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Abstract. We develop high resolution (1 km) estimates of Gross Primary Productivity (GPP), Ecosystem Respiration (ER) 

and Net Ecosystem Exchange (NEE) over the Australian continent for the period January 2003 to June 2022 by empirical 

upscaling of flux tower measurements. We compare our estimates with nine other products that cover the three broad 

categories that define current methods for estimating the terrestrial carbon cycle and assess if consiliences between datasets 

can point to the correct dynamics of Australia’s carbon cycle.  Our results indicate that regional empirical upscaling greatly 15 

improves upon the existing global empirical upscaling efforts, outperforms process-based models, and agrees much better 

with the dynamics of CO2 flux over Australia as estimated by two regional atmospheric inversions.  Our nearly 20-year 

estimates of terrestrial carbon fluxes revealed Australia is a strong net carbon sink of -0.44 (IQR=0.42) PgC/year on-average, 

with an inter-annual variability of 0.18 PgC/year and an average seasonal amplitude of 0.85 PgC/yr.  Annual mean carbon 

uptake estimated from other methods ranged considerably, while carbon flux anomalies showed much better agreement 20 

between methods. NEE anomalies were predominately driven by cumulative rainfall deficits and surpluses, resulting in 

larger anomalous responses from GPP over ER.  In contrast, we show that the long-term average seasonal cycle is dictated 

more by the variability in ER than GPP, resulting in peak carbon uptake typically occurring during the cooler, drier Austral 

autumn, and winter months.  This new estimate of Australia’s terrestrial carbon cycle provides a benchmark for assessment 

against Land Surface Model simulations, and a means for monitoring of Australia’s terrestrial carbon cycle at an 25 

unprecedented high-resolution.  We call this new estimate of Australia’s terrestrial carbon cycle, “AusEFlux” (Australian 

Empirical Fluxes). 

1. Introduction 

The global terrestrial biosphere has acted as a net carbon sink, absorbing approximately 29 % of anthropogenic CO2 

emissions each year and thereby mitigating impacts from global warming (Friedlingstein et al., 2022). Australia’s vast semi-30 

arid ecosystems play a large and critical role in controlling the inter-annual variability (IAV) of the global terrestrial carbon 

sink, and are therefore of crucial importance to understand if we are to make reliable predictions about the fate of the global 
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carbon cycle under a warming climate (Ahlström et al., 2015; Chen et al., 2017; Ma et al., 2016; Poulter et al., 2014; Metz et 

al., 2023). However, uncertainties in the methods used for quantifying components of the terrestrial biosphere preclude 

definitive inferences about the magnitude of Australia’s terrestrial carbon sink, the seasonal and inter-annual oscillations, 35 

and the drivers of change in carbon flux variability.  

Several methods exist to quantify the spatio-temporal dynamics of the terrestrial carbon cycle. Dynamic Global 

Vegetation Models (DGVMs) and Land Surface Models (LSMs) simulate responses of vegetation to changes in climate by 

parameterising ecological processes but are limited by several uncertainties that relate to their parametrisations and limited 

inclusion of key ecological processes (Kowalczyk et al., 2006; Li et al., 2021; Quillet et al., 2010).  Uncertainties in these 40 

models can lead to large differences in land carbon flux estimates, even where similar models are used (Teckentrup et al., 

2021). For example, over a 19-year period from 2003 to 2021, the Community Atmosphere Biosphere Land Exchange 

(CABLE) model extracted from TRENDY v10 estimates Australia’s annual mean GPP to be 3.01 PgC/yr (Friedlingstein et 

al., 2022) while a regionally forced CABLE run using a similar model configuration estimates GPP to be greater than 50 % 

higher at 4.58 PgC/yr (Villalobos et al., 2022).  45 

Atmospheric inversion methods, which rely upon atmospheric CO2 measurements and an atmospheric transport 

model, provide a semi-empirical method for quantifying aspects of the carbon cycle, but their capacity to spatially resolve 

CO2 fluxes is severely constrained by the sparse observational network of measuring sites (51 sites globally, with only four 

locations in Australia) (Rödenbeck et al., 2018). Satellite-based remote sensing of atmospheric CO2 has become possible 

using the Greenhouse Gas Observing Satellite (GOSAT) and the Orbiting Carbon Observatory (OCO-2 and OCO-3) 50 

satellites (Basu et al., 2013; Eldering et al., 2017).  This allows for spatially comprehensive monitoring of CO2 sources and 

sinks over continental to global scales.  Several global inversion studies have incorporated these datasets, but results over 

Australia have been contradictory (Basu et al., 2013; Chevallier et al., 2014; Detmers et al., 2015). Villalobos et al. (2022) 

conducted a regional atmospheric inversion over Australia assimilated with OCO-2 data to infer a gridded estimate (~81 km 

cells) of NEE for 2015-2019.  They found Australia was a strong annual carbon sink (-0.47 PgC/yr) on average, and that 55 

peak carbon uptake occurred during the cooler, drier months of the austral winter.  Similarly, using an atmospheric inversion 

of GOSAT satellite measurements, Metz et al. (2023) found that Australia’s seasonal CO2 flux variability coincided with the 

onset of rainfall after the dry season, leading to CO2 flux releases during the October-December period, and carbon uptake 

occurring during the drier March-September period.  These studies provided valuable insight into the dynamics of 

Australia’s terrestrial carbon cycle, but their very coarse spatial resolution prevents these approaches from resolving spatially 60 

detailed estimates of Australia’s carbon cycle. 

A third approach relies on data-driven machine learning (ML) methods to upscale eddy covariance (EC) 

micrometeorological tower data from global networks of long‐term carbon and water flux measurement sites.  This approach 

has the advantage of relying on a denser network of empirical observations than the atmospheric inversion approaches (for 

example, the popular FLUXNET2015 dataset contains 206 sites (Pastorello et al., 2020)).  Another advantage of data-driven 65 

ML approaches is their ability to accurately model highly nonlinear relationships to explanatory variables, as is common in 
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complex environmental systems. Nevertheless, the results of global empirical upscaling products, most notably FLUXCOM 

(Jung et al., 2020; Tramontana et al., 2016), are prone to several limitations, including: significantly underestimating the 

magnitude of the IAV of carbon fluxes, an inability to resolve carbon flux trends (e.g. from CO2 fertilisation), and 

overestimating the size of the tropical carbon sink (Jung et al., 2020). Over Australia, two FLUXCOM products: 70 

‘FLUXCOM-Met’ and FLUXCOM-RS’, show substantially different mean annual NEE fluxes of -0.23 and -0.05 PgC/yr, 

respectively (averaged over the period 2003-2015). Furthermore, the annual mean GPP and ER components show a > 60 % 

difference in magnitude between the two products.  IAV of NEE, as estimated by one standard deviation in the fluxes, is also 

subdued compared with estimates from LSMs and atmospheric inversions.  

This lack of agreement between the different approaches to quantifying Australia’s land carbon sinks and sources calls 75 

into question how well constrained the magnitudes, IAV, temporal trends, and spatial allocations of Australia’s land carbon 

fluxes are.  Here we explore the potential for empirical upscaling of the regional “OzFlux” eddy covariance network (Isaac et 

al., 2017) to better characterise Australia’s terrestrial carbon cycle.  Models built on global datasets (and with a strong 

northern hemisphere bias) will necessarily need to generalise across vastly different climates, ecosystem types, and plant 

functional traits, limiting their ability to accurately represent ecosystem dynamics in regions where ecosystem responses do 80 

not conform to the dominant dynamics in the global dataset. This may especially be the case in Australia where extreme 

climate variability and evolutionary isolation have created sclerophyllous, evergreen, woody species that do not fit into 

standard globally predominant plant functional types used by LSMs (Beringer et al., 2016; Beringer et al., 2022; Williams 

and Woinarski, 1997).  Furthermore, Australia’s data record of EC flux tower measurements has grown substantially in the 

intervening years since the inception of the commonly used FLUXNET2015 training dataset.  For example, the FLUXCOM 85 

product included data from only four EC flux towers over Australia (~43 site-years of data), and the current FLUXNET2015 

dataset contains 23 sites equating to ~115 site years of Australian data.  Contrast this with the full OzFlux dataset over 

Australia which, as of January 2022, contains 33 sites and 238 site-years of data.  These later years of EC flux tower 

measurements since 2015 are especially valuable given they have recorded a period of extreme climate variability in 

Australia such as the historic drought from 2017-2019 (Devanand et al., 2023 in review), culminating in the Black Summer 90 

bushfires (Byrne et al., 2021), and the subsequent triple La Niña with record breaking rainfall in eastern Australia from 

2020-2023.  A further advantage of upscaling fluxes at a regional scale is the ability to take advantage of higher-resolution 

input datasets than is tractable at the global scale, both due to the unavailability and uncertainty of global high-resolution 

datasets and the computational constraints that attend global upscaling.  

Our objectives for this study are as follows: 95 

• Develop an accurate, high-resolution (~1 km) empirical upscaling of Net Ecosystem Exchange (NEE), Ecosystem 

Respiration (ER), and Gross Primary Productivity (GPP) for Australia covering the period January 2003 to June 

2022. 

• Evaluate our empirical upscaling of Australian flux data in comparison with LSM, inversion-derived, and global 

empirical upscaling estimates of the carbon cycle with the aim of identifying consiliences between datasets that may 100 

point to the correct dynamics of Australia’s terrestrial carbon cycle. 
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• Assess if the upscaling approach can offer new insights into Australia’s carbon cycle, and/or affirm if the upscaling 

can replicate known biogeochemical controls on the carbon cycle. 

2. Data & Methods 

2.1 Data 105 

2.1.1 CO2 flux tower data 

We used monthly fluxes of NEE, GPP, and ER produced by the OzFlux regional network of eddy covariance flux towers. 

These data are processed to Level 6 and are freely accessible through the Terrestrial Ecosystem Research Network (TERN 

2023).  Twenty-nine of the 33 freely available sites were selected. The four sites that were excluded showed strong 

landscape heterogeneity within the flux tower footprint, insufficient temporal duration, or non-representative landcover (e.g., 110 

almond farms).  A summary of the selected sites and their locations is shown in Figure A1. The Level 6 OzFlux data used in 

this study provides two separate estimates of constituent carbon fluxes derived from two methods for partitioning NEE into 

its component fluxes of GPP and ER. This study uses the ‘SOLO’ data version which is calculated using a data-driven 

nocturnal respiration approach for partitioning where respiration is modelled using an artificial neural network driven by air 

and soil temperature, soil water content, and satellite-observed greenness (MODIS EVI) data (Isaac et al., 2017). We trained 115 

ML models with the flux data at a monthly temporal resolution using 2,825 monthly observations, equating to 235 site-years. 

2.1.2 Gridded explanatory variables 

The variables in Table 1 were selected for inclusion in the modelling framework as they were considered to cover most of 

the expected climate and landscape controls on the terrestrial carbon cycle in Australia. All datasets were temporally 

resampled to monthly resolution and reprojected onto a common 1-km x 1-km geographic grid for prediction; the training 120 

procedure uses data extracted from the same 1-km gridded data (using the pixel located over the EC tower).   

2.1.3 Comparison datasets 

Datasets included for comparative purposes cover the three current categories of methods for estimating the exchange of 

terrestrial carbon with the atmosphere: process-based models, empirical upscaling of eddy covariance data, and atmospheric 

inversions. Observation-based GPP products derived from light-use-efficiency methods and solar-induced fluorescence are 125 

also included for completeness. Where possible, datasets are processed and plotted in their native resolutions to avoid 

introducing errors from spatially resampling finer-resolution datasets to very coarse resolutions (or vice-versa). The 

exceptions to this are the MODIS-GPP and DIFFUSE-GPP products (described below) which were resampled to 1 km 

resolutions to match the resolutions of our ML upscaling product. 

 130 
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Table 1: Gridded feature layers used in the modelling framework to train and predict terrestrial carbon fluxes over Australia. 

Explanatory Variable 

(abbreviation) 

Description Data Source & 

Reference 

Land Surface Temp. (LST), A suite of MODIS derived products characterising the land 

surface responses to climate. In addition, fractional 

anomalies are calculated for the kNDVI variable to account 

for disturbances from fire or land-use change. Fractional 

anomalies are calculated against a long-term climatological 

mean from 2003-2021.    

MODIS Collections 

(version 6.1) 

downloaded from 

Google Earth Engine: 

https://developers.google

.com/earth-

engine/datasets/catalog/

modis 

Normalised Difference Water 

Index (NDWI), 

Kernel Normalised Vegetation 

Index (kNDVI), 

Average Air Temp. (Tavg), ~1 km resolution gridded climate products based on 

topographically conditional spatial interpolation of 

Australia’s extensive network of weather stations. In 

addition, fractional anomalies are also calculated for all 

variables except VPD.  In addition to monthly fractional 

rainfall anomalies, three-, six-, and twelve-month cumulative 

fractional rainfall anomalies are added to help characterise 

memory and lag in the carbon response to water deficit. 

ANUClimate: 

https://dapds00.nci.org.a

u/thredds/catalogs/gh70/

catalog.html 

 

 (Hutchison et al., 2014) 

Vapour Pressure Deficit (VPD), 

Incoming Shortwave Radiation 

(srad), 

Total Precipitation (rain) 

LST minus Tavg 

(LST-Tair) 
 

The subtraction of air temperature from land surface 

temperature is indicative of vegetation canopy moisture 

stress 

Derived from MODIS 

LST and ANUClimate 

Tavg 

Fraction Trees (trees), Per-pixel fractions of trees, grass, and bare derived from 

temporal decompositions of MODIS NDVI into persistent 

and recurrent fractions. An estimate of the proportion of C4 

grass is also included. These variables are static and 

represent conditions in 2020. 

Correspondence 

 

 (Donohue, 2021) 

Fraction C4 grass (C4_grass), 

Fraction Grass (grass), 

Fraction Bare (bare), 

Vegetation Height (VegH) A per-pixel estimate of vegetation height in metres. This 

variable is static and represents the average vegetation height 

from 2007-2010.  

Accessible from 

https://dapds00.nci.org.a

u/thredds/catalog/ub8/au/

LandCover/OzWALD_L

C/catalog.html 

 (Liao et al., 2020) 
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2.1.3.1 Process-model simulations 

We compared our results with two runs of the CABLE model. The first was a regional, fine resolution (0.25⁰) offline run 135 

forced by Australian regional climate drivers that follows the protocol from Haverd et al. (2018) but with land use remaining 

static at the year 2000 (hereafter referred to as CABLE-BIOS3).  CABLE-BIOS3 net biosphere production (NBP) includes 

GPP and autotrophic and heterotrophic respiration, but does not include fire disturbances, harvest, erosion or export of 

carbon through rivers (a fuller description of the set-up is outlined in Villalobos et al. (2022)).  A second CABLE run was 

extracted from the TRENDY v10 ensemble (Friedlingstein et al., 2022), hereafter referred to as CABLE-POP. This dataset 140 

has a spatial resolution of 1⁰, is forced by global climate data and NBP includes additional fluxes from fire emissions and 

land use change.  

2.1.3.2 FLUXCOM 

Our regional ML upscaling product is compared with the well-known global ML upscaling product, FLUXCOM (Jung et al., 

2020; Tramontana et al., 2016).  FLUXCOM is built using similar machine learning methods to those used in this study, 145 

though trained on the global FLUXNET2015 dataset. Two products are available, FLUXCOM-RS was trained exclusively 

on MODIS remote sensing data, and FLUXCOM-RS+METEO (FLUXCOM-Met hereafter) which is trained on climate 

reanalysis data and climatological remote sensing data (Jung et al., 2020).  For FLUXCOM-Met, we use the multi-model 

mean of the ERA5-based product. Both RS-METEO and RS products are assessed here and were downloaded at monthly 

temporal resolution from the Max Planck Institute for Biogeochemistry (https://www.bgc-150 

jena.mpg.de/geodb/projects/Home.php, last access 13/01/2023). 

2.1.3.3 Atmospheric Inversions  

A regional inverse modelling product, produced by Villalobos et al. (2022) was included for comparison as it provides a 

wholly independent measure of NEE.  This regional inversion estimates carbon fluxes over the Australian continent from 

2015-2019 by assimilating of carbon-dioxide measurements from the Orbiting Carbon Observatory-2 (OCO-2) satellite. The 155 

product is provided at ~81 km spatial resolution and monthly temporal resolution (available for download from 

https://zenodo.org/record/6649768). NEE in this dataset includes fire emissions and fossil fuel emissions, so to facilitate 

better comparisons fossil fuel emissions were subtracted from the NEE time-series.  A second regional satellite-assimilated 

atmospheric inversion from Metz et al. (2023) is also included. This timeseries represents the spatially averaged net flux of 

CO2 over the Australian TRANSCOM region (which includes New Zealand). Therefore, the time-series is only shown where 160 

Australian-wide spatially averaged time-series are plotted, and some differences between time-series may be attributable to 

the inclusion of the New Zealand land mass in the estimate.  
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2.1.3.4 Observation-based GPP products 

We compare our GPP estimates with a suite of observation-based GPP products: the MODIS Terra GPP product 

(MOD17A2H), based on a per-biome light-use efficiency approach (Running et al., 2015); the GOSIF GPP product, 165 

generated through a data-driven approach based on OCO-2 SIF soundings, MODIS remote sensing data, and meteorological 

reanalysis data (Li and Xiao, 2019); and DIFFUSE GPP which is based on total and diffuse irradiance and the fraction of 

shortwave irradiance absorbed by foliage (Donohue et al., 2014).  All datasets are averaged to monthly temporal resolution, 

and MODIS-GPP and DIFFUSE-GPP are spatial resampled to 1-km grid cells by averaging the 250 m pixels within each 1 

km pixel grid.   170 

2.1.4 Fire emissions 

Fire emissions were added to our estimates of NEE from the Global Fire Assimilation System version 12 (GFASv12) (Kaiser 

et al., 2012). Daily fire emissions are temporally resampled to monthly totals by summing daily values. 

2.1.5 Bioclimatic regions 

Bioclimatic regions used for separating fluxes into specific ecosystems were identical to those defined in Haverd et al. 175 

(2013) and include six bioclimatic classes: tropics, savanna, warm temperate, cool temperate, Mediterranean, and desert 

(Fig. 9a). 

 

2.2 Methods 

2.2.1 Empirical ML upscaling 180 

The most common ML models implemented in the literature on empirical upscaling of EC data are random forest regression, 

support vector regression, model tree ensembles, piecewise regression models, and artificial neural networks (Verrelst et al., 

2015). Random forest (RF) regression has proven itself to be the go-to model for many remote sensing-based studies owing 

to its high accuracy, robustness to over-fitting, scalability, and easy to configure hyperparameters (Belgiu and Drăguţ, 2016).  

In recent years, gradient-boosting decision tree (GBDT) learning algorithms have also proven to be highly accurate and 185 

robust to overfitting (Chen and Guestrin, 2016; Wei et al., 2019).  Here, rather than rely on any one ML method, we rely on 

both RF and GBDT methods to develop an ensemble of predictions. 

Beyond the ML algorithm used, there are numerous other sources of uncertainty associated with the empirical 

upscaling of EC flux tower data.  Epistemic uncertainties arise from the limitations of the training data (e.g., biases in the 

locations sampled), and uncertainties in the features used for training, as well as the hyperparameters used during model 190 

optimisation.  In addition to these reducible (or at least quantifiable) epistemic uncertainties, aleatoric uncertainties arise 

from the uncertainties of the eddy covariance measurements themselves (Isaac et al., 2017), along with the non-deterministic 
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dependencies between variables (Hüllermeier and Waegeman, 2021). Here we attempt to account for a portion of the 

empirical uncertainty by iterating the training data and the models used for fitting.  During model fitting, two randomly 

selected EC sites are removed from the training data and both a GBDT model (from the python package LightGBM (Ke et 195 

al., 2017) and a RF model are fit on the remaining data (hyperparameter optimization is conducted on every fit). This 

procedure is repeated 15 times to increase the likelihood of every site being removed from the training dataset, resulting in 

30 unique models.  These 30 models are used to generate 30 gridded estimates for each of the variables modelled (GPP, ER, 

and NEE).  In the results that follow, we report the interquartile range of these 30 predictions as our envelope of uncertainty, 

and the ‘best-estimate’ as the median of the ensemble predictions. 200 

The overall modelling framework is summarised in Figure 1.  Each flux is independently modelled, and therefore there 

is no inherent exact mass balance between GPP-ER and NEE. The same predictor variables were used for modelling each 

flux, so the resulting products originate from a consistent set of drivers. 

 

 205 

Figure 1: A flow chart showing the modelling framework for creating gridded estimates of GPP, ER, and NEE for the Australian 

continent. 

2.2.2 Model evaluation 

The accuracy of each ML model in the ensemble was assessed using a nested, time-series-split cross-validation approach 

(Fig. 2).  This approach ensured minimal data leakage between training and testing sets, while still allowing the algorithm to 210 

‘see’ all the sites during training; a desirable feature in the cross-validation technique due to the relatively limited number of 

sites (n=29), with some ecosystems sampled by only one or two flux towers (e.g., alpine regions, cereal cropping).  Five 

outer cross-validation splits are performed, with each split containing 20 % test data from every site (as a discrete length of 

time equal to 20% of the total length of the dataset), while the remaining 80 % of the data is used for training.  Five ‘inner’ 

cross-validation splits were conducted to optimise the hyperparameter selection for the outer loop. Across the five outer 215 

cross-validation splits, all samples in the dataset were tested.  Mean Absolute Error (MAE) and the coefficient of 
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determination (R2) are reported to assess the accuracy of the fit for each of the variables modelled.  The cross-validation 

scores reported in the results section summarise the train-test splits of all 30 model fits.  Throughout the remainder we use 

the terms ‘observed’ and ‘predicted’ to refer to in-situ measurements from EC towers and the predictions, respectively. We 

also use the convention of negative NEE values referring to net carbon uptake by the land surface. 220 

 

 

Figure 2: A schematic representation of a single cross-validation split using a nested, time-series cross-validation procedure.  Five 

outer splits and five inner splits were conducted per model iteration. For each split, models are trained on data from every site 

included in that model iteration (i.e., 80 % of every site) and tested on a continuous period for every site (i.e., 20 % of each site). 225 
For each subsequent split, the test period is moved forward in time. 

In addition to evaluating the overall predictive capacity using temporal cross-validation, we also perform an 

intercomparison between the results of this study and similar products covering Australia. This is performed through scatter 

plots of modelled vs observed fluxes for several products (statistics for comparison are MAE and r2 – the square of Pearson’s 

correlation), through comparison of the mean seasonal cycles disaggregated by bioclimatic region, and through the 230 

assessment of annual anomalies.  It is important to note that NEE calculated through empirical upscaling of EC flux tower 

data is conceptually distinct from inversion-based NEE and process-model NBP.  The addition of fire-emissions to our 

estimates of NEE narrows the conceptual distance between the estimates, and where a conceptual difference still applies, we 

contend that fluxes from other sources are unlikely to be large enough to warrant the additional complexity of their inclusion.  

3. Results 235 

3.1 Cross-validation performance 

Temporal cross-validation results revealed a comparatively high degree of agreement between observations and predictions 

(Fig. 3).  As for other regional and global upscaling products, GPP and ER were predicted with better skill than NEE. GPP 

scored a R2 = 0.91 and MAE = 19.4 gC/m2/month. For ER, R2 = 0.89 and MAE = 15.8 gC/m2/month, while for NEE, R2 = 

0.68 and MAE = 17.9 gC/m2/month.  To understand how well the predictions reproduce annual mean fluxes, and the per-240 

biome predictability of fluxes, we produced scatter plots comparing the annual mean fluxes of the EC flux tower sites with 

the annual mean fluxes of the median of the prediction ensemble (Fig. 3d-f).  Regardless of biome, annual mean fluxes were 
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exceptionally well reproduced by the median of the ensemble with the ‘all-data’ fit closely matching the one-to-one line. The 

climatological seasonal cycles of NEE at each of the EC sites were also very well reproduced (Fig. A2).   

 245 

 

Figure 3.  Pooled temporal cross-validation results for EC flux tower sites: scatter plots of observed and predicted monthly (a) 

GPP, (b) ER and (c) NEE, with heat colours indicating data density; and scatter plots of observed and predicted annual mean (d) 

GPP, (e) ER, and (f) NEE, with colour coding indicating bioclimatic regions, as shown in Figure 9a. 

 250 

Scatter plots showing the trend and strength of the relationships between EC flux tower observations and modelled 

values for other products can be found in the Appendices (Fig. A3). The EC flux tower values are compared with the nearest 

pixel in each product, and the products have been kept in their native resolution. This means there may be some bias to 

products with a higher spatial resolution, but errors introduced from resampling are avoided. Only those products with a 

reasonably high spatial resolution have been compared with the flux tower (i.e., 1⁰ resolution CABLE-POP and the OCO-2 255 

inversion have been excluded), and comparisons were only made for periods where all included products have data.  Most 

products perform reasonably well at predicting GPP (Fig. A3a-f). Typically, products show an overestimation of small GPP 

and ER values, and an underestimation of large values, except for CABLE-BIOS3’s which overestimates GPP and ER across 

the distribution. CABLE-BIOS3’s estimates of NEE showed almost no correlation with EC flux tower observations, 
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recording a r2 of 0.04 (Fig. A3j). The FLUXCOM NEE products performed considerably worse than the cross-validation 260 

scores reported in this study (Fig. A3k-l). 

3.2 Feature importance 

To understand which explanatory variables most impacted flux predictions, feature importance plots were produced using 

the Shapley Additive Explanations (SHAP) Python library (Lundberg & Lee, 2017). Shapley values represents the average 

marginal contribution of a feature value across all possible coalitions (Lundberg et al., 2020).  The feature importance bar 265 

plots of Figure 4 show the top five ranked features for each modelled flux, ranked in descending order with the most 

important variables at the top. These plots were derived by calculating the mean absolute SHAP values for each feature in 

each model iteration, and subsequently averaging those values across all the models in the ensemble. Flux predictions were 

strongly influenced by the remote sensing variables of kNDVI and NDWI which respond to canopy density, health, and 

water status. Solar radiation and average air temperature were the most important climate variable across the fluxes. The land 270 

cover variables of vegetation height and fraction of trees also proved important for flux predictions. 

 

 

Figure 4. Shapley additive explanation (SHAP) feature importance plots. (a) GPP, (b) ER, (c) NEE. The plots summarise feature 

importance across all models in the ensemble by first calculating mean absolute SHAP values for each feature in each model, and 275 
then averaging those values across all the models in the ensemble.  The error bars show the 95 % confidence interval.   

 

SHAP dependence plots for kNDVI along with the four principal climate drivers in the model (temperature, rainfall, 

solar radiation, and VPD) aid in the interpretation of feature importance (Fig. 5; these plots were created using a single 

optimised GDBT model fit on all the training data).  In these plots, the feature values are plotted against their corresponding 280 

SHAP values, and the dots are coloured by, in the case of the climate drivers, kNDVI, and in the case of kNDVI, by the 

values of the feature that has the strongest interaction effect with kNDVI.  A strong interaction between two variables 

produces a distinct vertical colour gradient.  The dependency plots for the climate features are coloured by kNDVI as it aids 

in approximately disaggregating the influence of climate on carbon fluxes between the wetter, cooler, and high kNDVI 

coastal fringe regions of the Australian continent from the drier, warmer, lower kNDVI regions of Australia’s (semi) arid 285 

interior. In the dependence plot for kNDVI (Fig. 5a), solar radiation shows a clear interaction effect. Where kNDVI is low (< 
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~0.2), increasing solar radiation produces predictions of GPP that are relatively lower than in regions with higher kNDVI.  

Solar radiation was the third most important feature in the prediction of GPP (Fig. 4a), and high kNDVI regions had a 

greater light sensitivity than low kNDVI regions (Fig. 5b). 

 290 

 

Figure 5. SHAP dependency scatter plots for kNDVI, along with the four principal climate features (solar radiation, air 

temperature, rainfall and VPD). In the case of (a,f,k) the SHAP values are coloured by the feature with the largest interaction 

effect, while the climate variable SHAP values are coloured by their interaction with kNDVI.  Note that the y-axis scale is different 

for each sub plot. 295 

 

Solar radiation and kNDVI were also key predictors for ER, following similar relationships as GPP, but the overall 

amplitude of increase is less (Fig. 5f & 5g).  ER also sees a greater influence from air temperature (Fig. 5h) and rainfall (Fig. 

5i) than GPP, where higher values of these variables increased predicted rates of ER.  In the case of air temperature, in areas 

of high kNDVI the rate of ER increase was greater than in low kNDVI regions.  Rates of ER respiration increase sharply 300 

with increased rainfall, but for low kNDVI, predictions of ER increase at a more rapid rate than for high kNDVI (Fig. 5i). 

Relationships between features and NEE predictions are more difficult to interpret given the likelihood of complex 

interaction effects when modelling the carbon balance (NEE) versus modelling only ER or GPP.  The most important 

features for the NEE predictions are kNDVI and NDWI, average air temperature, and solar radiation (Fig. 4c). Increasing 

solar radiation typically resulted in more negative NEE predictions (greater uptake of carbon) (Fig. 5l).  The rate of increase 305 
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in carbon uptake under increasing solar radiation is lower where kNDVI is low, while regions of high kNDVI see a much 

greater sensitivity to increases in solar radiation.  Increasing air temperature tends to result in more positive NEE predictions 

(Fig. 5m), though the relationship does not follow a simple trajectory.  For high kNDVI, temperature increases at the highest 

end of the distribution (>~25⁰C) result in a strong positive rate of change in NEE predictions (i.e., greater release of carbon). 

For very low kNDVI, temperature changes have a much more modest impact on NEE. 310 

3.3 Prediction uncertainties 

The coefficient of variation between the thirty ensemble members provides a spatial indication of uncertainty in CO2 flux 

predictions (Fig. 6). We use a non-standard definition of the coefficient of variation where the median absolute deviation 

between the long-term annual means of each ensemble member were divided by the median of the ensemble annual means, 

expressed as an absolute value. Both GPP and ER show comparatively low variability across predictions, where the greatest 315 

coefficient of variation values is found in the arid interior (Fig.6a and 6b).  NEE shows stronger variation between ensemble 

members in some of the arid regions of the north-west, the savannah regions of western Queensland, and the agricultural 

regions of the Western Australian wheat belt and the Murray-Darling Basin (MDB) (Fig. 6c and 6d).  In the case of the arid 

and savanna regions, the uncertainty coincides with areas where annual mean NEE is close to zero, so small deviations in 

predictions can result in high relative uncertainty (refer to the annual mean flux map in Figure 8g).  However, in parts of the 320 

aforementioned agricultural regions, uncertainty is both high in relative and absolute terms (again refer to Figure 8g). This 

may be due several factors such as: the dearth of OzFlux towers in agricultural regions, the heterogeneity of crop types and 

agricultural practices that are likely not well represented by our feature layers, and the potential for large amounts of carbon 

to be laterally exported out of these regions through harvest of agricultural commodities.  

 325 
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Figure 6. Prediction uncertainty estimated from iterating EC flux tower data and model type: (a-c) displays the absolute 

coefficient of variation for (a) GPP, (b) ER, and (c) NEE, defined as the median absolute deviation between all ensemble members, 

and the median of the ensembles, expressed as an absolute value. (d) shows the fraction of ensemble members where the sign of 330 
annual mean NEE (positive or negative) agrees, i.e., if all ensemble members agree on the sign of NEE then the values is one, and if 

positive and negative estimates are each produced by half of the members, then value is 0.5 

3.4 Upscaling results and comparison with other products 

3.4.1 Annual mean and IAV of carbon fluxes across Australia 

We adopted the model ensemble median as our best estimate, and the interquartile range (IQR) of estimates as a measure of 335 

uncertainty.  During 2003 to 2022 Australia’s terrestrial ecosystems were a strong net carbon sink on an annual mean basis  
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Figure 7. Monthly carbon fluxes summed across Australia from 2003 to 2021. (a)  GPP, (b) ER, (c) NEE). Shading around time-

series shows the interquartile range of the prediction ensembles, and the solid blue line shows the median of the ensemble 340 
predictions. Orange lines shows the 12-month running mean of the median model.  Box plots are based on the median model 

prediction and show the long-term mean (green triangle), median (line within box) and interquartile ranges (boxes) averaged over 

the entire time series. c) also shows NEE after adding fire emissions (green line), as estimated by the GFASv12 product. 

of -0.44 (IQR=0.42) PgC/year (Fig. 7c) (including fire emissions).  IAV defined as one standard deviation of the annual 

mean timeseries is 0.18 PgC/year and the average seasonal range of NEE is 0.85 PgC/year.  The annual mean estimates of 345 

NEE from this study show a greater terrestrial carbon uptake than any of the LSMs or FLUXCOM products, while the 

regional atmospheric inversion (which also includes fire emissions) predicts a very similar annual mean carbon uptake of -
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0.47 PgC/year (though this is assessed over a much shorter period than the other products).  IAV of NEE for the other 

products ranges from 0.06 PgC/yr for FLUXCOM-Met, to 0.26 PgC/year for the OCO-2 inversion. The GOSAT-inversion 

conducted by Metz et al. (2023) estimated IAV of 0.207 PgC/yr across the Australia TRANSCOM region.  CABLE-BIOS3 350 

also shows comparatively high IAV of 0.23 PgC/year (Fig. 9f). The per-pixel plots of Figure 8g-i show how annual NEE 

fluxes are spatially allocated. The strongest carbon sinks are seen along the forested coastal regions of the eastern seaboard 

from western Tasmania to northern New South Wales, the south-west corner of Western Australia including the southern 

part of the Great Western Woodlands, and the tropical part of the Northern Territory.  The regions of strongest IAV in NEE 

are in the savanna regions of northern Australia, the intensive agricultural regions of the MDB, and the Channel Country of 355 

south-west Queensland and into South Australia where episodic river basins such as the Coopers and Meullers Creek 

periodically fill during anomalously large rainfall events (Fig. 8h). The climatological ‘month-of-maximum’ NEE plot in 

Figure 8i shows the month during which NEE typically achieves its most negative value (greatest carbon uptake), and the 

plot shows clear delineations along bioclimatic regions.  

Annual mean GPP across Australia averaged 4.25 (0.91) PgC/year, with an IAV of 0.50 PgC/year and an average 360 

seasonal range of 1.47 PgC/yr (Fig. 7a). Averaged over Australia, our estimate of GPP closely approximates that of GOSIF 

and MODIS, with the uncertainty envelope encompassing these two products. In contrast, DIFFUSE, FLUXCOM, and 

CABLE-POP report lower estimates (Fig. 9a). The IAV between products varies substantially with both FLUXCOM 

products showing the lowest IAV in GPP (FLUXCOM-Met: 0.13 PgC/year, FLUXCOM-RS: 0.23 PgC/year), while this 

study and CABLE-BIOS3 (0.78 PgC/year) display the strongest IAV.   365 

ER averaged 3.64 (1.01) PgC/year (Fig. 7b), with an IAV of 0.34 PgC/year and an average seasonal range of 1.56 

PgC/year, notably higher than GPP. Agreement between products is generally poor, though the long-term mean of 

FLUXCOM-Met and this study agree (Fig. 9b).  CABLE-BIOS3 show the most IAV in ER (0.56 PgC/year), while the two 

FLUXCOM products record very low IAV, with FLUXCOM-RS equal to 0.07 PgC/year, and FLUXCOM-Met 0.09 

PgC/year. 370 
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Figure 8. Per pixel summaries derived from the median of the prediction ensemble. Annual means fluxes of GPP (a), ER (d), and 

NEE (g), Standard deviation in annual mean fluxes of GPP (b), ER (e), and NEE.  Climatological month of maximum flux, GPP 

(c), ER (f), and NEE (i). 
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 375 

Figure 9. Twelve-month rolling mean terrestrial carbon fluxes from a suite a products covering Australia, compared with this 

study.  Right-side plots (d-f) show the anomalies of the left-side plots (a-c), where the monthly anomalies are calculated using a 

climatology that starts in 2003 and ends at the maximum length of the available time-series for each product. The numbers in the 

left-side plots show the long-term annual mean flux for a given product. Blue shading around ‘This Study’ shows the interquartile 

range from prediction ensembles. 380 

3.4.2 Climatological carbon fluxes 

Figure 10e-g shows the climatological seasonal cycles of the component terrestrial fluxes summed across Australia 

(climatologies were calculated starting in 2003 and extending over the full remaining length of the time-series for each 

product).  The seasonal cycle of this study’s NEE differs substantially from those of the LSMs and FLUXCOM-Met (Fig. 

10g).  According to our results, a climatological peak in terrestrial carbon uptake occurs for Australia during the cooler, drier 385 

months of March-September.  Examination of the equivalent plots for GPP (Fig. 10e) and ER (Fig. 10f), shows that 

concomitant increases in ER during periods of peak GPP mean that the time of greatest primary production across Australia 

(December - March) are not coincident with peak carbon uptake. This result contrasts with the findings of the LSMs and 

FLUXCOM-Met which show peak carbon coinciding with peak GPP in Austral summer (Fig. 10g). Despite displaying a 
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 390 

Figure 10. Climatological seasonal cycles. (a) Map of bioclimatic regions. (b-d) Bioregion specific annual climatological seasonal 

cycles for GPP, ER, and NEE, respectively. (e-f) Annual climatological seasonal cycles averaged across Australia. 
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greater amplitude of seasonal variability, the NEE seasonal cycle of the regional OCO-2 inversion largely matches our 

estimate. The GOSAT-Inversion also displays similarities with this study and the OCO-2 inversion. However, the GOSAT-

inversion shows a second peak in July – it is unclear from the dataset provided if this might be due to the inclusion of New 395 

Zealand in the analysis area.  

Breaking the fluxes down into bioclimatic zones (Fig. 10a-d), we can observe two processes that predominately 

dictate the typical seasonal pattern of NEE in Australia. Firstly, seasonal variations in ER in the desert region (peak-to-peak 

amplitude = 0.66 PgC/yr) exceed GPP variations (amplitude = 0.46 PgC/yr). Beginning in March and extending through the 

autumn and winter period, ER declines more rapidly than GPP resulting in enhanced carbon uptake during this period. 400 

Secondly, in the savanna region we observe a sharp response in ER following the end-of-dry-season rainfall events that 

exceed the response from GPP, resulting in a net carbon pulse to the atmosphere in the Oct-Dec period (fluxes from these 

regions are re-plotted in Figure A5 to enhance interpretability). The interaction between these two processes likely explains 

most of the seasonal variation in Australia’s terrestrial carbon cycle, and is responsible for peak carbon uptake in Australia 

occurring in the autumn-winter months, while the carbon sink tends to be weakest during the Oct-Dec period.   405 

We found that the largest discrepancies between products also occurs in the desert region (Fig. 10a). The LSMs, 

FLUXCOM-Met, GOSIF, and this study all report GPP peaking in February-March, with the nadir of GPP occurring during 

the May-Sept period (Fig. 9b). On the other hand, MODIS-GPP and FLUXCOM-RS show an inverted climatology to the 

other products that are unlikely to be accurate given the monsoonal climate drivers in the region with >70 % of the typical 

annual median rainfall falling between November and April (Bowman et al., 2010). The CABLE-POP model appeared to 410 

significantly underestimate both GPP and ER in desert regions (Fig. 10b-c). This may explain why the Australia-wide 

seasonal NEE curve from CABLE-POP (Fig. 10g) does not align with the results of this study despite a similar spatial 

pattern in the month-of-maximum NEE flux plot (Fig. A4).  The desert and savanna regions typically contribute the most to 

annual fluxes in other products, but CABLE-POP's NEE fluxes are comparatively more influenced by the savanna and 

tropical regions. This is most likely due to CABLE-POP’s representation of vegetation cover fractions over inland Australia 415 

which show the desert region as entirely bare (Teckentrup et al., 2021).  FLUXCOM-RS follows a similar trajectory in the 

Australia-wide NEE to that of our estimate, though with considerably less seasonal amplitude (Fig. 10g). Examining the 

bioclimatic zones, we see that this is mainly due to an incorrect GPP seasonal cycle in the desert region, combined with a 

very low amplitude in the seasonal cycle of ER in the desert (Fig. 10c).  The seasonal cycle of FLUXCOM-Met is markedly 

different from FLUXCOM-RS. The per-biome fluxes from FLUXCOM-Met appear more realistic than those FLUXCOM-420 

RS, but produce an inverted Australia-wide NEE seasonal cycle to our estimate (Fig. 10g). This is due to greater amplitude 

declines in seasonal GPP compared with ER, especially in the warm and cool temperate regions. 

3.5 Drivers of carbon flux anomalies 

As a simple means for interpreting the drivers of carbon flux anomalies, temporal Pearson correlations between carbon flux 

anomalies and climate anomalies (respective to 2003-2021 averages) for each bioclimatic zone were conducted (Table 2). 425 
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Correlations were calculated per-pixel and then averaged over the bioclimatic zone.  Caution in interpreting the results is 

warranted as the terrestrial carbon cycle is intrinsically complex, and nonlinear.  With that caveat: for GPP, ER, and NEE, 

cumulative rainfall anomalies almost universally correlate most strongly with carbon flux anomalies. In the case of NEE, 

across all bioclimatic regions monthly rainfall anomalies were insignificantly correlated. Yet, the cumulative rainfall 

anomalies proved to be the strongest correlate (where a cumulative rainfall surplus resulted in negative NEE anomalies i.e., 430 

greater carbon uptake). In the case of the desert region, correlations of monthly rainfall anomalies jumped from a statistically 

insignificant r-value of -0.08 to a strong significant correlation of -0.50 for six-month cumulative rainfall anomalies (Table 

2), similar scores were found for the savanna region. Correlations for non-lagged monthly rainfall anomalies in the savanna 

and desert regions were both much higher for ER than for GPP, suggesting ER responds more quickly to wetting than GPP 

in the arid and semi-arid regions of Australia.   435 

4. Discussion 

Our estimate of the long-term annual mean carbon sink over Australia (-0.44 PgC/yr) is higher than those reported by any 

study besides the regional OCO-2 inversion (-0.47 PgC/yr).  We found evidence that Australia is, on average, a stronger 

annual carbon sink than previous CABLE LSM and FLUXCOM estimates have concluded: the consilience between our 

estimate of the mean sink and the OCO-2 inversion; the fact that 25 out of the 29 OzFlux EC sites used here report strong 440 

annual mean carbon sinks (Figure A7), and the theoretical argument that ML predictions tend to produce good estimates of 

the mean. Although upscaling uncertainties are present, our efforts to characterise a significant portion of the empirical 

uncertainty indicate that Australia's status as a comparatively strong net carbon sink holds up. 

Carbon flux anomalies show better agreement between diverse methods, with our estimate, CABLE-BIOS3, and the 

GOSAT Inversion all largely agreeing on the timing and magnitude of NEE anomalies. The largest annual anomaly, the 445 

2010-11 La Niña anomaly of -0.70 PgC/year reported here (based on a 12-month rolling mean) also aligns well with the -

0.77 PgC reported by Ma et al. (2016) and the -0.79 PgC anomaly reported by Poulter et al. (2014). The OCO-2 Inversion, 

our study, CABLE-BIOS3, and the GOSAT-Inversion also converge on a NEE IAV of ~0.2 PgC/yr (the range among these 

products is 0.18 to 0.26 PgC/year). Cross-validation showed that our predictions generally underestimate large NEE fluxes 

(both positive and negative fluxes, Fig. 3). Thus, it is fair to assume that the inter-annual (and seasonal) variability in NEE 450 

should be larger than the estimate reported by this study, and perhaps the larger variability of the inversions is closer to the 

truth. This study is consistent with other studies in showing NEE anomalies in Australia are driven by a greater response of 

GPP over ER to anomalous rainfall periods (Ahlström et al., 2015; Ma et al., 2016; Poulter et al., 2014; Haverd et al., 2016; 

Trudinger et al., 2016; Teckentrup et al., 2021; Fig. 9).  This is especially the case where rainfall anomalies are cumulative.  

 455 
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Table 2.  Temporal Pearson correlations between carbon flux anomalies, climate anomalies, and kNDVI anomalies. Every flux and 

climate variable anomaly are based on a 2003-2021 baseline. The highest correlation for each flux and bioclimatic zone is shown in 

bold (for the climate variables only, kNDVI correlations are ignored), and the colour scheme indicates the strength of the 

correlations ranging from -1 (blue) to 1 (red).  460 

 
  Bioclimatic region 

Flux Variable Tropics Savanna Warm Temperate Cool Temperate Mediterranean Desert 

GPP 

Rainfall 0.17 0.27 0.21 0.15 0.25 0.39 

Rainfall Cml-3 0.28 0.46 0.51 0.41 0.48 0.66 

Rainfall Cml-6 0.33 0.54 0.57 0.47 0.57 0.78 

Rainfall Cml-12 0.26 0.59 0.50 0.44 0.52 0.74 

Air Temp. -0.01 -0.36 -0.25 -0.11 -0.23 -0.36 

Solar Rad. -0.23 -0.43 -0.28 -0.16 -0.29 -0.45 

kNDVI 0.86 0.88 0.88 0.81 0.84 0.80 

ER 

Rainfall 0.45 0.49 0.54 0.45 0.60 0.55 

Rainfall Cml-3 0.39 0.54 0.67 0.58 0.69 0.68 

Rainfall Cml-6 0.38 0.62 0.67 0.59 0.72 0.78 

Rainfall Cml-12 0.22 0.63 0.60 0.56 0.68 0.79 

Air Temp. 0.07 -0.31 -0.17 0.06 -0.14 -0.28 

Solar Rad. -0.52 -0.59 -0.56 -0.38 -0.55 -0.54 

kNDVI 0.68 0.78 0.81 0.69 0.71 0.75 

NEE 

Rainfall 0.12 -0.02 0.09 0.05 0.07 -0.08 

Rainfall Cml-3 -0.13 -0.31 -0.30 -0.23 -0.22 -0.42 

Rainfall Cml-6 -0.25 -0.40 -0.41 -0.33 -0.32 -0.50 

Rainfall Cml-12 -0.34 -0.49 -0.36 -0.29 -0.30 -0.41 

Air Temp. 0.15 0.35 0.31 0.25 0.28 0.44 

Solar Rad. -0.09 0.15 0.00 0.00 0.01 0.20 

kNDVI -0.69 -0.79 -0.70 -0.67 -0.68 -0.57 

 

 

The strong correlations between cumulative rainfall anomalies and NEE anomalies provides some additional support to the 

study of Cranko Page et al. (2022), who showed that the inclusion of rainfall lags increased the predictability of site-level 

NEE in Australia.  Australia contributes substantially to the IAV of the global terrestrial carbon sink, an important advantage 465 

of our high-resolution dataset is that it allows us to identify and monitor fine-resolution hotspots of IAV (maps showing 

greater detail are shown in Figure A8). Through future updating of this dataset, the ecosystems that play an outsized role in 
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controlling Australia’s mean carbon sink and contribute substantially to its IAV can begin to be systematically monitored for 

change. 

We have shown that climatological peak terrestrial carbon uptake in Australia occurs in the Austral autumn and 470 

winter months owing mostly to more rapid declines in rates of ER compared with GPP over the arid regions of Australia.  

Concomitant increases in ER during times of high GPP mean that periods of peak primary production do not necessarily 

coincide with peak carbon uptake on a seasonal basis.  This finding agrees with Renchon et al. (2018) at the Cumberland 

Plains EC flux tower site, where the forest was a CO2 sink in winter and a source in summer due to larger seasonal 

amplitudes in ER.  Similarly, Metz et al. (2023) found that seasonal rainfall in semi-arid regions after the dry season drives 475 

pulses of heterotrophic respiration that precede the GPP response, leading to net carbon uptake not beginning until March.  

Our results confirm that ER over the savanna region responds quickly to seasonal rainfall events at the end of the dry-season, 

while GPP responds more slowly resulting in carbon pulses to the atmosphere during the Oct-Dec period. Correspondingly, 

we also find non-lagged correlations between monthly rainfall climatologies and climatological ER stronger than those for 

GPP over the semi-arid regions of Australia (Fig. A6).  480 

 While our estimate shows substantial improvement over the existing empirical upscaling products covering 

Australia, the dataset can be improved in several ways.  More EC flux tower data can be incorporated into the training 

dataset as new sites come online and/or existing sites continue to retrieve data. New or improved feature layers can be 

incorporated as they become available (e.g., time-varying estimates of the percentages of trees, grass and bare). Finally, the 

dataset may be extended further back in time through the inclusion of other satellite missions such as Landsat and AVHRR. 485 

Regardless, the dataset provides a step-forward in our means for assessing the complex, seasonal, and interannual dynamics 

of Australia’s carbon cycle. 

5. Conclusions 

Despite the sparseness of Australia's comparatively small network of EC towers we show that regional empirical upscaling 

can improve considerably upon existing global upscaling products, outperform existing LSMs, perform similar to or better 490 

than other empirical GPP products, and replicate the dynamics of CO2 flux over Australia as estimated by two regional 

atmospheric inversions.  Our estimate suggests Australia was a strong carbon sink (2003-2022 average) with an annual mean 

uptake of -0.44 (0.42) PgC/year, has an IAV of 0.18 PgC/year, and an average seasonal amplitude of 0.85 PgC/yr.  Estimates 

of the annual mean carbon uptake from other methods varied considerably, and only our study and the OCO-2 inversion 

agreed. However, carbon flux anomalies showed much better agreement between methods. NEE anomalies were 495 

predominately driven by cumulative rainfall deficits and surpluses, resulting in larger anomalous responses from GPP over 

ER.  In contrast, the long-term average seasonal cycle is dictated more by the variability in ER than GPP, resulting in peak 

carbon uptake typically occurring during the cooler, drier Austral autumn and winter months.  Our new estimates of 

Australia’s terrestrial carbon cycle fluxes improve upon our understanding of the magnitudes, seasonal cycles, and processes 
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governing Australia’s terrestrial carbon cycle and provides a new benchmark for assessment against future LSM 500 

developments, and a means for high-resolution monitoring of Australia’s terrestrial carbon cycle. 

Appendix A: Figures 

 
Figure A1. Locations of ‘OzFlux’ eddy covariance flux tower sites used in this study. The table on the right lists some key climate 

features of each site, such as the annual mean rainfall total, annual mean temperature, its elevation above sea level, and the 505 
average monthly kNDVI of the site. The ‘stamen’ basemap is provided by OpenStreetMap. 
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 510 
Figure A2. Climatological seasonal cycles of NEE for each EC flux tower site used in this study, plotted along with the seasonal 

cycle of the predictions from the nearest pixel to the tower.  

 

 

 515 

 

 

 

 

 520 
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Figure A3. Scatter plots of modelled vs EC flux tower monthly carbon fluxes for a suite of products.  The EC tower flux values are 

compared with the nearest pixel in each product, and the products have been kept in their native resolution. Only those products 525 
with a reasonably high spatial resolution have been compared with the flux tower (i.e., 1-degree resolution CABLE-POP and the 

OCO-2 Inversion have been excluded from these plots). 

https://doi.org/10.5194/egusphere-2023-1057
Preprint. Discussion started: 5 June 2023
c© Author(s) 2023. CC BY 4.0 License.



27 

 

 

 
Figure A4. Climatological month of maximum flux plots.  In the case of NEE (b), the pixels show the month of the most negative 530 
value (i.e. largest carbon sink). Climatologies are calculated from 2003 and extend to the full length of the available time-series for 

each product, indicated in the subtitle of each plot. 
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Figure A5.  (a) Flux climatologies for the Savanna and Desert region, showing the same results as those in Figure 10, but shown on 

single plot to enhance interpretability. (b) NEE per bioclimatic region calculated by subtracting GPP from ER (i.e., not directly 535 
modelled), presented here to show how the fluxes interact to produce NEE.  

 
 

 

Figure A6.  Per pixel temporal Pearson correlations between ER climatologies and rainfall climatologies. 540 
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Figure A7. Boxplots of annual cumulative NEE for each of the sites used in the empirical upscaling. 

 545 

Figure A8. Maps of annual mean NEE and standard deviation in annual mean NEE zoomed in on three regions to show the 

landscape features resolved by a high-resolution (1km) dataset of NEE.  The top three panels show a region in central Queensland 

that extends from the episodic rivers in the south-east (e.g., Coopers Creek), to Townsville in the north west.  Panel (c) shows a 

true colour satellite image (sourced from Esri World Imagery), panel (a) shows the long-term annual mean, and (b) shows the 

standard deviation in the annual means.  Panels d-f show the same but for south-east Australia extending from Adelaide in the 550 
west to Mallacoota in the east. Panels g-f show the same but for south-west Western Australia.  
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Code Availability. 

The code used to conduct all analysis shown in this manuscript is available on the open-source repository: 

https://github.com/cbur24/NEE_modelling 

Data Availability. 555 

The surface gridded carbon fluxes are available from the Zenodo repository at: https://doi.org/10.5281/zenodo.7947265. 

These fluxes have been resampled to a 5 km grid to facilitate easier uploading and sharing. Full resolution datasets can be 

provided on request. 
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