geometry. The new 125 

model clearly captures the relevant details of the diurnal progression of MRT at all six locations (Fig. 2), with a mean absolute 126 

difference of 3.4 K, and a root mean square difference of 4.3 K across all locations. A comparison of the shortwave radiation 127 

loading on the pedestrian between the two models reveals very good excellent agreement (Appendix BA Fig. BA1, BA2), 128 

considering the highly simplified urban morphology used by BEP-BEM, with biggest errors limited to short periods of time; 129 

thus, most of the model disagreement arises from differences between longwave loading on the pedestrian as a result of 130 

different methods for computation of surface temperature between the models. Overall, the new model of mean radiation 131 

temperature in BEP-BEM provides satisfactory results. 132 
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 134 

Figure 2: Comparison of diurnal variation of Mean Radiant Temperature (MRT) between the new model in BEP-BEM and TUF-135 

Pedestrian for each of the six locations in Fig. 1. 136 
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2.2 Parameterize airflow variability in the urban canopy 137 

Mesoscale models solve conservation equations for the three components of momentum. From these, it is possible to derive 138 

the spatially averaged wind velocity in each grid cell, at the grid resolution of the mesoscale model, commonly of the order of 139 

300m-1km. The spatially averaged wind velocity in the urban canopy 〈𝑉〉, close to the pedestrian height (~2.5m), is the square 140 

root of the sum of the spatial average of the two horizontal components u, and v, (neglecting the vertical component, which is 141 

usually at least one or two orders of magnitude smaller than the horizontal), 142 

〈𝑉〉 =
1

𝑉𝑎𝑖𝑟
√(∫

𝑉𝑎𝑖𝑟
𝑢𝑑𝑉)

2

+ (∫
𝑉𝑎𝑖𝑟

𝑣𝑑𝑉)
2

     (2) 143 

where here Vair is the volume of the grid cell occupied by air (e. g. without the buildings) 144 

However, the wind velocity calculated in mesoscale models is different from the average wind speed that would be experienced 145 

by a person in the grid cell. This is better represented by the spatial average of the wind speed 〈𝑈〉 (e. g. the moduluse of the 146 

vector), written as 147 

〈𝑈〉 =
1

𝑉𝑎𝑖𝑟
∫

𝑉𝑎𝑖𝑟
√𝑢2 + 𝑣2𝑑𝑉      (3) 148 

To assess the impact of airflow on human thermal comfort, the wind speed should be estimated from the wind velocity 149 

computed in the mesoscale models. Additionally, it is critical to parameterize and estimate the spatial variability of mean wind 150 

speed in the urban canopy. Accounting for these factors, the range of wind speed variability at the pedestrian level is estimated, 151 

which is critical for the quantification of spatial variability of outdoor thermal stress and comfort.  152 

Here, we describe the parameterization of a) wind speed-to-velocity ratio and b) wind speed distribution, based on urban 153 

density parameters. Data are considered from over 173 microscales CFD simulations of urban airflow are considered over 154 

realistic and idealized urban configurations, spanning a wide range of building plan area (λP), frontal area (λF), and wall area 155 

(λw) densities representative of realistic urban neighborhoods in different types of cities. CFD simulations are conducted using 156 

162 large-eddy simulations (LES) and 11 Reynolds-averaged Navier–Stokes (RANS) schemes detailed in Appendix CB.  157 

Mean wind velocity 〈𝑉〉, speed 〈𝑈〉  and its spatial standard deviation (σU)  are computed at a horizontal cross-section at 158 

pedestrian height for each CFD simulation and used for deriving parameterizations (Fig 3). An additional data point is added 159 

at λP=λw=0, ensuring that wind speed is equal to wind velocity, and its standard deviation is set to zero, for the non-urban case. 160 

 161 
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Figure 3: Relationship between 1-<V>/<U> (bottom row), and σU/<U> (top row), and two morphological parameters, λP (left column), and 162 

λW (right column) based on the CFD simulations. Dots represent the average of the value among all the simulations that share the same 163 

morphological parameter, and the vertical bar indicates the standard deviation. The dashed line and the formula indicate the best fit. 164 

 165 

Parameterizations are derived (shown in Fig. 3) for two density parameters (λP=Ap/Atot, and λw=Aw/Atot, where Ap is the 166 

area of the horizontal surface occupied by buildings, or the roof area, Aw is the area of vertical (wall) surfaces, and Atot is the 167 

total horizontal area). We find that λw better predicts mean wind speed and its spatial variability at the pedestrian height, 168 

because it represents both horizontal and vertical heterogeneities in the urban canopy. Note that λF has not been included in 169 

the study, given the difficulty to estimate it for real urban areas, and to translate it to the simplified 2D urban morphology used 170 
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by BEP-BEM. In any case, λF is closely related to λw. Therefore, the following parameterizations are implemented at the 171 

pedestrian height (1.8m) as a function of the wall area density λw 172 

 173 

〈𝑈〉 =
〈𝑉〉

1−0.49𝜆𝑤
0.4       (4) 174 

𝜎𝑈 = 〈𝑈〉(0.25𝜆𝑤
0.55 )      (5) 175 

We, therefore, assign three values of wind speed in each grid cell, 176 

〈𝑠𝑝𝑒𝑒𝑑〉1 = 𝑚𝑎𝑥(0.01, 〈𝑈〉(1 − 0.25𝜆𝑤
0.55))    177 

〈𝑠𝑝𝑒𝑒𝑑〉2 = 〈𝑈〉       (6) 178 

〈𝑠𝑝𝑒𝑒𝑑〉3 = 〈𝑈〉(1 + 0.25𝜆𝑤
0.55)   179 

Note that here we consider the three values equally likely, in order to realistically span the range of possible values that the 180 

wind speed can take in each grid cell. Since UTCI has been designed for 10m wind speeds, a simple log law is used to 181 

rescale wind speed at 10m, before passing it to the UTCI routine. 182 

2.3 Calculation of the thermal comfort index  183 

To represent the subgrid spatial variability of air temperature, detailed CFD simulations are not available, so we simply used 184 

a variability of 1 degree Celsius, which we consider to be a conservative estimate of the spatial variability of air temperature 185 

over a spatial scale of the order of one km squared.  Therefore, for each grid cell, we have three values for air temperature: 186 

 187 

𝑇𝑒𝑚𝑝1 = 𝑇𝑒𝑚𝑝𝑊𝑅𝐹 − 1 188 

𝑇𝑒𝑚𝑝2 = 𝑇𝑒𝑚𝑝𝑊𝑅𝐹            (7) 189 

𝑇𝑒𝑚𝑝3 = 𝑇𝑒𝑚𝑝𝑊𝑅𝐹 + 1 190 

wWhere 𝑇𝑒𝑚𝑝𝑊𝑅𝐹TempWRF is the air temperature provided by WRF. 191 

We therefore have, for each urban grid cell, three values of wind speed, three values of temperature, and six values of mean 192 

radiant temperature. No variability of the absolute humidity is considered, but the relative humidity is computed using the 193 

three values of air temperature.  194 

Based on the variation of these climate variables, assumed uncorrelated, 54 possible combinations of the air temperature, mean 195 

radiant temperature, and wind speed values can be formed. For each one of these combinations, we calculate the corresponding 196 
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SET or UTCI value. Based on the resulting distribution, we estimate the value of the 10th, 50th, and 90th percentile SET or 197 

UTCI for each grid square (at each output time). 198 

3. Characterization of thermal comfort in regional-scale models: Madrid case   199 

To illustrate the capabilities of the new scheme, a typical heat wave day in the city of Madrid (Spain) is simulated with WRF. 200 

Madrid is located on a plateau at 500-700m above sea level, in the middle of the Iberian Peninsula. It experiences hot summers, 201 

with frequent heat waves that are increasinggly causeing severe heat stress in the population, and it is therefore considered a 202 

relevant case study. Four nested domains have been used, with resolutions of 27, 9, 3, and 1km respectively. The city 203 

morphology (Fig. 4) is derived from high-resolution LIDAR data that covers most of the metropolitan area of Madrid (Martilli 204 

et al., 2022), while the morphology of the surrounding towns is determined based on Local Climate Zone maps (Brousse et 205 

al., 2016). It is also important to mention  that the city is located on a hilly terrain, with higher elevations in the N-W part of 206 

the urban area (around 700m a.s.l.) dropping to 500m a.s.l. or less in the S-E. Moreover, there are two topographical 207 

depressions on the two sides of the city center, caused by the rivers Jarama and Manzanares (for a detailed description of the 208 

topography see also Martilli et al. 2022, where the same set-up was used). Other model configurations are the NOAH 209 

vegetation model for the non-urban grid points and the Bougeault and Lacarrere (1989) PBL scheme for turbulence 210 

parameterization. WRF coupled with BEP-BEM has previously been successfully used to simulate a heat wave period in 211 

Madrid (Salamanca et al., 2012). The period used in this paper is three days (14-16 July 2015). In particular, the analysis will 212 

focus on the 15th, when the maximum simulated temperature was above 40 Celsius. More information about the validation 213 

and a sensitivity study to select the optimal set-up can be found in Rodriguez-Sanchez (2020).  214 

https://paperpile.com/c/LZQJNL/hotC
https://paperpile.com/c/LZQJNL/hotC
https://paperpile.com/c/LZQJNL/bkFN
https://paperpile.com/c/LZQJNL/bkFN
https://paperpile.com/c/LZQJNL/uzSD/?noauthor=1
https://paperpile.com/c/LZQJNL/37QV
https://paperpile.com/c/LZQJNL/mq0n/?noauthor=1
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 216 

Figure 4. Map of the plan area building density over the Madrid region. The underlying map was created with Mapbox OpenStreetMap 217 

3.1 Sub-grid scale variability of MRT and thermal comfort. 218 

In order to understand how urban morphology affects the simulated heat stress, we focus on two grid points with very different 219 

urban morphology. One is located in the dense core of the city, with a building plan area density of λP =0.69, and a height-to-220 

width ratio (H/W) value of 1.6. The second is located in the southern part of the urban area, in a residential 221 

neighborhoodneighbourhood with a much lower building density (λP =0.2) and a H/W=0.1. 222 

In Figure 5, the diurnal evolution of the mean radiant temperature in the six points (three per street direction) is presented for 223 

the high urban density point and the low urban density point. During the daytime, the impact of the shadowing is clear, with 224 

reduced mean radiant temperature in the high-density point compared to the more exposed low-density. On the other hand, 225 

during nighttime, the reduced sky-view factor in the high-density point slows down the cooling compared to the more open 226 

low-density location. 227 
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 228 

Figure 5. Diurnal evolution of MRT for 6 points in the urban canopy. The top row (white background) corresponds to a grid point with the 229 

highest building density in the center of Madrid (λP =0.69) while the bottom row (with grey background) shows MRT in a low-density 230 

neighborhood (λP =0.19). The left column is for an N-S street, while the right column shows an E-W street. 231 

This behavior helps to explain the heat stress index (Figure 6), which ishere introduced here as an example of an index that 232 

cancould be computed with standard outputs fromof a meteorological models, i.e.,e. g. without having information related to 233 
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the radiation environmenton (e.g., MRT) and urban morphology.. The air temperature indicates hotter values both during the 234 

day and the night in the high urban density point compared to the low-density location. The Heat Index, which considers air 235 

temperature and humidity only, and does not include mean radiant temperature or wind, shows the same tendency. On the 236 

other hand, the UTCI behavior communicates a different and more complete result. In the low-density neighborhood, more 237 

exposed to the sun, the UTCI shows a stronger sub-grid spatial variability, in particular during the morning and afternoon, 238 

with the potential for stronger heat stress than in the high-density neighborhood. During nighttime, the spatial variability is 239 

reduced, due to reduced MRT variation as the shadowing effect disappears, and higher UTCI values are found at the high 240 

urban density location. This difference in behavior between the two locations can be seen also in Fig. 7, where the fractions of 241 

the 10th percentile of UTCI values (i.e. representative of one of the coolest spots in the grid cell) and the 90th percentile (i.e., 242 

one of the hottest) in the different heat stress regimes are shown for the two points. Here we can see that in the low-density 243 

urban point, the cool location is in a comfortable UTCI range most of the time, while the hot (90th percentile UTCI) subgrid 244 

location is under stress most of the time. On the other hand, less variability is present in the high-density neighborhood, with 245 

fewer extreme values, and most of the time in the strong or moderate heat stress regime for both the cool and hot locations 246 

within the grid square. This kind of detail is not available from the Heat Iindex distribution which does not account for the 247 

mean radiant temperature, wind, or their variabilities (Fig. 8).    248 
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 249 

Figure 6. Diurnal evolution of UTCI compared with 2-m air temperature and Hheat Iindex calculated from air temperature and relative 250 

humidity at each grid point). The UTCI boxplot at each hour represents the subgrid-scale distribution calculated based on 6 MRT, 3 wind 251 

speeds, and 3 air temperature values (54 combinations in total). The horizontal lines represent the thermal comfort zones for UTCI (i.e. 252 

above +46C: extreme heat stress; +38 to +46: very strong heat stress; +32 to +38: strong heat stress; +26 to +32: moderate heat stress; and 253 

+9 to +26: no thermal stress).  254 
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 255 

 256 

Figure 7. From top to bottom, the frequency of UTCI class over a 24-hour period, for a subgrid location that is cooler (i.e. 10th percentile 257 

of UTCI in the urban canopy, top), and for a subgrid location that is hotter (i.e. 90th percentile of UTCI in the urban canopy, bottom), for 258 

the high-density (left) and low-density (right) points. 259 

 260 

Figure 8. same as Figure 7, but for the Heat Index 261 

 262 
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 3.2 City-scale maps of outdoor thermal comfort and heat stress indicators. 263 

The previous analysis helps to understand the spatial distribution of the different variables presented in Fig. 9 at 10 and 16 264 

UTC (note that Madrid is at Longitude 3W, so UTC is essentially equal to solar time). In the dense city center, Tthe distribution 265 

of 2m air temperature at 0900 UTC shows a hot region in the dense city center, with cooler areas in the less dense regions 266 

around it. This effect is due to the fact that in the dense region, the reduced sky-view factor of the streets (high H/W), as well 267 

as the larger thermal storage capacity in the buildings, reduce the nocturnal cooling, and increase the vertical mixing in that 268 

part of the city compared to the surroundings. Such a difference is still visible in the morning. The higher temperatures in the 269 

S-E part of the urban area, and cool temperatures in the N-W are the result of the topographical differences. The spatial 270 

distribution of air temperature is qualitatively similar to the spatial distribution of the 10-percentile of UTCI (e. g. the cool spot 271 

in the grid cell), even if the differences between the center and the surrounding urban areas are not as intense as for 2m air 272 

temperature. On the other hand, the 90-percentile map (hot spot), shows a completely different pattern;, due to the fact that in 273 

on the city center, at that time of the day, the whole street is still in the shadow, while in the surrounding, less dense urban 274 

areas there are points completely exposed to the sun. As a comparison, the map of surface temperature (a variable often used 275 

to represent the spatial distribution of heat in cities) as seen from a satellite, i.e. based only on a weighted average of roof, 276 

street, and vegetation temperatures (see full equations in Martilli et al. 2021), does not show a clear pattern, and it is 277 

uncorrelated with the other maps. This is a clear indication that this variable should not be used for the assessment of the heat 278 

hazard or heat stress in urban areas. 279 

At 1600 UTC the air temperature shows again higher values in the city center, lower in the urban surroundings, and a gradient 280 

from hotter S-E at lower elevations to cooler N-W at higher elevations (Fig. 10). Such a tendency is present also for the 10th 281 

percentile (cool spot), but with less variability. The 90th percentile map (hot spot) indicates that the area with elevated heat 282 

stress extends well beyond the city center, including lower-density regions that, even if they have lower air temperatures, are 283 

fully exposed to the sun. Finally, as it was the case for 09000 UTC, the surface temperatures have a map uncorrelated with 284 

neither the air temperatures nor the UTCI maps.  285 
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 288 

Figure 9. Spatial maps at 0900 UTC for 2-m air temperature (top left), surface temperature (top right), UTCI cool spot e. g. the 10 289 

percentile of UTCI captured in the urban canopy model (bottom left), and UTCI  hot spot e. g. 90 percentile of UTCI in the urban canopy 290 

(bottom right).  Surface temperature is equivalent to that seen by a nadir-view satellite sensor (i.e., an area-weighted average of canopy 291 

ground temperature, roof temperature, and vegetation temperature in non-urban fractions is considered). The underlying maps were created 292 

with Mapbox OpenStreetMap 293 
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 297 

Figure 10. Same as Figure 9, but at 1600 UTC.  298 

4. Limitations 299 

The main limitation of the approach we proposed here to account for the sub-grid variability of mean radiant temperature, is 300 

the idealization of the urban morphology adopted by the urban canopy parameterization BEP-BEM. This consists ofin 301 

Con formato: Fuente: Sin Negrita
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representing the urban morphology as a series of infinite urban canyons, all with the same width, separated by buildings of 302 

constant width, and variable building height. Two street orientations are considered for each grid cell: North-South, and East-303 

West. The dimensions of the buildings and street canyons are determined such that the building plan area density, the density 304 

of urban vertical surfaces per horizontal area, and the mean building height are equal to those of the real morphology of the 305 

grid cell. As a resultThanks to this, the total surface areas of walls, roads and roofs are the same in the idealized morphology 306 

used by BEP-BEM closely approximate the corresponding surface areas in the real neighbourhoodand in the real one, and – 307 

to a certain extent – the street and buildings of the idealized morphology can be considered representatives of an averagethe 308 

“mean” street and set of buildings present in the grid cell. The advantage of thissuch approach, common amongto the most 309 

widely-used urban canopy parameterizations (Masson, 2000, Kusaka et al. 2001), is that it allows to accurately estimatione of 310 

shadowing and radiation trapping effects in the urban canopy withat low computational cost, without considering the real urban 311 

morphology. Keeping the computational cost low was an essential requirement considering the computational resources 312 

available when these urban canopy parametrizations were developed (about 20 years ago). With today’s computational 313 

resources, there may be potentialthis requirement can probably be relaxed to account for more complexity in the urban 314 

morphology. However, this would require deep changes in the structure of the urban canopy parametrization BEP-BEM that 315 

are beyond the scope of the present article. For thisThis is the reason why we decided to keep the idealized morphology of 316 

BEP-BEM and estimate the mean radiant temperature in six locations representatives of the middle of the street and the 317 

sidewalks. So, the mean radiant temperatures computed are representatives of those six points of an “averagemean” street in 318 

the grid cell. Indeed, in a grid cell of a mesoscale model (that typically has a size of the order of one km2) there is a variety of 319 

street and building dimensions and orientations, so the present approach cannot capture the full spatialunderestimates the real 320 

sub-grid variability of mean radiant temperature, a variability that increasesand such underestimation increases with the 321 

heterogeneity of the real urban morphology. Nevertheless, it represents a step forward, since it accounts for the range (and to 322 

some extent, the variability) of mean radiant temperature within the “averagemean” idealized street canyon, that can be 323 

reasonably considered the most likely street typology within the grid cell, something that previous approaches does not. 324 

Overall, the current approach is likely to accurately quantify the mean radiant temperature of at least one “average” shaded 325 

pedestrian and one “average” sunlit pedestrian (during periods with direct shortwave irradiance), and thus capture the larges t 326 

source of spatial variation of both MRT and UTCI (Middel and Krayenhoff, 2019). Another limitation of the approach 327 

presented here is the lack of street trees. Currently work is in progress to introduce trees in the version of BEP-BEM 328 

implemented in WRF via implementation of the BEP-Tree model (Krayenhoff et al. 2020), and in this way be able to account 329 

for their impacts on mean radiant temperature as well as on air temperature, humidity, and wind. 330 

The approach used to estimate the mean wind speed and its sub-grid variability is grounded on a large number of CFD 331 

simulations over a variety of urban morphologies. Indeed, as shown in Fig. 3, the sub-grid variability of wind speed can be 332 

quite large, and certainly strongly influenced by the relative arrangements of buildings and streets. So, the approach presented 333 

here will likely underestimate the sub-grid variability of wind speed – and this is why we decided to give the same likelihood 334 

Con formato: Superíndice 
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to the three values of wind speed estimated in (6), instead of assuming a Gaussian distribution of the probabilities of wind 335 

speed in the grid cell. To fully capture thissuch variability a complete coupling between the mesoscale and a detailed CFD 336 

model would be needed  - something that we may be able to do in the near future, but is still unavailablewe still cannot do with 337 

current computational resources. Another limitation of the present approach is that the CFD simulations used to build the 338 

database from which the parametrization has been derived, are all for a neutral atmosphere, so thermal effects on wind speed 339 

and its sub-grid variability are neglected.  340 

54. Conclusions 341 

A new parameterization to quantify intra-neighborhoodneighbourhood heat stress variability in urban areas using a mesoscale 342 

model is presented. This approach is based on two primary developments: 1) calculation of mean radiant temperature at several 343 

locations within the idealized urban morphology used by the urban canopy model BEP-BEM; and 2) parameterization of mean 344 

wind speed and its sub-grid spatial variability as a function of the local urban morphology and the mean wind velocity 345 

computed by the WRF mesoscale model, using relations developed from a large suite of CFD simulations over a range of 346 

realistic and idealized urban neighborhoods. The components of the new parameterization have been validated against 347 

microscale model results. From this approach the sub-grid variability of a heat stress index (i.e. UTCI or SET) can be computed 348 

for every grid point, permitting quantification of the heat exposure at both cool and hot locations within each grid square at 349 

each time.  350 

The new parameterization has been implemented in the multilayer scheme BEP-BEM in WRF and used to simulate a heatwave 351 

day over Madrid (Spain) as proof of concept. The results of this initial application demonstrate the following: 352 

I. The new parameterization gives information that is more suitable for the evaluation of heat stress than the air 353 

temperature, being based on an index (UTCI or SET) that also combines air humidity, wind speed, and mean radiant 354 

temperature.  355 

II. The new parameterization provides substantively more information than air temperature alone (or any other index 356 

that does not account for the mean radiant temperature). It provides information about the sub-grid variability (such 357 

that heat stress in both cool and hot locations in each grid square is quantified). To our knowledge, this has notever 358 

been done before with a mesoscale model. 359 

III. The results for the investigated case, indicate a strong intraurban variability, both in air temperature and UTCI values, 360 

that can be linked to the differences in urban morphology and elevation above sea level. The ability to assess the 361 

differential impacts of urban morphology on heat stress is key to the provision of guidance for urban planning 362 

strategies that mitigate urban overheating. 363 

IV. Nadir-view surface temperature (i.e., as seen from a satellite-mounted remote sensor) is poorly correlated with both 364 

air temperature and UTCI maps, indicating that, despite its ubiquitous use at present, it is unlikely to be an adequate 365 

metric for heat impact assessment studies. 366 
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Finally, we consider that this new development introduces a new methodology for deploying mesoscale models to assess urban 367 

overheating mitigation strategies. 368 

  369 
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 514 

Appendix A. Computation of Radiation for Mean Radiant Temperature 515 

As explained in the text, the mean radiant temperature at pedestrian level is represented using formula (1). The full expression 516 

of the longwave radiation components for the vertical faces of the pedestrian (𝐿1, 𝐿2  ), for the case of an urban morphology 517 

with buildings of constant height and walls with no windows, is as follows: 518 

𝐿1 = ∑

𝑖=1,𝑛

𝜓1𝑖,𝑝𝜀𝑊(𝑅𝑙1𝑊𝑖
+ 𝜎𝑇1𝑖

4 ) + 𝜓1𝐺,𝑝𝜀𝐺(𝑅𝑙𝐺 + 𝜎𝑇𝐺
4) + 𝜓1𝑆,𝑝𝑅𝑙𝑆 519 

  𝐿2 = ∑𝑖=1,𝑛 𝜓2𝑖,𝑝𝜀𝑊(𝑅𝑙2𝑊𝑖
+ 𝜎𝑇2𝑖

4 ) + 𝜓2𝐺,𝑝𝜀𝐺(𝑅𝑙𝐺 + 𝜎𝑇𝐺
4) + 𝜓2𝑆,𝑝𝑅𝑙𝑆 520 

Where (see Fig A1).: 521 

𝜓1𝑖,𝑝= is the view factor from wall section i of building 1 to the side 1 of the pedestrian  522 

𝜀𝑊= is the emissivity of the wall 523 

𝑅𝑙1𝑊𝑖
= is the long wave radiation reaching the section i of the wall of building 1 524 

𝑇1𝑖  = is the surface temperature of the section i of the wall of building 1 525 

𝜓1𝐺,𝑝 = is the view factor from the ground (or street) to the side 1 of the pedestrian 526 

𝜀𝐺= is the emissivity of the ground 527 

𝑅𝑙𝐺=is the longwave radiation reaching the ground (street) 528 

𝑇𝐺  = is the surface temperature of the ground (street) 529 

𝜓1𝑆,𝑝= is the view factor from the sky to side 1 of the pedestrian 530 

𝑅𝑙𝑆= longwave radiation from the sky 531 

𝜎= is the Stefan-Boltzmann constant. 532 
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 533 

Figure A1. Schematic of the Street canyon. 534 

Similar meaning applies for side and building 2. 535 

The values of the surface temperatures and the longwave radiations are computed with BEP_BEM. The view factors are 536 

estimated based on formulas A13-A19 of Martilli et al. 2002, using a height for the pedestrian of 1.8 m. 537 

For the longwave radiation reaching the top of the pedestrian, we made the simple assumption that it is equal to the radiation 538 

coming from the sky, 𝐿3 = 𝑅𝑙𝑆, while for the longwave radiation reaching the bottom of the pedestrian, the assumption is that 539 

it is equal to the radiation  emitted and reflected by the ground, or 𝐿4 = 𝜀𝐺𝑅𝑙𝐺 + 𝜀𝐺𝜎𝑇𝐺
4. We consider that these assumptions 540 

are reasonable, giving that the contribution of the radiation reaching the top and bottom of the pedestrian is only 6% each to 541 

the final value of the mean radiant temperature. 542 

A similar approach is followed for the short wave radiation, leading to: 543 

 544 

𝐾1 = ∑

𝑖=1,𝑛

𝜓1𝑖,𝑝𝛼𝑖𝑅𝑠1𝑊𝑖
+ 𝜓1𝐺,𝑝𝛼𝐺𝑅𝑠𝐺 + 𝑅𝑠1𝑆  545 

  𝐾2 = ∑𝑖=1,𝑛 𝜓2𝑖,𝑝𝛼𝑖𝑅𝑠2𝑊𝑖
+ 𝜓2𝐺,𝑝𝛼𝐺𝑅𝑠𝐺 + 𝑅𝑠2𝑆  546 

Where  547 

𝑅𝑠1𝑊𝑖
=short wave radiation reaching the section i of the wall of building 1 548 

𝛼𝑖=albedo of the section i of the wall of the building 549 Con formato: Fuente: Cursiva
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𝑅𝑠𝐺= is the short wave radiation reaching the ground 550 

𝛼𝐺 = is the albedo of the ground 551 

𝑅𝑠1𝑆= is the short wave radiation from the sun reaching directly side 1 of the pedestrian, computed using formula A10 of 552 

Martilli et al. 2002,  using a height of the pedestrian of 1.8m. 553 

Similar meaning for side and wall 2. 554 

Regarding the radiation reaching the top of the pedestrian, 𝐾3, for simplicity only the radiation coming directly from the sun 555 

is considered, without accounting for the reflection from the walls. So the value is zero if the pedestrian is in full shadow, and 556 

to estimate it, the formula used is from A11 of Martilli et al. 2002. The value of the radiation reaching the bottom of the 557 

pedestrian is the value reflected by the ground, or 𝐾3 = 𝛼𝐺𝑅𝑠𝐺 , 558 

 559 

  560 
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 561 

Appendix BA. Comparison of Short wave calculation in BEP-BEM and TUF-pedestrian. 562 

Short wave radiation is an essential component of the MRT. Below we compare the short wave radiation reaching the vertical 563 

sides of the segment representing the human body computed by BEP-BEM vs those estimated with the more detailed model 564 

TUF-pedestrian. 565 
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 566 
Figure BA1. Comparison of short wave radiation at the two sides of the vertical segment representing the pedestrian for the 567 

N-S oriented street. Solid line is the WRF, while diamonds are TUF. Short 1 means the side 1 of the pedestrian, while Short 2 568 

the side 2. 569 
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 570 

 571 

Figure BA2. Same as BS1, but for an E-W oriented street 572 

 573 
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 574 

Appendix CB. CFD simulations for wind speed variability  575 

Data from over 173 microscales CFD simulations of urban airflow are considered over realistic and idealized urban 576 

configurations, spanning a wide range of building plan area (λP), frontal area (λF), and wall area (λw) densities representative 577 

of realistic urban neighborhoods in different types of cities. CFD simulations are conducted using 162 large-eddy simulations 578 

(LES) and 11 Reynolds-averaged Navier–Stokes (RANS) schemes detailed in Table B.1.  579 

Table B.1 Details of CFD microscale simulation cases considered in this study. Simulations are classified based on the 

configuration (urban form) used. These classifications include UA (Uniform height with Aligned configuration), US 

(Uniform height with Staggered configuration), VA (Variable height with Aligned configuration), VS (Variable height 

with Staggered configuration), UR (Uniform height with Realistic configuration), and VR-WD (Variable height with 

Realistic configuration and multiple Wind Directions considered). 

 

 580 

In the LES simulations, airflow over idealized and realistic urban arrays to determine the model parameters (Nazarian et al., 581 

2020; Lu et al., 2022, 2023).  Realistic urban layouts are prepared by rasterizing building footprints from an open-source 582 

dataset OpenStreetMap using OSM2LES (Lu et al., 2022). 64 realistic urban neighborhoods were obtained assuming uniform 583 

building height (Table B.1) from several major cities such as Sydney and Melbourne (Australia), Barcelona (Spain), Detroit, 584 
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Los Angeles, and Chicago (United States). Idealized urban arrays are considered in aligned and staggered arrangement that 585 

follows (Coceal et al., 2007)  with varying urban density (𝜆𝑝 in [0.0625,0.64]) and height variability (𝐻𝑠𝑡𝑑=[0m,2.8m,5.6m]). 586 

Simulations are conducted in the Parallelized Large-eddy Simulation Model (PALM, version r4554) (Maronga et al., 2020) 587 

following the same setup in (Nazarian et al., 2020), which has validated results against Direct Numerical Simulation (Coceal 588 

et al., 2007) and wind tunnel experiments (Brown et al., 2001). The computational domain is discretized using the second-589 

order central differences (Piacsek and Williams, 1970) where the horizontal grid spacing is uniform and the vertical spacing 590 

follows the staggered Arakawa C-grid. The minimal storage scheme is employed in the time integration to solve the filtered 591 

prognostic incompressible Boussinesq equations where the pressure perturbation was calculated in Poisson's equation and was 592 

solved by the FFTW scheme (Frigo and Johnson, 1998).  593 

The RANS dataset is derived from steady-state CFD-RANS simulations performed with the Realizable k- ε turbulence model 594 

(STAR-CCM+, Siemens) over realistic urban areas. The size of the computational domains is determined following the best 595 

practice guideline of COST Action 732 (Franke et al., 2010). The horizontal area covers around 1-1.5 km2 and the domain top 596 

is at around 8H, being H the mean height of buildings. The resolution of the irregular polyhedral mesh used in all CFD-RANS 597 

simulations goes from 0.5 m close to buildings to 6 m out of the built-up area, which results in between 3 and 8 million grid 598 

points depending on the complexity of the geometry. Inlet vertical profiles for wind speed, turbulent kinetic energy (k), and 599 

its dissipation (ε), are established in neutral atmospheric conditions. The evaluation of the CFD-RANS simulations was 600 

addressed in previous studies summarized in Table B2 and more information is provided in previous publications. 601 
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