

1 **Contribution of expanded marine sulfur chemistry to the seasonal variability**
2 **of DMS oxidation products and size-resolved sulfate aerosol**

3 Linia Tashmim¹, William C. Porter¹, Qianjie Chen², Becky Alexander³, Charles H. Fite⁴,
4 Christopher D. Holmes⁴, Jeffrey R. Pierce⁵, Betty Croft⁶, and Sakiko Ishino⁷

5 ¹Department of Environmental Sciences, University of California, Riverside, CA, USA

6 ²Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
7 Hong Kong, China

8 ³Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA

9 ⁴Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee,
10 FL, USA

11 ⁵Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

12 ⁶Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia,
13 Canada

14 ⁷Institute of Nature and Environmental Technology, Kanazawa University, Japan

15 Correspondence: Linia Tashmim (ltash001@ucr.edu) and William C. Porter
16 (william.porter@ucr.edu)

17 **Abstract.** Marine emissions of dimethyl sulfide (DMS) and the subsequent formation of its
18 oxidation products methane sulfonic acid (MSA) and sulfuric acid (H_2SO_4) are well-known natural
19 precursors of atmospheric aerosols, contributing to particle mass and cloud formation over ocean
20 and coastal regions. Despite a long-recognized and well-studied role in the marine troposphere,
21 DMS oxidation chemistry remains a work in progress within many current air quality and climate
22 models, with recent advances exploring heterogeneous chemistry and uncovering previously
23 unknown intermediate species. With the identification of additional DMS oxidation pathways and
24 intermediate species influencing its eventual fate, it is important to understand the impact of these
25 pathways on the overall sulfate aerosol budget and aerosol size distribution. In this work, we
26 update and evaluate the DMS oxidation mechanism of the chemical transport model GEOS-Chem
27 by implementing expanded DMS oxidation pathways into the model. These updates include gas-
28 and aqueous-phase reactions, the formation of the intermediates dimethyl sulfoxide (DMSO) and
29 methane sulphonic acid (MSIA), as well as cloud loss and aerosol uptake of the recently quantified
30 intermediate hydroperoxymethyl thioformate (HPMTF). We find that this updated mechanism
31 collectively decreases the global mean surface-layer gas-phase sulfur dioxide (SO_2) mixing ratio
32 by 35% and enhances sulfate aerosol (SO_4^{2-}) mixing ratio by 22%. We further perform sensitivity
33 analyses exploring the contribution of cloud loss and aerosol uptake of HPMTF to the overall
34 sulfur budget. Comparing modeled concentrations to available observations we find improved
35 biases relative to previous studies. To quantify impacts of these chemistry updates on global
36 particle size distributions and mass concentration we use the TOMAS aerosol microphysics
37 module [coupled to GEOS-Chem](#), finding changes in particle formation and growth affect the size
38 distribution of aerosol. With this new DMS-oxidation scheme the global annual mean surface layer
39 number concentration of particles with diameters smaller than 80 nm decreases by 12.8%, with
40 cloud loss processes related to HPMTF mostly responsible for this reduction. However, global
41 annual mean number of particles larger than 80 nm increases by 3.1%, suggesting that the new
42 scheme promotes seasonal particle growth to these sizes capable of acting as cloud condensation
43 nuclei (CCN).

44 **1 Introduction**

45 Dimethyl sulfide (DMS: CH_3SCH_3) is the most abundant biological source of sulfate aerosol and
46 has a significant influence on Earth's radiation budget and climate due to its contribution to
47 atmospheric marine particle (Charlson et al., 1987; Fung et al., 2022). In the atmosphere, DMS
48 reacts with hydroxyl radical (OH), nitrate radical (NO_3), ozone (O_3) and various halogen species
49 (e.g., chlorine (Cl) and bromine oxide (BrO)), primarily forming sulfur dioxide (SO_2) and methyl
50 sulfonic acid (MSA; $\text{CH}_3\text{SO}_3\text{H}$) (Chen et al., 2018; Faloona, 2009; Hoffmann et al., 2016). These
51 oxidation products are considered key influences on the formation and evolution of natural
52 aerosols and clouds along with their associated climate impacts, especially in the marine boundary
53 layer (MBL) (Carslaw et al., 2013; Sipilä et al., 2010; Schobesberger et al., 2013; Thomas et al.,
54 2010; von Glasow and Crutzen, 2004). SO_2 and MSA formed by DMS oxidation can be deposited
55 on Earth surface or further oxidize affecting the size distribution of aerosol and cloud microphysics
56 (Leaitch et al., 2013; Wollesen de Jonge et al., 2021). SO_2 can either oxidize in the gas-phase by
57 reaction with the OH radical forming H_2SO_4 , which can participate in nucleation and early growth
58 of particles in the atmosphere, or it can be taken up by cloud droplets and undergo aqueous phase
59 oxidation by reaction with H_2O_2 , O_3 and O_2 catalyzed by transition metals (Mn, Fe) forming SO_4^{2-}
60 and generally only contributing to the growth of aerosol particles (Hoyle et al., 2016; Kulmala,
61 2003; Alexander et al., 2009). The hypohalous acids (HOBr, HOCl, HOI) also plays significant
62 role in aqueous-phase sulfate production in the marine boundary layer (MBL) (Chen et al., 2016;
63 Sherwen et al., 2016b). Recent studies have highlighted the importance of natural aerosols
64 originating from DMS oxidation and their contribution to the uncertainty of aerosol radiative
65 forcing in climate models (Carslaw et al., 2013; Fung et al., 2022; Rosati et al., 2022; Novak et al.,
66 2021, 2022). Since DMS-derived aerosol is a major source of uncertainty in estimating the global
67 natural aerosol burden and associated aerosol indirect radiative forcing, a more accurate
68 representation of DMS oxidation and particle formation processes is an important step towards
69 improved Earth system and climate modeling.

70 Although the chemistry of DMS oxidation has been previously studied in great detail, known
71 uncertainties and omissions in the current mechanism remain in current air quality and chemical
72 transport models (Barnes et al., 2006; Fung et al., 2022; Hoffmann et al., 2016, 2021). Furthermore,
73 while increasingly complex and experimentally validated mechanisms are under ongoing
74 development, DMS oxidation processes in many current chemical transport models continue to be
75 represented through simplified gas-phase reactions with the tropospheric oxidants OH and NO_3 ,
76 producing the two major oxidation products SO_2 and MSA at a fixed ratio as shown in R1-R3 in
77 Table 1 (Chen et al., 2018; Chin et al., 1996; Veres et al., 2020). This type of simplified mechanism
78 neglects the formation and loss of important intermediates such as dimethyl sulfoxide (DMSO:
79 CH_3SOCH_3), methane sulphonic acid (MSIA: $\text{CH}_3\text{SO}_2\text{H}$) and the recently discovered oxidation
80 product hydroperoxymethyl thioformate (HPMTF: $\text{HOOCH}_2\text{SCHO}$) (Berndt et al., 2019; Veres et
81 al., 2020; Wu et al., 2015; Khan et al., 2021).

82 These omissions can have major consequences on product yields of DMS oxidation, thereby
83 affecting the aerosol burdens. For example, the OH-addition pathway of DMS forms DMSO and
84 MSIA as the intermediates, which has been identified as a dominant source of MSA via their
85 aqueous-phase oxidation, and a fraction of that MSA subsequently undergoes aqueous-phase
86 oxidation to form sulfate aerosol (Chen et al., 2018; Ishino et al., 2021; Zhu et al., 2006; von
87 Glasow and Crutzen, 2004). Previous studies suggest that BrO contributes to 8 – 30% of total DMS

88 loss, highlighting the importance of this pathway as well (Breider et al., 2010; Boucher et al., 2003;
 89 Chen et al., 2018; Khan et al., 2016). More recent experimental and laboratory studies have
 90 confirmed the formation of methylthiomethyl peroxy radicals ($\text{CH}_3\text{CH}_2\text{OO}$; abbreviated as MSP
 91 or MTMP) from the H-abstraction channel of OH oxidation, which can subsequently lead to a
 92 series of rapid intramolecular H-shift isomerization reactions, ultimately resulting in the formation
 93 of the stable intermediate HPMTF (Berndt et al., 2019; Veres et al., 2020; Vermeuel et al., 2020;
 94 Wu et al., 2015; Fung et al., 2022; Jernigan et al., 2022a). It has been reported that 30–46% of
 95 emitted DMS forms HPMTF according to different modeling studies and this falls within the
 96 observational range from NASA Atmospheric Tomography ATom-3 and ATom-4 flight
 97 campaigns where about 30–40% DMS was oxidized to HPMTF along their flight tracks (Fung et
 98 al., 2022; Veres et al., 2020; Novak et al., 2021). Subsequent investigation of the isomerization
 99 rate and heterogeneous loss of HPMTF in cloud droplets and aerosol shows a high production rate
 100 of marine carbonyl sulfide (OCS) from the chemical loss of HPMTF, a potential precursor of
 101 stratospheric sulfate aerosol and significant inhibitor of cloud condensation nuclei (CCN)
 102 formation due to the resulting reduction of surface SO_2 (Jernigan et al., 2022a). With the latest
 103 experimental findings on heterogeneous loss process of HPMTF and experimentally validated
 104 oxidation reactions for OCS formation directly from HPMTF it is necessary to include these
 105 reactions as part of the DMS oxidation mechanism as these will have impact on overall yield of
 106 SO_2 , thus affecting the formation probability of CCN (Jernigan et al., 2022a, b).

108 **Table 1.** The three DMS oxidation reactions in the standard GEOS-Chem chemical mechanism

Reactions	Rate (s^{-1})	
$\text{DMS} + \text{OH}_{(\text{abstraction})} \rightarrow \text{SO}_2 + \text{CH}_3\text{O}_2 + \text{CH}_2\text{O}$	$1.20\text{e-}11 * \exp(-280/T)$	(R1)
$\text{DMS} + \text{OH}_{(\text{addition})} \rightarrow 0.75 \text{SO}_2 + 0.25 \text{MSA} + \text{CH}_3\text{O}_2$	$8.2 \times 10^{-39} [\text{O}_2] e^{5376/T} / (1 + 1.05 \times 10^{-5} [\text{O}_2]/[\text{M}]) e^{3644/T}$ $\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	(R2)
$\text{DMS} + \text{NO}_3 \rightarrow \text{SO}_2 + \text{HNO}_3 + \text{CH}_3\text{O}_2 + \text{CH}_2\text{O}$	$1.90\text{e-}13 * \exp(530/T)$	(R3)

109
 110 Considering these and other consequences of complex DMS oxidation processes, a heavily
 111 simplified oxidation scheme will necessarily neglect potentially important reaction intermediates
 112 along with their production and loss pathways, with implications for the concentration and
 113 distribution of the oxidation products, including particulate sulfate. Differing intermediate
 114 lifetimes further influence sulfur removal and transport depending on the relative dominance of
 115 pathways. Thus, the exclusion of key pathways and intermediate species can lead to errors in the
 116 representation of the spatial distribution of both gas- and particle-phase sulfur species, as well as
 117 global sulfur burden.

118 The DMS oxidation products sulfate and MSA play an important role in Earth's radiative budget
 119 through cloud droplet formation, and the extent of this role depends on how efficiently they can
 120 produce and grow new particles in the marine atmosphere (Thomas et al., 2010). SO_2 can oxidize
 121 in the gas-phase the forming H_2SO_4 , which acts as a key product contributing to nucleation and
 122 condensational growth as shown in Figure 1. SO_2 oxidizing through aqueous chemistry in cloud
 123 droplets does contribute to particle growth rates by providing larger aerosol during cloud
 124 evaporation that acts as more efficient CCN (Kaufman and Tanré, 1994). On the other hand, MSA
 125 might participates in nucleation along with sulfuric acid in presence of amines or ammonia
 126 (Johnson and Jen, 2023). Recent studies have highlighted the importance of aqueous-phase
 127 chemistry in the formation and loss of MSA (Boniface et al., 2000; Chen et al., 2015; Kaufman
 128 and Tanré, 1994; Kulmala et al., 2000).

Figure 1 Modified DMS oxidation mechanism used in this work (simulation MOD) showing the formation of major stable oxidation products (blue-outline boxes) including newly identified intermediate HPMTF, and their contribution to new particle formation or growth of existing particles. Note that we include gas-phase and aqueous-phase chemistry of DMSO, MSIA and OCS in the mechanism, which counts towards their contribution to the formation of major oxidation products of DMS, but that these pathways are not explicitly shown here to maintain visual clarity.

129 Additionally, the recently identified intermediate HPMTF also has the potential for further gas-
 130 phase oxidation. Under cloud-free conditions, HPMTF can undergo gas-phase oxidation by OH,
 131 producing SO₂ and eventually leading to the formation of non-sea-salt-SO₄²⁻. This sulfate can
 132 contribute to aerosol formation and growth processes, with climate implications (Galí et al., 2019).
 133 Other work has used direct airborne eddy covariance flux measurements to explain the chemical
 134 fate of HPMTF in the MBL, finding that in cloudy conditions chemical loss due to aqueous phase
 135 reactions in clouds is the major HPMTF removal process (Novak et al., 2021). In the same study,
 136 global model simulations showed a 35% reduction in global annual average SO₂ production from
 137 DMS and a 24% reduction in the near-surface (0 to 3 km) global annual average SO₂
 138 concentrations over the ocean as a result of this process (Novak et al., 2021). Thus, a complete
 139 representation of cloud loss and aerosol uptake is needed to effectively evaluate the atmospheric
 140 impacts of marine DMS and their connections to cloud formation (Novak et al., 2021; Holmes et
 141 al., 2019).

142 To better understand the marine sulfur budget, as well as the eventual formation, size distribution,
 143 and seasonality of sulfate aerosol, we use the global chemical transport model GEOS-Chem,
 144 integrating previously developed mechanisms along with newly proposed pathways involving the
 145 formation and loss of the intermediates DMSO, MSIA, and HPMTF. As part of this work, we
 146 further quantify the atmospheric impacts of individual reactions and mechanisms, evaluate
 147 uncertainties in the chemical mechanism, and identify improvements necessary to better represent
 148 the impacts of DMS more accurately on atmospheric chemistry and climate. The resulting
 149 integrated scheme provides a more complete representation of marine sulfur and sulfate aerosol
 150 species in marine tropospheric environments compared to the simplified base GEOS-Chem
 151 mechanism, with improved comparisons to aircraft and surface observations. Since aerosols are a
 152 major contributor to uncertainty in climate forcing, improving oxidation and aerosol formation
 153 mechanisms by adding and optimizing neglected reactions in models is a crucial step towards a
 154 more mechanistically robust representation of particle yields and sensitivities. We further perform

155 multiple sensitivity tests to investigate how the uncertainty in heterogeneous uptake of the newly
156 identified HPMTF could influence DMS chemistry and tropospheric aerosol formation (Holmes
157 et al., 2019; Novak et al., 2021). In a broader sense our work provides a more detailed story on the
158 heterogeneous loss, fate, and ultimate impacts of DMS and its oxidation products, improving our
159 understanding of a key ocean-atmosphere interaction in the context of global change.

160 **2 Methodology**

161 To simulate DMS chemistry and its oxidation products GEOS-Chem global chemical transport
162 model v12.9.3 is used. Impacts on simulated aerosol size, number and mass concentration are
163 considered by coupling the Two-Moment Aerosol Sectional (TOMAS) aerosol microphysics
164 module with GEOS-Chem v12.9.3 (GC-TOMAS) (<https://github.com/geoschem/geoschem/tree/12.9.3>) (Adams and Seinfeld, 2002; Kodros and Pierce, 2017). The default GEOS-Chem
165 chemical mechanism contains detailed HO_x-NO_x-VOC-O₃-halogen tropospheric chemistry
166 along with recently updated halogen chemistry and in-cloud processing (Bey et al., 2001; Holmes
167 et al., 2019; Chen et al., 2017; Parrella et al., 2012; Schmidt et al., 2016; Wang et al., 2019). The
168 DMS emission flux from ocean are controlled by a gas transfer velocity which is dependent on sea
169 surface temperature and wind speed (Johnson, 2010) and a climatology of concentrations in
170 seawater (Lana et al., 2011; Nightingale et al., 2000). The aqueous-phase concentration of O₃ in
171 aerosols or cloud droplets is calculated assuming gas-liquid equilibrium and aqueous-phase
172 concentration of OH is calculated following [OH_(aq)] = δ[OH_(g)] where, δ = 1 × 10⁻¹⁹ M cm³
173 molecule⁻¹ (Jacob et al., 2005; Chen et al., 2018).

175 In this study, TOMAS tracks aerosol number and the mass of each aerosol species in 15
176 logarithmically sized bins, with sizes in this analysis ranging from 3 nm to 10 μm (Lee and Adams,
177 2012; Lee et al., 2013). All binned aerosol species undergo interactive microphysics, allowing the
178 calculation of aerosol number budgets (Westervelt et al., 2013). The version of GC-TOMAS used
179 here includes 47 vertical levels, a horizontal resolution of 4° × 5°, and the GEOS-FP data product
180 for meteorological inputs. Simulations are performed for 2018, with 11 months of discarded model
181 spin up. Nucleation is simulated via a ternary nucleation scheme involving water, sulfuric acid,
182 and ammonia with nucleation rates scaled by 10⁻⁵ (Napari et al., 2002; Westervelt et al., 2013). In
183 low-ammonia regions (less than 1 pptv), a binary nucleation scheme involving water and sulfuric
184 acid is instead used (Vehkamäki et al., 2002). Previously GC-TOMAS has been used for aerosol
185 simulations to investigate topics such as the aerosol cloud-albedo effect and cloud condensation
186 nuclei formation (Kodros et al., 2016; Kodros and Pierce, 2017; Pierce and Adams, 2006;
187 Westervelt et al., 2013). Aerosol species available for GC-TOMAS simulations are sulfate, aerosol
188 water, black carbon, organic carbon, mineral dust, and sea salt (Alexander et al., 2005; Bey et al.,
189 2001; Duncan Fairlie et al., 2007; Pye et al., 2009). The wet and dry deposition scheme for aerosols
190 and gas species are based on previous studies (Amos et al., 2012; Emerson et al., 2020; Liu et al.,
191 2001; Wesely, 1989; Wang et al., 1998).

192 We refer to simulations performed using only these three DMS oxidation reactions (Table 1) as
193 the “BASE”, involving only the direct formation of SO₂ and MSA in gas-phase (Chin et al., 1996).
194 We further implement and evaluate a custom chemical mechanism for DMS oxidation, referred to
195 as “MOD” (Table 2-4), representing an integration of three individual DMS oxidation mechanism
196 updates explored previously using GEOS-Chem and CAM6-Chem, along with HPMTF loss via
197 heterogenous chemistry in clouds and aerosols and dry and wet deposition of HPMTF (Chen et
198 al., 2018; Fung et al., 2022; Veres et al., 2020; Novak et al., 2021). Loss of HPMTF in clouds
199 follow entrainment-limited uptake which used a chemical rate expression to control rate of mixing
200 between cloudy and clear air (Holmes et al., 2019). In GC-TOMAS we use specific subroutine that
201 take amount of sulfate produced via in-cloud oxidation and condense it into an existing aerosol
202 size distribution. So, mass of sulfate produced by oxidation is portioned to the various size bins
203 according to the number of particles in that size bin. TOMAS microphysics accounts for H₂SO₄

204 formation based on gas-phase oxidation of SO_2 included in the kinetic preprocessor (KPP)
 205 equation list valid for the simulation BASE. Since there are additional sources of sulfate in the
 206 integrated DMS oxidation mechanism both in gas and aqueous phase, we made necessary changes
 207 in the KPP code to explicitly track H_2SO_4 formation by gas phase oxidation of SO_2 . On the other
 208 hand, code changes for sulfate formed by heterogeneous oxidation of MSA and HPMTF (in clouds
 209 and aerosols) were added in the GEOS-Chem microphysics module that also handles in-cloud
 210 oxidation of SO_2 in GC version 12.9.3 (Park et al., 2004; Trivitayanurak et al., 2008).

211 **Table 2.** Overview of the DMS oxidation mechanism via OH-addition pathway.

Gas-phase reactions	Rate (s^{-1})	References
$\text{DMS} + \text{OH} \rightarrow 0.60\text{SO}_2 + 0.4\text{DMSO} + \text{CH}_3\text{O}_2$	$8.2 \times 10^{-39} [\text{O}_2] e^{5376/T} / (1 + 1.05 \times 10^{-5} ([\text{O}_2]/[\text{M}]) e^{3644/T}) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	(Burkholder et al., 2015; Pham et al., 1995; Spracklen et al., 2005)
$\text{DMS} + \text{BrO} \rightarrow \text{DMSO} + \text{Br}$	$1.50 \times 10^{-14} * \exp(1000/T)$	(Bräuer et al., 2013; Hoffmann et al., 2016)
$\text{DMS} + \text{O}_3 \rightarrow \text{SO}_2$	1.50×10^{-19}	(Burkholder et al., 2015; Du et al., 2007)
$\text{DMSO} + \text{OH} \rightarrow 0.95\text{MSIA} + 0.05\text{SO}_2$	$6.10 \times 10^{-12} * \exp(800/T)$	(Burkholder et al., 2015; von Glasow and Crutzen, 2004)
$\text{MSIA} + \text{OH} \rightarrow 0.9\text{SO}_2 + 0.1\text{MSA}$	9.00×10^{-11}	(Burkholder et al., 2015)
$\text{MSIA} + \text{O}_3 \rightarrow \text{MSA}$	2.00×10^{-18}	(von Glasow and Crutzen, 2004; Lucas and Prinn, 2002)

Aqueous-phase reactions	$k_{298} [\text{M}^{-1} \text{s}^{-1}]$	References
$\text{DMS}(\text{aq}) + \text{O}_3(\text{aq}) \rightarrow \text{DMSO}(\text{aq}) + \text{O}_2(\text{aq})$	8.61×10^8	(Gershenson et al., 2001; Hoffmann et al., 2016)
$\text{DMSO}(\text{aq}) + \text{OH}(\text{aq}) \rightarrow \text{MSIA}(\text{aq})$	6.65×10^9	(Zhu et al., 2003; Hoffmann et al., 2016)
$\text{MSIA}(\text{aq}) + \text{OH}(\text{aq}) \rightarrow \text{MSA}(\text{aq})$	6.00×10^9	(Sehested and Holcman, 1996; Hoffmann et al., 2016)
$\text{MSI}^-(\text{aq}) + \text{OH}(\text{aq}) \rightarrow \text{MSA}(\text{aq})$	1.20×10^{10}	(Bardouki et al., 2002; Hoffmann et al., 2016)
$\text{MSIA}(\text{aq}) + \text{O}_3(\text{aq}) \rightarrow \text{MSA}(\text{aq})$	3.50×10^7	(Hoffmann et al., 2016)
$\text{MSI}^-(\text{aq}) + \text{O}_3(\text{aq}) \rightarrow \text{MSA}(\text{aq})$	2.00×10^6	(Flyunt et al., 2001; Hoffmann et al., 2016)
$\text{MSA}(\text{aq}) + \text{OH}(\text{aq}) \rightarrow \text{SO}_4^{2-}$	1.50×10^7	(Hoffmann et al., 2016)
$\text{MS}^-(\text{aq}) + \text{OH}(\text{aq}) \rightarrow \text{SO}_4^{2-}(\text{aq})$	1.29×10^7	(Zhu et al., 2003; Hoffmann et al., 2016)

213 **Table 3.** Overview of the DMS oxidation mechanism involving HPMTF formation.

Gas-phase reactions	Rate (s^{-1})	References
$\text{MSP}(\text{CH}_3\text{SCH}_2\text{OO}) \rightarrow \text{OOCH}_2\text{SCH}_2\text{OOH}$	$2.2433 \times 10^{-11} * \exp(-9.8016 \times 10^{-3} / T) * (1.0348 \times 10^{-8} / T^3)$	(Berndt et al., 2019; Veres et al., 2020; Wollesen de Jonge et al., 2021)
$\text{OOCH}_2\text{SCH}_2\text{OOH} \rightarrow \text{HPMTF}$	$6.0970 \times 10^{-11} * \exp(-9.4896 \times 10^{-3} / T) * (1.1028 \times 10^{-8} / T^3)$	(Berndt et al., 2019; Veres et al., 2020; Wollesen de Jonge et al., 2021)
$(\text{HOOCH}_2\text{SCHO}) + \text{OH} \rightarrow \text{OOCH}_2\text{SCH}_2\text{OOH} + \text{NO}$	$4.9 \times 10^{-12} * \exp(260/T)$	(Saunders et al., 2003)
$\text{HOOCH}_2\text{S} + \text{NO}_2 + \text{HCHO} \rightarrow \text{MSP} + \text{HO}_2$	$1.13 \times 10^{-13} * \exp(1300/T)$	MCMv3.3.1, (Wollesen de Jonge et al., 2021)
$\text{CH}_3\text{SCH}_2\text{OOH} + \text{hv} \rightarrow \text{CH}_3\text{SCH}_2\text{O} + \text{OH}$	$J(41)$	MCMv3.3.1, (Wollesen de Jonge et al., 2021)
$\text{HPMTF} + \text{OH} \rightarrow \text{HOOCH}_2\text{SCO} + \text{H}_2\text{O}$	4.00×10^{-12}	(Jernigan et al., 2022a)

HPMTF + OH → 0.13OCS + 0.87SO ₂ + CO	1.40e-11	(Jernigan et al., 2022a)
OCS + OH → SO ₂	1.13e-13*exp(1200/T)	(Jernigan et al., 2022a)
HOOCH ₂ SCO → HOOCH ₂ S + CO	9.2e9*exp(-505.4/T)	(Wu et al., 2015)
HOOCH ₂ SCO → OH + CH ₂ O + OCS	1.6e7*exp(-1468.6/T)	(Wu et al., 2015)
HOOCH ₂ S + O ₃ → HOOCH ₂ SO + O ₂	1.15e-12*exp(430/T)	(Saunders et al., 2003)
HOOCH ₂ S + NO ₂ → HOOCH ₂ SO + NO	6.0e-11*exp(240/T)	(Saunders et al., 2003)
HOOCH ₂ SO + O ₃ → SO ₂ + CH ₂ O + OH + O ₂	4.0e-13	(Saunders et al., 2003)
HOOCH ₂ SO + NO ₂ → SO ₂ + CH ₂ O + OH + NO	1.2e-11	(Saunders et al., 2003)

215
216

Table 4. Overview of the MSA-producing branch of the H-abstraction pathway of DMS oxidation.

Gas-phase reactions	Rate (s ⁻¹)	Original References
DMS + OH → MSP (CH ₃ SCH ₂ OO) + H ₂ O	1.12e-11*exp(-250/T)	(Saunders et al., 2003)
DMS + Cl → 0.45MSP + 0.55C ₂ H ₆ SCl + 0.45HCl	3.60e-10	(Fung et al., 2022; Enami et al., 2004)
C ₂ H ₆ SCl → DMSO + ClO	4.00e-18	(Hoffmann et al., 2016)
DMS + NO ₃ → MSP + HNO ₃	1.9e-13*exp(520/T)	(Novak et al., 2021; Wollesen de Jonge et al., 2021)
MSP + NO → CH ₃ SCH ₂ (O) + NO ₂	4.9e-12*exp(260/T)	(Saunders et al., 2003)
MSP + CH ₃ O ₂ → CH ₃ SCH ₂ (O) + O ₂	3.74e-12	(Saunders et al., 2003)
CH ₃ SCH ₂ (O) → CH ₃ S + CH ₂ O	1.0e6	(Saunders et al., 2003)
CH ₃ S + O ₃ → CH ₃ S(O) + O ₂	1.15e-12*exp(430/T)	(Saunders et al., 2003)
CH ₃ S + O ₂ → CH ₃ S(OO)	1.20e-16*exp(1580/T)	(Saunders et al., 2003)
CH ₃ S(O) + O ₃ → CH ₃ (O ₂) + SO ₂	4.00e-13	(Saunders et al., 2003)
CH ₃ S(OO) → CH ₃ (O ₂) + SO ₂	5.60e16*exp(-10870/T)	(Saunders et al., 2003)
CH ₃ S(OO) → CH ₃ SO ₂	1.00	(Saunders et al., 2003)
CH ₃ SO ₂ + O ₃ → CH ₃ SO ₃ + O ₂	3.00e-13	(Saunders et al., 2003)
CH ₃ SO ₂ → CH ₃ (O ₂) + SO ₂	5.00e13*exp(-9673/T)	(Saunders et al., 2003)
CH ₃ SO ₃ + HO ₂ → MSA + O ₂	5.00e-11	(Saunders et al., 2003)
CH ₃ SO ₃ → CH ₃ (O ₂) + H ₂ SO ₄	5.00e13*exp(-9946/T)	(Saunders et al., 2003)

217 To examine the sensitivities of size-resolved aerosol formation and growth to DMS chemistry
218 modifications, model simulations are conducted as summarized in Table 5. Output from
219 simulations MOD and MOD_noHetLossHPMTF was then compared against simulation BASE to
220 understand the contribution of these additional chemical reactions on spatial pattern of the surface
221 concentration of major oxidation products of DMS.

222 **Table 5.** List of mechanisms used in GEOS-Chem-TOMAS simulations.

Model Runs	Mechanism	HPMTF Cloud Loss*	HPMTF Aerosol Loss*
BASE	All reactions from Table 1	-	-
MOD_noHetLossHPMTF	All reactions from Table 2-4	Off	Off
MOD	All reactions from Table 2-4	On	On

223 * Instantaneous formation of sulfate via HPMTF cloud and aerosol loss uses a reactive uptake co-efficient (γ) of
224 0.0016.

225 As shown in Table 2, the modified DMS chemistry simulations examined here include gas- and
226 aqueous-phase oxidation of DMS and its intermediate oxidation products by OH, NO₃, O₃, and
227 halogenated species as previously explored in an older version of GEOS-Chem (Chen et al., 2018).
228 The aqueous-phase reactions in cloud droplets and aerosols were parameterized assuming a first-
229 order loss of the gas-phase sulfur species (Chen et al., 2018). Further building upon this previous
230 mechanism, the scheme used here also includes the formation and loss of HPMTF as previously
231 tested in the global climate model CAM6-Chem as shown in Table 3 (Veres et al., 2020). Table 4
232 presents the third piece of the mechanism: a gas-phase MSA-producing branch of the H-abstraction
233 pathway in the DMS chemistry bridging the other two sets of the reactions (Fung et al., 2022). A
234 similarly integrated mechanism (Table 2-4) has been previously explored using the CAM6-Chem
235 model with a focus on radiation budget impacts, with the exception of the DMS + NO₃ = MSP +
236 HNO₃ reaction (included in Table 4) considered in this work (Fung et al., 2022; Novak et al., 2021;
237 Wollesen de Jonge et al., 2021). **We use a rate constant of $1.40 \times 10^{-11} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$ for**
238 **HPMTF + OH, which was previously determined based concentrations of other known sulfur**
239 **species (DMS, DMSO, SO₂ and methyl thioformate; MTF; CH₃SCHO; a structurally similar proxy**
240 **to HPMTF) and evaluated by box model (Jernigan et al., 2022a).** An exploration of reaction rate
241 uncertainty for the HPMTF+OH reaction (Table 3), including both high and low end limits of $5.5 \times 10^{-11} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$ and $1.4 \times 10^{-12} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$ resulted in only minor impacts on
242 the fate of HPMTF and ultimate sulfate formation in our simulations (Novak et al., 2021; Wu et
243 al., 2015).
244

245 Model sensitivity simulations were also performed with (case “MOD”) and without HPMTF
246 heterogeneous uptake to clouds and aerosols (case “MOD_noHetLossHPMTF”) to account for
247 how much of the DMS-derived HPMTF eventually forms SO₂ in the presence of these additional
248 loss processes (Table 5). Previous work shows that aerosol surface chemistry causes additional
249 decreases in HPMTF mixing ratios, primarily over land, and that the loss of HPMTF in clouds is
250 larger (36%) than losses from aerosols (15%) when using an uptake coefficient of $\gamma = 0.01$ for both
251 processes (Novak et al., 2021). In this work, based on recent laboratory measurements, we use a
252 **smaller uptake coefficient ($\gamma = 0.0016$) for HPMTF loss to aerosols and clouds (Table 5) (Jernigan**
253 **et al., 2022b).** We assume HPMTF directly produces sulfate in cloud and aerosol followed but
254 previous work even though there is uncertainty in the fate of HPMTF heterogeneous loss (Zhang
255 and Millero, 1993; Novak et al., 2021; Jernigan et al., 2022a). **For the aqueous-phase reactions**
256 **listed in Table 2, including the oxidation of intermediates DMSO and MSIA in cloud droplets and**
257 **aerosols, a first-order loss of the gas-phase sulfur species was assumed following previously used**
258 **parameterizations and physical parameter values (Chen et al., 2018).** Alongside the gas-phase and
259 aqueous-phase reactions relevant to the added DMS oxidation mechanism contributing to the
260 formation of SO₂ and sulfate, the default version of GC-TOMAS used here also includes in-cloud
261 oxidation of SO₂ by H₂O₂, O₃, and O₂ catalyzed by transition metals (Mn, Fe), as well as the loss
262 of dissolved SO₂ by HOBr and HOCl, all of which are passed to TOMAS to account for sulfate
263 production (Chen et al., 2017; Wang et al., 2021).

264 All simulations are conducted for the year 2018, which was chosen to match the model simulation
265 with the dates of the NASA Atmospheric Tomography flight campaign (ATom-4) offering
266 observational data for HPMTF, DMS and SO₂. Rate coefficients for all gas-phase sulfur reactions
267 are obtained from the most recent JPL report and other references while sulfur product yields for
268 gas-phase reactions are obtained from various laboratory and modeling studies (Burkholder et al.,
269 2020; Lucas and Prinn, 2002; Hoffmann et al., 2016; Gershenson et al., 2001; Kowalcuk et al.,

270 2003; Zhou et al., 2019; Jernigan et al., 2022a). The simulations included sea salt debromination
271 except for some sensitivity tests described below (Zhu et al., 2019; Schmidt et al., 2016). In all our
272 simulations including MOD, DMS is advected and undergoes chemical loss and transport but does
273 not undergo dry or wet deposition. However, dry and wet deposition of oxidation products such as
274 DMSO, MSIA, MSA and HPMTF are included.

275 We note that previous work has explored the impact of MSA on aerosol growth, including
276 modifications within TOMAS to represent this process (Hodshire et al., 2019). We do not include
277 this process here. Future work is recommended to examine its importance in the context of the
278 chemistry updates presented here.

279 **3 Result and discussion**

280 **3.1 Model-Observations Comparison**

281 **3.1.1 Surface DMS mixing ratio**

282 We compared the modeled DMS mixing ratio averaged for each month with the observational data
283 collected at Crete Island (35° N, 26° E) and Amsterdam Island (37° S, 77° E) (Kouvarakis and
284 Mihalopoulos, 2002; Chen et al., 2018; Castebrunet et al., 2009). Comparing simulations BASE
285 and MOD, we find a closer match with DMS observations for simulations using modified DMS
286 chemistry for both observation data shown in Figure 2. Modeled DMS mixing ratios calculated
287 using base chemistry show strong positive bias during the months of May and June for Crete
288 Island. By comparison, during the same period the modeled DMS mixing ratios calculated with
289 modified chemistry reduces the bias from 102% to 44%. Similarly, for Amsterdam Island major
290 overpredictions are apparent for the BASE simulation compared to MOD for the months of May-
291 August. One reaction that may play a role in this shift is DMS + BrO, which as indicated earlier is
292 responsible for a faster overall chemical loss of DMS, in particular over the southern hemisphere
293 high latitudes. Beside DMS chemistry, sea surface DMS concentration is also proven to affect the
294 modeled DMS mixing ratio (Chen et al., 2018). But the aim of this study is to investigate the
295 chemistry aspect of DMS oxidation, so we did not explore how change in DMS seawater
296 climatology and thus their emission influence the surface DMS mixing ratio.

297 **Figure 2** Observed (OBS) monthly mean surface DMS mixing ratios at (a) Crete Island and (b) Amsterdam Island
298 compared with simulations BASE and MOD. Simulations are described in Table 5.

297

298 **3.1.2 Comparison with aircraft observations**

299 We further evaluate model output through a comparison with ATom-4 aircraft observations for
300 specific days of measurement for DMS, HPMTF and SO₂ as shown in Figure 5. For this
301 comparison, the model is sampled at the time and location of aircraft measurements by ATom-4
302 using the planeflight diagnostic of GEOS-Chem.

Figure 3 Vertical profiles of (a) DMS, (b) HPMTF and (c) SO₂ mixing ratios from ATom-4 observations (black) and model with simulation MOD sampled along the ATom-4 flight tracks (red) binned every 500 m of flight altitude. Also shown are modeled results without HPMTF heterogeneous loss with simulation MOD_noHetLossHPMTF (yellow), and for BASE GEOS-Chem chemistry (blue). Box plot whiskers show full range of distribution at each altitude bin. DMS observations are from Whole Air Samples (WAS) while HPMTF DC-8 observations are from iodide ion chemical ionization time-of-flight mass spectrometer (CIMS). SO₂ observations from ATom-4 campaign were measured by Laser Induced Fluorescence (LIF).

303 DMS concentrations measured during ATom-4 by whole air sampler (WAS) and modified
 304 chemistry simulation values for nearest neighbor grid cells are shown in Figure 3a across different
 305 altitudes. In general, the modeled DMS concentrations are significantly higher than those observed
 306 during ATom-4 missions especially close to the surface. However, model DMS concentrations
 307 decrease more rapidly than the measurement with altitudes indicating vertical mixing could be one
 308 of the underlying reasons for this trend. Even with this near surface bias, simulation MOD relative
 309 to BASE has greater DMS losses and a shorter DMS lifetime (from 1.5 d to 1.0 d) reducing the
 310 gap between modeled and observed concentration compared to simulation BASE. The reduction
 311 in modeled DMS is largest over the Southern Ocean (shown later in Fig. 5b) where oxidation by
 312 BrO and O₃ in the aqueous phase plays the major role in reducing DMS concentration, thereby
 313 reducing the model-observation bias (Fig. 3b). Remaining model biases could be at least partially
 314 attributed to model uncertainty in oxidant concentrations and cloud cover. The heterogeneous loss
 315 of HPMTF has minimal impact on DMS concentration and its vertical profile.

316 For HPMTF, Figure 3b shows that the observed and modeled HPMTF concentrations remain
 317 largely below 15 ppt. Agreement between observations and modeled HPMTF mixing ratios in the
 318 vertical profile (Fig. 3b) is poor for simulation MOD even close to the surface. Removing all
 319 heterogeneous loss of HPMTF improves model comparisons aloft, though surface concentrations
 320 become overestimated (yellow line of Fig. 3b), showing a high sensitivity to cloud and aerosol
 321 loss processes. We also find that the modeled HPMTF:DMS ratios range from 0.15:1 to 0.5:1 on
 322 a daily basis in most cases for when there is no heterogeneous loss of HPMTF, compared to 0.5:1
 323 observed during ATom-4 using the calibration maintained during measurement, implying
 324 reasonably good agreement for this value over daily time scales (Veres et al., 2020). The SARP
 325 flight campaign data has reported much lower HPMTF:DMS ratios (< 0.2) on cloudy days which
 326 is relatable to modeled HPMTF with simulation MOD (Novak et al., 2021). For simulation MOD,
 327 the modeled HPMTF:DMS ratio is 0.03:1 for until 0.5 km and then approaches zero with
 328 increasing altitude, indicating the need for additional work to better constrain production and loss
 329 processes of this intermediate. Our simulations indicate that cloud loss is the dominant modeled
 330 removal process of HPMTF, consistent with previous findings, while gas-phase OH oxidation

331 plays a minor role (Novak et al., 2021). Thus, the addition of cloud uptake dramatically decreases
332 HPMTF concentrations [throughout the troposphere](#). Overall, this allows only 7% of HPMTF
333 produced to end up as SO₂ with about 92% lost to clouds and aerosol and thus removed from the
334 system, resulting net reduction in mean global SO₂ by about 35%. Previous work focusing entirely
335 on gas-phase and heterogeneous loss of HPMTF shows a much higher bias for both DMS and
336 HPMTF during cloudy and clear sky conditions using the same model and a condensed DMS
337 oxidation mechanism, indicating [that the addition of gas-phase and heterogeneous oxidation of](#)
338 [DMS including additional intermediates such as DMSO and MSIA further reduce model biases](#)
339 [for HPMTF with remaining overestimation of the multiphase loss for HPMTF \(Novak et al., 2021\)](#).

340 We also compared the SO₂ concentrations measured during ATom-4 by Laser Induced
341 Fluorescence (LIF) and simulation MOD values for nearest neighbor grid cells are shown in Figure
342 3c across different altitude. Modeled surface SO₂ concentrations are lower than those observed
343 during ATom-4 missions across the vertical scale shown here for simulation MOD. The greater
344 SO₂ losses results in a shorter SO₂ lifetime (from 1.4 d to 1.3 d) for simulation MOD relative to
345 simulation BASE. The reduction in modeled SO₂ is largest over the Southern Ocean (shown later
346 in Fig. 7a) where heterogeneous oxidation of HPMTF is most efficient and irreversible. Removing
347 the heterogeneous loss of HPMTF increases the modeled SO₂ compared to simulation MOD with
348 underprediction remaining for altitudes > 1km. Remaining model biases could be at least partially
349 attributed to uncertainty in DMS oxidation processes along with other non-DMS sources
350 contributing high concentration of SO₂. Aside from uncertainty in DMS emissions and oxidation,
351 recent understanding of marine sulfur chemistry such as methanethiol (CH₃SH) oxidation has been
352 reported as an significant source of SO₂ in the marine atmosphere and could help reduce the bias,
353 a possibility deserving further investigation (Berndt et al., 2023; Novak et al., 2022). Overall the
354 DMS oxidation chemistry implemented in this work reduces the model observation bias close to
355 the surface (up to 1km) compared to BASE GEOS-Chem chemistry.

356 Besides the vertical profile shown in Figure 3b, the global mean surface mixing ratio of HPMTF
357 with simulation MOD_noHetLossHPMTF for May 2018 is plotted in Figure 4 and compared with
358 the observational measurement of HPMTF made during the ATom-4 mission during the NASA
359 DC-8 flight campaign, which sampled the daytime remote marine atmosphere over the Pacific and
360 Atlantic Oceans. The ATom-4 measurements were carried out during daytime hours between April
361 24 and May 21, 2018 for 21 non-continuous days.

362 For this campaign, flight patterns covered vertical profiles from 0.2 to 14 km above the ocean
363 surface. The flight leg duration was 5 minutes and boundary layer altitude of 150 to 200 m above
364 the ocean surface. Since most of these measurement days are within the month of May 2018, here
365 we compare observations with modeled output of mean surface concentration of HPMTF for this
366 month. With the rate of isomerization reaction used in previous work, we find spatial patterns of
367 monthly mean surface concentrations are generally well captured (Jernigan et al., 2022a). Overall,
368 we find that the simulation MOD_noHetLossHPMTF results in better agreement with existing
369 overprediction for the vertical profile (Fig. 3b) and global surface layer HPMTF levels (Fig. 4)
370 compared to previous modeled approaches using the CAM-chem model (Veres et al., 2020).

Figure 4 Geographic distribution of May 2018 monthly mean surface-layer mixing ratio of HPMTF for simulation MOD_noHetLossHPMTF mechanism represented for May 2018. The circles represent measurements of HPMTF during the ATom-4 mission by NASA DC-8 flight tracks with a limit of detection <1 ppt.

371
372

3.2 DMS burden and oxidation pathways

373 We find that the global burden of DMS in the MOD simulation is [67 Gg S \(Table B1\)](#), 38% lower
374 than what we find with the simulation BASE (108 Gg S). Even with this [38%](#) reduction, global
375 burdens are still well within the range of 9.6–150 Gg S suggested in other studies (Faloona, 2009;
376 Kloster et al., 2006). Figure 5a shows that surface DMS mixing ratios are highest in the North
377 Pacific and North Atlantic oceans for June–July–August (JJA) and in the Southern Ocean during
378 the months of December–January–February (DJF), revealing the underlying seasonality of DMS
379 emissions. According to previous studies, the highest DMS concentrations usually occur in
380 summer months due to higher rates of primary production in the presence of adequate solar
381 irradiation and high temperatures for both hemisphere (Galí et al., 2018; Lana et al., 2011; Wang
382 et al., 2020). In simulation MOD, the global mean surface-layer DMS burden was higher in SH
383 for DJF and lower in NH for JJA which is due to larger ocean area in the SH than NH. We also
384 find that the reactions of this expanded DMS oxidation mechanism collectively contribute to
385 reductions in mean surface-layer DMS concentration of 60% and 23% compared to BASE for JJA
386 and DJF respectively (Fig. 5b). These reductions are due primarily to the addition of multiple new
387 chemical loss pathways compared to BASE, which are especially impactful during JJA months
388 due to elevated BrO in the SH winter and also higher O₃ and OH concentration in the NH
389 summer compared to the SH summer (Zhang et al., 2018; Pound et al., 2020).

Figure 5 Geographic distribution of mean surface DMS mixing ratio (ppt) for simulation (a) MOD and (b) difference between simulations from its baseline, $\Delta = \text{MOD} - \text{BASE}$ from GEOS-Chem simulations. Here, JJA and DJF represent June-July-August and December-January-February respectively. Simulations are described in Table 5.

As shown in Fig. 5b, this DJF DMS reduction is seen mainly over the Southern Ocean and is largely attributable to faster chemical losses through the added reactions of $\text{DMS} + \text{BrO}$ and $\text{DMS}_{(\text{aq})} + \text{O}_3_{(\text{aq})}$, which in earlier work was hypothesized as a possible reason for high model biases in the absence of detailed halogen chemistry (Chen et al., 2016). The global lifetime of DMS decreases from 1.5 days in the BASE simulation to 1.0 day in the MOD simulation.

These values are comparable to the range of 0.8–2.1 d reported by previous studies (Chen et al., 2018; Fung et al., 2022). The global DMS emission flux (F_{DMS}) from ocean to the atmosphere is 22 Tg S yr^{-1} and is within the range of 11– 28 Tg S yr^{-1} simulated by GEOS-Chem and other models in previous studies (Lennartz et al., 2015; Fung et al., 2022; Chen et al., 2018; Hezel et al., 2011; Spracklen et al., 2005). Our F_{DMS} is higher than the 18 Tg S yr^{-1} which uses sea surface DMS concentration from Kettle et al. (1999) as reported (Chen et al., 2018) indicating the DMS emission varies with change in sea surface DMS climatology. The analysis and improvement of DMS emissions directly is not a part of this work, but we note that improved and validated inventories for DMS will certainly play a role in subsequent oxidation product comparisons. We recommend ongoing evaluation of DMS emissions inputs to complement the expanded chemical mechanism development we present here.

In the BASE simulation the chemical loss of DMS acts as its only sink (as opposed to dry and wet deposition), leading to a full conversion yield of DMS into SO_2 (82.5%) and MSA (17.5%) (Fig. A3a). Figure 6 shows that in simulation MOD with updated DMS oxidation scheme DMS is mainly oxidized by OH in the gas phase, with 33.5% of losses proceeding via the H-abstraction channel and 29.4% via the OH-addition pathway, together contributing up to 62% of global average loss with high regional contribution over the tropical oceans via the abstraction channel where surface OH is the highest. NO_3 oxidation of DMS accounts for another 12.8% of global DMS chemical losses, comparable to values found in previous studies (Chen et al., 2018; Fung et

414 al., 2022). Over the ocean, the NO_3 loss pathway is strongest in the NH coastal regions due to
415 outflow of NO_x sources from over the land whereas for the SH values are generally less than 10%.
416 Oxidation by BrO is responsible for 19.6% of the global DMS removal, falling within the
417 previously estimated range of 8%–29% (Boucher et al., 2003; Khan et al., 2016; Chen et al., 2018).
418 Regionally, its contribution can reach 50%–60% over high latitudes of the Southern Hemisphere
419 as well as to the north near the Arctic Ocean, consistent with previous box model studies based on
420 the availability of high BrO and low OH and NO_3 for those regions (Hoffmann et al., 2016). DMS
421 + O_3 accounts for 2.7% (aqueous) and 1.1% (gas phase) of global surface DMS loss. The higher
422 contribution from BrO and lower from O_3 using this mechanism compared to some previous
423 studies could be explained in part by the recently implemented sea-salt debromination mechanism
424 in GEOS-Chem, resulting in a much higher background level of BrO as well as lower O_3
425 abundance, especially in the southern hemisphere (Boucher et al., 2003; Chen et al., 2018; Fung
426 et al., 2022; Sherwen et al., 2016a; Wang et al., 2021). To further quantify the importance of the
427 sea salt debromination mechanism, we perform an emissions sensitivity test by turning this
428 emission source off while using updated MOD chemistry (Fig. A1). As would be expected, these
429 simulations show much lower BrO formation (as shown in Fig. A6) and resulting chemical
430 impacts, with overall oxidation contributions comparable to previous literature (Schmidt et al.,
431 2016; Wang et al., 2021). We find that under this scenario the relative contribution of BrO for
432 DMS loss decreases to 3.8%, while the DMS + O_3 pathway increases to 4.0% (aqueous) and 1.8%
433 (gas phase), and the DMS + OH pathway increases to 38.0% (abstraction) and 36.1% (addition)
434 of global surface DMS loss (Fig. A1). The DMS loss via interaction with NO_3 also increases by
435 2.5% when sea salt debromination is turned off in the mechanism. The relative contributions of
436 other oxidants remain mostly unaffected in the BrO sensitivity test.

Figure 6 Geographic distribution of the annual mean surface layer fraction of total DMS oxidation (percent) attributed to different tropospheric oxidants for simulation MOD (described in Table 5). Percentages in parentheses indicates average contribution to global chemical loss [for fraction of DMS emitted for each reaction pathways presented here](#).

437 Regionally, the fractional contribution of aqueous-phase DMS + O₃ to DMS oxidation can be up
 438 to 10%–20% over high-latitude oceans, which is in the middle of the 5%–30% contribution to
 439 high-latitude DMS losses previously reported (Chen et al., 2018; Fung et al., 2022; von Glasow
 440 and Crutzen, 2004). The Cl oxidation reaction contribute about [0.9% and 1.0% respectively for](#)
 441 [with and without sea salt debromination to the chemical removal of DMS](#), consistent with some
 442 previous studies (Atkinson et al., 2004; Fung et al., 2022). This does differ from other reported
 443 values however, including those from a global model study (4%) and box model simulations (8%
 444 –18%) (Chen et al., 2018; Hoffmann et al., 2016; von Glasow and Crutzen, 2004). It's worth noting
 445 that none of the studies reporting such high Cl contributions included HPMTF formation and loss.
 446 Ongoing uncertainties associated with model-observation bias of Cl should be further resolved to
 447 get better representation of halogenated species contributions to DMS loss (Wang et al., 2021).
 448 Due to slower reaction kinetics and lower fractional contribution reported earlier compared to BrO
 449 with DMS and uncertainty in surface concentration and kinetics for photochemically generated
 450 halogenated species such as Br, IO we did not include them in our chemical scheme (Chen et al.,
 451 2018).

452 3.3 Implications of the extended DMS oxidation mechanism

453 Figure 7 shows that the MOD simulation results in 35% reduction of surface layer SO₂ relative to
 454 BASE, but a huge increase in SO₄²⁻ in most regions. These changes suggest that the combination
 455 of gas-phase and aqueous-phase reactions results in a higher net yield of MSA and HPMTF and a
 456 lower net yield of gas-phase SO₂. Additionally, comparison of simulation MOD relative to
 457 MOD_noHetLossHPMTF (Fig. A2a) shows that loss of HPMTF in cloud droplets and aerosol
 458 reduces the global mean production of SO₂ by 19.6%, contributing to the SO₂ reduction and
 459 increasing mean surface layer sulfate by 16.1% (Fig. A2b). This reduction in SO₂ is expected to
 460 reduce the availability of gas-phase sulfuric acid for new particle formation by nucleation (Clarke
 461 et al., 1998a). Total SO₄²⁻ increases over the ocean, however, because the increased SO₄²⁻
 462 production from rapid loss of MSA and HPMTF in aqueous-phase offsets the reduced oxidation
 463 of SO₂ (Fig. 7b).
 464

Figure 7 Percent change in simulated surface layer (a) SO₂ and (b) SO₄²⁻ for simulation MOD relative to BASE for June, July and August mean (JJA) and December, January, and February mean (DJF). Simulations are described in Table 5.

465 Qualitatively, the regions showing the highest percent changes of SO₂ are consistent with previous
 466 studies that included HPMTF chemistry and loss processes though the extent of this reduction is
 467 much higher with the integrated mechanism used in our study (Fig. 7a) (Novak et al., 2021). The
 468 regions with the largest percent change in SO₂ reduction are those where DMS oxidation
 469 contributes most to SO₂, and where HPMTF production and in-cloud oxidation of HPMTF are
 470 efficient. This spatial pattern thus helps us to identify where the production and heterogeneous loss
 471 of HPMTF and MSA is enhanced. One of the reactions that possibly contributes to delayed
 472 formation and reduction of SO₂ concentration is the first-generation OCS formation from OH
 473 oxidation of HPMTF. We find that addition of cloud and aerosol loss significantly decreases the
 474 OCS production, especially in high cloud cover regions as previously reported (Jernigan et al.,
 475 2022a). Even though the cloud loss of HPMTF increases the production of surface sulfate, the total

476 global sulfate burden we calculate increases by only 4.1% from the BASE sulfate burden of around
 477 575 Gg S. This can be attributed to minor contribution of DMS and its intermediate oxidation
 478 products in SO_2 production compared to other non-DMS derived sources. In addition, the
 479 production of stable intermediate oxidation products delay the conversion of SO_2 to SO_4^{2-} and
 480 modify its spatial distribution in the marine environment. Thus, we should expect these aqueous
 481 phase oxidation products to contribute to particle mass rather than increase the number of nucleated
 482 particles, as suggested in other studies (Clarke et al., 1998b; Novak et al., 2021; Williamson et al.,
 483 2019).
 484

Figure 8 Simulated branching ratio (in %) of the DMS oxidation mechanism considering SO_2 , HPMTF and MSA as major terminal oxidation products calculated from their annual total production rate for simulation MOD.

485 The spatial distribution of product branching ratios of DMS oxidation is shown in Figure 8. Here,
 486 34.4% of the annual total DMS oxidation will end up as HPMTF, while final SO_2 yield decreases
 487 to 45.3% compared to 82.5% for the BASE simulation (Fig. A3a). The terminal HPMTF branch
 488 represents sulfur removed from the system by cloud and aerosol uptake of HPMTF, leading to a
 489 reduced overall formation of SO_2 . With sea salt debromination turned off, modified chemistry
 490 forms even more HPMTF (41.7%), slightly higher SO_2 (46.4%), and lowers the yield of MSA to
 491 11.9% (19.3% with the sea salt debromination on), underscoring the importance of halogen
 492 chemistry for MSA production (Fig. A3b). These results are broadly consistent with
 493 observationally constrained estimates from ATom-4 flight campaigns, where ~ 30% - 40% DMS
 494 was oxidized to HPMTF along their flight tracks compared to 34.4% for the full branch of HPMTF
 495 in the present work, as well as with previous modeling studies showing 33% HPMTF formation
 496 as terminating product (Veres et al., 2020; Fung et al., 2022). MSA is produced mostly by aqueous
 497 phase oxidation of MSIA by O_3 and OH according to the mechanism used here and has high
 498 abundance near the Southern Ocean and Antarctic belt as reported by previous studies (Chen et
 499 al., 2018; Hoffmann et al., 2016; Fung et al., 2022). The global burden of MSA decreases
 500 dramatically, from 19 Gg S for ‘Base’ to 8.5 Gg S for simulation MOD. The higher rate of major
 501 loss process or lower rate of production of MSA from the aqueous phase reactions could be
 502 responsible for this reduction in global budget (Fung et al., 2022).

503 3.4 Impact on aerosol size distributions

504 Following the percent change in simulated surface layer SO_2 and SO_4^{2-} for modified DMS
 505 chemistry (Fig. 7), we further explore how this expanded DMS oxidation chemistry impacts
 506 modeled aerosol size distributions. Figure 9 shows the global mean surface-layer percent change
 507 in the normalized aerosol number concentration for modified chemistry relative to the BASE
 508 simulation, with and without cloud and aerosol HPMTF loss processes. The aerosol number

509 concentration decreases for the sub-80 nm diameter size bins for both simulations, especially
 510 during the DJF months when cloud and aerosol loss pathways of HPMTF are included (MOD
 511 case), demonstrating the negative impact of these processes on simulated new particle formation.
 512 Without these processes included (as in case MOD_noHetLossHPMTF), percent changes are far
 513 more modest for these smaller size ranges. On the other hand, HPMTF lost to clouds and aerosols
 514 increases the simulated number of particles with diameter above 100 nm in the MOD simulation,
 515 consistent with the increase in sulfate mass concentrations shown in Fig. 7 and suggesting that
 516 HPMTF heterogenous loss promotes simulated particle growth to diameters larger than 80-100
 517 nm. The greater abundance of particles larger than 100 nm also acts as a condensation sink, further
 518 suppressing nucleation and growth at smaller size ranges.

Figure 9 Global mean surface-layer percent change in normalized aerosol number concentration for different size bins with particle diameter, D_p in the range of $3 \text{ nm} < D_p < 10000 \text{ nm}$ for simulations MOD and MOD_noHetLossHPMTF relative to simulation BASE. Simulations are described in Table 5.

519 The geographic distribution of surface layer aerosol number concentration for aerosol in the size
 520 range of 3 – 80 nm for two seasons is shown in Figure 10. We find that global mean aerosol number
 521 concentration in this size range decreases for simulations MOD and MOD_noHetLossHPMTF
 522 relative to BASE by 12.8% and 9.9% respectively. Decreases are greater for simulation MOD (Fig.
 523 10b). Fig. 10c shows the effect of HPMTF heterogenous loss processes on the number of particles
 524 with diameters between 3-80 nm for simulation MOD relative to simulation MOD_noHetLossHPMTF. The largely negative impact of HPMTF loss to clouds and aerosols on
 525 sub-80 nm particle number is contributed to by enhanced direct sulfate formation on pre-existing
 526 particles, bypassing gas-phase SO_2 formation (a precursor for new particle formation). As well, in
 527 the model, new particles grow through condensation of H_2SO_4 and organics and their growth are
 528 dependent on the condensation sink, while loss of particle number depends on the coagulation
 529 sink. Thus, changes to the condensation/coagulation sinks and sulfuric acid production rate
 530 through the updated mechanism will also alter the growth rates of small particles (sub-80 nm) as
 531 well as their coagulation loss rates. Hence, similar to the discussion for Figure 9, the reduction of
 532 gas-phase production of H_2SO_4 in MOD relative to BASE slows new-particle formation and
 533

534 growth, while the additional production of sulfate through aqueous chemistry on larger particles
 535 in MOD increases the coagulation scavenging of the newly formed particles. These two effects
 536 synergistically reduce the concentration of ultrafine particles in the model. **The fraction of newly**
 537 **formed particles that can reach the CCN size is dependent on the particle growth rates, especially**
 538 **for particle sizes below 10 nm, where we see highest coagulation losses to larger particles.** The
 539 sensitivity of these results to the new sea salt debromination parameterization is shown in Fig. A4,
 540 where we find a regional increase in aerosol number concentration at mid to higher latitude of the
 541 SH despite low BrO concentrations (Fig A4).

Figure 10 Geographic distribution of seasonal-mean surface-layer aerosol number concentration in cm^{-3} (for particles with diameters between 3 – 80 nm) for (a) the BASE simulation, (b) the percent difference between MOD and BASE and (c) the percent difference between MOD and MOD_noHetLossHPMTF to show the role of cloud and aerosol loss of HPMTF. Simulations are described in Table 5.

542

Figure 11 Geographic distribution of percent difference in seasonal-mean surface-layer aerosol number concentration in cm^{-3} for simulations MOD relative to simulations BASE for diameters between (a) 80 – 500 nm and (b) >500 nm. Simulations are described in Table 5.

543 Finally, we also analyze the impact of this expanded DMS scheme on particles larger than 80 nm
 544 (Fig. 11). We find increases of around **6.6%** for JJA mean surface layer number concentration of
 545 aerosol with diameters between 80-500 nm, while DJF months show mean reductions of **-5.4%** for
 546 DJF despite largely positive changes in the marine NH for these months (Fig. 11a). However, for
 547 the > 500 nm size ranges (Fig. 11b), the global mean surface layer number concentration of aerosol
 548 mostly increases, with highest changes occurring in the areas of peak DMS emission in both
 549 hemispheres, during their summertime season. A similar trend is observed in the absence of cloud
 550 and aerosol HPMTF uptake in simulation MOD_noHetLossHPMTF (Fig. A5).

551 Comparing the regional extent and direction of this change, we find the net increase in particle
552 number concentration is higher for MOD compared to MOD_noHetLossHPMTF, highlighting the
553 importance of HPMTF loss processes to clouds and aerosols as a contributor of CCN.

554

555 **4 Conclusion**

556 In this study we update the default DMS oxidation scheme in the GEOS-Chem model by
557 implementing an integrated oxidation mechanism. The new scheme includes gas-phase and
558 aqueous phase reactions involving DMSO, MSIA and HPMTF formation, as well as newly
559 identified HPMTF loss processes yielding considerable changes in seasonal concentrations of
560 major oxidation products and sulfur-derived aerosols. With this new chemistry scheme, **global**
561 **annual mean surface** DMS concentration decreases by **38%** relative to the BASE scheme in GEOS-
562 Chem globally due to the presence of additional loss processes in the integrated mechanism
563 reducing the bias to ATom-4 DMS measurement.

564 In this new scheme, OH, BrO, O₃ and NO_x species act as important sinks of DMS contributing to
565 **62.9%**, **19.6%**, **3.8%** and **12.8%** global annual mean surface DMS loss, highlighting the relative
566 importance of these loss process in determining surface DMS budget. We also find that at higher
567 latitudes, gas phase and multiphase oxidation of DMS by O₃ and BrO becomes important to
568 determine the budget of DMS. On the other hand, at lower latitudes OH contribute to a greater
569 extent compared to other sinks and at comparable extent to previous studies exploring this
570 chemistry. For the global distribution of simulated HPMTF, our updated scheme in GEOS-Chem
571 provides a reduced high bias against observations compared to previous studies. While emissions
572 of BrO are uncertain in this version of GEOS-Chem, we find that the compound acts as a key sink
573 of DMS, especially over the Southern Ocean. Overall, we find large reduction in SO₂ (**35%**) and
574 an increase in sulfate (**22%**) due to the addition of heterogeneous HPMTF loss processes.

575 The lower SO₂ with the new DMS chemistry scheme contributes to a reduction in the global annual
576 mean surface layer number concentration of particles with diameters less than 80 nm by **12.8%**,
577 contributed to by reductions in gas-phase precursors for new particle formation. There is a
578 concurrent increase of 3.1% in the global annual mean number of particles with diameters larger
579 than 80 nm. This latter global mean particle number change varies in sign seasonally, with a **6.6%**
580 increase for JJA, and a 5.4% decrease for DJF. This decrease is dominated by southern hemisphere
581 summertime changes, connected with suppressed new particle formation/growth and enhanced
582 coagulation following additional sulfate production through aqueous chemistry. Cloud loss
583 processes related to HPMTF make key contributions to these simulated changes through
584 enhancement of aqueous-phase particle growth of those particle large enough to act as CCN.

585 Although the increased chemical mechanism complexity described in this work will necessarily
586 increase model computational cost (MOD simulation run times increase by approximately 16%),
587 this study highlights the value of including a more realistic chemical oxidation mechanism of DMS
588 and its stable intermediates for better representation of DMS-derived aerosol in the marine
589 atmosphere, as well as its seasonal size distributions. A reduced form of the key chemical species
590 and pathways should be able to capture the key processes with less computational impact and will
591 be a priority in future work.

592 **Appendix A: Additional figures**

Figure A1 Surface layer geographic distribution of the simulated annual mean fraction of total DMS oxidation (percent) attributed to different tropospheric oxidants for a simulation otherwise the same as simulation MOD except with no sea salt debromination. Percentages in parentheses indicates average contribution to [global chemical loss as a fraction of DMS emitted for each reaction pathways presented here](#). Simulations are described in Table 5.

593

Figure A2 Percent change in simulated surface layer (a) SO_2 and (b) SO_4^{2-} for simulation MOD relative to MOD_noHetLossHPMTF for June, July and August mean (JJA) and December, January, and February mean (DJF). Simulations are described in Table 5.

594

Figure A3 Simulated annual mean surface layer branching ratios (in %) of the DMS oxidation mechanism considering SO_2 , HPMTF, and MSA as major oxidation products calculated from their total production rates for simulations similar to (a, top row) BASE and (b, bottom row) MOD, except all with no sea salt debromination. Simulations are described in Table 5.

Figure A4 Geographic distribution of percent difference in seasonal-mean surface-layer aerosol number concentration in cm^{-3} (for particles with diameters between 3 – 80 nm) for simulations similar to (a) MOD_noHETLossHPMTF and (b) MOD relative to simulations BASE, except all with no sea salt debromination. Simulations are described in Table 5.

Figure A5 Geographic distribution of percent difference in seasonal-mean surface-layer aerosol number concentration in cm^{-3} for simulations similar to MOD_noHETLossHPMTF relative to simulations BASE, for particle diameters between (a) 80 – 500 nm and (b) > 500 nm. Simulations are described in Table 5.

Figure A6 Geographic distribution of mean surface BrO mixing ratio (ppt) for (a) with sea salt debromination and (b) without sea salt debromination for simulation MOD. Simulations are described in Table 5.

598

599

600 **Appendix B: Additional Table**

601 **Table B1.** Global atmospheric flux, deposition, burdens, lifetime of DMS and its oxidation
 602 products, chemical loss rates for specific reaction pathways and global mean concentration of
 603 major oxidants are listed here for the case of simulation MOD. Note that SO_2 and SO_4^{2-} includes
 604 natural as well as anthropogenic sources.

F_{DMS} (Gg S yr^{-1})	2.2×10^4
Deposition of MSA (Gg S yr^{-1})	3.6×10^3
Deposition of HPMTF (Gg S yr^{-1})	9.1×10^1
Deposition of DMSO (Gg S yr^{-1})	1.7×10^3
Deposition of MSIA (Gg S yr^{-1})	2.2×10^2
DMS (GgS)	67
MSA (GgS)	8.5
HPMTF (GgS)	0.75
SO_2 (GgS)	261.5
SO_4^{2-} (GgS)	598.6
τ_{DMS} (d)	1.0
τ_{MSA} (d)	0.8
τ_{HPMTF} (d)	0.7
τ_{SO_2} (d)	1.3
$\tau_{\text{SO}_4^{2-}}$ (d)	4.4
DMS lost to MSA (Gg S yr^{-1})	4.1×10^3
DMS lost to HPMTF (Gg S yr^{-1})	7.6×10^3
DMS lost to SO_2 (Gg S yr^{-1})	9.2×10^3
MSA lost to particle growth (Gg S yr^{-1})	4.3×10^2
HPMTF lost to SO_2 (Gg S yr^{-1})	4.5×10^2
HPMTF lost to cloud (Gg S yr^{-1})	6.7×10^3
HPMTF lost to particle growth (Gg S yr^{-1})	2.7×10^2
OH (molec cm^{-3})	1.1×10^6
Cl (molec cm^{-3})	4.5×10^7
NO_3 (molec cm^{-3})	2.0×10^{12}
O_3 (molec cm^{-3})	4.4×10^{16}
BrO (molec cm^{-3})	6.3×10^{11}

605
 606 **Data availability.** The DMS observational data in Fig. 2 were obtained from the referenced
 607 papers (Kouvarakis and Mihalopoulos, 2002; [Castebrunet et al., 2009](#)). The observations data
 608 during ATom-4 are published through the Distributed Active Archive Center for Biogeochemical
 609 Dynamics (DAAC) at ([Novak et al., 2021](#); [Wollesen de Jonge et al., 2021](#)),
 610 <https://doi.org/10.3334/ORNLDaac/1921> and
 611 https://daac.ornl.gov/ATOM/guides/ATom_SO2_LIF_Instrument_Data.html.

612 **Author contributions.** LT and WCP designed the research goals, aims, and methodology,
 613 implemented the new code into GC-TOMAS. QC, BA, CHF and CDH contributed in code
 614 development. All authors provided expert advice on data analysis, interpretation, and visualization.
 615 LT ran model simulations, analyzed the data, created the figures, and led manuscript development
 616 and editing.

617 **Competing interests.** The contact authors have declared that none of the authors has any
 618 competing interests.

619 **Acknowledgements.** LT and WCP gratefully acknowledge Ka Ming Fung for discussions on
620 DMS oxidation chemistry. BC thanks Rachel Y.-W. Chang for discussions on marine aerosols.

621 **Financial support.** LT and WCP was supported by NSF grant no. 2155192. QC was supported
622 by the Hong Kong Research Grants Council (Grant No. 15223221 and 15219722). BA was
623 supported by NSF AGS 2109323 and PLR 1904128. CHF was supported by NASA FINESST
624 (grant 80NSSC19K1368). CDH acknowledges funding support from NSF AGS (grant 1848372).
625 BC gratefully acknowledges research funding supported by the Ocean Frontier Institute, through
626 an award from the Canada First Research Excellence Fund. JRP was supported by the Atmospheric
627 System Research (ASR) program, part of the US Department of Energy's Office of Biological and
628 Environmental Research within the Office of Science, under grant DE-SC0021208. SI was
629 supported by Ferring Pharmaceuticals through the Extreme Environments research Laboratory,
630 École Polytechnique Fédérale de Lausanne (EPFL).

631 **References**

632 Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation
633 models, *J. Geophys. Res. Atmospheres*, 107, AAC 4-1-AAC 4-23,
634 <https://doi.org/10.1029/2001JD001010>, 2002.

635 Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W.,
636 and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, *J.*
637 *Geophys. Res. Atmospheres*, 110, <https://doi.org/10.1029/2004JD005659>, 2005.

638 Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of
639 atmospheric sulfur: Global implications for the sulfur budget, *J. Geophys. Res. Atmospheres*,
640 114, <https://doi.org/10.1029/2008JD010486>, 2009.

641 Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E.
642 S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis,
643 V. L. S., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M.: Gas-particle
644 partitioning of atmospheric Hg(II) and its effect on global mercury deposition, *Atmospheric*
645 *Chem. Phys.*, 12, 591–603, <https://doi.org/10.5194/acp-12-591-2012>, 2012.

646 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
647 M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric
648 chemistry: Volume I - gas phase reactions of O_x, HO_x, NO_x and SO_x species, *Atmospheric*
649 *Chem. Phys.*, 4, 1461–1738, <https://doi.org/10.5194/acp-4-1461-2004>, 2004.

650 Bardouki, H., da Rosa, M. B., Mihalopoulos, N., Palm, W.-U., and Zetzs, C.: Kinetics and
651 mechanism of the oxidation of dimethylsulfoxide (DMSO) and methanesulfinate (MSI⁻) by OH
652 radicals in aqueous medium, *Atmos. Environ.*, 36, 4627–4634, [https://doi.org/10.1016/S1352-2310\(02\)00460-0](https://doi.org/10.1016/S1352-2310(02)00460-0), 2002.

654 Barnes, I., Hjorth, J., and Mihalopoulos, N.: Dimethyl Sulfide and Dimethyl Sulfoxide and Their
655 Oxidation in the Atmosphere, *Chem. Rev.*, 106, 940–975, <https://doi.org/10.1021/cr020529+>,
656 2006.

657 Berndt, T., Scholz, W., Mentler, B., Fischer, L., Hoffmann, E. H., Tilgner, A., Hyttinen, N.,
658 Prisle, N. L., Hansel, A., and Herrmann, H.: Fast Peroxy Radical Isomerization and OH
659 Recycling in the Reaction of OH Radicals with Dimethyl Sulfide, *J. Phys. Chem. Lett.*, 10,
660 6478–6483, <https://doi.org/10.1021/acs.jpclett.9b02567>, 2019.

661 Berndt, T., Hoffmann, E. H., Tilgner, A., Stratmann, F., and Herrmann, H.: Direct sulfuric acid
662 formation from the gas-phase oxidation of reduced-sulfur compounds, *Nat. Commun.*, 14, 4849,
663 <https://doi.org/10.1038/s41467-023-40586-2>, 2023.

664 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y.,
665 Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated
666 meteorology: Model description and evaluation, *J. Geophys. Res. Atmospheres*, 106, 23073–
667 23095, <https://doi.org/10.1029/2001JD000807>, 2001.

668 Boniface, J., Shi, Q., Li, Y. Q., Cheung, J. L., Rattigan, O. V., Davidovits, P., Worsnop, D. R.,
669 Jayne, J. T., and Kolb, C. E.: Uptake of Gas-Phase SO₂, H₂S, and CO₂ by Aqueous Solutions, *J.*
670 *Phys. Chem. A*, 104, 7502–7510, <https://doi.org/10.1021/jp000479h>, 2000.

671 Boucher, O., Moulin, C., Belviso, S., Aumont, O., Bopp, L., Cosme, E., von Kuhlmann, R.,
672 Lawrence, M. G., Pham, M., Reddy, M. S., Sciare, J., and Venkataraman, C.: DMS atmospheric
673 concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS
674 source representation and oxidation, *Atmospheric Chem. Phys.*, 3, 49–65,
675 <https://doi.org/10.5194/acp-3-49-2003>, 2003.

676 Bräuer, P., Tilgner, A., Wolke, R., and Herrmann, H.: Mechanism development and modelling of
677 tropospheric multiphase halogen chemistry: The CAPRAM Halogen Module 2.0 (HM2), *J.*
678 *Atmospheric Chem.*, 70, 19–52, <https://doi.org/10.1007/s10874-013-9249-6>, 2013.

679 Breider, T. J., Chipperfield, M. P., Richards, N. a. D., Carslaw, K. S., Mann, G. W., and
680 Spracklen, D. V.: Impact of BrO on dimethylsulfide in the remote marine boundary layer,
681 *Geophys. Res. Lett.*, 37, <https://doi.org/10.1029/2009GL040868>, 2010.

682 Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo,
683 M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical kinetics and photochemical
684 data for use in atmospheric studies: evaluation number 18, 2015.

685 Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Cappa, C., Crounse, J. D., Dibble,
686 T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., and
687 Wine, P. H.: Chemical kinetics and photochemical data for use in atmospheric studies;
688 evaluation number 19, 2020.

689 Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G.
690 W., Spracklen, D. V., Woodhouse, M. T., Regayre, L. A., and Pierce, J. R.: Large contribution of
691 natural aerosols to uncertainty in indirect forcing, *Nature*, 503, 67–71,
692 <https://doi.org/10.1038/nature12674>, 2013.

693 Castebrunet, H., Martinerie, P., Genthon, C., and Cosme, E.: A three-dimensional model study of
694 methanesulphonic acid to non sea salt sulphate ratio at mid and high-southern latitudes,
695 *Atmospheric Chem. Phys.*, 9, 9449–9469, <https://doi.org/10.5194/acp-9-9449-2009>, 2009.

696 Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton,
697 atmospheric sulphur, cloud albedo and climate, *Nature*, 326, 655–661,
698 <https://doi.org/10.1038/326655a0>, 1987.

699 Chen, H., Ezell, M. J., Arquero, K. D., Varner, M. E., Dawson, M. L., Gerber, R. B., and
700 Finlayson-Pitts, B. J.: New particle formation and growth from methanesulfonic acid,
701 trimethylamine and water, *Phys. Chem. Chem. Phys.*, 17, 13699–13709,
702 <https://doi.org/10.1039/C5CP00838G>, 2015.

703 Chen, Q., Geng, L., Schmidt, J. A., Xie, Z., Kang, H., Dachs, J., Cole-Dai, J., Schauer, A. J.,
704 Camp, M. G., and Alexander, B.: Isotopic constraints on the role of hypohalous acids in sulfate
705 aerosol formation in the remote marine boundary layer, *Atmospheric Chem. Phys.*, 16, 11433–
706 11450, <https://doi.org/10.5194/acp-16-11433-2016>, 2016.

707 Chen, Q., Schmidt, J. A., Shah, V., Jaeglé, L., Sherwen, T., and Alexander, B.: Sulfate
708 production by reactive bromine: Implications for the global sulfur and reactive bromine budgets,
709 *Geophys. Res. Lett.*, 44, 7069–7078, <https://doi.org/10.1002/2017GL073812>, 2017.

710 Chen, Q., Sherwen, T., Evans, M., and Alexander, B.: DMS oxidation and sulfur aerosol
711 formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry,
712 *Atmospheric Chem. Phys.*, 18, 13617–13637, <https://doi.org/10.5194/acp-18-13617-2018>, 2018.

713 Chin, M., Jacob, D. J., Gardner, G. M., Foreman-Fowler, M. S., Spiro, P. A., and Savoie, D. L.:
714 A global three-dimensional model of tropospheric sulfate, *J. Geophys. Res. Atmospheres*, 101,
715 18667–18690, <https://doi.org/10.1029/96JD01221>, 1996.

716 Clarke, A. D., Davis, D., Kapustin, V. N., Eisele, F., Chen, G., Paluch, I., Lenschow, D., Bandy,
717 A. R., Thornton, D., Moore, K., Mauldin, L., Tanner, D., Litchy, M., Carroll, M. A., Collins, J.,
718 and Albercook, G.: Particle Nucleation in the Tropical Boundary Layer and Its Coupling to
719 Marine Sulfur Sources, *Science*, 282, 89–92, 1998a.

720 Clarke, A. D., Varner, J. L., Eisele, F., Mauldin, R. L., Tanner, D., and Litchy, M.: Particle
721 production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1, *J.*
722 *Geophys. Res. Atmospheres*, 103, 16397–16409, <https://doi.org/10.1029/97JD02987>, 1998b.

723 Du, L., Xu, Y., Ge, M., Jia, L., Yao, L., and Wang, W.: Rate constant of the gas phase reaction
724 of dimethyl sulfide (CH₃SCH₃) with ozone, *Chem. Phys. Lett.*, 436, 36–40,
725 <https://doi.org/10.1016/j.cplett.2007.01.025>, 2007.

726 Duncan Fairlie, T., Jacob, D. J., and Park, R. J.: The impact of transpacific transport of mineral
727 dust in the United States, *Atmos. Environ.*, 41, 1251–1266,
728 <https://doi.org/10.1016/j.atmosenv.2006.09.048>, 2007.

729 Emerson, E. W., Hodshire, A. L., DeBolt, H. M., Bilsback, K. R., Pierce, J. R., McMeeking, G.
730 R., and Farmer, D. K.: Revisiting particle dry deposition and its role in radiative effect estimates,
731 Proc. Natl. Acad. Sci., 117, 26076–26082, <https://doi.org/10.1073/pnas.2014761117>, 2020.

732 Enami, S., Nakano, Y., Hashimoto, S., Kawasaki, M., Aloisio, S., and Francisco, J. S.: Reactions
733 of Cl Atoms with Dimethyl Sulfide: A Theoretical Calculation and an Experimental Study with
734 Cavity Ring-Down Spectroscopy, J. Phys. Chem. A, 108, 7785–7789,
735 <https://doi.org/10.1021/jp049772y>, 2004.

736 Faloona, I.: Sulfur processing in the marine atmospheric boundary layer: A review and critical
737 assessment of modeling uncertainties, Atmos. Environ., 43, 2841–2854,
738 <https://doi.org/10.1016/j.atmosenv.2009.02.043>, 2009.

739 Flyunt, R., Makogon, O., Schuchmann, M. N., Asmus, K.-D., and Sonntag, C. von: OH-Radical-
740 induced oxidation of methanesulfinic acid. The reactions of the methanesulfonyl radical in the
741 absence and presence of dioxygen, J. Chem. Soc. Perkin Trans. 2, 787–792,
742 <https://doi.org/10.1039/B009631H>, 2001.

743 Fung, K. M., Heald, C. L., Kroll, J. H., Wang, S., Jo, D. S., Gettelman, A., Lu, Z., Liu, X.,
744 Zaveri, R. A., Apel, E. C., Blake, D. R., Jimenez, J.-L., Campuzano-Jost, P., Veres, P. R., Bates,
745 T. S., Shilling, J. E., and Zawadowicz, M.: Exploring dimethyl sulfide (DMS) oxidation and
746 implications for global aerosol radiative forcing, Atmospheric Chem. Phys., 22, 1549–1573,
747 <https://doi.org/10.5194/acp-22-1549-2022>, 2022.

748 Galí, M., Levasseur, M., Devred, E., Simó, R., and Babin, M.: Sea-surface dimethylsulfide
749 (DMS) concentration from satellite data at global and regional scales, Biogeosciences, 15, 3497–
750 3519, <https://doi.org/10.5194/bg-15-3497-2018>, 2018.

751 Galí, M., Devred, E., Babin, M., and Levasseur, M.: Decadal increase in Arctic dimethylsulfide
752 emission, Proc. Natl. Acad. Sci., 116, 19311–19317, <https://doi.org/10.1073/pnas.1904378116>,
753 2019.

754 Gershenzon, M., Davidovits, P., Jayne, J. T., Kolb, C. E., and Worsnop, D. R.: Simultaneous
755 Uptake of DMS and Ozone on Water, J. Phys. Chem. A, 105, 7031–7036,
756 <https://doi.org/10.1021/jp010696y>, 2001.

757 von Glasow, R. and Crutzen, P. J.: Model study of multiphase DMS oxidation with a focus on
758 halogens, Atmospheric Chem. Phys., 4, 589–608, <https://doi.org/10.5194/acp-4-589-2004>, 2004.

759 Hezel, P. J., Alexander, B., Bitz, C. M., Steig, E. J., Holmes, C. D., Yang, X., and Sciare, J.:
760 Modeled methanesulfonic acid (MSA) deposition in Antarctica and its relationship to sea ice, J.
761 Geophys. Res. Atmospheres, 116, <https://doi.org/10.1029/2011JD016383>, 2011.

762 Hodshire, A. L., Campuzano-Jost, P., Kodros, J. K., Croft, B., Nault, B. A., Schroder, J. C.,
763 Jimenez, J. L., and Pierce, J. R.: The potential role of methanesulfonic acid (MSA) in aerosol
764 formation and growth and the associated radiative forcings, Atmospheric Chem. Phys., 19,
765 3137–3160, <https://doi.org/10.5194/acp-19-3137-2019>, 2019.

766 Hoffmann, E. H., Tilgner, A., Schrödner, R., Bräuer, P., Wolke, R., and Herrmann, H.: An
767 advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl
768 sulfide chemistry, *Proc. Natl. Acad. Sci.*, 113, 11776–11781,
769 <https://doi.org/10.1073/pnas.1606320113>, 2016.

770 Hoffmann, E. H., Heinold, B., Kubin, A., Tegen, I., and Herrmann, H.: The Importance of the
771 Representation of DMS Oxidation in Global Chemistry-Climate Simulations, *Geophys. Res.*
772 *Lett.*, 48, e2021GL094068, <https://doi.org/10.1029/2021GL094068>, 2021.

773 Holmes, C. D., Bertram, T. H., Confer, K. L., Graham, K. A., Ronan, A. C., Wirks, C. K., and
774 Shah, V.: The Role of Clouds in the Tropospheric NO_x Cycle: A New Modeling Approach for
775 Cloud Chemistry and Its Global Implications, *Geophys. Res. Lett.*, 46, 4980–4990,
776 <https://doi.org/10.1029/2019GL081990>, 2019.

777 Hoyle, C. R., Fuchs, C., Järvinen, E., Saathoff, H., Dias, A., El Haddad, I., Gysel, M., Coburn, S.
778 C., Tröstl, J., Bernhammer, A.-K., Bianchi, F., Breitenlechner, M., Corbin, J. C., Craven, J.,
779 Donahue, N. M., Duplissy, J., Ehrhart, S., Frege, C., Gordon, H., Höppel, N., Heinritzi, M.,
780 Kristensen, T. B., Molteni, U., Nichman, L., Pinterich, T., Prévôt, A. S. H., Simon, M., Slowik, J. G.,
781 Steiner, G., Tomé, A., Vogel, A. L., Volkamer, R., Wagner, A. C., Wagner, R., Wexler, A. S.,
782 Williamson, C., Winkler, P. M., Yan, C., Amorim, A., Dommen, J., Curtius, J., Gallagher, M. W.,
783 Flagan, R. C., Hansel, A., Kirkby, J., Kulmala, M., Möhler, O., Stratmann, F., Worsnop, D. R.,
784 and Baltensperger, U.: Aqueous phase oxidation of sulphur dioxide by ozone in cloud
785 droplets, *Atmospheric Chem. Phys.*, 16, 1693–1712, <https://doi.org/10.5194/acp-16-1693-2016>,
786 2016.

787 Ishino, S., Hattori, S., Legrand, M., Chen, Q., Alexander, B., Shao, J., Huang, J., Jaeglé, L.,
788 Jourdain, B., Preunkert, S., Yamada, A., Yoshida, N., and Savarino, J.: Regional Characteristics
789 of Atmospheric Sulfate Formation in East Antarctica Imprinted on ¹⁷O-Excess Signature, *J. Geophys. Res. Atmospheres*, 126, e2020JD033583, <https://doi.org/10.1029/2020JD033583>,
790 2021.

792 Jacob, D. J., Field, B. D., Li, Q., Blake, D. R., de Gouw, J., Warneke, C., Hansel, A., Wisthaler, A.,
793 Singh, H. B., and Guenther, A.: Global budget of methanol: Constraints from atmospheric
794 observations, *J. Geophys. Res. Atmospheres*, 110, <https://doi.org/10.1029/2004JD005172>, 2005.

795 Jernigan, C. M., Fite, C. H., Vereecken, L., Berkelhammer, M. B., Rollins, A. W., Rickly, P. S.,
796 Novelli, A., Taraborrelli, D., Holmes, C. D., and Bertram, T. H.: Efficient Production of
797 Carbonyl Sulfide in the Low-NO_x Oxidation of Dimethyl Sulfide, *Geophys. Res. Lett.*, 49,
798 e2021GL096838, <https://doi.org/10.1029/2021GL096838>, 2022a.

799 Jernigan, C. M., Cappa, C. D., and Bertram, T. H.: Reactive Uptake of Hydroperoxymethyl
800 Thioformate to Sodium Chloride and Sodium Iodide Aerosol Particles, *J. Phys. Chem. A*, 126,
801 4476–4481, <https://doi.org/10.1021/acs.jpca.2c03222>, 2022b.

802 Johnson, J. S. and Jen, C. N.: Role of Methanesulfonic Acid in Sulfuric Acid–Amine and
803 Ammonia New Particle Formation, *ACS Earth Space Chem.*, 7, 653–660,
804 <https://doi.org/10.1021/acsearthspacechem.3c00017>, 2023.

805 Johnson, M. T.: A numerical scheme to calculate temperature and salinity dependent air-water
806 transfer velocities for any gas, *Ocean Sci.*, 6, 913–932, <https://doi.org/10.5194/os-6-913-2010>,
807 2010.

808 Kaufman, Y. J. and Tanré, D.: Effect of variations in super-saturation on the formation of cloud
809 condensation nuclei, *Nature*, 369, 45–48, <https://doi.org/10.1038/369045a0>, 1994.

810 Khan, M. A. H., Gillespie, S. M. P., Razis, B., Xiao, P., Davies-Coleman, M. T., Percival, C. J.,
811 Derwent, R. G., Dyke, J. M., Ghosh, M. V., Lee, E. P. F., and Shallcross, D. E.: A modelling
812 study of the atmospheric chemistry of DMS using the global model, STOCHEM-CRI, *Atmos.*
813 *Environ.*, 127, 69–79, <https://doi.org/10.1016/j.atmosenv.2015.12.028>, 2016.

814 Khan, M. A. H., Bannan, T. J., Holland, R., Shallcross, D. E., Archibald, A. T., Matthews, E.,
815 Back, A., Allan, J., Coe, H., Artaxo, P., and Percival, C. J.: Impacts of Hydroperoxymethyl
816 Thioformate on the Global Marine Sulfur Budget, *ACS Earth Space Chem.*, 5, 2577–2586,
817 <https://doi.org/10.1021/acsearthspacechem.1c00218>, 2021.

818 Kloster, S., Feichter, J., Maier-Reimer, E., Six, K. D., Stier, P., and Wetzel, P.: DMS cycle in the
819 marine ocean-atmosphere system – a global model study, *Biogeosciences*, 3, 29–51,
820 <https://doi.org/10.5194/bg-3-29-2006>, 2006.

821 Kodros, J. K. and Pierce, J. R.: Important global and regional differences in aerosol cloud-albedo
822 effect estimates between simulations with and without prognostic aerosol microphysics, *J.*
823 *Geophys. Res. Atmospheres*, 122, 4003–4018, <https://doi.org/10.1002/2016JD025886>, 2017.

824 Kodros, J. K., Cucinotta, R., Ridley, D. A., Wiedinmyer, C., and Pierce, J. R.: The aerosol
825 radiative effects of uncontrolled combustion of domestic waste, *Atmospheric Chem. Phys.*, 16,
826 6771–6784, <https://doi.org/10.5194/acp-16-6771-2016>, 2016.

827 Kouvarakis, G. and Mihalopoulos, N.: Seasonal variation of dimethylsulfide in the gas phase and
828 of methanesulfonate and non-sea-salt sulfate in the aerosols phase in the Eastern Mediterranean
829 atmosphere, *Atmos. Environ.*, 36, 929–938, [https://doi.org/10.1016/S1352-2310\(01\)00511-8](https://doi.org/10.1016/S1352-2310(01)00511-8),
830 2002.

831 Kowalcuk, P., Cooper, W. J., Whitehead, R. F., Durako, M. J., and Sheldon, W.:
832 Characterization of CDOM in an organic-rich river and surrounding coastal ocean in the South
833 Atlantic Bight, *Aquat. Sci.*, 65, 384–401, <https://doi.org/10.1007/s00027-003-0678-1>, 2003.

834 Kulmala, M.: How Particles Nucleate and Grow, *Science*, 302, 1000–1001,
835 <https://doi.org/10.1126/science.1090848>, 2003.

836 Kulmala, M., Pirjola, L., and Mäkelä, J. M.: Stable sulphate clusters as a source of new
837 atmospheric particles, *Nature*, 404, 66–69, <https://doi.org/10.1038/35003550>, 2000.

838 Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J., Dachs, J., Bopp,
839 Saltzman, E. S., Stefels, J., Johnson, J. E., and Liss, P. S.: An updated climatology of surface
840 dimethylsulfide concentrations and emission fluxes in the global ocean, *Glob. Biogeochem.*
841 *Cycles*, 25, <https://doi.org/10.1029/2010GB003850>, 2011.

842 Leaitch, W. R., Sharma, S., Huang, L., Toom-Sauntry, D., Chivulescu, A., Macdonald, A. M.,
843 von Salzen, K., Pierce, J. R., Bertram, A. K., Schroder, J. C., Shantz, N. C., Chang, R. Y.-W.,
844 and Norman, A.-L.: Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud,
845 *Elem. Sci. Anthr.*, 1, 000017, <https://doi.org/10.12952/journal.elementa.000017>, 2013.

846 Lee, Y. H. and Adams, P. J.: A Fast and Efficient Version of the TwO-Moment Aerosol
847 Sectional (TOMAS) Global Aerosol Microphysics Model, *Aerosol Sci. Technol.*, 46, 678–689,
848 <https://doi.org/10.1080/02786826.2011.643259>, 2012.

849 Lee, Y. H., Pierce, J. R., and Adams, P. J.: Representation of nucleation mode microphysics in a
850 global aerosol model with sectional microphysics, *Geosci. Model Dev.*, 6, 1221–1232,
851 <https://doi.org/10.5194/gmd-6-1221-2013>, 2013.

852 Lennartz, S. T., Krysztofiak, G., Marandino, C. A., Sinhuber, B.-M., Tegtmeier, S., Ziska, F.,
853 Hossaini, R., Krüger, K., Montzka, S. A., Atlas, E., Oram, D. E., Keber, T., Bönisch, H., and
854 Quack, B.: Modelling marine emissions and atmospheric distributions of halocarbons and
855 dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions,
856 *Atmospheric Chem. Phys.*, 15, 11753–11772, <https://doi.org/10.5194/acp-15-11753-2015>, 2015.

857 Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from ^{210}Pb and ^{7}Be on wet
858 deposition and transport in a global three-dimensional chemical tracer model driven by
859 assimilated meteorological fields, *J. Geophys. Res. Atmospheres*, 106, 12109–12128,
860 <https://doi.org/10.1029/2000JD900839>, 2001.

861 Lucas, D. D. and Prinn, R. G.: Mechanistic studies of dimethylsulfide oxidation products using
862 an observationally constrained model, *J. Geophys. Res. Atmospheres*, 107, ACH 12-1-ACH 12-
863 26, <https://doi.org/10.1029/2001JD000843>, 2002.

864 Napari, I., Noppel, M., Vehkamäki, H., and Kulmala, M.: Parametrization of ternary nucleation
865 rates for $\text{H}_2\text{SO}_4\text{-NH}_3\text{-H}_2\text{O}$ vapors, *J. Geophys. Res. Atmospheres*, 107, AAC 6-1-AAC 6-6,
866 <https://doi.org/10.1029/2002JD002132>, 2002.

867 Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J.,
868 and Upstill-Goddard, R. C.: In situ evaluation of air-sea gas exchange parameterizations using
869 novel conservative and volatile tracers, *Glob. Biogeochem. Cycles*, 14, 373–387,
870 <https://doi.org/10.1029/1999GB900091>, 2000.

871 Novak, G. A., Fite, C. H., Holmes, C. D., Veres, P. R., Neuman, J. A., Faloona, I., Thornton, J. A.,
872 Wolfe, G. M., Vermeuel, M. P., Jernigan, C. M., Peischl, J., Ryerson, T. B., Thompson, C. R.,
873 Bourgeois, I., Warneke, C., Gkatzelis, G. I., Coggon, M. M., Sekimoto, K., Bui, T. P., Dean-
874 Day, J., Diskin, G. S., DiGangi, J. P., Nowak, J. B., Moore, R. H., Wiggins, E. B., Winstead, E. L.,
875 Robinson, C., Thornhill, K. L., Sanchez, K. J., Hall, S. R., Ullmann, K., Dollner, M.,
876 Weinzierl, B., Blake, D. R., and Bertram, T. H.: Rapid cloud removal of dimethyl sulfide
877 oxidation products limits SO_2 and cloud condensation nuclei production in the marine
878 atmosphere, *Proc. Natl. Acad. Sci.*, 118, e2110472118,
879 <https://doi.org/10.1073/pnas.2110472118>, 2021.

880 Novak, G. A., Kilgour, D. B., Jernigan, C. M., Vermeuel, M. P., and Bertram, T. H.: Oceanic
881 emissions of dimethyl sulfide and methanethiol and their contribution to sulfur dioxide
882 production in the marine atmosphere, *Atmospheric Chem. Phys.*, 22, 6309–6325,
883 <https://doi.org/10.5194/acp-22-6309-2022>, 2022.

884 Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary
885 pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for
886 policy, *J. Geophys. Res. Atmospheres*, 109, <https://doi.org/10.1029/2003JD004473>, 2004.

887 Parrella, J. P., Jacob, D. J., Liang, Q., Zhang, Y., Mickley, L. J., Miller, B., Evans, M. J., Yang,
888 X., Pyle, J. A., Theys, N., and Van Roozendael, M.: Tropospheric bromine chemistry:
889 implications for present and pre-industrial ozone and mercury, *Atmospheric Chem. Phys.*, 12,
890 6723–6740, <https://doi.org/10.5194/acp-12-6723-2012>, 2012.

891 Pham, M., Müller, J.-F., Brasseur, G. P., Granier, C., and Mégie, G.: A three-dimensional study
892 of the tropospheric sulfur cycle, *J. Geophys. Res. Atmospheres*, 100, 26061–26092,
893 <https://doi.org/10.1029/95JD02095>, 1995.

894 Pierce, J. R. and Adams, P. J.: Global evaluation of CCN formation by direct emission of sea salt
895 and growth of ultrafine sea salt, *J. Geophys. Res. Atmospheres*, 111,
896 <https://doi.org/10.1029/2005JD006186>, 2006.

897 Pound, R. J., Sherwen, T., Helmg, D., Carpenter, L. J., and Evans, M. J.: Influences of oceanic
898 ozone deposition on tropospheric photochemistry, *Atmospheric Chem. Phys.*, 20, 4227–4239,
899 <https://doi.org/10.5194/acp-20-4227-2020>, 2020.

900 Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, J. H.:
901 Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in
902 the United States, *J. Geophys. Res. Atmospheres*, 114, <https://doi.org/10.1029/2008JD010701>,
903 2009.

904 Rosati, B., Isokäätä, S., Christiansen, S., Jensen, M. M., Moosakutty, S. P., Wollesen de Jonge,
905 R., Massling, A., Glasius, M., Elm, J., Virtanen, A., and Bilde, M.: Hygroscopicity and CCN
906 potential of DMS-derived aerosol particles, *Atmospheric Chem. Phys.*, 22, 13449–13466,
907 <https://doi.org/10.5194/acp-22-13449-2022>, 2022.

908 Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development
909 of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-
910 aromatic volatile organic compounds, *Atmospheric Chem. Phys.*, 3, 161–180,
911 <https://doi.org/10.5194/acp-3-161-2003>, 2003.

912 Schmidt, J. A., Jacob, D. J., Horowitz, H. M., Hu, L., Sherwen, T., Evans, M. J., Liang, Q.,
913 Suleiman, R. M., Oram, D. E., Le Breton, M., Percival, C. J., Wang, S., Dix, B., and Volkamer,
914 R.: Modeling the observed tropospheric BrO background: Importance of multiphase chemistry
915 and implications for ozone, OH, and mercury, *J. Geophys. Res. Atmospheres*, 121, 11,819–
916 11,835, <https://doi.org/10.1002/2015JD024229>, 2016.

917 Schobesberger, S., Junninen, H., Bianchi, F., Lönn, G., Ehn, M., Lehtipalo, K., Dommen, J.,
918 Ehrhart, S., Ortega, I. K., Franchin, A., Nieminen, T., Riccobono, F., Hutterli, M., Duplissy, J.,
919 Almeida, J., Amorim, A., Breitenlechner, M., Downard, A. J., Dunne, E. M., Flagan, R. C.,
920 Kajos, M., Keskinen, H., Kirkby, J., Kupc, A., Kürten, A., Kurtén, T., Laaksonen, A., Mathot, S.,
921 Onnela, A., Praplan, A. P., Rondo, L., Santos, F. D., Schallhart, S., Schnitzhofer, R., Sipilä, M.,
922 Tomé, A., Tsagkogeorgas, G., Vehkamäki, H., Wimmer, D., Baltensperger, U., Carslaw, K. S.,
923 Curtius, J., Hansel, A., Petäjä, T., Kulmala, M., Donahue, N. M., and Worsnop, D. R.: Molecular
924 understanding of atmospheric particle formation from sulfuric acid and large oxidized organic
925 molecules, *Proc. Natl. Acad. Sci.*, 110, 17223–17228, <https://doi.org/10.1073/pnas.1306973110>,
926 2013.

927 Sehested, K. and Holcman, J.: A pulse radiolysis study of the OH radical induced autoxidation of
928 methanesulfenic acid, *Radiat. Phys. Chem.*, 47, 357–360, [https://doi.org/10.1016/0969-806X\(95\)00115-E](https://doi.org/10.1016/0969-806X(95)00115-E), 1996.

930 Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob,
931 D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-
932 Roman, C., Mahajan, A. S., and Ordóñez, C.: Global impacts of tropospheric halogens (Cl, Br, I)
933 on oxidants and composition in GEOS-Chem, *Atmospheric Chem. Phys.*, 16, 12239–12271,
934 <https://doi.org/10.5194/acp-16-12239-2016>, 2016a.

935 Sherwen, T. M., Evans, M. J., Spracklen, D. V., Carpenter, L. J., Chance, R., Baker, A. R.,
936 Schmidt, J. A., and Breider, T. J.: Global modeling of tropospheric iodine aerosol, *Geophys. Res.*
937 Lett.

938 Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin,
939 R. L., Hyvärinen, A.-P., Lihavainen, H., and Kulmala, M.: The Role of Sulfuric Acid in
940 Atmospheric Nucleation, *Science*, 327, 1243–1246, <https://doi.org/10.1126/science.1180315>,
941 2010.

942 Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., and Mann, G. W.: A global
943 off-line model of size-resolved aerosol microphysics: I. Model development and prediction of
944 aerosol properties, *Atmospheric Chem. Phys.*, 5, 2227–2252, <https://doi.org/10.5194/acp-5-2227-2005>, 2005.

946 Thomas, M. A., Suntharalingam, P., Pozzoli, L., Rast, S., Devasthale, A., Kloster, S., Feichter, J.,
947 and Lenton, T. M.: Quantification of DMS aerosol-cloud-climate interactions using the
948 ECHAM5-HAMMOZ model in a current climate scenario, *Atmospheric Chem. Phys.*, 10, 7425–7438,
949 <https://doi.org/10.5194/acp-10-7425-2010>, 2010.

950 Trivitayanurak, W., Adams, P. J., Spracklen, D. V., and Carslaw, K. S.: Tropospheric aerosol
951 microphysics simulation with assimilated meteorology: model description and intermodel
952 comparison, *Atmospheric Chem. Phys.*, 8, 3149–3168, <https://doi.org/10.5194/acp-8-3149-2008>,
953 2008.

954 Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C., Noppel, M., and
955 Laaksonen, A.: An improved parameterization for sulfuric acid–water nucleation rates for

956 tropospheric and stratospheric conditions, *J. Geophys. Res. Atmospheres*, 107, AAC 3-1-AAC 3-
957 10, <https://doi.org/10.1029/2002JD002184>, 2002.

958 Veres, P. R., Neuman, J. A., Bertram, T. H., Assaf, E., Wolfe, G. M., Williamson, C. J.,
959 Weinzierl, B., Tilmes, S., Thompson, C. R., Thames, A. B., Schroder, J. C., Saiz-Lopez, A.,
960 Rollins, A. W., Roberts, J. M., Price, D., Peischl, J., Nault, B. A., Møller, K. H., Miller, D. O.,
961 Meinardi, S., Li, Q., Lamarque, J.-F., Kupc, A., Kjaergaard, H. G., Kinnison, D., Jimenez, J. L.,
962 Jernigan, C. M., Hornbrook, R. S., Hills, A., Dollner, M., Day, D. A., Cuevas, C. A.,
963 Campuzano-Jost, P., Burkholder, J., Bui, T. P., Brune, W. H., Brown, S. S., Brock, C. A.,
964 Bourgeois, I., Blake, D. R., Apel, E. C., and Ryerson, T. B.: Global airborne sampling reveals a
965 previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, *Proc.*
966 *Natl. Acad. Sci.*, 117, 4505–4510, <https://doi.org/10.1073/pnas.1919344117>, 2020.

967 Vermeuel, M. P., Novak, G. A., Jernigan, C. M., and Bertram, T. H.: Diel Profile of
968 Hydroperoxymethyl Thioformate: Evidence for Surface Deposition and Multiphase Chemistry,
969 *Environ. Sci. Technol.*, 54, 12521–12529, <https://doi.org/10.1021/acs.est.0c04323>, 2020.

970 Wang, W.-L., Song, G., Primeau, F., Saltzman, E. S., Bell, T. G., and Moore, J. K.: Global ocean
971 dimethyl sulfide climatology estimated from observations and an artificial neural network,
972 *Biogeosciences*, 17, 5335–5354, <https://doi.org/10.5194/bg-17-5335-2020>, 2020.

973 Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B.,
974 Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A.,
975 Huey, G. L., and Liao, H.: The role of chlorine in global tropospheric chemistry, *Atmospheric*
976 *Chem. Phys.*, 19, 3981–4003, <https://doi.org/10.5194/acp-19-3981-2019>, 2019.

977 Wang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., Holmes, C. D., Sherwen, T.,
978 Alexander, B., Evans, M. J., Eastham, S. D., Neuman, J. A., Veres, P. R., Koenig, T. K.,
979 Volkamer, R., Huey, L. G., Bannan, T. J., Percival, C. J., Lee, B. H., and Thornton, J. A.: Global
980 tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants, *Atmospheric Chem. Phys.*,
981 21, 13973–13996, <https://doi.org/10.5194/acp-21-13973-2021>, 2021.

982 Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O₃-NO x -
983 hydrocarbon chemistry: 1. Model formulation, *J. Geophys. Res. Atmospheres*, 103, 10713–
984 10725, <https://doi.org/10.1029/98JD00158>, 1998.

985 Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-
986 scale numerical models, *Atmospheric Environ.* 1967, 23, 1293–1304,
987 [https://doi.org/10.1016/0004-6981\(89\)90153-4](https://doi.org/10.1016/0004-6981(89)90153-4), 1989.

988 Westervelt, D. M., Pierce, J. R., Riipinen, I., Trivitayanurak, W., Hamed, A., Kulmala, M.,
989 Laaksonen, A., Decesari, S., and Adams, P. J.: Formation and growth of nucleated particles into
990 cloud condensation nuclei: model–measurement comparison, *Atmospheric Chem. Phys.*, 13,
991 7645–7663, <https://doi.org/10.5194/acp-13-7645-2013>, 2013.

992 Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T., Campuzano-Jost, P., Dollner,
993 M., Froyd, K. D., Hodshire, A. L., Jimenez, J. L., Kodros, J. K., Luo, G., Murphy, D. M., Nault,
994 B. A., Ray, E. A., Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R., and Brock, C. A.: A

995 large source of cloud condensation nuclei from new particle formation in the tropics, *Nature*,
996 574, 399–403, <https://doi.org/10.1038/s41586-019-1638-9>, 2019.

997 Wollesen de Jonge, R., Elm, J., Rosati, B., Christiansen, S., Hyttinen, N., Lüdemann, D., Bilde,
998 M., and Roldin, P.: Secondary aerosol formation from dimethyl sulfide – improved mechanistic
999 understanding based on smog chamber experiments and modelling, *Atmospheric Chem. Phys.*,
1000 21, 9955–9976, <https://doi.org/10.5194/acp-21-9955-2021>, 2021.

1001 Wu, R., Wang, S., and Wang, L.: New Mechanism for the Atmospheric Oxidation of Dimethyl
1002 Sulfide. The Importance of Intramolecular Hydrogen Shift in a CH₃SCH₂OO Radical, *J. Phys.*
1003 *Chem. A*, 119, 112–117, <https://doi.org/10.1021/jp511616j>, 2015.

1004 Zhang, J.-Z. and Millero, F. J.: The products from the oxidation of H₂S in seawater, *Geochim.*
1005 *Cosmochim. Acta*, 57, 1705–1718, [https://doi.org/10.1016/0016-7037\(93\)90108-9](https://doi.org/10.1016/0016-7037(93)90108-9), 1993.

1006 Zhang, Y., Jacob, D. J., Maasakkers, J. D., Sulprizio, M. P., Sheng, J.-X., Gautam, R., and
1007 Worden, J.: Monitoring global tropospheric OH concentrations using satellite observations of
1008 atmospheric methane, *Atmospheric Chem. Phys.*, 18, 15959–15973, <https://doi.org/10.5194/acp-18-15959-2018>, 2018.

1009

1010 Zhou, Z.-X., Lujan, S. A., Burkholder, A. B., Garbacz, M. A., and Kunkel, T. A.: Roles for DNA
1011 polymerase δ in initiating and terminating leading strand DNA replication, *Nat. Commun.*, 10,
1012 3992, <https://doi.org/10.1038/s41467-019-11995-z>, 2019.

1013 Zhu, L., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of aqueous
1014 phase reactions of hydroxyl radicals with dimethylsulfoxide, dimethylsulfone, and
1015 methanesulfonate, *Aquat. Sci.*, 65, 425–435, <https://doi.org/10.1007/s00027-003-0673-6>, 2003.

1016 Zhu, L., Nenes, A., Wine, P. H., and Nicovich, J. M.: Effects of aqueous organosulfur chemistry
1017 on particulate methanesulfonate to non-sea salt sulfate ratios in the marine atmosphere, *J.*
1018 *Geophys. Res. Atmospheres*, 111, <https://doi.org/10.1029/2005JD006326>, 2006.

1019 Zhu, L., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Wang, X., Sherwen, T., Evans, M. J.,
1020 Chen, Q., Alexander, B., Koenig, T. K., Volkamer, R., Huey, L. G., Le Breton, M., Bannan, T.
1021 J., and Percival, C. J.: Effect of sea salt aerosol on tropospheric bromine chemistry, *Atmospheric*
1022 *Chem. Phys.*, 19, 6497–6507, <https://doi.org/10.5194/acp-19-6497-2019>, 2019.

1023