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Abstract. We develop high resolution (1 km) estimates of Gross Primary Productivity (GPP), Ecosystem Respiration (ER) 

and Net Ecosystem Exchange (NEE) over the Australian continent for the period January 2003 to June 2022 by empirical 15 

upscaling of flux tower measurements. We compare our estimates with nine other products that cover the three broad categories 

that define current methods for estimating the terrestrial carbon cycle and assess if consiliences between datasets can point to 

the correct dynamics of Australia’s carbon cycle.  Our results indicate that regional empirical upscaling greatly improves upon 

the existing global empirical upscaling efforts, outperforms process-based models, and agrees much better with the dynamics 

of CO2 flux over Australia as estimated by two regional atmospheric inversions.  Our nearly 20-year estimates of terrestrial 20 

carbon fluxes revealed Australia is a strong net carbon sink of -0.44 (IQR=0.42) PgC/year on-average, with an inter-annual 

variability of 0.18 PgC/year and an average seasonal amplitude of 0.85 PgC/yr.  Annual mean carbon uptake estimated from 

other methods ranged considerably, while carbon flux anomalies showed much better agreement between methods. NEE 

anomalies were predominately driven by cumulative rainfall deficits and surpluses, resulting in larger anomalous responses 

from GPP over ER.  In contrast, we show that the long-term average seasonal cycle is dictated more by the variability in ER 25 

than GPP, resulting in peak carbon uptake typically occurring during the cooler, drier Austral autumn, and winter months.  

This new estimate of Australia’s terrestrial carbon cycle provides a benchmark for assessment against Land Surface Model 

simulations, and a means for monitoring of Australia’s terrestrial carbon cycle at an unprecedented high-resolution.  We call 

this new estimate of Australia’s terrestrial carbon cycle, “AusEFlux” (Australian Empirical Fluxes). 

1. Introduction 30 

The global terrestrial biosphere has acted as a net carbon sink, absorbing approximately 29 % of anthropogenic CO2 emissions 

each year and thereby mitigating impacts from global warming (Friedlingstein et al., 2022). Australia’s vast semi-arid 
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ecosystems play a large and critical role in controlling the inter-annual variability (IAV) of the global terrestrial carbon sink, 

and are therefore of crucial importance to understand if we are to make reliable predictions about the fate of the global carbon 

cycle under a warming climate (Ahlström et al., 2015; Chen et al., 2017; Ma et al., 2016; Poulter et al., 2014; Metz et al., 35 

2023). However, uncertainties in the methods used for quantifying components of the terrestrial biosphere preclude definitive 

inferences about the magnitude of Australia’s terrestrial carbon sink, the seasonal and inter-annual oscillations, and the drivers 

of change in carbon flux variability.  

Several methods exist to quantify the spatio-temporal dynamics of the terrestrial carbon cycle. Dynamic Global 

Vegetation Models (DGVMs) and Land Surface Models (LSMs) simulate responses of vegetation to changes in climate by 40 

parameterising ecological processes but are limited by several uncertainties that relate to their parametrisations and limited 

inclusion of key ecological processes (Kowalczyk et al., 2006; Li et al., 2021; Quillet et al., 2010).  Uncertainties in these 

models can lead to large differences in land carbon flux estimates, even where similar models are used (Teckentrup et al., 

2021). For example, over a 17-year period from 2003 to 2019, the Community Atmosphere Biosphere Land Exchange 

(CABLE) model extracted from TRENDY v10 estimates Australia’s annual mean GPP to be 3.01 PgC/yr (Friedlingstein et 45 

al., 2022) while a regionally forced CABLE run (covering the same period) using a similar model configuration estimates GPP 

to be greater than 50 % higher at 4.58 PgC/yr (Villalobos et al., 2022).  

Atmospheric inversion methods, which rely upon atmospheric CO2 measurements and an atmospheric transport 

model, provide a semi-empirical method for quantifying aspects of the carbon cycle, but their capacity to spatially resolve CO2 

fluxes is severely constrained by the sparse observational network of measuring sites (51 sites globally, with only four locations 50 

in Australia) (Rödenbeck et al., 2018). Satellite-based remote sensing of atmospheric CO2 has become possible using the 

Greenhouse Gas Observing Satellite (GOSAT) and the Orbiting Carbon Observatory (OCO-2 and OCO-3) satellites (Basu et 

al., 2013; Eldering et al., 2017).  This allows for spatially comprehensive monitoring of CO2 sources and sinks over continental 

to global scales.  Several global inversion studies have incorporated these datasets, but results over Australia have been 

contradictory (Basu et al., 2013; Chevallier et al., 2014; Detmers et al., 2015). Villalobos et al. (2022) conducted a regional 55 

atmospheric inversion over Australia assimilated with OCO-2 data to infer a gridded estimate (~81 km cells) of NEE for 2015-

2019.  They found Australia was a strong annual carbon sink (-0.47 PgC/yr) on average, and that peak carbon uptake occurred 

during the cooler, drier months of the austral winter.  Similarly, using an atmospheric inversion of GOSAT satellite 

measurements, Metz et al. (2023) found that Australia’s seasonal CO2 flux variability coincided with the onset of rainfall after 

the dry season, leading to CO2 flux releases during the October-December period, and carbon uptake occurring during the drier 60 

March-September period.  These studies provided valuable insight into the dynamics of Australia’s terrestrial carbon cycle, 

but their very coarse spatial resolution prevents these approaches from resolving spatially detailed estimates of Australia’s 

carbon cycle. 

A third approach relies on data-driven machine learning (ML) methods to upscale eddy covariance (EC) 

micrometeorological tower data from global networks of long‐term carbon and water flux measurement sites.  This approach 65 

has the advantage of relying on a denser network of empirical observations than the atmospheric inversion approaches (for 
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example, the popular FLUXNET2015 dataset contains 206 sites (Pastorello et al., 2020)).  Another advantage of data-driven 

ML approaches is their ability to accurately model highly nonlinear relationships to explanatory variables, as is common in 

complex environmental systems. Nevertheless, the results of global empirical upscaling products, most notably FLUXCOM 

(Jung et al., 2020; Tramontana et al., 2016), are prone to several limitations, including: significantly underestimating the 70 

magnitude of the IAV of carbon fluxes, an inability to resolve carbon flux trends (e.g. from CO2 fertilisation), and 

overestimating the size of the tropical carbon sink (Jung et al., 2020). The global FLUXNET2015 dataset is also biased to the 

northern hemisphere, which may preclude global upscaling products from making quality predictions in regions that are both 

underrepresented in the training data, and do not overly conform to northern hemisphere climate dynamics (Baldocchi et al., 

2018; Baldocchi, 2020). Over Australia, two FLUXCOM products: ‘FLUXCOM-Met’ and FLUXCOM-RS’, show 75 

substantially different mean annual NEE fluxes of -0.23 and -0.05 PgC/yr, respectively (averaged over the period 2003-2015). 

Furthermore, the annual mean GPP and ER components show a > 60 % difference in magnitude between the two products.  

IAV of NEE, as estimated by one standard deviation in the fluxes, is also subdued compared with estimates from LSMs and 

atmospheric inversions.  

This lack of agreement between the different approaches to quantifying Australia’s land carbon sinks and sources calls 80 

into question how well constrained the magnitudes, IAV, temporal trends, and spatial allocations of Australia’s land carbon 

fluxes are.  Here we explore the potential for empirical upscaling of the regional “OzFlux” eddy covariance network (Isaac et 

al., 2017; Beringer et al., 2016; Beringer et al., 2022) to better characterise Australia’s terrestrial carbon cycle.  Models built 

on global datasets (and with a strong northern hemisphere bias) will necessarily need to generalise across vastly different 

climates, ecosystem types, and plant functional traits, limiting their ability to accurately represent ecosystem dynamics in 85 

regions where ecosystem responses do not conform to the dominant dynamics in the global dataset. This may especially be the 

case in Australia where extreme climate variability and evolutionary isolation have created sclerophyllous, evergreen, woody 

species that do not fit into standard globally predominant plant functional types used by LSMs (Beringer et al., 2016; Beringer 

et al., 2022; Williams and Woinarski, 1997).  Furthermore, Australia’s data record of EC flux tower measurements has grown 

substantially in the intervening years since the inception of the commonly used FLUXNET2015 training dataset.  For example, 90 

the FLUXCOM product included data from only four EC flux towers over Australia (~43 site-years of data), and the current 

FLUXNET2015 dataset contains 23 sites equating to ~115 site years of Australian data.  Contrast this with the full OzFlux 

dataset over Australia which, as of January 2022, contains 33 sites and 238 site-years of data.  These later years of EC flux 

tower measurements since 2015 are especially valuable given they have recorded a period of extreme climate variability in 

Australia such as the historic drought from 2017-2019 (Fang et al., 2021) culminating in the Black Summer bushfires (Byrne 95 

et al., 2021), and the subsequent triple La Niña with record breaking rainfall in eastern Australia from 2020-2023.  A further 

advantage of upscaling fluxes at a regional scale is the ability to take advantage of higher-resolution input datasets than is 

tractable at the global scale, both due to the unavailability and uncertainty of global high-resolution datasets and the 

computational constraints that attend global upscaling.  

Our objectives for this study are as follows: 100 
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• Develop an accurate, high-resolution (~1 km) empirical upscaling of Net Ecosystem Exchange (NEE), Ecosystem 

Respiration (ER), and Gross Primary Productivity (GPP) for Australia covering the period January 2003 to June 2022. 

• Evaluate our empirical upscaling of Australian flux data in comparison with LSM, inversion-derived, and global 

empirical upscaling estimates of the carbon cycle with the aim of identifying consiliences between datasets that may 

point to the correct dynamics of Australia’s terrestrial carbon cycle. 105 

• Assess if the upscaling approach can offer new insights into Australia’s carbon cycle, and/or affirm if the upscaling 

can replicate known biogeochemical controls on the carbon cycle. 

2. Data & Methods 

2.1 Data 

2.1.1 CO2 flux tower data 110 

We used monthly fluxes of NEE, GPP, and ER produced by the OzFlux (https://ozflux.org.au/) regional network of eddy 

covariance flux towers. These data are processed to Level 6 and are freely accessible through the Terrestrial Ecosystem 

Research Network THREDDS portal (https://dap.tern.org.au/thredds/catalog/ecosystem_process/ozflux/catalog.html  (TERN, 

2023). All site data used in this study was version “2022_v2”, and in instances where both “site-pi” and “default” versions of 

the datasets were available, we utilised the “default” datasets.   Twenty-nine of the 33 freely available sites were selected. The 115 

four sites that were excluded showed strong landscape heterogeneity within the flux tower footprint, insufficient temporal 

duration, or non-representative landcover (e.g., almond farms).  A summary of the selected sites and their locations is shown 

in Figure A1. The Level 6 OzFlux data used in this study provides two separate estimates of constituent carbon fluxes derived 

from two methods for partitioning NEE into its component fluxes of GPP and ER. This study uses the ‘SOLO’ data version 

which is calculated using a data-driven nocturnal respiration approach for partitioning where respiration is modelled using an 120 

artificial neural network driven by air temperature, and soil temperature, and soil water content., and satellite-observed 

greenness (MODIS EVI) data (a full description of the SOLO partitioning method is provided within (Isaac et al., 2017)). We 

trained ML models with the flux data at a monthly temporal resolution using 2,825 monthly observations, equating to 235 site-

years. 

2.1.2 Gridded explanatory variables 125 

The variables in Table 1 were selected for inclusion in the modelling framework as they were considered to cover most of the 

expected climate and landscape controls on the terrestrial carbon cycle in Australia. All datasetsMODIS derived datasets were 

temporally resampled to monthly resolution using the mean of all clear observations within a given andmonth and reprojected 

onto a common 1-km x 1-km geographic grid for prediction using averaging resampling techniques.;  The static variables of 

landcover fractions and vegetation height were also resampled to 1 km resolution using the average of all pixels within a 1 km 130 

grid.  The 1 km grid was selected to match the coarsest native resolution explanatory variables, namely the climate datasets. 

The the training procedure uses data extracted from the same 1-km gridded data (using the pixel located over the EC tower).   

https://dap.tern.org.au/thredds/catalog/ecosystem_process/ozflux/catalog.html
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Table 1: Gridded feature layers used in the modelling framework to train and predict terrestrial carbon fluxes over Australia. 

Explanatory Variable 

(abbreviation) 

Description Data Source & 

Reference 

Land Surface Temp. (LST), A suite of MODIS derived products characterising the land 

surface responses to climate. In addition, fractional 

anomalies are calculated for the kNDVI variable to account 

for disturbances from fire or land-use change. Fractional 

anomalies are calculated against a long-term climatological 

mean from 2003-2021.    

MODIS Collections 

MCD43A4 & 

MOD11A1 (version 6.1) 

downloaded from 

Google Earth Engine: 

https://developers.google

.com/earth-

engine/datasets/catalog/

modis 

Normalised Difference Water Index 

(NDWI), 

Kernel Normalised Vegetation 

Index (kNDVI), 

Average Air Temp. (Tavg), ~1 km resolution gridded climate products based on 

topographically conditional spatial interpolation of 

Australia’s extensive network of weather stations. In 

addition, fractional anomalies are also calculated for all 

variables except VPD.  In addition to monthly fractional 

rainfall anomalies, three-, six-, and twelve-month cumulative 

fractional rainfall anomalies are added to help characterise 

memory and lag in the carbon response to water deficit. 

ANUClimate: 

https://dapds00.nci.org.a

u/thredds/catalogs/gh70/

catalog.html 

 

 (Hutchison et al., 2014) 

Vapour Pressure Deficit (VPD), 

Incoming Shortwave Radiation 

(srad), 

Total Precipitation (rain) 

LST minus Tavg 

(LST-Tair) 
 

The subtraction of air temperature from land surface 

temperature is indicative of vegetation canopy moisture 

stress 

Derived from MODIS 

LST and ANUClimate 

Tavg 

Fraction Trees (trees), Per-pixel fractions of trees, grass, and bare derived from 

temporal decompositions of MODIS NDVI into persistent 

and recurrent fractions. An estimate of the proportion of C4 

grass is also included. These variables are static and 

represent conditions in 2020. 

Correspondence 

 

 (Donohue, 2021) 

Fraction C4 grass (C4_grass), 

Fraction Grass (grass), 

Fraction Bare (bare), 

Vegetation Height (VegH) A per-pixel estimate of vegetation height in metres. This 

variable is static and represents the average vegetation height 

from 2007-2010.  

Accessible from 

https://dapds00.nci.org.a

u/thredds/catalog/ub8/au/

LandCover/OzWALD_L

C/catalog.html 

https://developers.google.com/earth-engine/datasets/catalog/modis
https://developers.google.com/earth-engine/datasets/catalog/modis
https://developers.google.com/earth-engine/datasets/catalog/modis
https://developers.google.com/earth-engine/datasets/catalog/modis
https://dapds00.nci.org.au/thredds/catalogs/gh70/catalog.html
https://dapds00.nci.org.au/thredds/catalogs/gh70/catalog.html
https://dapds00.nci.org.au/thredds/catalogs/gh70/catalog.html
https://dapds00.nci.org.au/thredds/catalog/ub8/au/LandCover/OzWALD_LC/catalog.html
https://dapds00.nci.org.au/thredds/catalog/ub8/au/LandCover/OzWALD_LC/catalog.html
https://dapds00.nci.org.au/thredds/catalog/ub8/au/LandCover/OzWALD_LC/catalog.html
https://dapds00.nci.org.au/thredds/catalog/ub8/au/LandCover/OzWALD_LC/catalog.html
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 (Liao et al., 2020) 

 

2.1.3 Comparison datasets 

Datasets included for comparative purposes cover the three current categories of methods for estimating the exchange of 

terrestrial carbon with the atmosphere: process-based models, empirical upscaling of eddy covariance data, and atmospheric 140 

inversions. Observation-based GPP products derived from light-use-efficiency methods and solar-induced fluorescence are 

also included for completeness. Where possible, datasets are processed and plotted in their native resolutions to avoid 

introducing errors from spatially resampling finer-resolution datasets to very coarse resolutions (or vice-versa). The exceptions 

to this are the higher-resolution MODIS-GPP and DIFFUSE-GPP products (described below) which were resampled to 1 km 

resolutions to match the resolutions of our ML upscaling product. A summary table of all the comparison datasets is available 145 

in the appendix (Table A1). 

2.1.3.1 Process-model simulations 

We compared our results with two runs of the CABLE model. The first was a regional, fine resolution (0.25⁰) offline run forced 

by Australian regional climate drivers that follows the protocol from Haverd et al. (2018) but with land use remaining static at 

the year 2000 (hereafter referred to as CABLE-BIOS3).  CABLE-BIOS3 net biosphere production (NBP) includes GPP and 150 

autotrophic and heterotrophic respiration, but does not include fire disturbances, harvest, erosion or export of carbon through 

rivers (a fuller description of the set-up is outlined in Villalobos et al. (2022)).  A second CABLE run was extracted from the 

TRENDY v10 ensemble (Friedlingstein et al., 2022), hereafter referred to as CABLE-POP. This dataset has a spatial resolution 

of 1⁰, is forced by global climate data and NBP includes additional fluxes from fire emissions and land use change.  

2.1.3.2 FLUXCOM 155 

Our regional ML upscaling product is compared with the well-known global ML upscaling product, FLUXCOM (Jung et al., 

2020; Tramontana et al., 2016).  FLUXCOM is built using similar machine learning methods to those used in this study, though 

trained on the global FLUXNET2015 dataset. Two products are available, FLUXCOM-RS was trained exclusively on MODIS 

remote sensing data, and FLUXCOM-RS+METEO (FLUXCOM-Met hereafter) which is trained on climate reanalysis data 

and climatological remote sensing data (Jung et al., 2020).  For FLUXCOM-Met, we use the multi-model mean of the ERA5-160 

based product. Both RS-METEO and RS products are assessed here and were downloaded at monthly temporal resolution 

from the Max Planck Institute for Biogeochemistry (https://www.bgc-jena.mpg.de/geodb/projects/Home.php, last access 

13/01/2023). 
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2.1.3.3 Atmospheric Inversions  

A regional inverse modelling product, produced by Villalobos et al. (2022) was included for comparison as it provides a wholly 165 

independent measure of NEE.  This regional inversion estimates carbon fluxes over the Australian continent from 2015-2019 

by assimilating of carbon-dioxide measurements from the Orbiting Carbon Observatory-2 (OCO-2) satellite. The product is 

provided at ~81 km spatial resolution and monthly temporal resolution (available for download from 

https://zenodo.org/record/6649768). NEE in this dataset includes fire emissions and fossil fuel emissions, so to facilitate better 

comparisons fossil fuel emissions were subtracted from the NEE time-series.  A second regional satellite-assimilated 170 

atmospheric inversion from  Metz et al. (2023) is also included. This timeseries represents the spatially averaged net flux of 

CO2 over the Australian TRANSCOM region (which includes New Zealand). Therefore, the time-series is only shown where 

Australian-wide spatially averaged time-series are plotted, and some differences between time-series may be attributable to 

the inclusion of the New Zealand land mass in the estimate.  

2.1.3.4 Observation-based GPP products 175 

We compare our GPP estimates with a suite of observation-based GPP products: the MODIS Terra GPP product 

(MOD17A2H), based on a per-biome light-use efficiency approach (Running et al., 2015); the GOSIF GPP product, generated 

through a data-driven approach based on OCO-2 SIF soundings, MODIS remote sensing data, and meteorological reanalysis 

data (Li and Xiao, 2019); and DIFFUSE GPP which is based on total and diffuse irradiance and the fraction of shortwave 

irradiance absorbed by foliage (Donohue et al., 2014).  All datasets are averaged to monthly temporal resolution, and MODIS-180 

GPP and DIFFUSE-GPP are spatial resampled to 1-km grid cells by averaging the 250 m pixels within each 1 km pixel grid.   

2.1.4 Fire emissions 

Fire emissions were added to our estimates of NEE from the Global Fire Assimilation System version 12 (GFASv12) (Kaiser 

et al., 2012). Daily fire emissions are temporally resampled to monthly totals by summing daily values. 

2.1.5 Bioclimatic regions 185 

Bioclimatic regions used for separating fluxes into specific ecosystems were identical to those defined in Haverd et al. (2013) 

and include six bioclimatic classes: tropics, savanna, warm temperate, cool temperate, Mediterranean, and desert (Fig. 9a). 

2.2 Methods 

2.2.1 Empirical ML upscaling 

The most common ML models implemented in the literature on empirical upscaling of EC data are random forest regression, 190 

support vector regression, model tree ensembles, piecewise regression models, and artificial neural networks (Verrelst et al., 

2015). Random forest (RF) regression has proven itself to be the go-to model for many remote sensing-based studies owing to 

https://zenodo.org/record/6649768
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its high accuracy, robustness to over-fitting, scalability, and easy to configure hyperparameters (Belgiu and Drăguţ, 2016).  In 

recent years, gradient-boosting decision tree (GBDT) learning algorithms have also proven to be highly accurate and robust to 

overfitting (Chen and Guestrin, 2016; Wei et al., 2019).  Here, rather than rely on any one ML method, we rely on both RF 195 

and GBDT methods to develop an ensemble of predictions. 

Beyond the ML algorithm used, there are numerous other sources of uncertainty associated with the empirical 

upscaling of EC flux tower data.  Epistemic uncertainties arise from the limitations of the training data (e.g., biases in the 

locations sampled), and uncertainties in the features used for training, as well as the hyperparameters used during model 

optimisation.  In addition to these reducible (or at least quantifiable) epistemic uncertainties, aleatoric uncertainties arise from 200 

the uncertainties of the eddy covariance measurements themselves (Isaac et al., 2017), along with the non-deterministic 

dependencies between variables (Hüllermeier and Waegeman, 2021). Here we attempt to account for a portion of the empirical 

uncertainty by iterating the training data and the models used for fitting.  During model fitting, two randomly selected EC sites 

are removed from the training data and both a GBDT model (from the python package LightGBM (Ke et al., 2017)) and a RF 

model are fit on the remaining data (hyperparameter optimization is conducted on every fit using a random grid search 205 

technique with 250 iterations). The reason we selected two sites to remove per iteration was because we felt it balanced the 

need to significantly alter the training dataset per iteration, while not overly degrading the quality of the model by removing 

too much data.  This procedure is repeated 15 times to increase the likelihood of every site being removed from the training 

dataset, resulting in 30 unique models.  These 30 models are used to generate 30 gridded estimates for each of the variables 

modelled (GPP, ER, and NEE).  In the results that follow, we report the interquartile range of these 30 predictions as our 210 

envelope of uncertainty, and the ‘best-estimate’ as the median of the ensemble predictions. 

The overall modelling framework is summarised in Figure 1.  Each flux is independently modelled, and therefore 

there is no inherent exact mass balance between GPP-ER and NEE. The same predictor variables were used for modelling 

each flux, so the resulting products originate from a consistent set of drivers. All processing and modelling steps described in 

the method sections have been thoroughly documented within a series of Jupyter Notebooks, available with the assets of this 215 

paper. 
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Figure 1: A flow chart showing the modelling framework for creating gridded estimates of GPP, ER, and NEE for the Australian 

continent. 220 

2.2.2 Model evaluation 

The accuracy of each ML model in the ensemble was assessed using a nested, time-series-split cross-validation approach (Fig. 

2).  This approach ensured minimal data leakage between training and testing sets, while still allowing the algorithm to ‘see’ 

all the sites during training; a desirable feature in the cross-validation technique due to the relatively limited number of sites 

(n=29), with some ecosystems sampled by only one or two flux towers (e.g., alpine regions, cereal cropping).  Five outer cross-225 

validation splits are performed, with each split containing 20 % test data from every site (as a discrete length of time equal to 

20% of the total length of the dataset; i.e if a site contained 10 years of data, then testing was conducted on five iterations of 

two-year continuous periods), while the remaining 80 % of the data is used for training.  Five ‘inner’ cross-validation splits 

were conducted to optimise the hyperparameter selection for the outer loop. Using a nested approach to cross-validation 

prevents using the same data to tune model parameters as the model is tested on, and thus prevents creating overly optimistic 230 

cross-validation scores (Cawley and Talbot, 2010). Across the five outer cross-validation splits, all samples in the dataset were 

tested.  Mean Absolute Error (MAE) and the coefficient of determination (R2) are reported to assess the accuracy of the fit for 

each of the variables modelled.  The cross-validation scores reported in the results section summarise the train-test splits of all 

30 model fits.  Throughout the remainder we use the terms ‘observed’ and ‘predicted’ to refer to in-situ measurements from 

EC towers and the predictions, respectively. We also use the convention of negative NEE values referring to net carbon uptake 235 

by the land surface. 
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Figure 2: A schematic representation of a single cross-validation split using a nested, time-series cross-validation procedure.  Five 

outer splits and five inner splits were conducted per model iteration. For each split, models are trained on data from every site 240 
included in that model iteration (i.e., 80 % of every site) and tested on a continuous period for every site (i.e., 20 % of each site). For 

each subsequent split, the test period is moved forward in time. 

In addition to evaluating the overall predictive capacity using temporal cross-validation, we also perform an 

intercomparison between the results of this study and similar products covering Australia. This is performed through scatter 

plots of modelled vs observed fluxes for several products (statistics for comparison are MAE and r2 – the square of Pearson’s 245 

correlation), through comparison of the mean seasonal cycles disaggregated by bioclimatic region, and through the assessment 

of annual anomalies.  It is important to note that NEE calculated through empirical upscaling of EC flux tower data is 

conceptually distinct from inversion-based NEE and process-model NBP.  The addition of fire-emissions to our estimates of 

NEE narrows the conceptual distance between the estimates, and where a conceptual difference still applies, we contend that 

fluxes from other sources are unlikely to be large enough to warrant the additional complexity of their inclusion.  250 

3. Results 

3.1 Cross-validation performance 

Temporal cross-validation results revealed a comparatively high degree of agreement between observations and predictions 

(Fig. 3).  As for other regional and global upscaling products, GPP and ER were predicted with better skill than NEE. GPP 

scored a R2 = 0.91 and MAE = 19.4 gC/m2/month. For ER, R2 = 0.89 and MAE = 15.8 gC/m2/month, while for NEE, R2 = 0.68 255 

and MAE = 17.9 gC/m2/month.  To understand how well the predictions reproduce annual mean fluxes, and the per-biome 

predictability of fluxes, we produced scatter plots comparing the annual mean fluxes of the EC flux tower sites with the annual 

mean fluxes of the median of the prediction ensemble (Fig. 3d-f).  Regardless of biome, annual mean fluxes were exceptionally 

well reproduced by the median of the ensemble with the ‘all-data’ fit closely matching the one-to-one line. The climatological 

seasonal cycles of NEE at each of the EC sites were also very well reproduced (Fig. A2).   260 
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Figure 3.  Pooled temporal cross-validation results for EC flux tower sites: scatter plots of observed and predicted monthly (a) GPP, 

(b) ER and (c) NEE, with heat colours indicating data density; and scatter plots of observed and predicted annual mean (d) GPP, 

(e) ER, and (f) NEE, with colour coding indicating bioclimatic regions, as shown in Figure 9a. 265 

 

Scatter plots showing the trend and strength of the relationships between EC flux tower observations and modelled 

values for other products can be found in the Appendices (Fig. A3). The EC flux tower values are compared with the nearest 

pixel in each product, and the products have been kept in their native resolutionhave been reprojected to match the resolution 

of CABLE-BIOS3 (~25 km). This means there may be some bias to products with a higher spatial resolution, but errors 270 

introduced from resampling are avoided. Only those products with a reasonably high spatial resolution have been compared 

with the flux tower (i.e., 1⁰ resolution CABLE-POP, FLUXCOM-Met, and the OCO-2 inversion have been excluded), and 

comparisons were only made for periods where all included products have data.  Most products perform reasonably well at 

predicting GPP (Fig. A3a-f). Typically, products show an overestimation of small GPP and ER values, and an underestimation 

of large values, except for CABLE-BIOS3’s which overestimates GPP and ER across the distribution. CABLE-BIOS3’s 275 

estimates of NEE showed almost no correlation with EC flux tower observations, recording a r2 of 0.04 (Fig. A3j). The 

FLUXCOM NEE products performed considerably worse than the cross-validation scores reported in this study (Fig. A3k-l). 
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3.2 Feature importance 

To understand which explanatory variables most impacted flux predictions, feature importance plots were produced using the 

Shapley Additive Explanations (SHAP) Python library (Lundberg & Lee, 2017). Shapley values represents the average 280 

marginal contribution of a feature value across all possible coalitions (Lundberg et al., 2020).  The feature importance bar plots 

of Figure 4 show the top five ranked features for each modelled flux, ranked in descending order with the most important 

variables at the top. These plots were derived by calculating the mean absolute SHAP values for each feature in each model 

iteration, and subsequently averaging those values across all the models in the ensemble. Flux predictions were strongly 

influenced by the remote sensing variables of kNDVI and NDWI which respond to canopy density, health, and water status. 285 

Solar radiation and average air temperature were the most important climate variable across the fluxes. The land cover variables 

of vegetation height and fraction of trees also proved important for flux predictions. 

 

 

Figure 4. Shapley additive explanation (SHAP) feature importance plots. (a) GPP, (b) ER, (c) NEE. The plots summarise feature 290 
importance across all models in the ensemble by first calculating mean absolute SHAP values for each feature in each model, and 

then averaging those values across all the models in the ensemble.  The error bars show the 95 % confidence interval.   

 

SHAP dependence plots for kNDVI along with the four principal climate drivers in the model (temperature, rainfall, 

solar radiation, and VPD) aid in the interpretation of feature importance (Fig. 5; these plots were created using a single 295 

optimised GDBT model fit on all the training data).  In these plots, the feature values are plotted against their corresponding 

SHAP values, and the dots are coloured by, in the case of the climate drivers, kNDVI, and in the case of kNDVI, by the values 

of the feature that has the strongest interaction effect with kNDVI.  A strong interaction between two variables produces a 

distinct vertical colour gradient.  The dependency plots for the climate features are coloured by kNDVI as it aids in 

approximately disaggregating the influence of climate on carbon fluxes between the wetter, cooler, and high kNDVI coastal 300 

fringe regions of the Australian continent from the drier, warmer, lower kNDVI regions of Australia’s (semi) arid interior. In 

the dependence plot for kNDVI (Fig. 5a), solar radiation shows a clear interaction effect. Where kNDVI is low (< ~0.2), 

increasing solar radiation produces predictions of GPP that are relatively lower than in regions with higher kNDVI.  Solar 

radiation was the third most important feature in the prediction of GPP (Fig. 4a), and high kNDVI regions had a greater light 

sensitivity than low kNDVI regions (Fig. 5b). 305 
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Figure 5. SHAP dependency scatter plots for kNDVI, along with the four principal climate features (solar radiation, air temperature, 

rainfall and VPD). In the case of (a,f,k) the SHAP values are coloured by the feature with the largest interaction effect, while the 

climate variable SHAP values are coloured by their interaction with kNDVI.  Note that the y-axis scale is different for each sub plot. 310 

 

Solar radiation and kNDVI were also key predictors for ER, following similar relationships as GPP, but the overall 

amplitude of increase is less (Fig. 5f & 5g).  ER also sees a greater influence from air temperature (Fig. 5h) and rainfall (Fig. 

5i) than GPP, where higher values of these variables increased predicted rates of ER.  In the case of air temperature, in areas 

of high kNDVI the rate of ER increase was greater than in low kNDVI regions.  Rates of ER respiration increase sharply with 315 

increased rainfall, but for low kNDVI, predictions of ER increase at a more rapid rate than for high kNDVI (Fig. 5i). 

Relationships between features and NEE predictions are more difficult to interpret given the likelihood of complex 

interaction effects when modelling the carbon balance (NEE) versus modelling only ER or GPP.  The most important features 

for the NEE predictions are kNDVI and NDWI, average air temperature, and solar radiation (Fig. 4c). Increasing solar radiation 

typically resulted in more negative NEE predictions (greater uptake of carbon) (Fig. 5l).  The rate of increase in carbon uptake 320 

under increasing solar radiation is lower where kNDVI is low, while regions of high kNDVI see a much greater sensitivity to 

increases in solar radiation.  Increasing air temperature tends to result in more positive NEE predictions (Fig. 5m), though the 

relationship does not follow a simple trajectory.  For high kNDVI, temperature increases at the highest end of the distribution 
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(>~25⁰C) result in a strong positive rate of change in NEE predictions (i.e., greater release of carbon). For very low kNDVI, 

temperature changes have a much more modest impact on NEE. 325 

3.3 Prediction uncertainties 

The coefficient of variation between the thirty ensemble members provides a spatial indication of uncertainty in CO2 flux 

predictions (Fig. 6). We use a non-standard definition of the coefficient of variation where the median absolute deviation 

between the long-term annual means of each ensemble member were divided by the median of the ensemble annual means, 

expressed as an absolute value. Both GPP and ER show comparatively low variability across predictions, where the greatest 330 

coefficient of variation values is found in the arid interior (Fig. 6a and 6b).  NEE shows stronger variation between ensemble 

members in some of the arid regions of the north-west, the savannah regions of western Queensland, and the agricultural 

regions of the Western Australian wheat belt and the Murray-Darling Basin (MDB) (Fig. 6c and 6d).  In the case of the arid 

and savanna regions, the uncertainty coincides with areas where annual mean NEE is close to zero, so small deviations in 

predictions can result in high relative uncertainty (refer to the annual mean flux map in Figure 8g).  However, in parts of the 335 

aforementioned agricultural regions, uncertainty is both high in relative and absolute terms (again refer to Figure 8g). This 

may be due several factors such as: the dearth of OzFlux towers in agricultural regions, the heterogeneity of crop types and 

agricultural practices that are likely not well represented by our feature layers, and the potential for large amounts of carbon 

to be laterally exported out of these regions through harvest of agricultural commodities.  

 340 
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Figure 6. Prediction uncertainty estimated from iterating EC flux tower data and model type: (a-c) displays the absolute coefficient 

of variation for (a) GPP, (b) ER, and (c) NEE, defined as the median absolute deviation between all ensemble members, and the 

median of the ensembles, expressed as an absolute value. (d) shows the fraction of ensemble members where the sign of annual mean 345 
NEE (positive or negative) agrees, i.e., if all ensemble members agree on the sign of NEE then the values is one, and if positive and 

negative estimates are each produced by half of the members, then value is 0.5 

3.4 Upscaling results and comparison with other products 

3.4.1 Annual mean and IAV of carbon fluxes across Australia 

We adopted the model ensemble median as our best estimate, and the interquartile range (IQR) of estimates as a measure of 350 

uncertainty.  During 2003 to 2022 Australia’s terrestrial ecosystems were a strong net carbon sink on an annual mean basis  
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Figure 7. Monthly carbon fluxes summed across Australia from 2003 to 2021. (a)  GPP, (b) ER, (c) NEE). Shading around time-

series shows the interquartile range of the prediction ensembles, and the solid blue line shows the median of the ensemble predictions. 355 
Orange lines shows the 12-month running mean of the median model.  Box plots are based on the median model prediction and show 

the long-term mean (green triangle), median (line within box) and interquartile ranges (boxes) averaged over the entire time series. 

c) also shows NEE after adding fire emissions (green line), as estimated by the GFASv12 product. 

of -0.44 (IQR=0.42) PgC/year (Fig. 7c) (including fire emissions).  IAV defined as one standard deviation of the annual mean 

timeseries is 0.18 PgC/year and the average seasonal range of NEE is 0.85 PgC/year.  The annual mean estimates of NEE from 360 

this study show a greater terrestrial carbon uptake than any of the LSMs or FLUXCOM products, while the regional 

atmospheric inversion (which also includes fire emissions) predicts a very similar annual mean carbon uptake of -0.47 

PgC/year (though this is assessed over a much shorter period than the other products).  IAV of NEE for the other products 
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ranges from 0.06 PgC/yr for FLUXCOM-Met, to 0.26 PgC/year for the OCO-2 inversion. The GOSAT-inversion conducted 

by Metz et al. (2023) estimated IAV of 0.207 PgC/yr across the Australia TRANSCOM region.  CABLE-BIOS3 also shows 365 

comparatively high IAV of 0.23 PgC/year (Fig. 9f). The per-pixel plots of Figure 8g-i show how annual NEE fluxes are 

spatially allocated. The strongest carbon sinks are seen along the forested coastal regions of the eastern seaboard from western 

Tasmania to northern New South Wales, the south-west corner of Western Australia including the southern part of the Great 

Western Woodlands, and the tropical part of the Northern Territory.  The regions of strongest IAV in NEE are in the savanna 

regions of northern Australia, the intensive agricultural regions of the MDB, and the Channel Country of south-west 370 

Queensland and into South Australia where episodic river basins such as the Coopers and Meullers Creek periodically fill 

during anomalously large rainfall events (Fig. 8h). The climatological ‘month-of-maximum’ NEE plot in Figure 8i shows the 

month during which NEE typically achieves its most negative value (greatest carbon uptake), and the plot shows clear 

delineations along bioclimatic regions.  

Annual mean GPP across Australia averaged 4.25 (0.91) PgC/year, with an IAV of 0.50 PgC/year and an average 375 

seasonal range of 1.47 PgC/yr (Fig. 7a). Averaged over Australia, our estimate of GPP closely approximates that of GOSIF 

and MODIS, with the uncertainty envelope encompassing these two products. In contrast, DIFFUSE, FLUXCOM, and 

CABLE-POP report lower estimates (Fig. 9a). The IAV between products varies substantially with both FLUXCOM products 

showing the lowest IAV in GPP (FLUXCOM-Met: 0.13 PgC/year, FLUXCOM-RS: 0.23 PgC/year), while this study and 

CABLE-BIOS3 (0.78 PgC/year) display the strongest IAV.   380 

ER averaged 3.64 (1.01) PgC/year (Fig. 7b), with an IAV of 0.34 PgC/year and an average seasonal range of 1.56 

PgC/year, notably higher than GPP. Agreement between products is generally poor, though the long-term mean of 

FLUXCOM-Met and this study agree (Fig. 9b).  CABLE-BIOS3 show the most IAV in ER (0.56 PgC/year), while the two 

FLUXCOM products record very low IAV, with FLUXCOM-RS equal to 0.07 PgC/year, and FLUXCOM-Met 0.09 PgC/year. 



18 

 

 385 

Figure 8. Per pixel summaries derived from the median of the prediction ensemble. Annual means fluxes of GPP (a), ER (d), and 

NEE (g), Standard deviation in annual mean fluxes of GPP (b), ER (e), and NEE.  Climatological month of maximum flux, GPP (c), 

ER (f), and NEE (i). 
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Figure 9. Twelve-month rolling mean terrestrial carbon fluxes from a suite a products covering Australia, compared with this study.  390 
Right-side plots (d-f) show the anomalies of the left-side plots (a-c), where the monthly anomalies are calculated using a climatology 

that starts in 2003 and ends at the maximum length of the available time-series for each product. The numbers in the left-side plots 

show the long-term annual mean flux for a given product. Blue shading around ‘This Study’ shows the interquartile range from 

prediction ensembles. 

3.4.2 Climatological carbon fluxes 395 

Figure 10e-g shows the climatological seasonal cycles of the component terrestrial fluxes summed across Australia 

(climatologies were calculated starting in 2003 and extending over the full remaining length of the time-series for each 

product).  The seasonal cycle of this study’s NEE differs substantially from those of the LSMs and FLUXCOM-Met (Fig. 

10g).  According to our results, a climatological peak in terrestrial carbon uptake occurs for Australia during the cooler, drier 

months of March-September.  Examination of the equivalent plots for GPP (Fig. 10e) and ER (Fig. 10f), shows that 400 

concomitant increases in ER during periods of peak GPP mean that the time of greatest primary production across Australia 

(December - March) are not coincident with peak carbon uptake. This result contrasts with the findings of the LSMs and 

FLUXCOM-Met which show peak carbon coinciding with peak GPP in Austral summer (Fig. 10g). Despite displaying a 
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Figure 10. Climatological seasonal cycles. (a) Map of bioclimatic regions. (b-d) Bioregion specific annual climatological seasonal 405 
cycles for GPP, ER, and NEE, respectively. (e-f) Annual climatological seasonal cycles averaged across Australia. 
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greater amplitude of seasonal variability, the NEE seasonal cycle of the regional OCO-2 inversion largely matches our estimate. 

The GOSAT-Inversion also displays similarities with this study and the OCO-2 inversion. However, the GOSAT-inversion 

shows a second peak in July – it is unclear from the dataset provided if this might be due to the inclusion of New Zealand in 

the analysis area.  410 

Breaking the fluxes down into bioclimatic zones (Fig. 10a-d), we can observe two processes that predominately 

dictate the typical seasonal pattern of NEE in Australia. Firstly, seasonal variations in ER in the desert region (peak-to-peak 

amplitude = 0.66 PgC/yr) exceed GPP variations (amplitude = 0.46 PgC/yr). Beginning in March and extending through the 

autumn and winter period, ER declines more rapidly than GPP resulting in enhanced carbon uptake during this period. 

Secondly, in the savanna region we observe a sharp response in ER following the end-of-dry-season rainfall events that exceed 415 

the response from GPP, resulting in a net carbon pulse to the atmosphere in the Oct-Dec period (fluxes from these regions are 

re-plotted in Figure A5a to enhance interpretability). The interaction between these two processes likely explains most of the 

seasonal variation in Australia’s terrestrial carbon cycle, and is responsible for peak carbon uptake in Australia occurring in 

the autumn-winter months, while the carbon sink tends to be weakest during the Oct-Dec period.   

We found that the largest discrepancies between products also occurs in the desert region (Fig. 10a). The LSMs, 420 

FLUXCOM-Met, GOSIF, and this study all report GPP peaking in February-March, with the nadir of GPP occurring during 

the May-Sept period (Fig. 9b). On the other hand, MODIS-GPP and FLUXCOM-RS show an inverted climatology to the other 

products that are unlikely to be accurate given the monsoonal climate drivers in the region with >70 % of the typical annual 

median rainfall falling between November and April (Bowman et al., 2010). The CABLE-POP model appeared to significantly 

underestimate both GPP and ER in desert regions (Fig. 10b-c). This may explain why the Australia-wide seasonal NEE curve 425 

from CABLE-POP (Fig. 10g) does not align with the results of this study despite a similar spatial pattern in the month-of-

maximum NEE flux plot (Fig. A4).  The desert and savanna regions typically contribute the most to annual fluxes in other 

products, but CABLE-POP's NEE fluxes are comparatively more influenced by the savanna and tropical regions. This is most 

likely due to CABLE-POP’s representation of vegetation cover fractions over inland Australia which show the desert region 

as entirely bare (Teckentrup et al., 2021).  FLUXCOM-RS follows a similar trajectory in the Australia-wide NEE to that of 430 

our estimate, though with considerably less seasonal amplitude (Fig. 10g). Examining the bioclimatic zones, we see that this 

is mainly due to an incorrect GPP seasonal cycle in the desert region, combined with a very low amplitude in the seasonal 

cycle of ER in the desert (Fig. 10c).  The seasonal cycle of FLUXCOM-Met is markedly different from FLUXCOM-RS. The 

per-biome fluxes from FLUXCOM-Met appear more realistic than those FLUXCOM-RS, but produce an inverted Australia-

wide NEE seasonal cycle to our estimate (Fig. 10g). This is due to greater amplitude declines in seasonal GPP compared with 435 

ER, especially in the warm and cool temperate regions. 

3.5 Drivers of carbon flux anomalies 

As a simple means for interpreting the drivers of carbon flux anomalies, temporal Pearson correlations between carbon flux 

anomalies and climate anomalies (respective to 2003-2021 averages) for each bioclimatic zone were conducted (Table 2). 
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Correlations were calculated per-pixel and then averaged over the bioclimatic zone.  Caution in interpreting the results is 440 

warranted as the terrestrial carbon cycle is intrinsically complex, and nonlinear.  With that caveat: for GPP, ER, and NEE, 

cumulative rainfall anomalies almost universally correlate most strongly with carbon flux anomalies. In the case of NEE, 

across all bioclimatic regions monthly rainfall anomalies were insignificantly correlated. Yet, the cumulative rainfall anomalies 

proved to be the strongest correlate (where a cumulative rainfall surplus resulted in negative NEE anomalies i.e., greater carbon 

uptake). In the case of the desert region, correlations of monthly rainfall anomalies jumped from a statistically insignificant r-445 

value of -0.08 to a strong significant correlation of -0.50 for six-month cumulative rainfall anomalies (Table 2), similar scores 

were found for the savanna region. Correlations for non-lagged monthly rainfall anomalies in the savanna and desert regions 

were both much higher for ER than for GPP, suggesting ER responds more quickly to wetting than GPP in the arid and semi-

arid regions of Australia.   

 450 

Table 2.  Temporal Pearson correlations between carbon flux anomalies, climate anomalies, and kNDVI anomalies. Every flux and 

climate variable anomaly are based on a 2003-2021 baseline. The highest correlation for each flux and bioclimatic zone is shown in 

bold (for the climate variables only, kNDVI correlations are ignored) 
 

  BIOCLIMATIC REGION 

FLUX Variable Tropics Savanna Warm 

Temperate 

Cool 

Temperate 

Mediterranean Desert 

GPP Rainfall 0.17 0.27 0.21 0.15 0.25 0.39 

Rainfall Cml-3 0.28 0.46 0.51 0.41 0.48 0.66 

Rainfall Cml-6 0.33 0.54 0.57 0.47 0.57 0.78 

Rainfall Cml-12 0.26 0.59 0.50 0.44 0.52 0.74 

Air Temp. -0.01 -0.36 -0.25 -0.11 -0.23 -0.36 

Solar Rad. -0.23 -0.43 -0.28 -0.16 -0.29 -0.45 

kNDVI 0.86 0.88 0.88 0.81 0.84 0.80 

ER Rainfall 0.45 0.49 0.54 0.45 0.60 0.55 

Rainfall Cml-3 0.39 0.54 0.67 0.58 0.69 0.68 

Rainfall Cml-6 0.38 0.62 0.67 0.59 0.72 0.78 

Rainfall Cml-12 0.22 0.63 0.60 0.56 0.68 0.79 

Air Temp. 0.07 -0.31 -0.17 0.06 -0.14 -0.28 

Solar Rad. -0.52 -0.59 -0.56 -0.38 -0.55 -0.54 

kNDVI 0.68 0.78 0.81 0.69 0.71 0.75 

NEE Rainfall 0.12 -0.02 0.09 0.05 0.07 -0.08 

Rainfall Cml-3 -0.13 -0.31 -0.30 -0.23 -0.22 -0.42 

Rainfall Cml-6 -0.25 -0.40 -0.41 -0.33 -0.32 -0.50 
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Rainfall Cml-12 -0.34 -0.49 -0.36 -0.29 -0.30 -0.41 

Air Temp. 0.15 0.35 0.31 0.25 0.28 0.44 

Solar Rad. -0.09 0.15 0.00 0.00 0.01 0.20 

kNDVI -0.69 -0.79 -0.70 -0.67 -0.68 -0.57 

 

4. Discussion 455 

Through our iterative modelling framework, we identified the largest uncertainties in the flux estimates as occurring in the 

semi-arid to arid interior, and in the cropping regions of Western Australia and the Murray-Darling Basin (Fig. 6).  A limitation 

of the OzFlux network is the necessarily limited repeat spatial sampling of all main land cover types. Furthermore, not each 

bioclimatic region is equally well represented, leading to biases in the sampling. For example, desert and xeric ecosystems 

cover nearly half of the Australian land mass, but less than 10% of the sites are located in these regions (Beringer et al., 2016).  460 

Australia’s expansive cropping ecosystems are also under-represented. The limited representation of these systems in the 

training data is likely why we found comparatively high uncertainty in these regions (Fig. 6). Further uncertainty in the 

cropping regions may also be due to the heterogeneity of crop types and agricultural practices that may not be represented in 

our feature layers, and the potentially large carbon exports as agricultural commodities.  Also, gGiven the Australian 

Government's emphasis on emission offsetting through changes in agricultural practices and human-induced regeneration of 465 

native woody vegetation, especially in drier regions (Dceew, 2023), new EC sites in cropping regions and in the (semi) arid 

rangelands areas of New South Wales, Queensland, and Western Australia might help reduce uncertainties in AusEFlux and 

expand the evidential basis for carbon sequestration through (re-)vegetation (Macintosh et al., 2022). Given the changing 

climate conditions of Australia, it is vital to maintain the current OzFlux infrastructure so that future changes to climate-carbon 

interactions are monitored at the continental level through iterative retraining of the AusEFlux model as new data is collected. 470 

Owing to the limitations introduced by the spatial sampling of the OzFlux network, it is very challenging to effectively 

cross-validate terrestrial carbon fluxes in a manner that we could confidently claim accurately estimates the true map accuracy.  

This is why we also rely heavily on an intercomparison between products, as we believe the convergence of results from 

multiple, independent lines of evidence tells us more about the true nature of Australia’s terrestrial carbon cycle than any given 

cross-validation method.  We are encouraged by the convergence of our results with the GPP estimates from MODIS, GOSIF, 475 

and CABLE-BIOS3 as each of these products applies a different method to quantifying GPP. ER is harder to effectively 

validate through a convergence of studies as only FLUXCOM (similar methods to ours) and CABLE provide estimates of ER. 

However, the scatter plots of Figure A3 demonstrate that CABLE tends to overestimate ER fluxes, while FLUXCOM-RS 

tends to underestimate ER fluxes. AusEFlux estimates of ER lie between these two estimates (Fig. 9b), perhaps indicating that 

our estimate of ER is an improvement on the other methods.  NEE offers the prospect of independent validation as the satellite 480 

assimilated atmospheric inversions are a wholly independent measurement of NEE (though they still contain significant 
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uncertainties owing to the uncertainties in the satellite CO2 measurements themselves, along with the atmospheric transport 

model used). Which is why we include the two most recent regional-scale inversions in our intercomparisons.  Though mean 

NEE varied between our estimate and those of the GOSAT atmospheric inversion, anomalies and the seasonal cycle show 

better agreement than with other methods. We take this to be evidence that our regional empirical upscaling of the OzFlux 485 

network provides a better estimate of Australia’s net terrestrial carbon cycle than the global empirical upscaling product, 

FLUXCOM, which to-date has been the only product available of its type for Australia.  Our study showed that increasing the 

diversity of flux tower sites beyond the small Australian set used in global products improved the quality of carbon flux 

estimates. We cannot predict whether the same might hold for other underrepresented regions, which mostly coincide with the 

global south, or whether the isolated evolution of Australia's ecosystems also plays a role. 490 

We found evidence that Australia is, on average, a stronger annual carbon sink than previous CABLE LSM and 

FLUXCOM estimates have concluded.  Our estimate of the long-term annual mean carbon sink over Australia (-0.44 PgC/yr) 

is higher than those reported by any study besides the regional OCO-2 inversion (-0.47 PgC/yr).  We take the consilience 

between our estimate and the OCO-2 inversion’s; the fact that 25 out of the 29 OzFlux EC sites used here report strong annual 

mean carbon sinks (Figure A7), and the theoretical argument that ML predictions tend to produce good estimates of the mean 495 

as evidence that Australia's status as a comparatively strong net carbon sink is robust.  

Carbon flux anomalies show better agreement between diverse methods, with our estimate, CABLE-BIOS3, and the 

GOSAT Inversion all largely agreeing on the timing and magnitude of NEE anomalies. The largest annual anomaly, the 2010-

11 La Niña anomaly of -0.70 PgC/year reported here (based on a 12-month rolling mean) also aligns well with the -0.77 PgC 

reported by Ma et al. (2016) and the -0.79 PgC anomaly reported by Poulter et al. (2014). The OCO-2 Inversion, our study, 500 

CABLE-BIOS3, and the GOSAT-Inversion also converge on a NEE IAV of ~0.2 PgC/yr (the range among these products is 

0.18 to 0.26 PgC/year). Cross-validation showed that our predictions generally underestimate large NEE fluxes (both positive 

and negative fluxes, Fig. 3). Thus, it is fair to assume that the inter-annual (and seasonal) variability in NEE should be larger 

than the estimate reported by this study, and perhaps the larger variability of the inversions is closer to the truth. This study is 

consistent with other studies in showing NEE anomalies in Australia are driven by a greater response of GPP over ER to 505 

anomalous rainfall periods (Ahlström et al., 2015; Ma et al., 2016; Poulter et al., 2014; Haverd et al., 2016; Trudinger et al., 

2016; Teckentrup et al., 2021; Fig. 9). This is especially the case where rainfall anomalies are cumulative. The strong 

correlations between cumulative rainfall anomalies and NEE anomalies provides some additional support to the study of 

Cranko Page et al. (2022), who showed that the inclusion of rainfall lags increased the predictability of site-level NEE in 

Australia.  Australia contributes substantially to the IAV of the global terrestrial carbon sink, an important advantage of our 510 

high-resolution dataset is that it allows us to identify and monitor fine-resolution hotspots of IAV (maps showing greater detail 

are shown in Figure A8).  

We have shown that climatological peak terrestrial carbon uptake in Australia occurs in the Austral autumn and winter 

months owing mostly to more rapid declines in rates of ER compared with GPP over the arid regions of Australia.  Concomitant 

increases in ER during times of high GPP mean that periods of peak primary production do not necessarily coincide with peak 515 
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carbon uptake on a seasonal basis.  This finding agrees with Renchon et al. (2018) at the Cumberland Plains EC flux tower 

site, where the forest was a CO2 sink in winter and a source in summer due to larger seasonal amplitudes in ER.  Similarly, 

Metz et al. (2023) found that seasonal rainfall in semi-arid regions after the dry season drives pulses of heterotrophic respiration 

that precede the GPP response, leading to net carbon uptake not beginning until March. Cleverly et al. (2013), in a site-based 

study of a semi-arid acacia woodland in central Australia, observed that the first large springtime storms following the dry 520 

season resulted in rapid pulses of ecosystem respiration. owing to an uptick in moisture limited microbial decomposition of 

photodegraded litter and flushing of CO2 from soil pore spaces through infiltration.  Our results confirm that ER over the 

savanna region responds quickly to seasonal rainfall events at the end of the dry-season, while GPP responds more slowly 

resulting in carbon pulses to the atmosphere during the Oct-Dec period. Correspondingly, we also find non-lagged correlations 

between monthly rainfall climatologies and climatological ER stronger than those for GPP over the semi-arid regions of 525 

Australia (Fig. A6). Seasonal fires in the Savanna region contribute to this carbon pulse as more intense, late dry-season (Aug-

Oct) fires lead to an earlier net carbon pulse to the atmosphere and larger peak emissions  (Fig. A5b). 

An advantage of this approach over other methods is its computational efficiency, and, owing to the mature 

architecture of the OzFlux infrastructure, the ability to programmatically ingest updated or new EC datasets to further refine 

models. Thus, there is an opportunity for AusEFlux to be incorporated into an annually produced national estimate of 530 

Australia's terrestrial carbon fluxes. Any annually produced ‘bottom-up’ estimate of Australia’s terrestrial carbon fluxes could 

also serve as a compliment to the Global Carbon Project’s aims of annually reporting the carbon balance of the world (Papale, 

2020).  Through regular updating of this dataset, the ecosystems that play an outsized role in controlling Australia’s mean 

carbon sink and contribute substantially to its IAV can begin to be systematically monitored for change. 

 While our estimate provides a step-forward in our means for assessing the complex, seasonal, and interannual 535 

dynamics of Australia’s carbon cycle, future work can improve upon this current effort.  Firstly, we aim to extend AusEFlux 

further back in time through the inclusion of satellite observations from the AVHRR and Landsat missions. However, this 

effort will inform a separate study as it will require addressing cross-sensor calibration issues.  A longer record of empirically 

derived terrestrial carbon fluxes will assist in defining robust environmental baselines from which future changes to the carbon 

cycle can be assessed. Secondly, new or improved feature layers can be incorporated as they become available (e.g., time-540 

varying estimates of the percentages of trees, grass and bare). And lastly, we aim to explore the prospects of ecological 

forecasting (Dietze et al., 2018) of the terrestrial carbon cycle as seasonal forecasts may be possible where forecasts of the 

climate are sufficiently detailed. 

5. Conclusions 

Despite the sparseness of Australia's comparatively small network of EC towers wWe show that regional empirical upscaling 545 

can improve considerably upon existing global upscaling products, outperform existing LSMs, perform similar to or better 

than other empirical GPP products, and replicate the dynamics of CO2 flux over Australia as estimated by two regional 
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atmospheric inversions.  Our estimate suggests Australia was a strong carbon sink (2003-2022 average) with an annual mean 

uptake of -0.44 (0.42) PgC/year, has an IAV of 0.18 PgC/year, and an average seasonal amplitude of 0.85 PgC/yr.  Estimates 

of the annual mean carbon uptake from other methods varied considerably, and only our study and the OCO-2 inversion agreed. 550 

However, carbon flux anomalies showed much better agreement between methods. NEE anomalies were predominately driven 

by cumulative rainfall deficits and surpluses, resulting in larger anomalous responses from GPP over ER.  In contrast, the long-

term average seasonal cycle is dictated more by the variability in ER than GPP, resulting in peak carbon uptake typically 

occurring during the cooler, drier Austral autumn and winter months.  Our new estimates of Australia’s terrestrial carbon cycle 

fluxes improve upon our understanding of the magnitudes, seasonal cycles, and processes governing Australia’s terrestrial 555 

carbon cycle and provides a new benchmark for assessment against future LSM developments, and a means for high-resolution 

monitoring of Australia’s terrestrial carbon cycle. 
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Appendix A: Figures 

 
Figure A1. Locations of ‘OzFlux’ eddy covariance flux tower sites used in this study. The table on the right lists the location, start 

and end dates of the time-series, and the Fluxnet ID for the site where it is available.some key climate features of each site, such as 570 
the annual mean rainfall total, annual mean temperature, its elevation above sea level, and the average monthly kNDVI of the site. 

The ‘stamen’ basemap is provided by OpenStreetMap. 

 

Table A1: Summary table of the comparison datasets used in the study.  Spatial and temporal resolution refers to the extents used 

by this study, and not necessarily the native ranges. For example, the observation products have been resampled to 0.01 degree, and 575 
most datasets have been clipped to 2003 to match the beginning of AusEFlux. 

Dataset Name Dataset type 
Spatial 

resolution 

Temporal 

range 
References 

CABLE-POP Process-model 1⁰ 2003-2020 Friedlingstein et al. (2022) 

CABLE-BIOS3 Process-model 0.25⁰ 2003-2019 Villalobos et al. (2022) 

OCO-2 Inversion Atmos. inversion 0.8⁰ 2015-2019 Villalobos et al. (2022) 

GOSAT Inversion Atmos. inversion - 2009-2018 Metz et al. (2023) 

FLUXCOM-Met ML upscaling 0.5⁰ 2003-2015 Jung et al. (2020) 

FLUXCOM-RS ML upscaling 0.083⁰ 2003-2015 Jung et al. (2020) 

MODIS-GPP Obs. Based 0.01⁰ 2003-2021 Running et al. (2015) 

GOSIF-GPP Obs. Based 0.01⁰ 2003-2021 Li and Xiao (2019) 

DIFFUSE-GPP Obs. Based 0.01⁰ 2003-2021 Donohue et al. (2014) 
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Figure A2. Climatological seasonal cycles of NEE for each EC flux tower site used in this study, plotted along with the seasonal cycle 580 
of the predictions from the nearest pixel to the tower.  
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Figure A3. Scatter plots of modelled vs EC flux tower monthly carbon fluxes for a suite of products.  The EC tower flux values are 

compared with the nearest pixel in each product, and the products have been  reprojected to match the resolution of CABLE-BIOS3 

(~25 km)kept in their native resolution. Only those products with a reasonably high spatial resolution have been compared with the 595 
flux tower (i.e., 1-degree resolution CABLE-POP, FLUXCOM-Met, and the OCO-2 Inversion have been excluded from these plots). 
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Figure A4. Climatological month of maximum flux plots.  In the case of NEE (b), the pixels show the month of the most negative 

value (i.e. largest carbon sink). Climatologies are calculated from 2003 and extend to the full length of the available time-series for 600 
each product, indicated in the subtitle of each plot. 
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Figure A5.  (a) Flux climatologies for the Savanna and Desert region, showing the same results as those in Figure 10, but shown on 

a single plot to enhance interpretability. (b) NEE per bioclimatic region calculated by subtracting GPP from ER (i.e., not directly 

modelled), presented here to show how the fluxes interact to produce NEE. Fire emissions from the GFAS product have been added 605 
to the Savanna fluxes in (b) to highlight how dry season fires interact with ER to create a pulse of carbon to the atmosphere. 

 
 

 

Figure A6.  Per pixel temporal Pearson correlations between ER climatologies and rainfall climatologies. 610 
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Figure A7. Boxplots of annual cumulative NEE for each of the sites used in the empirical upscaling. 

 615 

Figure A8. Maps of annual mean NEE and standard deviation in annual mean NEE zoomed in on three regions to show the landscape 

features resolved by a high-resolution (1km) dataset of NEE.  The top three panels show a region in central Queensland. that extends 

from the episodic rivers in the south-east (e.g., Coopers Creek), to Townsville in the north west. Panel (c) shows a true colour satellite 

image (sourced from Esri World Imagery), panel (a) shows the long-term annual mean, and (b) shows the standard deviation in the 

annual means.  Panels d-f show the same south-east Australia extending from Adelaide in the west to Mallacoota in the west. Panels 620 
g-f show the same but for south-west Western Australia.  
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Table A2. The hyperparameter grids used during model optimization of the random forest and gradient boosting models. During 

model fitting, a random grid search was conducted with 250 iterations to identify the highest performing set of hyperparameters. 

Model Parameter Grid 

LGBM 'num_leaves': stats.randint(5,40), 

'min_child_samples':stats.randint(10,30), 

'boosting_type': ['gbdt', 'dart'], 

'max_depth': stats.randint(5,25), 

'n_estimators': [300, 400, 500], 

 

RF 'max_depth': stats.randint(5,35), 

'max_features': ['log2', None, "sqrt"], 

'n_estimators': [200,300,400,500]} 

 

Code Availability. 625 

The code used to conduct all analysis shown in this manuscript is available on the open-source repository: 

https://github.com/cbur24/NEE_modelling 

Data Availability. 

The surface gridded carbon fluxes are available from the Zenodo repository at: https://doi.org/10.5281/zenodo.7947265. These 

fluxes have been resampled to a 5 km grid to facilitate easier uploading and sharing. Full resolution datasets can be provided 630 

on request (Burton, 2023). 

 

The Level 6 Ozflux eddy covariance data used by this study is accessible through the Terrestrial Ecosystem Research Network 

THREDDS data portal, available at: https://dap.tern.org.au/thredds/catalog/ecosystem_process/ozflux/catalog.html. This 

study relied on the data version “2022_v2”, and in instances where both “site-pi” and “default” versions of the datasets were 635 

available, we utilised the “default” datasets. See Figure A1 for a full list of sites used.  
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