
Author’s Response
We thank the reviewers and editors for taking the time to review our manuscript and
provide constructive comments, we believe their comments have substantially improved
the overall manuscript.

Below are the point-by-point responses to the reviewers and community comments. The
reviewer's comments are in bold, and our responses are in italics. These responses are
in large part the same as those provided during the interactive discussion as we
provided detailed point-by-point responses at that stage. However, minor revisions have
been made to the responses and line-numbers have also been added where
appropriate.

In addition to the changes outlined below, we have also adjusted the formatting of Table
2 to remove the shaded cells as per the editor’s request.

Response to Reviewer 1
Review of the Paper: "Empirical upscaling of OzFlux eddy covariance for
high-resolution monitoring of terrestrial carbon uptake in Australia"

The paper develops high-resolution estimates of GPP, ER, and NEE in Australia using
empirical upscaling of flux tower measurements. Comparisons with other products
show regional empirical upscaling outperforms global upscaling and process-based
models. Rainfall deficits and surpluses drive NEE anomalies, with GPP responding
more than ER. The paper introduces "AusEFlux" as a benchmark for high-resolution
monitoring of Australia's carbon cycle.

Upon careful evaluation and analysis of the manuscript, it is evident that a major
revision is necessary in light of the following critical comments. Addressing these
concerns will enhance the overall quality and impact of the paper, ensuring its
suitability for publication in our esteemed journal.

● The paper highlights the performance of regional empirical upscaling in
improving global upscaling products and outperforming existing LSMs, but
could you provide more insight into the specific limitations of Australia's
comparatively sparse network of EC towers and their potential impact on the
accuracy of the derived estimates?



We thank the reviewer for the opportunity to provide some more detail on the impact
of Australia’s sparse EC network on the uncertainty of the AusEFlux estimates. We
have edited the following two paragraphs into the start of the discussion section of the
manuscript (starting at line 445), which feel expands upon the uncertainties is
AusEflux.

“Through our iterative modelling framework, we identified the largest uncertainties
in the flux estimates as occurring in the semi-arid to arid interior, and in the cropping
regions of Western Australia and the Murray-Darling Basin. A limitation of the
OzFlux network is the necessarily limited repeat spatial sampling of all main land
cover types. Furthermore, not each bioclimatic region is equally well represented,
leading to biases in the sampling. For example, desert and xeric ecosystems cover
nearly half of the Australian land mass, but less than 10% of the sites are located in
these regions (Beringer et al., 2016). Australia’s expansive cropping ecosystems are
also under-represented. The limited representation of these systems in the training
data is likely why we found comparatively high uncertainty in these regions (Fig. 6).
Further uncertainty in the cropping regions may also be due to the heterogeneity of
crop types and agricultural practices that may not be represented in our feature
layers, and the potentially large carbon exports as agricultural commodities. Also,
gGiven the Australian Government's emphasis on emission offsetting through changes
in agricultural practices and human-induced regeneration of native woody
vegetation, especially in drier regions (Dceew, 2023), new EC sites in cropping
regions and in the (semi) arid rangelands areas of New South Wales, Queensland, and
Western Australia might help reduce uncertainties in AusEFlux and expand the
evidential basis for carbon sequestration through (re-)vegetation (Macintosh et al.,
2022). Given the changing climate conditions of Australia, it is vital to at-least
maintain the current OzFlux infrastructure so that future changes to climate-carbon
interactions are monitored at the continental level through iterative retraining of the
AusEFlux model as new data is collected.

Owing to the limitations introduced by the spatial sampling of the OzFlux
network, it is very challenging to effectively cross-validate terrestrial carbon fluxes in
a manner that we could confidently claim accurately estimates the true map accuracy.
This is why we also rely heavily on an intercomparison between products, as we
believe the convergence of results from multiple, independent lines of evidence tells us
more about the true nature of Australia’s terrestrial carbon cycle than any given
cross-validation method. We are encouraged by the convergence of our results with
the GPP estimates from MODIS, GOSIF, and CABLE-BIOS3 as each of these
products applies a different method to quantifying GPP. ER is harder to effectively
validate through a convergence of studies as only FLUXCOM (similar method to
ours) and CABLE provide estimates of ER. However, the scatter plots of Figure A3
demonstrate that CABLE tends to overestimate ER fluxes, while FLUXCOM-RS tends
to underestimate ER fluxes. AusEFlux estimates of ER lie between these two other
methods (Fig. 9b), perhaps indicating that our estimate of ER is an improvement on



the other methods. NEE offers the prospect of independent validation as the satellite
assimilated atmospheric inversions are a wholly independent measurement of NEE
(though they still contain significant uncertainties owing to the uncertainties in the
satellite CO2 measurements themselves, along with the atmospheric transport model
used). Which is why we include the two most recent regional-scale inversions in our
intercomparisons. Though mean NEE varied between our estimate and those of the
GOSAT atmospheric inversion, anomalies and the seasonal cycle show better
agreement than with other methods. We take this to be evidence that our regional
empirical upscaling of the OzFlux network provides a better estimate of Australia’s
net terrestrial carbon cycle than the global empirical upscaling product, FLUXCOM,
which to-date has been the only product available of its type for Australia. Our study
showed that increasing the diversity of flux tower sites beyond the small Australian set
used in global products improved the quality of carbon flux estimates. We cannot
predict whether the same might hold for other underrepresented regions, which mostly
coincide with the global south, or whether the isolated evolution of Australia's
ecosystems also plays a role.”

● How were datasets resampled to monthly resolution and reprojected to 1*1 km
in section “2.1.2 Gridded explanatory variables”? what was the raw data
specifications?

Datasets such as MODIS LST, kNDVI, and NDWI were aggregated (simple
averaging) to monthly scale using the mean of all available observations within the
given month. Spatial reprojection onto a 1 km x1 km geographic grid (EPSG:4326)
using either ‘bilinear’ or ‘averaging’ resampling methods depending on the native
resolution of the product (bilinear for LST, averaging for the others). We have
updated the text with this information in section 2.1.2. These datasets were all
downloaded from Google Earth Engine, as described in Table 1. The specific MODIS
products used were the MCD43A4 v6.1, and MOD11A1 v6.1

The climate datasets (from ANUClimate) are provided at 1-km spatial resolution and
monthly temporal resolution so no resampling or reprojection was required.

The static variables such as landcover fractions and vegetation height were
resampled from their native resolutions using the ‘average’ of all pixels within a 1 km
grid cell. The vegetation height product is provided at native 25-m resolution, and the
landcover fractions are provided at 250-m resolution. This information has also been
added to the manuscript in section 2.1.2.

● Provide additional details or references to explain the 'SOLO' data version used
for partitioning NEE into GPP and ER. This will aid readers in understanding
the specific data processing steps and methods employed.

We understand and agree with the reviewer that the SOLO flux partitioning methods
may be of interest to some readers. However, we do not believe the details of the
methods are within scope of the study because as: (a) the cited work of Isaac et al.



(2017) provided the full detail necessary and is available via the references; and (b)
adding a description of the methods within this paper would add a lengthy section of
text. Nevertheless, we provide a link to the datasets, which are freely available for
download through the Terrestrial Ecosystem Research Network (TERN). And we have
added to the text within section 2.1.1 a note that a full description of the partitioning
method is available from the stated reference. Within the same paragraph we have
also provided links to both the OzFlux website, and the TERN website where datasets
can be downloaded.

● In Section 2.1.3, it is mentioned that the MODIS-GPP and DIFFUSE-GPP
products were resampled to a 1 km resolution to match the resolutions of the ML
upscaling product. Could you please provide more details regarding the specific
method used for resampling these datasets? It would be beneficial to understand
the resampling technique employed to ensure compatibility between different
resolutions. Additionally, any information regarding potential implications or
limitations of the resampling process would be valuable.

Both MODIS- and DIFFUSE-GPP datasets were resampled to 1-km resolution using
the average of all pixels within the 1 km cell. MODIS-GPP is provided at a native
500-m, and DIFFUSE-GPP is provided at 250-m resolution. This information is
provided in the text at lines 170-171. We do not believe there to be any significant
implications of using cell averaging from the moderate resolution (250- and 500-m) to
1-km. Such resampling is common practice in remote sensing.

● Elaborate on the resampling and reprojection of gridded explanatory variables.
Specify the resampling resolution and provide a rationale for selecting a common
1-km x 1-km geographic grid. Discuss potential errors or limitations associated
with spatial resampling and its impact on the accuracy or comparability of the
datasets.

We understand the reviewer’s point here and refer them to the previous comment
above, as some information in response has been given. The rationale for using a 1
km grid is twofold: one, (and the primary reason) is it matches the coarsest native
resolution explanatory variables, namely the climate datasets; and two, because the
footprint of a flux tower is on the order of 1 x 1 km (very approximately), so it makes
sense to extract training data at resolutions comparable to the flux footprint. We have
added this short rationale to the 2.1.2 section.

● In Section 2.1.3.3, it is mentioned that the regional inverse modeling product by
Villalobos et al. (2022) provides a spatial resolution of approximately 81 km.
Could you please provide details on how the other datasets with different
resolutions were processed and plotted to ensure compatibility for comparison?
Specifically, how were the ML results, MODIS-GPP and DIFFUSE-GPP
products, which were resampled to 1 km resolution, handled in the analysis?



The ML results are predicted at 1 km spatial resolution, and monthly temporal
resolution so were not post-processed (except for some masking of cities). The
MODIS and DIFFUSE GPP products were resampled as per the text in section
2.1.3.4. and no further post-processing was done. For the scatter plots of Figure A3, a
simple extraction of the pixels over the EC tower locations was done for comparison
of the different GPP products against flux tower estimates.

For the time-series plots in figures 9, the datasets are all converted to PgC/year from
their respective native units (usually gC/m2/month). This involved converting the
datasets from their native grid to an equal-area grid of the same spatial resolution
(we used EPSG:3577), then multiplying every pixel by its area, along with the
conversion factor from grams to petagrams to arrive at PgC/year. This step is
documented in the notebook 7_Compare_products.ipynb available on the github
repository linked in the assets for this paper. This processing step is common in the
literature, and since some effort has gone into creating well documented Jupyter
notebooks, we feel there isn’t a pressing need to add these steps to the methods section
(at the end of section 2.2.2 we have added an explicit reference to the Jupyter
Notebooks which describe all processing and analysis steps). After conversion of all
datasets to PgC, we summed across all pixels at each time-step to produce ‘zonal’
time-series. We consider this step to be common enough to not require specific
description in the text. The time-series are then smoothed using a three-month rolling
mean, which is stated in the caption. For figure 10, seasonal climatologies are
created by grouping common months together (i.e. all the Jan., all the Feb. etc.) in a
time-series, and then finding the long-term average for each month. The result is then
summed across the continent at each monthly time-step to produce a ‘zonal’ average
seasonal cycle. Again, we argue these processing steps are standard practice and do
not require a specific description in the text.

To assist the reader in understanding if AusEFlux performs better because of the finer
spatial resolution, or because it is intrinsically better even when coarsened to the
scale of competing products, we have amended Figure A3 in the manuscript. All
products in the inter-comparison scatter-plots have now been reprojected to match the
resolution of CABLE-BIOS3 (~25km). The figure as it is shown in the manuscript is
reproduced below for convenience.

https://github.com/cbur24/NEE_modelling/blob/main/7_Compare_products.ipynb


Figure A3. Scatter plots of modelled vs EC flux tower monthly carbon fluxes for a suite of products.
The EC tower flux values are compared with the nearest pixel in each product, and the products have
been reprojected to match the resolution of CABLE-BIOS3 (~25 km). Only those products with a
reasonably high spatial resolution have been compared with the flux tower (i.e.,CABLE-POP,
FLUXCOM-Met, and the OCO-2 Inversion have been excluded from these plots).

● Specify a specific website or source where readers can access the CO2 flux tower
data used in the study. This will facilitate replication and further exploration of
the data.

We thank the reviewer for noting this and have added to the text at line 111.



“These data are processed to Level 6 and are freely accessible through the Terrestrial
Ecosystem Research Network THREDDS portal
(https://dap.tern.org.au/thredds/catalog/ecosystem_process/ozflux/catalog.html
(TERN, 2023)

● Provide more details on the implementation of random forest regression and
gradient-boosting decision tree algorithms, including parameter settings, and
more importantly elaborate on how predictions from the ensemble of random
forest and GBDT models are combined or weighted as an ensemble learning.

We appreciate the reviewer’s suggestion of providing more information on the ML
methods. As such we have provided high-level detail on hyperparameters to the
appendix in a table (Table A1), and should a researcher wish to know more about the
hyperparameters used or to reproduce the results they can consult the notebook
3_Generate_ensemble_of_models.ipynb contained on the github page for this study.

In section 2.2.1 we provide details on how the model ensembles were combined. A
simple per pixel median is conducted across the 30 gridded predictions for a given
flux. The interquartile range (25th and 75th percentile) are taken as the uncertainty
envelope. There are no weightings, each model and gridded prediction is conducted
independently and then combined through the calculations of medians/percentiles. We
argue this is already quite clearly outlined in section 2.2.1. The notebook
5_Combine_ensembles.ipynb provides the documented code on how this was run.

● Clarify the rationale and details behind the iterative training procedure with
randomly selected EC sites for uncertainty estimation. How can you ensure that
all sites were removed in the 30 repeats? Provide details on how the randomness
is controlled to achieve this objective.

The reason we selected two sites to remove per iteration was because it balanced the
need to significantly alter the training dataset per iteration, while not overly
degrading the quality of the model by removing too much data. As some of the site’s
time-series are relatively short, removing only one site could result in removing only
20-30 samples from the training data (from a total of ~2800), and thus the model may
only be marginally different from the full-dataset model. Removing more than two
sites could result in some iterations where so much data is removed from the training
dataset that the quality of the predictions is severely degraded. We have added a
statement to section 2.2.1 to clarify this point (lines 200-203) .

It was not our objective to ensure all sites were removed during iteration of the
models. Rather, we elected for a uniform random approach where sampling two sites,
fifteen times, was merely likely to remove every site. To ensure every possible
combination of sites is removed would require 292=841 permutations per flux, which
would be impractically time consuming to run, and would be unlikely to tell us much

https://dap.tern.org.au/thredds/catalog/ecosystem_process/ozflux/catalog.html
https://github.com/cbur24/NEE_modelling/blob/main/3_Generate_ensemble_of_models.ipynb
https://github.com/cbur24/NEE_modelling/blob/main/3_Generate_ensemble_of_models.ipynb
https://github.com/cbur24/NEE_modelling/blob/main/5_Combine_ensembles.ipynb
https://github.com/cbur24/NEE_modelling/blob/main/5_Combine_ensembles.ipynb


more about the uncertainty than the approach already described. We concede that
fifteen iterations are an arbitrary number, but it provides a balance between allowing
for a reasonable chance for all sites being removed once, while also keeping the
computation time to within reason. The other important consideration is the difficulty
in calculating per-pixel percentiles across more than 30 predictions, as each gridded
prediction is equivalent to 12.5GiB of data (so already we are summarising close to
400 GiB of data to calculate the ensemble medians).

● Provide a detailed description of the data split methodology used in the nested,
time-series-split cross-validation approach. Did you consider the aspect of time
when splitting and testing the methods? (e.g. did you allocate 5 years for training
and 1 or 2 years for testing?)

We understand the reviewer’s suggestion of providing more information on the
temporal cross-validation methods. The time-series split method blocks the testing
samples by continuous lengths of time. The exact length of time tested depends on the
length of the overall time-series as we allocated 20 % of a timeseries to testing, and
80 % to training. For example, if a dataset is 10 years long, then 8 years is used for
training, while a two-year continuous block is used for testing. As we conducted
five-fold cross-validation, this procedure was repeated five times and at each iteration
the two-year testing ‘block’ is moved forward in time, such that over the 5-folds, the
entire time-series is tested. We have added this example to the text in section 2.2.2. to
clarify the method (lines 220-224). Also, note that every flux tower record is included
in a k-fold, so 20 % of every flux record is tested per fold.

The ‘nested’ part of the CV procedure refers to using a separate, internal split on an
outer k-fold to conduct hyperparameter optimization. Using a nested approach to CV
prevents testing on the same data used to tune model parameters, and thus prevents
creating overly optimistic CV scores. We have included in the text of section 2.2.2 a
sentence discussing this, along with a reference that outlines the benefits of using a
nested approach (lines 224-226).

Overall, we have provided a detailed description of the cross-validation procedure,
including figure 2 which presents a schematic of the procedure.

We would like to also note that the primary focus of this paper is not on providing
novel methods for cross-validation (CV), nor on exploring/testing various approaches
to ML upscaling. Rather, we have implemented common methodological procedures
for empirical upscaling to produce a higher-quality estimate of Australia’s terrestrial
carbon cycle than already exists (taking advantage of the expansion in the OzFlux
tower network and regional feature layers), so that it can be considered alongside
other approaches to quantifying the carbon cycle. This is why most of the discussion
in the paper is devoted to the intercomparison between products as we feel



consiliences between lines of evidence are more important than the results of any
given CV method.

● Consider incorporating any additional limitations or uncertainties associated
with the data sources, processing steps, or comparison datasets. This will provide
a more comprehensive understanding of the potential impacts on the study's
results and conclusions.

We agree with the reviewer that all the products used as explanatory variables in the
model are subject to uncertainties. However, the datasets employed by this study are
widely used and accepted in the literature. The remote sensing explanatory variables
(either MODIS or MODIS-derived) have been widely used at continental scales and
their errors have been well documented elsewhere. The interpolated climate data is
subject to uncertainties due to the distribution of the measurement network, which in
Australia is skewed towards the coast. However, ANUClimate is a well-regarded
dataset (Hutchinson et al. 2004, 2014 & 2015) and the density of weather records
over Australia is very good during the modern era.

We consider describing the uncertainties associated with the inter-comparison
datasets as beyond the remit of this paper as it would take considerable time and
effort to summarise uncertainties from nine other products. We argue the interested
reader can follow-up with the citations provided.

● Why was the model not tested on individual sites after training? It is crucial to
determine whether the model can perform effectively at a single location.

We agree with the reviewer that it is important to assess the model's ability to predict
at each flux tower location. However, we believe the manuscript has amply described
the model’s performance in this respect.

Figure A2 compares the predicted seasonal cycles with the observed seasonal cycle
for every site in the training dataset (only for NEE as NEE seasonality was a key
focus of the paper).

In addition to the cross-validation plots of figure 3a-c, we have also included scatter
plots of the predicted annual means (Figure 3d-f) and the observed annual means
from every site. The colour coding does not show individual sites because
distinguishing between 29 unique colours is very difficult, instead we grouped them by
bioclimatic regions to make the analysis more legible.

We do not see a need to include a figure showing the full time-series predictions of
every site as it would make for a very large and unwieldy figure and we feel would not
provide the reader with any more useful information than the results shown in Figure
3, and Figure A2.
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Response to Community Comment
We’d like to thank the authors for this interesting and novel use of the TERN
Ecosystem Processes /OzFlux eddy covariance data. It is especially rewarding to
see Australian authors make use of the data, which has been freely shared by site
PI’s over the last decade or so.

We have a few minor suggestions that we feel would help strengthen the paper, by
making the eddy covariance data more transparently accessible to other
researchers, clarifying the processing steps used in the flux data, and providing
proper acknowledgement of the data sources.

● Please provide more details of the flux data in section 2.1.1. Readers need
to know which server the data was downloaded from. We are guessing this
is likely to be the OzFlux THREDDS server, in which case the URL needs to
be provided.

We acknowledge that we were a little vague in that section on precisely which
versions of the data we used and where we extracted it from, so thank you for
pointing out the need for further details . We have added the following statements
to lines 110-113 to clarify where the data was extracted from:

“These data are processed to Level 6 and are freely accessible through the
Terrestrial Ecosystem Research Network THREDDS portal
(https://dap.tern.org.au/thredds/catalog/ecosystem_process/ozflux/catalog.html
(TERN, 2023). All site data used in this study was version “2022_v2”, and in
instances where both “site-pi” and “default” versions of the datasets were
available, we utilised the “default” datasets.”

● Also in Section 2.1.1: Although available as an option (Isaac et al., 2017),
MODIS EVI data were not used in the processing pipeline of the default data
products the authors appear to have used. The default drivers for the
SOLO neural network were air temperature, soil temperature and soil
moisture. Please clarify and correct that statement.

Thank you for pointing out this mistake, we have corrected the statement in the
manuscript. It now reads: “This study uses the ‘SOLO’ data version which is
calculated using a data-driven nocturnal respiration approach for partitioning
where respiration is modelled using an artificial neural network driven by air and
soil temperature, and soil water content.”

● Provide more details of which flux data were used in the Data Availability
section at the end of the paper.

We have added the following statement to the Data Availability section:



The Level 6 Ozflux eddy covariance data used by this study is accessible through
the Terrestrial Ecosystem Research Network THREDDS data portal, available at:
https://dap.tern.org.au/thredds/catalog/ecosystem_process/ozflux/catalog.html.
This study relied on the data version “2022_v2”, and in instances where both
“site-pi” and “default” versions of the datasets were available, we utilised the
“default” datasets. See Figure A1 for a full list of sites used.

● Add details to the table embedded in Figure A1 to give the start and end
dates of the data streams used. Also, please include the official FLUXNET
2015 IDs for the site names, so that the global flux community can
understand which sites were used.

We have updated the table in Figure A1 to now include the Fluxnet ID (where
available), and have also included the full name of the site, and the starting and
ending dates of the data used in the study. For space reasons we have removed
some of the summary climate information that was previously in the table.

● Collective acknowledgement of TERN Ecosystem Processes/OzFlux site
PIs in the Acknowledgements section would be greatly appreciated.

We fully appreciate that this work is only possible through the collective efforts of
the OzFlux and TERN teams, and we have amended the acknowledgements
section to more clearly state this.

“The authors would like to thank the Terrestrial Ecosystem Research Network
(TERN) Ecosystem Processes team, along with the OzFlux site principal
investigators whose collective efforts in acquiring and curating the eddy
covariance data provides an invaluable resource to the research community.”

● As a courtesy, please consider sending an email to individual PIs, whose
contact information is contained in all the netCDF files, advising the use of
the data. Alternatively or in addition, feel free to contact the TERN
Ecosystem Processes (Lucas Cernusak) lead or the OzFlux director (Jamie
Cleverly) as a single point of contact to advise that you are using the data.

We have contacted Lucas Cernusak and Jamie Cleverly and they have
responded favourably.

We also recognize that there are steps we can take as TERN Ecosystem
Processes/OzFlux data providers to make the data more readily accessible and
citable. We thank the authors for bringing this to our attention through the useful
contribution of their paper.



Response to Reviewer 2
I was excited to receive the invitation to review this manuscript, as it is a much
needed piece of work that contributes to improved understanding of Australia's
terrestrial carbon cycle. It's great to see the use of the extensive OzFlux dataset
for validation of the new AusEFlux product, as it is no trivial effort to keep sites
running, collate and share eddy covariance data on a regular basis for use in
these types of studies. The manuscript itself was very well written and easy to
follow, with nicely designed figures and tables (I particularly loved figure 8!) - I
applaud the authors on these aspects of their manuscript.

While I enjoyed reading this manuscript and feel it is an important contribution to
the research community, I found the discussion section was very limited. First, I
was looking for more critique on how the empirical upscaling approach has
improved on previous methods, including a well-articulated argument for why
regional empirical upscaling needs to be considered by the modelling community
to ensure regions are correctly represented in global estimates. There is a heavy
bias of flux sites and model parameterization from the temperate northern
hemisphere, with regions such as Australia, South America and Africa lacking
on-ground validation sites to adequately verify global models. What I really like
about this study is that it has elegantly shown there are regional differences in
Australia not being adequately captured by global models. If this is true for
Australia, surely it could be true for other regions less represented too. I'd like to
see more thought and critique on this point in the discussion.

In the introduction to our manuscript we argue that models built on global datasets and
with a strong northern hemisphere bias may not accurately represent ecosystem
dynamics in regions where ecosystem responses do not conform to the dominant
dynamics in the global dataset. Perhaps owing to the unusual dynamics of the
sclerophyllous, evergreen, woody species that dominate Australia’s land mass we
believe we have proven this hypothesis to be true in the case of Australia. Whether or
not this is true for other under-represented regions such as Africa and South America
will likely depend on the extent to which their dominant plant species and land cover
types conform to the global datasets. Fortunately for Australia, we were able to test this
hypothesis for a number of reasons. Firstly, the OzFlux network is reasonably
comprehensive in its coverage of Australian ecosystems. Secondly, the EC sites have
been ‘harmonised’ through the implementation of a single dataset standard (Isaac et al
2017) allowing them to be ingested into a single modelling framework. And lastly, the
global upscaling product, FLUXCOM, had not included many sites from Australia so
differences between FLUXCOM and AusEFlux are likely attributable to differences in the
training data. For Africa and South America a set of high quality, harmonised EC sites
covering the diversity of their ecosystems does not appear available, thus it may not be
possible to test if these regions are being misrepresented by global models.

To highlight these points we have added a short paragraph to the discussion section
(lines 477-479) that read as follows:



“Our study showed that increasing the diversity of flux tower sites beyond the small
Australian set used in global products improved the quality of carbon flux estimates. We
cannot predict whether the same might hold for other underrepresented regions, which
mostly coincide with the global south, or whether the isolated evolution of Australia's
ecosystems also plays a role.”

There's also a lack of discussion of how the limitations in this study could be
overcome. For example, the method itself seems sound, but expanding on the
points about more EC data being needed would be really helpful to the research
community. Do the authors feel that just longer timeseries from the current
network are needed, or are more sites required? If more sites, where are they
needed? Figure 8 showed some interesting GPP and ER dynamics in certain areas
where there is a distinct lack of EC observation sites, the WA Wheatbelt being one
of them. The authors point to these areas in the results section, but do not
address how these areas could be better understood by future research efforts. A
better discussion around these points, in a nationally focused paper like this,
would really help researchers on the ground level to make the case for the need to
fill these missing gaps.

We agree with the reviewer that some discussion on where future OzFlux sites should
be placed is worth adding into the manuscript, and to this end we have edited this
discussion into a broader paragraph (lines 446-460) discussing some of the
uncertainties with spatial sampling of OzFlux (the entire paragraph is quoted below).

“Through our iterative modelling framework, we identified the largest uncertainties in the
flux estimates as occurring in the semi-arid to arid interior, and in the cropping regions of
Western Australia and the Murray-Darling Basin. A limitation of the OzFlux network is
the necessarily limited repeat spatial sampling of all main land cover types. Furthermore,
not each bioclimatic region is equally well represented, leading to biases in the sampling.
For example, desert and xeric ecosystems cover nearly half of the Australian land mass,
but less than 10% of the sites are located in these regions (Beringer et al., 2016).
Australia’s expansive cropping ecosystems are also under-represented. The limited
representation of these systems in the training data is likely why we found comparatively
high uncertainty in these regions (Fig. 6). Further uncertainty in the cropping regions
may also be due to the heterogeneity of crop types and agricultural practices that may
not be represented in our feature layers, and the potentially large carbon exports as
agricultural commodities. Also, given the Australian Government's emphasis on
emission offsetting through changes in agricultural practices and human-induced
regeneration of native woody vegetation, especially in drier regions (DCEEW, 2023),
new EC sites in cropping regions and in the (semi) arid rangelands areas of New South
Wales, Queensland, and Western Australia might help reduce uncertainties in AusEFlux
and expand the evidential basis for carbon sequestration through (re-)vegetation
(Macintosh et al., 2022). Given the changing climate conditions of Australia, it is vital to
maintain the current OzFlux infrastructure so that future changes to climate-carbon
interactions are monitored at the continental level through iterative retraining of the
AusEFlux model as new data is collected.”



Lastly, there's a lack of discussion around future directions for this work. There's
momentum building and wider interest in understanding carbon fluxes from
landscapes in real time and in collating annual budgets at national scale more
frequently. There's an opportunity for the work presented in this manuscript to be
incorporated into a regularly produced national annual estimate of Australia's
terrestrial carbon accounting, but there's no mention of this in the discussion. I
suggest the authors consider adding text along these lines, perhaps pointing to
the vision outlined in Papale 2020 and efforts already underway to deliver national
carbon observing infrastructure, such as TERN, NEON (USA) and ICOS (EU), that
could be input into approaches like the one presented by the authors to help
realise these goals.

We agree with the reviewer on this point and thank them for prompting further discussion
on the future directions of the work. Please see the comment below in dot point “Lines
467-469: …” for our response to the argument on this work being incorporated into a
regularly produced national estimate of Australia's terrestrial carbon budget.

We have also added further information on future directions for this work at the end of
the discussion section (lines 524-532). The last paragraph of the discussion now reads:

“While our estimate provides a step-forward in our means for assessing the complex,
seasonal, and interannual dynamics of Australia’s carbon cycle, future work can improve
upon this current effort. Firstly, we aim to extend AusEFlux further back in time through
the inclusion of satellite observations from the AVHRR and Landsat missions. However,
this effort will inform a separate study as it will require addressing cross-sensor
calibration issues. A longer record of empirically derived terrestrial carbon fluxes will
assist in defining robust environmental baselines from which future changes to the
carbon cycle can be assessed. Secondly, new or improved feature layers can be
incorporated as they become available (e.g., time-varying estimates of the percentages
of trees, grass and bare). And lastly, we aim to explore the prospects of ecological
forecasting (Dietze et al., 2018) of the terrestrial carbon cycle as seasonal forecasts may
be possible where forecasts of the climate are sufficiently detailed.”

There are a few other specific items I feel need to be addressed before the
manuscript is ready for publication. I've identified these as follows and believe
that if the authors can address them, their manuscript will be more widely cited as
a result:

- Lines 37-45: This is quite a difference between the two studies, but then at line
55 it's revealed that the Villalobos et al. 2022 study was from years 2015-2019,
while the Friedlingstein et al. 2022 study was from 2003-2021. Looking up both
studies reveals these time frames to be accurate. While I completely agree that
regionally forced studies usually provide more accurate estimates of carbon
cycling in Australia, I think it is misleading not to mention the temporal mismatch
between these studies. I suspect the temporal mismatch could be the primary
cause of the difference of >50 % between studies, as the millennium drought



(2001-2009) would be captured in the Friedlingstein et al. anaylsis but not in the
Villalobos et al analysis. Please amend the text to take this into consideration.

The references for this section has led to some confusion, for which we apologise. Here
we are comparing CABLE-POP (extracted from TRENDY v10) with CABLE-BIOS3,
provided by Villalobos (2022). Both datasets were clipped to the 2003-2019 range (we
incorrectly stated the range as 2003-2021 in the manuscript and have corrected this) for
the comparison between long-term mean GPP, thus there is no temporal mismatch. In
the Villalobos reference their atmospheric inversion only ran from 2015-2019, but their
run of CABLE extends much longer. We have amended the text slightly (line 44) to
make this more clear. We have also included a table in the appendix (Table A1) that
outlines the main features of each comparison dataset, which should also help reduce
confusion.

- Line 57; Please add spatial resolution for better comparison with OCO-2, i.e. as
at lines 54-55.

The Metz (2023) dataset is averaged over the entire Australian TRANSCOM region
(including NZ) and is provided as a zonally summarised time-series so there is no spatial
resolution given. The initial CO2 fluxes were resampled to 1 x1 degree grid before
applying their TRANSCOM region mask, but it is not clear to us from their
supplementary material if the atmospheric inversion results were first predicted on a grid
and then summarised, or summarised and then predicted.

- Line 70: I think its important to identify here the unequal representation of EC
sites across the globe, as some biomes (i.e. the tropics) contain a limited number
of sites compared to the temperate northern hemisphere. This bias is also likely to
be affecting ML empirical upscaling approaches. I see the authors allude to this at
line 78, but I think it needs to be addressed here too. See Baldocchi et al. 2018
(https://doi.org/10.1016/j.agrformet.2017.05.015) for a good review of inter-annual
variability in NEE from sites around the world, and where long-term monitoring
sites are lacking.

We agree that the northern hemisphere bias in the Fluxnet dataset is an important
attribute to highlight, and that mentioning this earlier in the manuscript during the
discussion on the limitations of FLUXCOM is worthwhile. We have included the following
sentence in that section (lines 72-74) :

“The global FLUXNET2015 dataset is also biased to the northern hemisphere, which
may preclude global upscaling products from making quality predictions in regions that
are both underrepresented in the training data, and do not conform to northern
hemisphere climate dynamics.”

- Line 77: A better introduction citation for the OzFlux network is Beringer et al.
2022 ( https://doi.org/10.1111/gcb.16141) or Beringer et al. 2016
(https://doi.org/10.5194/bg-13-5895-2016). Isaac et al. 2017 is an excellent



publication to cite for how the flux data were processed, which should be in the
methods.

We have included the Beringer 2016 & 2022 references in this location.

- Line 108: Please add the following text here to clarify how the data were
processed "using PyFluxPro vXXX (Isaac et al. 2017),..." The authors may need to
check with TERN regarding the PyFluxPro version used.

We argue that providing the reader with the specific PyFluxPro versions used to process
the Level-6 data will not be valuable to the reader unless they are already aware of what
the software iterations mean. However, we accept the more general point underlying
this comment about reproducibility of AusEFlux, and to this end we have included
specific reference to the versions of the datasets used. We have also included URL
paths to find the data, and Table A1 has been updated to include start and end dates of
the datasets used. The beginning of section 2.1.1 now reads:

“We used monthly fluxes of NEE, GPP, and ER produced by the OzFlux
(https://ozflux.org.au/) regional network of eddy covariance flux towers. These data are
processed to Level 6 and are freely accessible through the Terrestrial Ecosystem
Research Network THREDDS portal
(https://dap.tern.org.au/thredds/catalog/ecosystem_process/ozflux/catalog.html (TERN,
2023). All site data used in this study were version “2022_v2”, and in instances where
both “site-pi” and “default” versions of the datasets were available, we utilised the
“default” datasets.”

- Lines 189-191: Can the authors comment on this more specifically? Are there
any biomes or land uses missing that in their opinion would make the analysis
more robust? Perhaps this could come in the discussion instead...?

As per our response to the earlier comment, we have included in the discussion section
more comments on the limitations of the training data, including where we believe further
EC sites would help reduce uncertainties that are derived from the training data (lines
444-461) .

- Lines 321-325: I agree with this statement, but it should appear in the discussion,
not results. Please move to discussion, a good place would be the final
discussion paragraph.

We agree and have moved these statements to a new section at the beginning of the
discussion section (lines 453-455).

- Lines 406-422: This paragraph is mixing results and discussion a bit, i.e. lines
408-410 and lines 415-416, Please consider moving these points to the discussion,
which would help beef up the section.

While in general we agree with the reviewer that mixing results and discussion is an
issue, in this case we argue that there is merit in including these brief explanations for



the results as it assists the reader in understanding discrepancies between products at
the point of encounter. As the ‘discussion’ parts of this section only amount to two
sentences, we argue there is utility in keeping these comments where they currently are
in the manuscript because it improves clarity.

- Line 438: Remind readers of this study here, it's the Villalobos et al. 2022 study,
correct? In fact, it would be useful to include a small table that includes
information about each of the models used in this study, who published them,
their general characteristics (temporal and spatial resolution), etc... That way the
authors can refer the reader here to table X for a refresh and avoid re-citing each
study, that would add clutter to the text below. The table could be a brief summary
of information presented in section 2.1 and included at the end of that section.

We appreciate the suggestion of adding a table to summarise the comparison datasets
as there are quite a few products and it does get convoluted at times. We have created
a table that includes the dataset name, dataset type (process model, inversion etc.), the
spatio-temporal extents, and the key reference for each study. We have added this table
(Table A1) to the appendix to avoid cluttering the manuscript with too many tables and
figures. We’ve included a copy of the table below.

Dataset Name Dataset type Spatial
resolution

Temporal
range

References

CABLE-POP Process-model 1⁰ 2003-2020 Friedlingstein et al. (2022)

CABLE-BIOS3 Process-model 0.25⁰ 2003-2019 Villalobos et al. (2022)

OCO-2 Inversion Atmos. inversion 0.8⁰ 2015-2019 Villalobos et al. (2022)

GOSAT Inversion Atmos. inversion - 2009-2018 Metz et al. (2023)

FLUXCOM-Met ML upscaling 0.5⁰ 2003-2015 Jung et al. (2020)

FLUXCOM-RS ML upscaling 0.083⁰ 2003-2015 Jung et al. (2020)

MODIS-GPP Obs. Based 0.01⁰ 2003-2021 Running et al. (2015)

GOSIF-GPP Obs. Based 0.01⁰ 2003-2021 Li and Xiao (2019)

DIFFUSE-GPP Obs. Based 0.01⁰ 2003-2021 Donohue et al. (2014)



- Lines 438-442 - this is all one sentence, which is long and rather confusing to
follow. Please revise and more clearly articulate to the reader that this study was
verified using OzFlux EC sites.

We agree that this sentence was unwieldy and have rephrased the paragraph.

“We found evidence that Australia is, on average, a stronger annual carbon sink than
previous CABLE LSM and FLUXCOM estimates have concluded. Our estimate of the
long-term annual mean carbon sink over Australia (-0.44 PgC/yr) is higher than those
reported by any study besides the regional OCO-2 inversion (-0.47 PgC/yr). We take
the consilience between our estimate and the OCO-2 inversion’s; the fact that 25 out of
the 29 OzFlux EC sites used here report strong annual mean carbon sinks (Figure A7),
and the theoretical argument that ML predictions tend to produce good estimates of the
mean as evidence that Australia's status as a comparatively strong net carbon sink is
robust.”

- Line 460: Table shouldn't appear in the discussion.

Agreed, it's been moved back to the results section below section 3.5.

- Lines 467-469: Can the authors expand on this point more? In an ideal world,
how frequently do the authors think a product like this should be updated?
Realistically, how frequently is this likely to be? I recommend reading Papale 2020
(https://doi.org/10.5194/bg-17-5587-2020) and publications from the global carbon
project to tease this discussion point out further.

We are happy to expand on this point further, and it is a future aim of the authors to
annually update and release this product. We have included in the discussion section
the following paragraph (lines 518-224:

“An advantage of this approach over other methods is its computational efficiency, and,
owing to the mature architecture of the OzFlux infrastructure, the ability to
programmatically ingest updated or new EC datasets to further refine models. Thus,
there is an opportunity for AusEFlux to be incorporated into an annually produced
national estimate of Australia's terrestrial carbon fluxes. Any annually produced
‘bottom-up’ estimate of Australia’s terrestrial carbon fluxes could also serve as a
compliment to the Global Carbon Project’s aims of annually reporting the carbon balance
of the world (Papale, 2020). Through regular updating of this dataset, the ecosystems
that play an outsized role in controlling Australia’s mean carbon sink and contribute
substantially to its IAV can begin to be systematically monitored for change.”

- Lines 477-478: What about the role of fire in consuming biomass in the dry
season and how that might affect carbon emissions from savannas? Can the



authors expand on this please. Beringer et al. 2015 (
https://doi.org/10.1111/gcb.12686) might be a good place to start.

We thank the reviewer for prompting us to discuss the seasonal role of fire. To elucidate
the seasonal role of fire in the savanna regions, we have amended Figure A5 to include
fire emissions (copied below). The addition of fire emissions shows that the late
dry-season (Aug-Oct) fires lead to an earlier net carbon pulse to the atmosphere and
larger peak emissions than the out-of-phase ER-GPP effect alone. We have amended
the discussion in the manuscript to reflect this (lines 516-517).

Figure A5. (a) Flux climatologies for the Savanna and Desert region, showing the same
results as those in Figure 10, but shown on a single plot to enhance interpretability. (b)
NEE per bioclimatic region calculated by subtracting GPP from ER (i.e., not directly
modelled), presented here to show how the fluxes interact to produce NEE. Fire
emissions from the GFAS product have been added to the Savanna fluxes in (b) to
highlight how dry season fires interact with ER to enhance a seasonal pulse of carbon to
the atmosphere.

- Lines 478-480: Here again, a missed opportunity to critique with site-based
studies, such as Cleverly et al. 2013 (10.1002/jgrg.20101)

We have added reference to the Cleverly et al. (2013) paper in this section, which now
reads (lines 509-512):

“This finding agrees with Renchon et al. (2018) at the Cumberland Plains EC flux tower
site, where the forest was a CO2 sink in winter and a source in summer due to larger
seasonal amplitudes in ER. Similarly, Metz et al. (2023) found that seasonal rainfall in
semi-arid regions after the dry season drives pulses of heterotrophic respiration that
precede the GPP response, leading to net carbon uptake not beginning until March.
Cleverly et al. (2013), in a site-based study of a semi-arid acacia woodland in central
Australia, observed that the first large springtime storms following the dry season
resulted in pulses of ecosystem respiration owing to an uptick in moisture limited
microbial decomposition of photodegraded litter and flushing of CO2 from soil pore



spaces through infiltration. Our results confirm that ER over the savanna region
responds quickly to seasonal rainfall events at the end of the dry-season, while GPP
responds more slowly resulting in carbon pulses to the atmosphere during the Oct-Dec
period.”

- Lines 489-492: This is a rather subjective and negative way to begin a
conclusion. One could argue that the OzFlux network already captures a diverse
range of Australian ecosystems, and it is certainly the largest network in the
underrepresented southern hemisphere. However, one could also argue that there
are key systems missing, which can bias any upscaling approaches that use
OzFlux data. How many flux towers are needed for a network like OzFlux to have
"good" coverage? My point being, given this paper did not assess whether the
quantity of sites in OzFlux was adequate for upscaling (in fact it used correlation
with OzFlux sites as an indicator that the results were robust), I suggest
rethinking the opening sentence of the conclusion to be more focused on the key
result/finding and less about the limitations of OzFlux.

We thank the reviewer for this suggestion and agree that the opening sentence was
needlessly negative. We have deleted the opening line of the conclusion and the
conclusion now has a better focus on the key findings.


