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Abstract. Future changes in suspended sediment export from deglaciating high-alpine catchments affect 

downstream hydropower reservoirs, flood hazard, ecosystems and water quality. Yet, quantitative projections of 10 

future sediment export have so far been hindered by the lack of process-based models that can take into account 

all relevant processes within the complex systems determining sediment dynamics at the catchment scale. As a 

promising alternative, machine-learning (ML) approaches have recently been successfully applied to modeling 

suspended sediment yields (SSY).  

This study is the first to our knowledge exploring machine-learning approach to derive sediment export projections 15 

until the year 2100. We employ Quantile Regression Forest (QRF), which proved to be a powerful method to 

model past SSY in previous studies, for two nested glaciated high-alpine catchments in the Ötztal, Austria, above 

gauge Vent (98.1 km²) and gauge Vernagt (11.4 km²). As predictors, we use temperature and precipitation 

projections (EURO-CORDEX) and discharge projections (AMUNDSEN physically-based hydroclimatological 

and snow model) for the two gauges. We address uncertainties associated with the known limitation of QRF that 20 

underestimates can be expected if values in the projection period exceed the range represented in the training data 

(out-of-observation-range days, OOOR). For this, we assess the frequency and extent of these exceedances and 

the sensitivity of the resulting mean annual suspended sediment concentration (SSC) estimates. We examine the 

resulting SSY projections for trends, the estimated timing of ‘peak sediment’ and changes in the seasonal 

distribution.  25 

Our results show that the uncertainties associated with the OOOR data points are small before 2070 (max. 3 % 

change in estimated mean annual SSC). Results after 2070 have to be treated more cautiously, as OOOR data 

points occur more frequently and as glaciers are projected to have (nearly) vanished by then in some projections, 

which likely substantially alters sediment dynamics in the area. The resulting projections suggest decreasing 

sediment export at both gauges in the coming decades, regardless of the emission scenario, which implies that 30 

‘peak sediment’ has already passed or is underway. This is linked to substantial decreases in discharge volumes, 

especially during the glacier melt phase in late summer, as a result of increasing temperatures and thus shrinking 

glaciers. Nevertheless, high(er) annual yields can occur in response to heavy summer precipitation, and both 

developments would need to be considered in managing sediments as well as e.g. flood hazard. While we chose 

the predictors to act as proxies for sediment-relevant processes, future studies are encouraged to try and include 35 

geomorphological changes more explicitly, e.g. changes in connectivity, landsliding, rockfalls, or vegetation 

colonization, as these could improve the reliability of the projections.  
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1 Introduction  

Fluvial suspended sediment export from glacierized, high-alpine areas can be up to an order of magnitude higher 

(per unit area) than in non-glacierized downstream areas (Hinderer et al., 2013; Beniston et al., 2018). Thus, 40 

sediment dynamics in these high-alpine areas and changes therein have important implications for downstream 

hydropower generation and reservoir sedimentation (Schöber and Hofer, 2018; Guillén-Ludeña et al., 2018; Li et 

al., 2022), water quality (as well as nutrient and contaminant transport) (Bilotta and Brazier, 2008), aquatic species 

and riverine ecosystems (Milner et al., 2009, 2017; Gabbud and Lane, 2016; Huss et al., 2017), but also flood 

hazard (Nones, 2019) and carbon cycling (Tan et al., 2017; Syvitski et al., 2022). 45 

High-alpine areas are particularly sensitive to climate change, experience above-average warming (Gobiet et al., 

2014) and hence crucial cryospheric changes, such as ongoing and accelerating deglaciation, permafrost melt and 

snow cover changes (Huss et al., 2017; Beniston et al., 2018; Abermann et al., 2009). These changes induce 

changes in discharge volumes, timing and magnitude (Vormoor et al., 2015; Kuhn et al., 2016; van Tiel et al., 

2019; Rottler et al., 2020; Hanus et al., 2021). This in turn affects sediment export, and past changes have been 50 

observed frequently, e.g. due to enhanced subglacial sediment evacuation and increased sediment availability in 

expanding erodible landscapes, as receding glaciers and melting permafrost e.g. expose glacial till and weaken 

rockwalls (Micheletti and Lane, 2016; Carrivick and Heckmann, 2017; Lane et al., 2017, 2019; Costa et al., 2018; 

Delaney and Adhikari, 2020; Li et al., 2020; Vergara et al., 2022).  

Nevertheless, future changes in sediment export are understudied (Zhang et al., 2022) and questions such as “Are 55 

sediment yields from deglaciating catchments increasing, decreasing or is there no pattern?” or “to what extent is 

it possible to quantify spatio-temporal patterns of future sediment yields?” (Carrivick and Tweed, 2021) have yet 

to be answered  – although projections of climatological (e.g. Gobiet and Kotlarski, 2020; Gobiet et al., 2014) , 

glaciological (e.g. Stoll et al., 2020; Bolibar et al., 2022; Huss, 2011) and hydrological changes (e.g. Madsen et 

al., 2014; Hanzer et al., 2018; Hanus et al., 2021; Huss and Hock, 2018; Tecklenburg et al., 2012; Wijngaard et 60 

al., 2016), that could serve as a basis for estimating future changes in sediment export, are numerous.   

The main reason why answering such questions is challenging is that modeling sediment export at the catchment 

scale with process-based models remains difficult – if not impossible – because it is determined by a complex 

system of interconnected processes that is not straightforward to model. For example, the relationship between 

suspended sediment concentrations and discharge is most often nonlinear in time and space, and univariate models 65 

relying solely on discharge are often insufficient (Vercruysse et al., 2017; Zhang et al., 2021). Hence, in addition 

to variations in discharge, changes in sediment availability, entrainment, transport and deposition would have to 

be considered, there may be threshold effects and nonlinear responses of geomorphic processes (e.g. triggering of 

mass movements), correlated influencing factors, hysteresis and seasonality (Huggel et al., 2012; Landers and 

Sturm, 2013; Vercruysse et al., 2017; Costa et al., 2018; Schmidt et al., 2023; Zhang et al., 2022).  Additionally, 70 

long-term field observations (i.e. several decades and covering a wide range of conditions) that provide enough 

training and validation data to develop sediment-yield models or to analyze trends are very rare (Zhang et al., 

2022; Schmidt et al., 2023).  

There are conceptual models on (suspended) sediment export from deglaciating areas (Antoniazza and Lane, 2021; 

Carrivick and Tweed, 2021; Zhang et al., 2022), which expect an initial increase in sediment export as glaciers 75 

begin to retreat, and an eventual decrease – after ‘peak sediment’ –  once the glaciers have disappeared and the 
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landscape stabilizes. The timing of ‘peak sediment’ relative to ‘peak meltwater’ and the completion of deglaciation 

is presumed to depend on changes in erosive precipitation, i.e. a negative trend in erosive precipitation implies that 

peak meltwater and peak sediment may co-occur, while a positive trend or no change in erosive precipitation result 

in a lag between peak meltwater and peak sediment. However, deducing estimates of future sediment export and 80 

implications for individual catchments based on these conceptual considerations is not straightforward or even 

possible.  

Common approaches to model sediment yields at the catchment scale, such as SWAT (e.g. Vigiak et al., 2017), 

BQART (Syvitski and Milliman, 2007), WBMsed (Cohen et al., 2013), WASA-SED (Mueller et al., 2010) or SAT 

(Zhang et al., 2021), are mostly empirical or conceptual in their sediment modules, do not consider all relevant 85 

erosion processes (i.e. neglecting glacial, gully erosion and landslides in the case of SWAT) and often concentrate 

on large spatial scales (i.e. sediment fluxes to the oceans for large basins, entire continents or at global scale) and 

/ or large temporal scales (i.e. multiyear averages and long-term fluxes). On the other end of the spectrum, models 

for individual parts or processes within glacierized catchments exist, as for example a numerical approach to model 

subglacial fluvial sediment transport (Delaney et al., 2019) that has also been coupled with models for ice dynamics 90 

and bedrock erosion (Delaney et al., 2021), or e.g. probabilistic or physical models of mass wasting processes, 

such as landslide or debris flows (Iverson and George, 2014; Hirschberg et al., 2021; Campforts et al., 2022). 

However, as of yet, there is no all-in-one physical model (fully-distributed, incorporating thermal and pluvial 

drivers of sediment mobilization and transport) to simulate sediment export from cryospheric basins (Zhang et al., 

2022) at the catchment scale.  95 

Accordingly, studies that have attempted to project future suspended sediment yields (SSY) chose rather 

qualitative approaches, such as comparing sediment yield observations of warmer and colder ablation seasons 

(Stott and Mount, 2007; Bogen, 2008), using responses of SSY to past predictor changes and applying this to 

projected changes in the future (Li et al., 2021b) or fitting a multiple regression model to past data (of only one 

year) and increasing the temperature input in the model (Stott and Convey, 2021). However, these approaches may 100 

preclude modeling decreases or accounting for interactions between variables.  

As a promising alternative, geoscientific machine-learning approaches have emerged, and have recently been 

acknowledged for their potential in applications to Earth System Science (Reichstein et al., 2019). Indeed, first 

studies showed that machine-learning approaches can easily outperform well-known existing models for sediment 

yield (Gupta et al., 2021; Rahman et al., 2022; Jimeno-Sáez et al., 2022; Schmidt et al., 2023). Such black box 105 

approaches tend to perform well for black box problems such as high-alpine sediment dynamics, ‘where the input 

data and output data are well-understood or at least fairly simple, yet the process that relates the input to output is 

extremely complex’ (Lantz, 2019). In a previous study, we have developed and validated a Quantile Regression 

Forest (QRF) approach to model SSY in two nested high-alpine catchments and estimate yields for the past five 

decades (Schmidt et al., 2023). This showed that the QRF model outperformed commonly applied sediment rating 110 

curves by about 20 % of explained variance, and other studies found that regression trees and Random Forest 

models (which QRF is based on) even outperformed other machine learning approaches in modeling sediment 

dynamics (Talebi et al., 2017; Al-Mukhtar, 2019). 

Thus, the present study is motivated to explore QRF to model future SSY based on measurement data, emission 

scenarios and subsequent hydrological model results. We test the approach in two glacierized high-alpine 115 



4 

 

catchments in the Ötztal in Austria, where projections of future climatological and glacio-hydrological conditions 

from the AMUNDSEN model are available (Hanzer et al., 2018), and where we have successfully trained and 

applied QRF models to reconstruct past sediment export, using records of discharge, precipitation and air 

temperature (Schmidt et al., 2023).   

The goals of the present study are (i) to assess uncertainties of the model due to known limitations of the QRF 120 

method in order to identify the limitations of the approach and (ii) to derive estimates of future changes in sediment 

export with respect to trends in annual yields, shifts in the seasonal distribution and the timing of ‘peak sediment’.  

2 Methods  

In a previous study, we trained and validated quantile regression forest models to retrospectively estimate SSY at 

two gauges for the past 5 decades, using the available records of turbidity-derived suspended sediment 125 

concentrations (four and 15 years) and long-term records of the predictors, i.e. discharge, precipitation and 

temperature (Schmidt et al., 2023) (Figure 2, dashed-line box). In the present study, we use these models and apply 

them to downscaled and bias-corrected EURO-CORDEX temperature and precipitation projections that were used 

as input data for the glacio-hydrological model AMUNDSEN as well as the discharge projections of AMUNDSEN 

(Hanzer et al., 2018)(Figure 1). In the following, we outline the Quantile Regression Forest approach including its 130 

advantages and limitations with respect to modeling suspended sediment dynamics and the choice of predictors to 

model sediment dynamics in high-alpine areas. Then, we describe the study area, input data and necessary 

adjustments, as well as how we analyzed the limitations, sensitivities and the resulting SSY estimates.  

 

2.1 Quantile Regression Forest for suspended sediment concentration modelling 135 

Quantile Regression Forest (QRF) (Meinshausen, 2006) is a non-parametric regression technique, that is based on 

Random Forest (RF) and can be classified as a machine-learning approach. It learns from the training data by 

growing ensembles of regression trees on random subsets (bootstrap samples) of the training data (Francke et al., 

2008a; Schmidt et al., 2023). In each regression tree, the data are recursively partitioned based on splitting rules, 

where both RF and QRF randomly select the predictors used for splitting. In contrast to Random Forest, QRF 140 

keeps all observations within a node (whereas RF only keeps the mean), which allows to construct prediction 

intervals and to assess uncertainty (ibid.1). 

The advantages of QRF include that it can handle multiple input variables, makes no assumptions on distributions 

and can deal with interactions, non-linearity and non-additive behavior. As limitations, it does not allow for easy 

interpretation of effects of single predictors and model predictions will always be within the range of observations, 145 

i.e. if the predictors in the period of application exceed the range represented in the training dataset (hereafter 

called “out-of-observation-range (OOOR) data points”), we can expect over- (or under-) estimations (ibid.) of the 

target variable, if the respective predictor has a continuing monotonic effect in this range.  

                                                           
1 ibidem (Latin): in the same place; used in referring again to the book, page, etc. cited just before 
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With respect to modelling suspended sediment concentrations, studies have shown that QRF is very well-suited to 

model sedigraphs and estimate annual SSY (Francke et al., 2008b, a; Zimmermann et al., 2012) and that it performs 150 

favourably compared to sediment rating curves and generalized linear models (Francke et al., 2008a; Schmidt et 

al., 2023). On a related note, RF (which QRF is based on) outperformed support-vector machines and artificial 

neural networks (Al-Mukhtar, 2019) in modelling suspended sediment concentrations. 

In a previous study (Schmidt et al., 2023), we trained QRF models at daily resolution on data of the two gauges 

Vent and Vernagt, using the limited available time series of turbidity (4 and 15 years) and long records of the 155 

primary predictors, discharge (Q), precipitation (P) and air temperature (T) (Figure 2). These can be seen as drivers 

or proxies for processes and catchment conditions crucial to sediment dynamics in high-alpine areas: e.g. discharge 

determines sediment transfer and erosion within the channel, precipitation is key for runoff formation and hillslope 

erosion, hillslope-channel coupling and the triggering of mass movement events, and air temperature controls the 

activation of sediment sources (e.g. sub- and proglacial sediments and their transport by glacier meltwaters or 160 

hillslope destabilization by permafrost thaw) and whether precipitation occurs as rain or snow. In addition to these 

primary predictors, we derived ancillary predictors to describe antecedent conditions and cumulative effects 

thereof: e.g. longer-term discharge behavior may exhaust sediment sources or lead to sediment storage, long warm 

periods may deplete snow cover and accelerate glacier melt associated with increased subglacial sediment 

transport, and high antecedent moisture conditions may amplify surface runoff or promote mass movements in 165 

response to precipitation events. To capture these antecedent conditions while keeping correlation between the 

derived predictors as low as possible, we computed sums of the primary predictors in non-overlapping windows 

of increasing sizes (e.g., 24 h, 24–72 h, 72 h to 7 d and 7 to 20 d ahead of each time step) (Schmidt et al., 2023; 

Zimmermann et al., 2012). The length of the considered time periods differs between the models, as we optimized 

it for the highest model performance using the Nash-Sutcliffe-efficiency (Schmidt et al., 2023). Additionally, we 170 

used the day of year to capture the seasonality, and the rate of change in discharge as predictors (Francke et al., 

2008b). The models were validated at both gauges. At gauge Vernagt, we trained validation models on the two 

available two-year training datasets (2000/2001 and 2019/2020) and compared the model estimates to 

measurements from the respective period not included in the training data (NSE of 0.73 and 0.6 for daily SSY; for 

details see Schmidt et al., 2023). At gauge Vent, a 5-fold cross-validation demonstrated the superior performance 175 

compared to sediment rating curves, especially in periods containing threshold effects due to extreme events. For 

the past 5 decades, OOOR data points (see section 2.4.2) were rare, which strengthened the notion that the available 

training data covered the majority of typical situations.  

2.2 Study area 

The two studied gauges Vent Rofenache (hereafter “Vent”, operated by the Hydrographic Service of Tyrol) and 180 

Vernagt (operated by the Bavarian Academy of Sciences and Humanities) are located in the Rofental in the Ötztal 

Alps, Austria (Figure 3). The two corresponding nested catchments of 98.1 km² and 11.4 km² span elevations 

ranging from 1891 m a.s.l. at gauge Vent and 2635 m a.s.l. at gauge Vernagt to 3772 m a.s.l. The area is 

characterized by a relatively warm and dry climate (for this alpine setting), with mean annual temperature of 2.5 °C 

at gauge Vent (Strasser et al., 2018), and average annual precipitation as low as 660 mm at gauge Vent but a strong 185 

precipitation gradient with elevation (Schmidt et al., 2023). Both catchments are heavily glacierized (28 % and 64 

% glacier cover in 2015 (Buckel and Otto, 2018)), but accelerating glacier retreat has been observed since the 



6 

 

beginning of the 1980s (Escher-Vetter, 2007; Braun et al., 2007; Abermann et al., 2009). Apart from the glaciers, 

land cover at high elevations is dominated by bare rock or sparsely vegetated terrain, whereas mountain pastures 

and coniferous forests occupy lower elevations. Geology is dominated by biotite-plagioclase, biotite and muscovite 190 

gneisses, variable mica schists and gneissic schists (Strasser et al., 2018). 

The river Rofenache is a tributary stream of the Ötztaler Ache, one of the largest tributaries to the river Inn. The 

glacial to nival hydrological regime shows a pronounced seasonality, with almost 90 % of discharge occurring 

during snow and glacier melt from April to September (Schmidt et al., 2023). Mean annual suspended sediment 

concentrations at gauge Vent were the highest in an Austria-wide comparison (Lalk et al., 2014). Annual suspended 195 

sediment yields in Vent averaged 1500 t km-2 a-1 with an even more pronounced seasonality compared to discharge 

(99 % of the annual SSY transported from April to September) (Schmidt et al., 2023).   

2.3 Input data 

2.3.1 Climate projections 

We used projections of air temperature and precipitation of the European part of the COordinated Regional 200 

Downscaling Experiment (EURO-CORDEX) (Jacob et al., 2014), that have been downscaled and bias-corrected 

for use in their hydrological model by Hanzer et al., 2018. The EURO-CORDEX initiative provides regional 

climate model results to enable exploring impacts of future climate change at comparatively high horizontal 

resolution. This is beneficial for modelling future sediment export, for example since regional climate model 

simulations provide higher precipitation intensities, which are entirely missing in the global climate model 205 

simulations (Jacob et al., 2014), and are thus more likely to capture erosion-relevant changes in precipitation. The 

data used in this study and by Hanzer et al. (2018) were the result of six different regional climate models (RCMs) 

driven by five different global climate models (GCMs), resulting in a total of 14 different GCM-RCM modeling 

chains (Table 1). These are forced by three different emission scenarios expressed as representative concentration 

pathways (RCP), which correspond to an added radiative forcing of 2.6, 4.5 and 8.5 W/m² at the end of the 21st 210 

century relative to pre-industrial conditions, i.e. RCP2.6 (intervention scenario assuming peak CO2 concentrations 

in the middle of the century, followed by slow decline and negative emissions), RCP4.5 (intermediate scenario 

with peak emissions mid-century followed by strong decline) and RCP8.5 (assuming no implementation of climate 

mitigation policies, considerably and steadily increasing emissions and greenhouse gas concentrations over time) 

(Jacob et al., 2014; Hanzer et al., 2018). This results in a total of 31 RCP-GCM-RCM combinations. The horizontal 215 

resolution of the original EURO-CORDEX projections is 0.11° ( 12.5 km).  

Hanzer et al. (2018) used statistical downscaling to represent the local scale. For this, they bias-corrected all RCM 

outputs using at least 20 years of observations in the period 1971 to 2005, by using quantile mapping, which 

matches the distributions of the climate model simulations of the current climate to the distributions of 

observations. This is necessary, especially in Alpine regions, because the 12.5 km spatial resolution of RCMs 220 

(despite being comparatively high) cannot sufficiently resolve topographical and climatological heterogeneities 

(Hirschberg et al., 2021). Hanzer et al. concluded that the corrected RCM outputs adequately represent the mean 

and variability of the observed climate. They interpolated the meteorology to a 100 m grid and we used the 

projections for the two grid cells that are located closest to the gauges Vent and Vernagt. EURO-CORDEX 

simulations are provided at daily resolution, and Hanzer et al., have disaggregated them to 3 h resolution to capture 225 
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diurnal variability in the energy fluxes. We re-aggregated these data to daily resolution to match the temporal 

resolution of our QRF models (see section 2.3.3). 

2.3.2 Hydrological projections  

We used discharge projections of the physically-based hydroclimatological and snow model AMUNDSEN 

(Hanzer et al., 2018), which is a fully distributed energy and mass balance model including glacier evolution (∆h 230 

method) and particularly adapted to high mountain catchments of small to regional scale. It comprises a glacier 

retreat module and has been extensively validated for historic conditions, especially with respect to snow 

distribution (Hanzer et al., 2016). This is especially beneficial for modeling sediment dynamics, since 

AMUNDSEN can model processes such as changes in glacier melt that govern discharge dynamics and are crucial 

to sediment fluxes in these high-alpine areas. AMUNDSEN was forced by the downscaled, bias-corrected and 235 

temporally disaggregated EURO-CORDEX simulations of precipitation and air temperature described above (as 

well as relative humidity, global radiation and wind speed), and modeled snow, glaciers and hydrology in the 

Ötztal Alps until 2100 (ibid.). The AMUNDSEN model was calibrated and extensively validated for the period 

1997  2013, using water-balance-derived mean areal precipitation, snow depth recordings, Landsat and MODIS-

derived snow extent maps, glacier mass balances and runoff recordings (Hanzer et al., 2016). 240 

The temporal extent of both the meteorological and the hydrological projections is 2006 to 2100, but since data 

are not available for the entire year of 2006, we use the period of 2007 to 2100. Additionally, three HadGEM-

driven models ended in November 2099. The years 2007 to 2020 overlap with observation data at gauge Vent and 

results of the previous study at gauge Vernagt (Figure 2), which we utilize to verify our model results (see sections 

2.4.1 and 3.2).  245 

2.3.3 Adjustment of input data for the QRF model 

As the QRF models were trained at daily resolution, we aggregated the Q and T projections from 3 h resolution to 

daily means and P projections to daily sums. However, comparing the AMUNDSEN Q projections to observations 

in the overlap period (2007 – 2020; see Figure 2), showed that underestimation of Q during the glacier melt period 

at gauge Vernagt and substantial overestimation of Q during the snowmelt period at gauge Vent. Hanzer et al. 250 

(2018) have acknowledged that, but have left the overestimations (percent bias (PBIAS) of up to 23 %) unaltered, 

since “mainly changes than absolute values are analyzed; these partial biases likely do not affect the main 

conclusions”. However, in our case, it is necessary to correct the discharge data, since SSY are sensitive to 

discharge amounts and additionally, unrealistic discharge amounts exceeding the maximum discharge value in the 

training data represent a challenge (see section 2.4.2). Also, it is necessary to represent discharge seasonality, and 255 

thus discharge origins, as accurately as possible, as usually more sediment is exported during glacier melt than at 

similar discharge levels during snowmelt (Schmidt et al., 2023). 

For consistency, we applied the same bias-correction as Hanzer et al., i.e. quantile mapping, using the methodology 

by (Gudmundsson et al., 2012) as implemented in the R package qmap (Gudmundsson, 2016). Due to strong 

season-dependent biases, Hanzer et al. have performed quantile mapping for each season individually. We 260 

followed this approach, yet in order to best represent discharge seasonality, we shifted the limits of the seasons by 
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one month (NDJ, FMA, MJJ, ASO instead of DJF, MAM, JJA, SON), as this corresponded better to seasons with 

similar characteristics of over- or underestimation.  

2.4 Analyses of model limitations and uncertainties 

To analyze model performance and identify the limits of the applicability of the presented QRF modeling approach, 265 

we verified the modeled SSY against measurement data in the overlap period (2007 – 2020) (section 2.4.1), 

assessed the frequency of OOOR data points as well as by how much the observation range of the predictors is 

exceeded in the projections and analyzed whether the modeled SSY are sensitive to changes in these predictors 

(section 2.4.2).  

2.4.1  Verification of model results based on observed data  270 

To determine how well the obtained SSY projections correspond to SSY derived from turbidity measurements, we 

compared the model results in the overlap period (2007 to 2020) to measurements at gauge Vent. Lacking 

continuous direct measurements at gauge Vernagt, we used estimated SSY for the years 2007 - 2020 from the QRF 

model trained on measurements for the years 2000, 2001, 2019 and 2020 (Schmidt et al., 2023) for the comparison 

(see also Figure 2). To simplify the descriptions in the results, we hereafter refer to these estimates as 275 

“observations” as well. As the hydroclimatic projections (and, thus, the SSY projections resulting from thereof) 

do not mimic the characteristics of single years (let alone month or days), but merely reproduce their distribution, 

we compared the distributions of observed and simulated annual SSY. To test for significant differences between 

these distributions, we used the two-sample Kolmogorov-Smirnov test, which is able to handle the non-normal 

distribution of some groups, as implemented in the R package stats version 3.5.1 (R Core Team, 2018). 280 

Additionally, we assessed whether the seasonality of sediment export is accurately represented in the model results, 

by comparing mean monthly SSY.  

2.4.2  Assessment of limits of applicability  

As mentioned in section 2.1, a known limitation of QRF is that model bias can result if the predictors in the 

projection period exceed the range of observed values used as training data. This limitation is a direct consequence 285 

of the numerical characteristics of RF and QRF, which are incapable of extrapolation. In order to assess, how often 

and to what extent the model results are affected, we performed a series of analyses (overview in Figure 4), 

described in the following.  

Analysis of out-of-observation-range days 

First, we quantified how often OOOR days occurred for each projection proj and predictor p (i.e. Q, P or T), as 290 

the mean annual number of OOOR days per year: 

𝑛𝑝,𝑝𝑟𝑜𝑗̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑛𝑦𝑒𝑎𝑟𝑠 
 ∙  ∑ 𝑛𝑝,𝑝𝑟𝑜𝑗,𝑖

𝑛𝑦𝑒𝑎𝑟𝑠

𝑖=1
 ,          (1) 

where nyears is the number of years, and np,proj,i is the number of OOOR days in a given predictor and projection in 

a given year i. Additionally, we determined the exceedance extent (in % of the maximum value in the training 
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data max(xp,train)), i.e. by how much the maxima in the observations (i.e. the training period) max(xp,train) were 295 

exceeded on the OOOR days j (i.e. in the projection period),  

𝑒𝑝,𝑗 =  
𝑥𝑝,𝑗− max (𝑥𝑝,𝑡𝑟𝑎𝑖𝑛) 

max (𝑥𝑝,𝑡𝑟𝑎𝑖𝑛)
 ∙ 100  ⩝   𝑥𝑝,𝑗 >  max (𝑥𝑝,𝑡𝑟𝑎𝑖𝑛),       (2) 

where 𝑥𝑝,𝑗 is the value of the predictor p on OOOR day j. 

Although the same limitations of QRF theoretically also apply to predictors falling below the training minima, we 

did not consider them, since Q and P already contained very low or zero values and cannot fall below zero. 300 

Likewise, for T, minimum temperatures are already well below zero and further decrease (if it occurs) is not further 

physically relevant to sediment transport. Similarly, we only considered summer precipitation at both gauges (i.e. 

May – September), to exclude snowfall events that are not directly relevant to sediment dynamics. 

Sensitivity analysis 

To assess the potential effects of the abovementioned OOOR days on the model results, we performed a sensitivity 305 

analysis for the three primary predictors Q, P, and T (Figure 4). For this, we determined the 90th percentiles of the 

number of OOOR days 𝑛𝑝,𝑝𝑟𝑜𝑗̅̅ ̅̅ ̅̅ ̅̅ , and the exceedance extents 𝑒𝑝,𝑗 of all projections, i.e. np,90  (in d a-1) and ep,90 (in % 

of max(xp,train)), for each predictor p. These values were considered to represent a severe case for possible model 

deficits due to lacking extrapolation capability. We created a respective test datasets for the sensitivity analysis 

from the training data in the 14-year overlap period (2007 – 2020): We selected the corresponding number of days 310 

nov with the highest values of the respective predictor in the overlap period, as 

𝑛𝑜𝑣 =   𝑛𝑝,90̅̅ ̅̅ ̅̅  ∙ 𝑡𝑜𝑣  (rounded to integers), with tov = 14 a, as the length of the overlap period,  (3) 

and altered them by adding or subtracting the respective ep,90 . For example, np,90 of Q in Vent is 0.55 d a-1, therefore 

we changed nov = 0.55 ∙ 14  8 days by the ep,90 of 9.6 m³ s-1 ( 

Table 2). 315 

We used the resulting altered time series of the primary predictors to compute the corresponding ancillary 

predictors (that describe antecedent conditions, see section 2.1), ran the QRF model with them and compared mean 

annual SSC after the alterations to the original dataset. Thus, we performed six individual runs for the sensitivity 

assessment at each gauge, two (one where the predictor was increased and one where it was reduced) for each of 

the three primary predictors Q, P and T. We chose to compare mean annual SSC instead of annual SSY, as 320 

discharge is needed to compute SSY so that the alterations in Q would have affected the estimated SSY twice. 

Classification 

Third, we assessed whether the sensitivity analysis was informative for the different RCPs, time slices and 

predictors, i.e. if the sensitivity analyses contained sufficiently extreme conditions to represent the projections. For 

this, we determined the mean exceedance extent per predictor p, emission scenario rcp and time slice ts ep,rcp,ts̅̅ ̅̅ ̅̅ ̅̅ ̅ 325 

and the mean number of OOOR days per year np,rcp,ts̅̅ ̅̅ ̅̅ ̅̅ ̅ . We compared these to the ep,90 and np,90, and marked 

the respective predictor-time slice-RCP combination yellow, if ≥ 1/3 of projections had np,rcp,ts̅̅ ̅̅ ̅̅ ̅̅ ̅ > np,90 or 

ep,rcp,ts̅̅ ̅̅ ̅̅ ̅̅ ̅ > ep,90, and red if this applied to ≥ 2/3 of the projections (see Figure 5 and   
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Table 5).  

2.5 Analysis of model results  330 

We analyzed the model results, i.e. estimated annual yields in the projection period for trends as well as shifts in 

seasonality. To assess trends, we used two methods implemented in the R package FUME (Santander Meteorology 

Group, 2012): the Mann-Kendall test, which is a non-parametric tool to detect linear trends (specifically, we used 

a version that was modified to detect trends in serially correlated time series (Madsen et al., 2014; Yue et al., 

2012)) and Sen’s slope estimator (Sen, 1968) to assess trend magnitude. Further, we compared the estimated yields 335 

in three time slices (near future: 2011 – 2040, intermediate future: 2041 – 2070, and far future: 2071 – 2100; see 

also Figure 2), comparable e.g. to Jacob et al. (2014) and Hanzer et al. (2018). To assess changes or shifts in the 

seasonality of sediment export, we compared the mean monthly yields of the observations and the projections.  

To assess whether the detected trends are sensitive to the potential underestimation of yields on OOOR 

precipitation days, we multiplied the daily yields estimated by our QRF model on these days by a factor of 5, i.e. 340 

assuming a very severe underestimation in the original estimates (Figure 4). We chose this factor, as it is close to 

the most severe exceedance extents in precipitation at both gauges, which are 456 % at gauge Vernagt and 442 % 

at gauge Vent (see also section 3.3). We then compared the trends in annual SSY of the altered time series to the 

trends in the original QRF estimates. All analyses were conducted with the statistical software R (R Core Team, 

2018). 345 

3 Results  

3.1 Verification of bias-corrected discharge for the present climate (2007 – 2020) 

The bias-corrected discharge data yield more adequate representations of measured monthly discharge amounts 

and their seasonal distribution (Figure 6), as well as mean annual discharge volumes ( 

Table 3). At gauge Vernagt for example, maximum mean monthly Q in the observations and the bias-corrected 350 

data is in August, whereas the original AMUNDSEN simulations suggested a maximum in July. Nevertheless, 

some underestimation of August discharge remains at gaute Vernagt. At gauge Vent, the original AMUNDSEN 

simulations substantially overestimated discharge amounts in April to July, i.e. the snowmelt period, which was 

successfully corrected by the bias-correction.   

3.2 Verification of modeled SSY for the present climate (2007 – 2020) 355 

We find good agreement between observed and modeled annual SSY at both gauges (Figure 7), and the 

Kolmogorov-Smirnov test does not yield significant differences between the observations and model results in 

mean annual sediment yields. Nevertheless, years with extremer annual yields (both lower and higher) occur in 

the model results, especially under RCP4.5 and RCP8.5 (e.g. for Vent, max. 3250 t a-1 in RCP4.5 vs. 2120 t a-1 in 

the observations), likely due to the higher sample size in the projections (42 or 196 years in the projections 360 

compared to 14 years in the observations, see also description of Figure 7).  
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Similarly, the seasonality of sediment export is well represented in overlap period of the projections (Figure 8), 

and the Kolmogorov-Smirnov test does not yield significant differences to the seasonal distribution of the 

measurements. Monthly SSY tend to be slightly lower in the projections in August at gauge Vernagt and in July 

and August at gauge Vent. Similar patterns had already become apparent in the comparison of mean monthly 365 

discharges at gauge Vernagt (Figure 6).  

3.3 Assessment of limits of applicability  

Out-of-observation-range days  

Generally, we find more frequent OOOR days and higher exceedance extents in later time slices and in the higher 

emission scenarios (Figure A1). At both gauges, OOOR days in Q are relatively rare, but in the higher emission 370 

scenarios and later time slices, OOOR days become more frequent and individual exceedance extents of more than 

100 % occur (Figure A1 and  

Table 4). Exceedances in temperature are more frequent at gauge Vernagt, especially under RCP8.5 and after 2040. 

At gauge Vent, there are only few OOOR days in T, except under RCP8.5 after 2070. 

OOOR data points in summer precipitation are rather rare at both gauges. However, precipitation shows very high 375 

exceedances extents of up to ca. 450 % (RCP4.5 after 2070 and RCP8.5 before 2040 at gauge Vent; RCP4.5 after 

2070 at gauge Vernagt, Figure A1 and  

Table 4). This corresponds to daily precipitation sums of approx. 280 and 240 mm/day at gauge Vent and Vernagt, 

respectively, and is equivalent to over a third of the current mean annual precipitation at gauge Vent (687 mm 

(Hydrographic yearbook of Austria, 2016)). Yet even without the most extreme cases, exceedance extents in 380 

precipitation can be quite severe, which corresponds to very heavy precipitation events.  

Sensitivity analysis 

Figure 9 shows the results of the sensitivity analysis, which indicates the extent to which annual SSY estimates 

may be affected by underestimations on days with OOOR observations for the different predictors. P is the most 

sensitive predictor at gauge Vernagt. Yet although precipitation amounts were altered quite substantially on the 385 

six days with the highest precipitation in the overlap period (by almost 29 mm, see Table 2) the effect on mean 

annual SSC is small (≤ 3%). The same applies to Q, the most sensitive predictor at gauge Vent, which was altered 

by almost 10 m³/s on eight days. Temperature is the second most sensitive parameter at gauge Vernagt, while at 

gauge Vent, the temperature alterations had little effect on mean annual SSC. At gauge Vent, P is the second most 

sensitive parameter, but with a maximum effect of < 2% on mean annual SSC. 390 

The results of the sensitivity analysis also give indication of the behavior of the QRF model in response to OOOR 

data points: as expected, we generally observe a decrease in mean annual SSC if we decrease the predictor values 

on the selected days (Q, P and T), and vice versa. However, for most predictors, the decrease is more pronounced 

than the increase (although the same days were altered by the same extent). We presume that this is due to the 

described incapability of QRF to extrapolate. Thus, we can expect to underestimate the additional effect, e.g. of 395 

precipitation exceeding max(Ptrain).  
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Classification 

  

Table 5 shows that until 2070, all predictors and RCPs fall within the conditions covered by the sensitivity analysis 

(with the exception of Q after 2040 at gauge Vent under RCP8.5). This implies that the results of the sensitivity 400 

analysis are informative in these cases, and that we expect similar or smaller effects of OOOR days on mean annual 

SSC or SSY in the projection period. After 2070, exceptions occur at both gauges in two out of three RCPs and 

several predictors, which implies that the uncertainty is higher than in the results of the sensitivity analysis.  

The OOOR analysis showed that very high exceedance extents occur in precipitation and that precipitation is a 

sensitive parameter at both gauges (although the effect on mean annual SSC was small). Additionally, we find that 405 

heavy summer precipitation becomes more intense (and only slightly more frequent) (Figure A2 in appendix): the 

99.95th percentile of the summer precipitation projections increases over time, which suggests that precipitation 

events become more intense. At the same time, the number of precipitation events that exceed the 99.95th percentile 

determined from the precipitation observations in the overlap period (2007 – 2020) hardly increases on average, 

which suggest that precipitation events of a certain strength do not become (much) more frequent. We also find an 410 

increase in daily SSY associated with heavy precipitation events (Figure A2 in appendix). 

Thus, we additionally assessed whether the trends in annual yields were sensitive to changes in yields on days with 

OOOR precipitation (sections 2.5 and 3.4.1), as extreme precipitation can be very important for sediment dynamics 

(e.g. by triggering mass movements).  

3.4 Projections of future sediment export: changes in annual yields, timing of peak sediment and changes 415 

in seasonality 

3.4.1  Changes in annual yields and timing of peak sediment 

The resulting projections suggests an overall decrease in mean annual SSY for both gauges and each of the three 

emission scenarios, which is more pronounced at gauge Vernagt (Figure 10 and Table 6). Accordingly, we 

consistently find significant negative trends in the projections (2007 – 2100) in mean annual SSY (Table 6). The 420 

differences between the RCPs are small, and smaller than the spread within individual RCPs (Figure 10). 

Accordingly, trends of mean annual SSY are only slightly more negative in the high-emission scenarios. With 

respect to the 99th percentile of annual SSY estimates, trends are less strong than for mean SSY estimates at gauge 

Vent, while at gauge Vernagt, the trends in the 99th percentile are even stronger than for mean annual SSY 

estimates.  425 

Negative trends were detected for all individual projections as well: at gauge Vent, 26 (out of 31) are significant 

(α = 0.05, Sen’s slope ranging from -10.8 to -3.8 t km-2 a-2), and at gauge Vernagt, 30 of 31 are significant a (α = 

0.05, Sen’s slope ranging from -15.2 to -6.1 t km-2 a-2). 

The trend in the altered time series (with 5-fold increased daily yields on days with OOOR precipitation; see 

section 2.5) hardly differs from the trend in the original time series (Table 6). Specifically, at gauge Vernagt, trend 430 

characteristics are basically unchanged. The only trend reversal occurs in the 99th percentile at gauge Vent under 

RCP8.5, where the trend is slightly positive (and significant) instead of negative. We conclude that the overall 

trend characteristics remain very robust, even if we assume as severe underestimation of the model on days with 
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OOOR values in the predictors. Thus, the overall future sediment budget seems to be governed by their mean 

behavior rather than solitary extreme events. 435 

The synopsis with estimates of annual SSY for the past decades shows that we find increases in annual yields at 

both gauges up until sometime between 2000 and 2020, and decreases afterwards, which is much more distinct at 

gauge Vernagt (Figure 10 and Figure 11). This suggests, that ‘peak sediment’ has already been reached or is 

underway at both gauges and occurs simultaneously with ‘peak water’ (Figure 11).     

3.4.2 Changes in seasonality 440 

Mean monthly SSY is projected to decrease substantially during the glacier melt period in August in all RCPs and 

at both gauges (Figure 12). As a result, the highest mean monthly SSY shifts from August to July, or even to June 

under RCP8.5 after 2070 at both gauges. Additionally, the spring onset of sediment export is projected to occur at 

a higher rate and slightly earlier in the year under RCP8.5 after 2070. This represents a decrease in importance of 

glacier melt for sediment export. After 2070, only relatively minor further changes are projected under RCP2.6 445 

and RCP4.5, whereas RCP8.5 experiences further decreases in mean monthly SSY throughout the year.  

At gauge Vent, a slight increase in mean July SSY is projected after 2070 under RCP2.6. This is likely related to 

an increase in discharge, since this increase is not visible in mean monthly concentrations (Fig. A3 in the 

Appendix). It also has to be considered that only three projections are averaged for RCP2.6 (as compared to 14 in 

the other RCPs), which makes it less robust with respect to outliers.  450 

A comparison to the seasonal distributions determined from the altered time series (5-fold increased SSY on days 

with OOOR precipitation), showed only very slight differences, which indicates that the seasonal distribution is 

also insensitive to underestimations of SSY on days with heavy precipitation. 

4 Discussion  

Testing new methods to estimate future suspended sediment export from glacierized high-alpine areas can provide 455 

important information, e.g. to flood hazard, sediment or water quality management, since estimating such changes 

had so far been limited to relatively rough approximations. This study represents the first attempt to our knowledge 

to derive SSY projections using a machine-learning approach and investigate them in synopsis with reconstructed 

past SSY.  

4.1 Projected changes in sediment export and location of peak sediment 460 

The presented SSY projections in the Ötzal, Austria, suggest an overall decrease in annual SSY (Figure 10). This 

is consistent across emission scenarios (i.e. with respect to the ensemble means) as well as all individual projections 

(i.e. based on the 31 different RCP-GCM-RCM-chains). This is linked to shrinking of glaciers and thus decreases 

in glacier melt, as temperature is projected to increase in all models (between +1.1 (RCP2.6) to +3.8°C (RCP8.5) 

in the annual mean) (Hanzer et al., 2018). Accordingly, snow cover is projected to decline, especially in low 465 

elevations. With respect to precipitation, there is no clear general trend with respect to annual sums; both decreases 

and increases are projected by individual models ( -14 % to +24 %) and multi-model averages are close to zero for 

all scenarios, yet with a general shift of precipitation from summer to winter  
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The modelled decrease in SSY is much more distinct at gauge Vernagt, where a trend analysis in the previous 

study (Schmidt et al., 2023) showed significant positive trends in the period until 2020. At gauge Vent, significant 470 

positive trends were detected if all data points since the 1970s were considered (ibid.). However, if only the years 

after the distinct increase around 1980 were considered, the trend was slightly negative (ibid.). This suggests that 

‘peak sediment’ has already been reached or is underway at both gauges and occurs simultaneously with ‘peak 

water’.     

These findings match expectations of conceptual models, that sediment yield from deglaciating basins will initially 475 

increase (due to increases in glacial erosion, sediment supply accessibility, transport capacity and occurrences of 

extreme floods) and subsequently decrease, as glacier masses decline, meltwater volumes and freeze-thaw 

weathering  decrease, and vegetation colonizes (Antoniazza and Lane, 2021; Zhang et al., 2022). It is expected 

that peak sediment may lag behind peak meltwater, with a lag that can be up to decades or centuries (Delaney and 

Adhikari, 2020). This lag is hypothesized to be scale-dependent, i.e. will be shorter for areas closer to the 480 

glacierized regions, and to depend on the changes in erosive precipitation: if erosive precipitation decreases, peak 

sediment occurs simultaneously with peak water, while increasing or stable erosive rainfall scenarios are 

associated with a lag (Zhang et al., 2022). Indeed, for the study area of this study, a decrease in summer 

precipitation sums (i.e. June to August, which is the time of minimum snow-cover and thus maximum erodibility) 

is projected (Hanzer et al., 2018). At the same time, heavy precipitation events are projected to become more 485 

intense (and only slightly more frequent, Figure A2 in the appendix). However, the negative trend in discharge 

appears to prevail, as our estimates suggest that ‘peak sediment’ coincides with ‘peak meltwater’ (Figure 11).  

Sediment export projections differed only slightly (if at all) between emission scenarios, i.e. the spread between 

projections within one emission scenario is much larger than differences between ensemble means of the three 

RCPs (Figure 10). This is due to irreducible internal climate variability, which has been acknowledged in climate 490 

modeling (Deser et al., 2012) as well as erosion modeling (Hirschberg et al., 2021). It should be noted, that 

comparisons to RCP2.6 need to be treated with care, as it comprises less GCM-RCM combinations (only 3 as 

compared to 14 in the higher emission RCPs). Nevertheless, the absence of major differences between RCPs is in 

accordance with findings by Gobiet & Kotlarski (2020), that ”until the middle of the 21st century [...] it is projected 

that climate change in the Alpine area will only slightly depend on the specific emission scenario.” Accordantly, 495 

Hanzer et al. (2018) projected glacier volumes to decline by 60-65 % until 2050 “largely independent of the 

emission scenario”.  

4.2 Changes in seasonality and response to heavy precipitation events 

Despite the overall decrease in SSY, our results suggest that high annual SSY are possible, especially at gauge 

Vent and towards the end of the century (Figure 10). Additionally, yields on days with heavy precipitation may 500 

increase at both gauges – in absolute terms and in relation to the annual export (Figure A2 in appendix). This is 

reasonable, given that increases in heavy precipitation intensity and/or frequency in the European Alps have been 

detected in measurement data from the past (e.g. (Hiebl and Frei, 2018; Scherrer et al., 2016; Gobiet and Kotlarski, 

2020)), as well as future projections (Gobiet and Kotlarski, 2020; Jacob et al., 2014; Kotlarski et al., 2023) – 

despite the overall decrease in summer precipitation mentioned above. As a result, we can expect an increase in 505 

sediment-related harmful events triggered by heavy precipitation, such as flash floods and gravitational mass 

movements (i.e. debris flows, landslides) (Huggel et al., 2012; Savi et al., 2020; Gobiet and Kotlarski, 2020). 
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Similar expectations, i.e. increasing high-magnitude transport events in the context of an overall decrease, have 

e.g. been expressed with respect to bedload in South Tyrol (Coviello et al., 2022). Such a development would have 

important implications e.g. for sediment management in hydropower production, and flood hazard management, 510 

as the flood risk can increase if cross-sections are reduced after sedimentation and potential backwater effects need 

to be considered (Nones, 2019), and as much of the damage is associated with transported solids rather than the 

water itself (Badoux et al., 2014).  

Our findings suggest a shift in sediment export seasonality, since the highest mean monthly SSY shifts from 

August to July (or even June), due to substantial reductions in sediment export in July, August and September at 515 

both gauges (Figure 12). This is linked to the projected distinct reductions in glacier melt (Hanzer et al., 2018) and 

appears reasonable given that glacier melt has so far been the dominant transport medium of suspended sediments 

at these gauges (Schmidt et al., 2023). These results are not sensitive to potential underestimations of SSY on days 

with very heavy precipitation. Such shifts in seasonality and the concomitant overall reduction in fluvial sediment 

transport will likely have severe effects on biodiversity, i.e. flora and fauna of glacier-fed streams (Milner et al., 520 

2009, 2017; Gabbud and Lane, 2016; Huss et al., 2017). 

4.3 Limitations 

As a potential limitation to the presented Quantile Regression Forest approach, out-of-observation-range data 

points in the predictors can lead to underestimates in SSY on the affected days. Yet, the analysis of such incidents 

in synopsis with the results of the sensitivity analysis showed that before 2070, the effect on annual yield estimates 525 

is ≤ 3% Figure 9). This is very small given the overall high variability in SSC (Vercruysse et al., 2017; Delaney et 

al., 2018; Schmidt et al., 2023). On a similar note, even assuming rather generous increases of yields on days with 

OOOR precipitation altered the trends only marginally, which shows that underestimations on individual days 

with OOOR precipitation has little effect on long-term annual averages. However, we have less confidence in the 

model results after 2070 for two reasons. First, more frequent and severe OOOR incidents occur during this time, 530 

especially in the high-emission scenarios, and fewer projections are covered by the assumptions of the sensitivity 

analysis. We can therefore expect a higher uncertainty in the model results. Specifically, the effect of 

underestimation for single large events will aggravate. Second, more than a few glacier simulations suggest that 

glaciers could have disappeared almost entirely by 2070 (Hanzer et al., 2018), which implies a major shift in the 

hydro-geomorphic functioning of these catchments. While our QRF models were able to model threshold effects 535 

better than sediment rating curves (Schmidt et al., 2023) (likely because they are not bound to linear or monotonous 

relationships), this is only true for effects that are represented in the training data. Thus, the results for the period 

after 2070 need to be treated with caution. We have indicated this in the presentation of our results by using 

transparency or dashed instead of solid lines. 

As a more general limitation, there are several other factors with the potential to substantially alter and influence 540 

sediment dynamics in the study area, which we cannot consider in our models. This concerns geomorphological 

changes, such as increased paraglacial erosion: debuttressed slopes may trigger landslides and rockfalls, and 

indeed, increased debris flow and rockfall activity have been shown in response to warming in other areas, likely 

associated with intensified alpine permafrost thaw (Savi et al., 2020; Hartmeyer et al., 2020; Huggel et al., 2012). 

Additionally, sediment availability and accessibility increase as erodible landscapes expand (Li et al., 2021a), and 545 

subglacial sediment availability might also increase (more subglacial sediment can be accessed by meltwaters as 
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the equilibrium line altitude retreats upslope) until the glacier size becomes smaller than a critical size (Delaney 

and Adhikari, 2020; Zhang et al., 2022). Although these processes are likely already partially reflected in the 

observations used for the model training, their intensity may still be too low to be sufficiently learned by the model. 

Thus, future intensification of these processes could lead to higher sediment export rates than our estimates 550 

suggest, and might thereby affect the estimated location of ‘peak sediment’. Notwithstanding, there are also several 

factors that could lead to decreases in sediment export, such as decreases in connectivity (such as the formation of 

supra-, sub- or proglacial lakes or outwash fans which act as sediment traps) or decreasing glacial erosion as 

glaciers recede (Zhang et al., 2022). Additionally, freeze-thaw weathering may decrease (Hirschberg et al., 2021) 

and it is not clear how quickly the deglaciating landscapes will stabilize, e.g. through eluviation of fine materials 555 

and fluvial sorting of sediment, which progressively increases the resistance to entrainment and transport 

(Ballantyne, 2002; Lane et al., 2017), or vegetation colonization (Haselberger et al., 2021; Altmann et al., 2023; 

Musso et al., 2020; Eichel et al., 2018). Many of these processes are ultimately governed by temperature and/or 

precipitation, and we have chosen the predictors to act as proxies (e.g. antecedent moisture and temperature 

conditions could be crucial for mass movements). While this is out of scope of the presented study, we encourage 560 

future studies to work towards including more advanced proxies for geomorphological changes. 

4.4 Uncertainties 

The presented results are associated with uncertainties, which are a combination of uncertainties inherited from 

the underlying climatological and hydrological projections and uncertainties inherent in the QRF approach. 

Climate model uncertainty represents a combination of uncertainties in assumptions of future anthropogenic 565 

greenhouse gas emission, GCM uncertainty (different GCMs produce different responses to the same radiative 

forcing) and RCM uncertainty (different RCMs forced by same GCM produce different regional responses) (Evin 

et al., 2021; Gobiet et al., 2014). It has been found that EURO-CORDEX simulations may be biased towards “too 

cold, too wet, too windy”, but that these uncertainties are mostly within the observational uncertainties, and that 

simulations “reproduce fairly well the recent past climate despite some biases” (Vautard et al., 2021). To address 570 

this, it was recommended to carry out bias-correction, which has been performed by means of quantile mapping 

for the precipitation and temperature projections (Hanzer et al., 2018). The hydrological model results are also 

associated with uncertainties, such as the tendency to overestimate spring runoff, winter snow accumulation and 

glacier mass balances. We have addressed this through bias-correcting the discharge projections, which resulted 

in a more adequate representation of discharge seasonality and volumes. Certainly, bias-correction methods such 575 

as quantile mapping in turn introduce uncertainties, e.g. by assuming that the biases are stationary, i.e. do not 

change over time (Gudmundsson et al., 2012). Hydrological simulations that do not show the necessity for this 

correction could eliminate this issue. Uncertainties in the QRF approach have been addressed in a previous study, 

and include the tendency to underestimate rare, high-magnitude daily SSY (albeit with small effects on the 

respective annual yields), the underestimates on days with OOOR values (which had small effects until 2070, as 580 

discussed in detail above) and the choice of temporal resolution (i.e. daily compared to hourly resolution involves 

some loss of information, e.g. on precipitation intensities, but the effect was also found to be small) (Schmidt et 

al., 2023). Since QRF is a data-driven approach, the quality of the estimates hinges on the underlying training data 

set as well as the choice of predictors, i.e. a large and varied enough dataset in combination with predictors that 

meaningfully represent the most important processes improve the quality of the estimates (ibid.). Thus, future 585 
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studies are recommended to explicitly sample extreme events, and/or verify the representativity of the training 

dataset. 

5 Conclusion 

We found decreasing trends in annual SSY at both gauges regardless of the emission scenario, which suggests that 

peak sediment was already reached between 2000 and 2020. This is linked to substantial decreases in discharge 590 

volumes especially during the glacier melt phase in late summer, as glaciers continue to melt as a result of 

increasing temperatures. These findings persist even if yields on days with projected heavy precipitation are 

inflated by a factor of five. Despite the projected overall decrease, high(er) annual yields are possible, likely in 

response to heavy summer precipitation, which could become more intense according to the projections. This 

discrepancy has important implications for sediment management, but also e.g. of flood management.  595 

To our knowledge, this study represents the first attempt to combine machine learning for suspended sediment 

modeling with climate and hydrological projections, in order to derive projections of sediment export in high-

alpine areas. It demonstrated that Quantile Regression Forest can be a valuable tool for this application. We 

addressed known issues of QRF, i.e. underestimations on days where predictors in the projection period exceed 

the range represented in the training data. The influence of such underestimations on the results showed to be 600 

negligible until 2070. We conclude that the presented results are much more uncertain after 2070, partly because 

of more frequent and severe out-of-observation-range data points, but mainly since a major shift in the functioning 

of the hydro-geomorphic system can be expected as deglaciation is quasi completed. 

However, while the chosen predictors represent proxies for crucial processes controlling sediment transport in 

these high-alpine environments, several potentially crucial geomorphological factors, that could increase or 605 

decrease sediment export (and thereby change the projected trends and location of peak sediment) could not be 

taken into account. These include increases in rockfalls and landsliding, changes in connectivity or vegetation 

colonization. Future studies are encouraged include these factors more explicitly.  
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Table 1 Overview of EURO-CORDEX scenario simulations used in this study (unaltered from Hanzer et al. (2018), distributed 

under CC BY 3.0 https://creativecommons.org/licenses/by/3.0/). 925 

ID  RCM  GCM  RCPs 

1 CCLM4-8-17 CNRM-CM5 4.5, 8.5 

2 CCLM4-8-17 EC-EARTH 4.5, 8.5 

3 CCLM4-8-17 HadGEM2-ES 4.5, 8.5 

4 CCLM4-8-17 MPI-ESM-LR 4.5, 8.5 

5 HIRHAM5 EC-EARTH 2.6, 4.5, 8.5 

6 RACMO22E EC-EARTH 4.5, 8.5 

7 RACMO22E HadGEM2-ES 4.5, 8.5 

8 RCA4 CNRM-CM5 4.5, 8.5 

9 RCA4 EC-EARTH 2.6, 4.5, 8.5 

10 RCA4 CM5A-MR 4.5, 8.5 

11 RCA4 HadGEM2-ES 4.5, 8.5 

12 RCA4 MPI-ESM-LR 4.5, 8.5 

13 REMO2009 MPI-ESM-LR 2.6, 4.5, 8.5 

14 WRF331F CM5A-MR 4.5, 8.5 

 

 

Table 2 Amount of reduction/increase in in the sensitivity models (average exceedance extent 𝑒𝑝̅̅ ̅ in units of the corresponding 

predictor) and number of days with reduction/increase on average per year (𝑛𝑝̅̅ ̅) and in total in the 14-year period (𝑛𝑜𝑣).  

 Q P (summer) T 

eQ,90 

[m³ s-1] 

nQ,90 

[d a-1] 

nov 

[d] 

eP,90 

[mm] 

nP,90   

[d a-1] 

nov 

[d] 

eT,90 

[°C] 

nT,90 

[d a-1] 

nov 

[d] 

Vernagt 1.5 0.32 4 28.86 0.45 6   3.3 2.75 38  

Vent 9.6 0.55 8 25.95 0.54 8  2.02 0.22 3 

 930 

 

Table 3 Comparison of mean annual discharge volumes based on the original AMUNDSEN output, observations and bias-

corrected AMUNDSEN estimates in the overlap period (2007 - 2020). 

Mean annual Q (2007 – 2020) [mm] Vernagt Vent 

AMUNDSEN (orig.) 2530 1990 

Observations 2310 1537 

AMUNDSEN (corr.) 2400 1555 

 

 935 

Table 4 Mean and maximum exceedance extents 𝑒𝑝 of the three primary predictors discharge (Q), precipitation (P) and air 

temperature (T) across all emission scenarios and time slices, in percent of the maximum during the training period max(xp,train) 

and original units. 

𝒆𝒑 Q [%] Q [m³ s-1] P [%] P [mm] T [%] T [°C] 

Vernagt 
Mean 10.1 0.7 29.3 12.8 10 1.4 

Max 105 6.9 456 199.8 54.4 7.9 

Vent Mean 11.8 4.4 24.8 13.1 4.2 0.9 

Max 123 45.4 442 233 16.3 3.6 

 

  940 
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Table 5 Results of the classification per emission scenario, predictor and time slice. S denotes more than 1/3 (italic) and 2/3 

(bold, does not occur) of the projections with 𝑒𝑝,𝑟𝑐𝑝,𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 𝑒𝑝,90 (assumed in sensitivity); N denotes more than 1/3 (italic) and 

2/3 (bold, does not occur) of the projections with 𝑛𝑝,𝑟𝑐𝑝,𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 𝑛𝑝,90. 

 Vernagt Vent 

2011 – 2040 2041 – 2070 2071 – 2100 2011 – 2040 2041 – 2070 2071 – 2100 

RCP2.6 

Q      N 

P   N   S 

T       

RCP4.5 

Q       

P       

T       

RCP8.5 

Q   N  N N 

P   N    

T   N   N 

 

 945 

Table 6 Trends in mean and 99th percentile of annual specific SSY projections (2007 – 2100) given as Sen's Slope [t km-2 a-2] 

for the original estimates and the altered estimates (5-fold increased SSY on days with OOOR precipitation). Significance 

levels: * = 0.05, ** = 0.01, *** = 0.001. 

Sen’s Slope of mean annual 

SSY [t km-2 a-2] 

RCP2.6 RCP4.5 RCP8.5 

Original Altered  Original Altered  Original Altered  

Vernagt Mean -10.6*** -10.7*** -11.6*** -11.5*** -12.4*** -12.1*** 

99 percentile -12.3*** -12.3*** -22.6*** -22.3*** -22.3*** -21.3*** 

Vent Mean -4.85 ** -4.97** -5.0*** -4.67*** -6.41*** -5.6*** 

99 percentile -4.5** -5.1*** 0.5 2.3 -3.1* 0.1** 
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Figure 1 Overview of models and resulting projections used in this study. Bias-corrected EURO-CORDEX climate projections 

and AMUNDSEN model results serve as input data for the QRF models. Q: discharge, P: precipitation, T: temperature, SSC: 

suspended sediment concentrations, SSY: suspended sediment yields. 

Figure 2 Temporal extent of input data as well as modeled suspended sediment yields (SSY) in the previous study (dashed-line 955 
box, topleft), as well as projections (discharge (Q), precipitation (P), temperature (T)) as input data and SSY estimates from 

this study. 2006 – 2020 is the training data period at gauge Vent. At gauge Vernagt, the QRF model was trained on the years 

2000, 2001, 2019 and 2020, when SSC data were available. Thus, to verify model results in the present study, we use the QRF 

estimated yields at gauge Vernagt of the years overlapping with the climate and hydrology projections, i.e. the “overlap 

period” 2007 – 2020 (section 2.4.1).  960 

Figure 3 Map of the catchment area above gauge Vent, with nested catchment above gauge Vernagt and major glaciers 

Vernagtferner (VF) and Hintereisferner (HEF). Meteo stations recording precipitation and temperature are located close to 

the gauges. (Map based on 10 m DEM of Tirol (Land Tirol, 2016), glacier inventory of 2015 (Buckel and Otto, 2018) and river 

network from tiris open government data (Land Tirol, 2021).)  

Figure 4 Overview of analyses performed with respect to OOOR days. Max(xp,train) denotes the maximum value in the training 965 
data, n refers to the number of OOOR days and e to the exceedance extent. Subscripts: p for predictor, rcp for emission 

scenario, ts for time slice. The analysis of OOOR precipitation days (3.) is described in section 2.5. 

Figure 5 Example of the classification based on the OOOR analysis. The boxplots show the distribution of exceedance extents 

ep,rcp,j per RCP and predictor on all days j within the respective time slice ts. Grey numbers denote the average  𝑛𝑝,𝑟𝑐𝑝,𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of all 

projections within the respective RCP, time slice and predictor. Colored numbers indicate the number of projections with mean 970 
exceedance extent 𝑒𝑝,𝑟𝑐𝑝,𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 𝑒𝑝,90, i.e. projections more extreme than the sensitivity analysis. Black numbers indicate the 
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number or projections with the mean number of OOOR days per year 𝑛𝑝,𝑟𝑐𝑝,𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 𝑛𝑝,90, i.e. projections with more OOOR days 

than the sensitivity analysis. 

Figure 6 Comparison of mean monthly discharge [mm] at gauge Vernagt (left) and Vent (right) derived from measurements, 

unaltered multi-model means of the original AMUNDSEN output (solid lines) and multi-model means of the bias-corrected 975 
AMUNDSEN output (dashed lines) in the overlap period (2007-2020). 

Figure 7 Comparison of annual specific SSY in the overlap period (2007 - 2020) derived from measurements (“obs”, n = 14 

years) and QRF modelling results per RCP (n = 42 for RCP2.6 and n = 196 for RCP4.5 and RCP8.5, resp.) at gauges Vernagt 

(left) and Vent (right). 

Figure 8 Comparison observations (see also Figure 2) to QRF model forced by climate projections (multi-model means per 980 
emission scenario) during the overlap period (2007-2020). 

Figure 9 Results of the sensitivity analysis for gauges Vernagt (left) and Vent (right) with respect to mean annual SSC of the 

years with altered days. Subscripts signify increase (inc) and decrease (dec) in the predictors by the respective average 

exceedance extent ep,90 and frequency np,90  as identified based on the exceedance analysis. Grey numbers represent the number 

of altered days in the test data set (2007 – 2020).  985 

Figure 10 a) and c): Mean annual suspended sediment yields per RCP, with the entire range from minima to maxima of the 

individual projections indicated by the colored envelopes. The period after 2070 is faded due to lower confidence in model 

results, as pointed out in section 4.3. b) and d) Annual SSY of all respective years and projections within the three time slices. 

Figure 11 Estimated timings of peak water and peak sediment. Black lines indicate past mean annual Q from measurements 

and mean annual SSY estimates of QRF model; colored lines correspond to different RCPs (compare to Figure 10). Underlying 990 
data have been smoothed using a 15-year moving average. 

Figure 12 Seasonality of mean monthly SSY in three time slices and emission scenarios (as the monthly mean of all respective 

modeling chains).  

Appendix 
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Figure A1 Results of the classification, based on the sensitivity and OOOR analyses. The boxplots show the distribution of 

exceedance extents for each RCP and predictor on all days j within the respective time slice ts. Grey numbers denote the 

average  𝑛𝑝,𝑟𝑐𝑝,𝑡𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of all projections within the respective RCP, time slice and predictor. Colored numbers indicate the number 

of projections with mean exceedance extent 𝑒𝑝,𝑡𝑠̅̅ ̅̅ ̅̅ > 𝑒𝑝,90 (as used for the sensitivity analysis). Black numbers indicate the 

number or projections with the mean number of OOOR days per year 𝑛𝑝,𝑡𝑠̅̅ ̅̅ ̅̅ > 𝑛𝑝,90 (as used for the sensitivity analysis). 1000 

 

Figure A2 Analysis of summer precipitation projections (top) and SSY projections (bottom) at gauges Vernagt and Vent. Top 

left of each panel: frequency of days with heavy summer precipitation (> 99.5 percentile of the training data, i.e. and 33.7 

mm/d (Vernagt) and 28.88 mm/d (Vent)). Top right: intensity of heavy summer precipitation events over time, expressed as the 

99.5 percentile. Bottom left: Sediment export on days with precipitation > 99.5 percentile of the training data. Bottom right: 1005 
Sediment export on days with precipitation > 99.5 percentile of the training data relative to the respective annual yields. 

 

Figure A3 Seasonality of mean monthly SSC in three time slices and emission scenarios. 


