
 1 

Multidecadal ozone trends in China and implications for human 1 

health and crop yields: A hybrid approach combining chemical 2 

transport model and machine learning 3 

Jia Mao1, Amos P. K. Tai1,2,3, David H. Y. Yung1, Tiangang Yuan1, Kong T. Chau1, and Zhaozhong 4 
Feng2,4 5 

1 Earth and Environmental Sciences Programme and Graduate Division of Earth and Atmospheric Sciences, Faculty of 6 
Science, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China 7 
2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing 8 
University of Information Science and Technology, Nanjing 210044, Jiangsu, China 9 
3 State Key Laboratory of Agrobiotechnology, and Institute of Environment, Energy and Sustainability, The Chinese 10 
University of Hong Kong, Hong Kong SAR, China 11 
4 Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing 12 
University of Information Science & Technology, Nanjing, 210044, China 13 

Correspondence to: Amos P. K. Tai (amostai@cuhk.edu.hk) 14 

Abstract. Surface ozone (O3) is well known to pose significant threats to both human health and crop production worldwide. 15 
However, a multi-decadal assessment of O3 impacts on public health and crop yields in China is lacking due to insufficient 16 
long-term continuous O3 observations. In this study, we used a machine learning (ML) algorithm to correct the biases of 17 
O3 concentrations simulated by the chemical transport model from 1981–2019 by integrating multi-source datasets. The 18 
ML-enabled bias correction offers improved performance in reproducing observed O3 concentrations, and thus further 19 
improves our estimates of O3 impacts on human health and crop yields. Our results show that a warm-season increasing 20 
trend of O3 in Beijing-Tianjin-Hebei and its surroundings (BTHs), Yangtze River Delta (YRD), Sichuan Basin (SCB) and 21 
Pearl River Delta (PRD) regions are 0 .32 μg m–3 yr–1, 0.63 μg m–3 yr–1, 0.84 μg m–3 yr–1, and 0.81 μg m–3 yr–1 from 1981 22 
to 2019, respectively. In more recent years, O3 concentrations experience more fluctuations in the four major regions. Our 23 
results show that only BTHs have a perceptible increasing trend of 0.81 μg m–3 yr–1 during 2013–2019. Meteorological 24 
factors play important roles in modulating the interannual variability of surface O3, wherein synoptic systems (e.g., high-25 
pressure system, Western Pacific subtropical high, tropical cyclone) are closely related to the spatiotemporal distribution 26 
of regional O3 via influencing regional weather conditions and transport processes. Using AOT40-China dose-yield 27 
relationship, the estimated relative yield losses (RYLs) for wheat, rice, soybean and maize are 17.6%, 13.8%, 11.3% and 28 
7.3% in 1981, and increases to 24.2%, 17.5%, 16.3% and 9.8% in 2019, with an increasing rate of +0.03% yr–1, +0.04% 29 
yr–1, +0.27% yr–1 and +0.13% yr–1, respectively. The estimated annual all-cause premature deaths induced by O3 increase 30 
from ~55,900 in 1981 to ~162,000 in 2019 with an increasing trend of ~2,980 deaths yr–1. The annual premature deaths 31 
related to respiratory and cardiovascular disease are ~34,200 and ~40,300 in 1998, and ~26,500 and ~79,000 in 2019, 32 
having a rate of change of –546 and +1,770 deaths yr–1 during 1998–2019, respectively. Our study, for the first time, used 33 
ML to provide a robust dataset of O3 concentrations over the past four decades in China, enabling a long-term evaluation 34 
of O3-induced crop losses and health impacts. These findings are expected to fill the gap of the long-term O3 trend and 35 
impact assessment in China. 36 
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1 Introduction 37 

Surface ozone (O3), an important secondary air pollutant, is mainly generated through photochemical reaction of 38 
volatile organic compounds (VOCs), carbon monoxide (CO), and nitrogen oxides (NOx) in the presence of sunlight. As a 39 
strong oxidant, O3 at the ground level is detrimental to human health and vegetation. More recently, due to the rapid 40 
urbanization and industrialization, the summertime O3 pollution has become an emerging concern in China. Li et al. (2020) 41 
reported that the mean summer 2013–2019 trend in maximum daily 8-h average surface O3 (MDA8-O3) was +1.9 ppb yr–42 
1 in China, with high values widely observed in the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River 43 
Delta (PRD) regions. On the regional scale, the exposure of humans and vegetation to O3 is greater in China than in other 44 
developed regions of the world (Lu et al., 2018). Several studies have suggested the important roles of climate and land 45 
cover changes on O3 pollution in addition to anthropogenic emissions (Fu and Tai, 2015; Wang et al., 2020). It has been 46 
suggested that global warming and the changing land use may further increase surface O3 by the late 21st century (Kawase 47 
et al., 2011; Wang et al., 2020), which can pose greater threats to human health and food security. 48 

Meteorological factors can modulate the temporal and spatial patterns of O3 via affecting the physical and chemical 49 
processes within the atmosphere (Liu et al., 2019; Mao et al., 2020; Yin and Ma, 2020). High temperature, low relative 50 
humidity and low planetary boundary height are conducive to the photochemical production and O3 accumulation. Jacob 51 
and Winner (2009) summarized that the enhanced O3 levels at higher temperatures are primarily driven by increased 52 
biogenic VOC emissions from vegetation and reduced lifetimes of peroxyacetyl nitrate (PAN) due to accelerated 53 
decomposition of PAN into NOx. Besides, the changes in wind speed and direction can affect O3 concentrations through 54 
transport. Land cover and land use change affects O3 air quality by perturbing surface fluxes, hydrometeorology, and 55 
concentrations of atmospheric chemical components (Tai et al., 2013; Fu and Tai, 2015; Liu et al., 2020; Ma et al., 2021). 56 
For instance, the terrestrial biosphere is a major source of isoprene, which plays a significant role in modulating O3 57 
concentrations. In the Intergovernmental Panel on Climate Change (IPCC) A1B scenario, Tai et al. (2013) found that 58 
widespread crop expansion could reduce isoprene emission by ∼10 % globally compared with the present land use. Such 59 
a reduction could decrease O3 by up to 4 ppb in the eastern US and increase O3 by up to 6 ppb in South and Southeast Asia, 60 
whereby the difference in the sign of responses is primarily determined by the different O3 production regimes. 61 

The increasing health burden due to air pollution has become an important contributor to global disease burden. Some 62 
recent studies have demonstrated that short-term O3 exposure negatively impacts human health, especially via respiratory, 63 
and cardiovascular mortality (Shang et al., 2013; Yin et al., 2017b; Feng et al., 2019; Zhang et al., 2022a). In 2015–2018, 64 
the estimated annual total premature mortality related to O3 pollution in 334 Chinese cities was 0.27 million for 2015, 0.28 65 
million for 2016, 0.39 million for 2017, and 0.32 million for 2018 (Zhang et al., 2021). Maji and Namdeo (2021) reported 66 
that short-term all-cause, cardiovascular and respiratory premature mortalities attributed to the ambient 4th highest MDA8-67 
O3 exposure were 156,000, 73,500 and 28,600 in 2019, showing increases of 19.6%, 19.8% and 21.2%, respectively, 68 
compared to 2015. Zhang et al. (2022b) reported that each 10 μg m−3 increase in the MDA8-O3 can lead to a rise of 0.41 % 69 
(95 % CI: 0.35 %–0.48 %) in all-cause, 0.60 % (95 % CI: 0.51 %– 0.68 %) in cardiovascular and 0.45 % (95 % CI: 0.28 %–70 
0.62 %) in respiratory mortality. 71 

The damage to plants induced by O3 is mainly caused by the stomatal uptake of O3 into the leaf interior instead of 72 
direct plant surface deposition (e.g., Clifton et al., 2020). In previous studies, a variety of concentration-based metrics have 73 
been widely used to assess the O3 risks to crop yield and ecosystem functions. Initially, a 7-hour (09:00–15:59) mean metric 74 
(M7) was proposed, which was later extended to a 12-hour (08:00–19:59; referred to M12) to include late-day O3 75 
concentrations. Cumulative metrics have also been developed to evaluate the impacts of O3 on crops. The accumulated O3 76 
over a threshold of 40 ppb (AOT40) is a widely used metric to evaluate the phytotoxic effects of O3. Compared to AOT40 77 
using a linear function, another metrics, W126, considers the nonlinear response of yield loss to O3 exposure whereby 78 
higher O3 concentrations will progressively induce more severe yield losses. However, many studies have suggested that 79 
the stomatal uptake of O3 is more related to vegetation damage than O3 exposure per se (Feng et al., 2012; Feng et al., 2018; 80 
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Pleijel et al., 2022). In the recent two decades, the flux-based approach therefore has been developed and increasingly used 81 
to assess the relationships between the stomatal O3 uptake and crop yields. Tai et al. (2021) compared the results of the 82 
estimated global crop yield losses using three concentration-based and two flux-based O3 exposure metrics, and showed 83 
that the concentration-based metrics differ greatly among themselves, while the two flux-based metrics are generally close 84 
to each other, which lie close to the middle of the range covered by all metrics. 85 

At present, a comprehensive long-term assessment of O3 impacts is hindered by a lack of continuous O3 observations 86 
in China (Lu et al., 2018; Gong et al., 2021). From both health and food perspectives, reliable long-term estimates of O3 87 
are critically needed to better understand the O3 damage over the past few decades since the beginning of rapid industrial 88 
transformation in the 1980s. In previous studies, various alternative approaches have been used to address the problem of 89 
insufficient observations. The multiple linear regression (MLR) model is often used for extrapolation to construct 90 
spatiotemporal distributions of air pollutants (Moustris et al., 2012; Abdullah et al., 2017). However, the linear statistical 91 
methods are generally limited by their incapability to capture the nonlinear relationships between air pollutants and 92 
precursors as well as meteorological fields. Chemical transport models (CTMs), based on mathematical representation of 93 
atmospheric physical and chemical processes, are also the common tool to simulate air pollutant concentrations 94 
spatiotemporally (Fusco and Logan, 2003; Liu and Wang, 2020b; Wang et al., 2022a). Taking the advantages of the CTM, 95 
Fu and Tai (2015) investigated the impacts of historical climate and land cover changes on tropospheric O3 in East Asia 96 
between 1980 and 2010. However, the utility of CTMs is often limited by their high computational cost when conducting 97 
long-term simulations at high spatiotemporal resolutions. Large biases also exist due to uncertainties in historical emission 98 
inventories, parameterization of physical and chemical processes, and initial and/or boundary conditions, and these errors 99 
tend to increase at finer spatiotemporal scales. 100 

In recent years, machine learning (ML) methods have gained increasing popularity in air pollution studies (Liu et al., 101 
2020; Ma et al., 2021). In the early stage of applying ML to atmospheric chemistry, ML methods were usually used as an 102 
independent method from CTMs (Hu et al., 2017; Zhan et al., 2017), for instance, to predict O3 concentrations by mapping 103 
the nonlinear relationships between observed O3 concentrations and their possible shaping factors. These applications are 104 
usually purely data-driven, whereby the ML algorithms do not involve any representation of the physical mechanisms 105 
behind the relevant processes. With powerful algorithms and user-friendly hyperparameter tuning processes, some well-106 
trained ML models, driven by data from multiple sources including reanalysis and satellite data, have shown even higher 107 
predictive capacity than process-based models. The advantages of ML methods over CTMs include more flexible choices 108 
for input data and spatiotemporal resolution, and substantially lower computational costs (Bi et al., 2022). However, purely 109 
data-driven ML methods are known to suffer a lack of transparency and interpretability, which renders it more difficult to 110 
offer adequate scientific interpretation for the physical mechanisms behind. Thus, a hybrid approach combining ML 111 
algorithms and CTM-simulated results have been increasingly used to predict air pollutants and understand their trends in 112 
recent years. Integrating data from various sources, ML methods have been used as a tool to correct the biases in the lower-113 
resolution simulated results from CTMs (Di et al., 2017; Ivatt and Evans, 2020; Ma et al., 2021). Based on process-based 114 
CTMs integrating decades of accumulated knowledge in Earth system science, while taking advantage of ML to address 115 
still-existing model errors, the hybrid approach has great potential in tackling air quality problems (Irrgang et al., 2021). 116 

In this work, we incorporated the O3 concentrations directly simulated by the Goddard Earth Observing System 117 
coupled with Chemistry (GEOS-Chem) model at a lower resolution into a bias-corrected, finer-resolution dataset by 118 
integrating them with O3 observations from 2016 to 2018 (for validation purpose), high-resolution metetrological fields, 119 
land use data and other geographical information from multiple sources using a tree-based ML algorithm, LightGBM. The 120 
final high-resolution hourly O3 dataset with a resolution of 0.25°×0.25° from 1981 to 2019 was further used to assess the 121 
impacts of O3 on human health and crop yields over the past four decades. The simultaneous analysis of the combined 122 
impacts of O3 on agriculture and human health can offer more comprehensive policy implications for the mitigation of O3-123 
related impacts across China. 124 
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2 Data and methods 125 

2.1 Air quality, meteorological, land and crop data 126 

Hourly surface O3 observations (μg m–3) from 2016 to 2018 were obtained from the China National Environment 127 
Monitoring Center Network (http://106.37.208.233:20035/) established by the Ministry of Ecology and Environment of 128 
China. The MDA8-O3 of each site was calculated with at least 14 valid hourly values from 08:00 to 24:00 local time. A 129 
total of 1016 sites were selected after deleting the missing and abnormal data (Fig. 1). 130 

 131 
Figure 1. Study domain and locations of the selected monitoring sites. The pink, blue, purple and green rectangles 132 
indicate the Beijing-Tianjin-Hebei and its surroundings (BTHs), Sichuan Basin (SCB), Yangtze River Delta (YRD), 133 
and Pearl River Delta (PRD) regions, respectively, for more detailed analysis. 134 

The surface meteorological fields used in this study include sea surface pressure, horizontal wind at 10 m, air 135 
temperature at 2 m, downward solar radiation, surface albedo, and total precipitation. The variables selected at 850 hPa 136 
and 100 hPa include relative humidity, horizontal and vertical velocity. These meteorological variables have been shown 137 
by many previous studies to correlate strongly with surface O3 concentrations as discussed above. Hourly reanalysis data 138 
for meteorological variables were obtained from the fifth generation European Center for Medium-Range Weather 139 
Forecasts (ECMWF) reanalysis dataset (ERA5) with a spatial resolution of 0.25°×0.25° from 1981 to 2019 140 
(https://cds.climate.copernicus.eu/). This spatial resolution sets the highest limit of resolution for our hybrid O3 product. 141 

The national land use data with a spatial resolution of 1 km×1 km for 2013 were obtained from the Resource and 142 
Environment Science Data Center of the Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). Six primary types 143 
of land use are considered: cultivated land, forestland, grassland, water bodies, construction land, and unused land. 144 
Nationwide elevation data were also provided by the RESDC (https://www.resdc.cn/data.aspx?DATAID=123), which is 145 
resampled based on the latest Shuttle Radar Topography Mission (SRTM) V4.1 data developed in 2000. 146 

The spatial distribution of the harvested areas for four staple crops (wheat, rice, maize, soybean) for China was 147 
obtained from the Global Agro-Ecological Zones 2015 dataset (https://doi.org/10.7910/DVN/KJFUO1). Crop harvesting 148 
dates with a resolution of 0.5°×0.5° were provided by the Center for Sustainability and the Global Environment (Sacks et 149 
al., 2010). For crops having more than one growing season in a year, only the primary growing period was considered. 150 

2.2 GEOS-Chem model 151 

We used the GEOS-Chem global 3-D chemical transport model version 12.2.0 (http://acmg.seas.harvard.edu/geos/), 152 
driven by assimilated meteorological data from Modern Era Retrospective-analysis for Research and Applications, Version 153 
2 (MERRA2) (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/) with a horizontal resolution of 2.0° latitude by 2.5° 154 
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longitude and reduced vertical resolution of 47 levels. GEOS-Chem incorporates meteorological conditions, emissions, 155 
chemical information, and surface conditions to simulate the formation, transport, mixing and deposition of ambient O3. It 156 
performs fully coupled simulations of O3-NOx-VOC-aerosol chemistry (Bey et al., 2001). Previous studies have 157 
demonstrated the ability of GEOS-Chem to reasonably reproduce the magnitudes and seasonal variations of surface O3 158 
East Asia (Wang et al., 2011; He et al., 2012). To provide long-term simulated O3 fields for incorporation into the ML 159 
model (see below), we conducted GEOS-Chem simulations at a resolution of 2.0°×2.5°; higher resolutions of GEOS-Chem 160 
in nested grids are available but computationally prohibitive for multi-decadal simulations. The original unit of GEOS-161 
Chem-simulated O3 is ppb, which was converted to μg m–3 assuming a constant temperature of 25°C and pressure of 162 
1013.25 hPa (1 µg m−3 is approximately 0.5 ppb) when compared with observations (Yin et al., 2017b; Gong and Liao, 163 
2019). 164 

Global anthropogenic emissions of CO, NOx, SO2 and VOCs are from Community Emissions Data System (CEDS), 165 
which has coverage over the simulation years of 1950–2014 (Hoesly et al., 2018). Biomass burning emissions are from the 166 
GFED-4 inventory (Van Der Werf et al., 2017). Biogenic VOC emissions are computed by the Model of Emissions of 167 
Gases and Aerosols from Nature (MEGAN) v2.1 (Guenther et al., 2012), which is embedded in GEOS-Chem. Emissions 168 
of biogenic VOC species in each grid cell, including isoprene, monoterpenes, methyl butenol, sesquiterpenes, acetone and 169 
various alkenes, are simulated as a function of canopy-scale emission factors modulated by environmental activity factors 170 
to account for changing temperature, light, leaf age, leaf area index (LAI), soil moisture and CO2 concentrations 171 
(Sindelarova et al., 2014). 172 

Dry deposition follows the resistance-in-series scheme of Wesely (1989), which depends on species properties, land 173 
cover types and meteorological conditions, and uses the Olson land cover classes with 76 land types reclassified into 11 174 
land types. Although transpiration is a potential mechanism via which the land cover affects ozone, we do not address it in 175 
this study because water vapor concentration in GEOS-Chem is prescribed from assimilated relative humidity (i.e., not 176 
computed online from evapotranspiration). 177 

2.3 LightGBM machine-learning model 178 

In this study, we used the LightGBM algorithm to integrate GEOS-Chem simulated O3 at a lower resolution with 179 
higher-resolution multi-source data to produce higher-resolution hourly O3 and MDA8-O3 fields. Because the 180 
representation of input data for LightGBM should be regular, datasets at different spatial resolutions were all regridded to 181 
a unified resolution of 0.25°×0.25°, consistent with the meteorological fields. By taking the advantage of these high-182 
resolution datasets, the hybrid approach can not only correct the biases of the GEOS-Chem-simulated O3, but also refine it 183 
into a finer resolution. LightGBM is a ML algorithm based on the gradient boosting decision tree (Chen and Guestrin, 184 
2016), which has a high training efficiency and lower memory footprint, and thus is suitable for processing massive high-185 
dimensional data (Zhang et al., 2019). The general steps to build a ML model can be summarized as follows: (1) choose 186 
an algorithm appropriate for the problem (e.g., regression or classification); (2) clean the data and split them into training 187 
and test data; (3) train and tune the model with training data to well capture prediction patterns; (4) evaluate model 188 
performance on test data; and (5) return to step (3) and (4) until an optimal predictive ability is reached. The whole dataset 189 
is divided into training and test data to evaluate the model generalization ability. The model performance on test data can 190 
indicate whether the model can perform well on new data independent of the training process. A timescale of a year has 191 
been suggested to strike a good balance between computational burden and utility for air quality forecasting, as the 192 
variability in the power spectrum of surface O3 can be captured by timescales of a year or less (Ma et al., 2021). Thus, in 193 
this study, data for 2016–2017 were used as the training data, and data for 2018 were used as the independent test data. In 194 
any process involving comparison with O3 observations at site, the data or results from the nearest grid cells were used. 195 

During the model training process, the model was evaluated with 10-fold cross-validation to ensure the robustness 196 
and reliability of the model, whereby the training data were randomly partitioned into 10 subsets of approximately the same 197 
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size, with 90% of data used to train individual models and the ensemble model, and the remaining 10% of data used to 198 
examine model performance (Xiao et al., 2018). This process was repeated 10 times so that each data record was left for 199 
testing once. The tuning of the hyperparameters was optimized using grid search optimization to improve detection 200 
performance and diagnostic accuracy (Wang et al., 2019). Statistical indicators, including the coefficient of determination 201 
(R2) and root-mean-square error (RMSE), were used in subsequent assessment of model performance for GEOS-Chem 202 
alone and for the hybrid approach. 203 

2.4 Ozone exposure metric and dose–response functions 204 

Among O3 exposure indices, AOT40 has been used widely during the last two decades as it has been found to have a 205 
strong relationship with relative yield of many crop species (Mills et al., 2007), and thus was used to quantify the impacts 206 
of surface O3 on crop yields in this study. The flux-based metrics, which require long-term simulations using a process-207 
based stomatal uptake model, were beyond the scope of this study. The AOT40 (ppm-h) is defined as follows:  208 

AOT40 = 	)([O!]" − 0.04)
#

"$%

(1) 209 

where the [O3]i is the hourly mean O3 concentration (ppm) during the 12 hours of local daytime (08:00–19:59); n is the 210 
number of hours in the growing season defined as the 90 days prior to the start of the harvesting period according to the 211 
crop calendar. 212 

The exposure–response functions based on extensive field experimental studies have been established to relate a 213 
quantifiable O3-exposure metrics to crop yields. It has been suggested that , suggesting greater RYL responses found in 214 
Asian experiments than the American and European counterparts, and possibly higher O3 sensitivity of Asian crop varieties 215 
(Emberson et al., 2009; Feng et al., 2022).To better understand O3-induced risks to crops in China, the AOT40 dose-yield 216 
functions developed based on field experiments in China are used in this study, which are named as AOT40-China. The 217 
dose–response functions for soybean is from Zhang et al. (2017), and for other three crops are from Feng et al. (2022). The 218 
statistical dose-yield relationships used in this study are summarized in Table S1. 219 

2.5 Analysis of health impacts 220 

All-cause mortality, cardiovascular disease mortality and respiratory disease mortality are selected as the health 221 
outcomes of our study due to the high correlation between these endpoints and short-term O3 exposure in previous studies. 222 
A log-linear exposure-response function is widely adopted and recommended by the World Health Organization (WHO) 223 
for health impact assessment in areas with severe air pollution. In particular, the log-linear model is the most widely applied 224 
exposure-response model at present in China (Lelieveld et al., 2015; Yin et al., 2017a; Zhang et al., 2022b). The premature 225 
mortality is calculated following: 226 

∆𝑀 = 	𝛿𝑐 ∗ 6
(RR − 1)
RR 8 ∗ 𝑃	 (2) 227 

where ΔM is the excess mortality attributable to O3 exposure; δc is the baseline mortality rate for a particular health endpoint 228 
(Yin et al., 2017b; Madaniyazi et al., 2016); P is the exposed population; and RR is the relative risk defined as: 229 

RR = exp(	(𝑋 − 𝑋&) ∗ 	𝛽)	 (3) 230 
where β is the exposure-response coefficient derived from epidemiological cohort studies (Shang et al., 2013); X represents 231 
the model-calculated O3 concentration; the value of X0 is the threshold concentration below which no additional risk is 232 
assumed. Consistent with previous studies (Lelieveld et al., 2015; Liu et al., 2018), we used X0 = 75.2 μg m–3. 233 

In this study, the mean MDA8-O3 concentrations in warm season (May-September) were used to estimate the disease-234 
specific health impacts of short-term exposure to O3. The province-level population and national baseline mortality rate for 235 
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particular diseases were provided by the National Bureau of Statistics (http://www.stats.gov.cn/). The spatial differences of 236 
baseline mortality in China were not considered without provincial-level data, which means that we assume the baseline 237 
mortality is evenly distributed across China (Dedoussi et al., 2020). The exposure-response coefficients were obtained from 238 
existing epidemiological studies in China (Table S2). If the corresponding coefficient of a province could not be found in 239 
published epidemiological studies, the datum closest to that province would be selected as a substitute. If there were no 240 
neighboring provinces, the results of national meta-analysis would be used (Zhang et al., 2021). 241 

3 Results 242 

3.1 Model development and validation 243 

The finally selected features and their importance estimated by the LightGBM algorithm based on 10-fold cross 244 
validation are shown in Fig. 2. GEOS-Chem-simulated O3 is the top predictor for predicting surface O3 concentrations, 245 
accounting for 61% and 58% of all relative importance in the ML algorithm predicting hourly O3 and daily MD8A-O3, 246 
respectively. The result indicates that process-based GEOS-Chem simulations have high utility for O3 predictions under 247 
the hybrid approach (Ma et al., 2021). The meteorological variables with high contribution to both the daily and hourly 248 
models are downward surface solar radiation (SSRD), relative humidity at 1000 hpa (RH_1000hpa) and 10-m horizontal 249 
wind (U10 and V10). Other special features, including location (latitude and longitude), elevation and diurnal and monthly 250 
pattern of O3, also contribute to ambient O3 estimations. The spatial distributions of bias-corrected O3 are consistent with 251 
observations for both training and test datasets (Fig. S1), indicating that there is no obvious overfitting, i.e., the model is 252 
able to generalize from the training set to the test set. The good generalization ability of the model gives us confidence in 253 
its ability to make accurate predictions based on new data. In general, the hybrid approach can yield good O3 estimates in 254 
the data-intensive regions, including eastern and central China that are the hotspot areas of O3 pollution. 255 

 256 

 257 
Figure 2. The feature importance plot for (a) MDA8-O3 and (b) hourly O3, respectively. The full list of candidate 258 
variables with their symbols, units, descriptions, and data sources are shown in Table S1. 259 
 260 
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Fig. 3 shows the density scatter plots between O3 measurements and GEOS-Chem simulations, as well as the hybrid-261 
approach predictions for 2018. The R2 value of the hybrid approach and GEOS-Chem model are 0.66 and 0.27 at hourly 262 
level, and 0.72 and 0.53 at MDA8-O3 level, respectively. Bias-corrected O3 concentrations have lower RMSE in 263 
comparison with GEOS-Chem simulated O3 concentrations, reduced from 31.1 to 23.8 μg m–3 for MDA8-O3 predictions, 264 
and from 38.5 to 26.3 μg m–3 for hourly predictions. The MDA8-O3 model performance is better than that of the hourly 265 
model, indicating reduced errors upon temporal averaging. The result suggests that the CTM-simulated results can be 266 
substantially improved by applying ML with multi-source datasets, and the bias-corrected data can improve our 267 
understanding of long-term O3 trends and its further implications on crop and human health over China, as discussed in the 268 
following sections. 269 
 In comparison with previous studies, Liu et al. (2020) used XGBoost to predict O3 in major urban areas of China at a 270 
resolution of 0.1°×0.1°, and the R2 value and RMSE for MDA8-O3 were 0.74 and 23.8 μg m–3, respectively. Their result 271 
indicates that higher-resolution predictions may help enhance model accuracy, but represent a trade-off between model 272 
accuracy and time efficiency depending on the purpose. Instead of directly predicting O3 concentrations, Ivatt and Evans 273 
(2020) predicted biases in GEOS-Chem-simulated O3 concentrations and then corrected them with XGBoost. They also 274 
suggested that the corrected model performs considerably better than the uncorrected model, with RMSE reduced from 275 
16.2 to 7.5 ppb and Pearson’s R raised from 0.48 to 0.84. Their greater improvement with larger reduced RMSE than our 276 
result is mainly because they selected fewer sites for training, with all the urban and mountain sites (observations made at 277 
a pressure < 850 hPa) removed. The removal of these sites can improve the overall apparent performance of the model 278 
because O3 formation could have different characteristics in these areas. In general, ML methods have been proven to be a 279 
promising tool to improve air pollutant forecasts when a process-level understanding is still incomplete. 280 

 281 
Figure 3. Density scatter plots and linear regression statistics of O3 predictions vs. observation for 2018: (a) bias-282 
corrected MDA8-O3 vs. observations; (b) GEOS-Chem MDA8-O3 vs. observations; (c) bias-corrected hourly O3 vs. 283 
observations; and (d) GEOS-Chem hourly O3 vs. observations. The dashed red line indicates the 1:1 line, and the 284 
solid blue line indicates the line of best fit using orthogonal regression. The R2 is the coefficient of determination, 285 
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RMSE is the root-mean-square error, and N is the number of data points. The X and Y axis represents the O3 286 
observations and predictions, respectively. 287 
 288 

3.2 Spatiotemporal distribution and trends of O3 predictions 289 

Fig. 4 demonstrates the spatial patterns of averaged annual and warm-season (May-September) MDA8-O3 from 1981 290 
to 2019. When compared to the high concentrations in the warm season, MDA8-O3 concentrations are relatively lower at 291 
annual level. The annual and warm-season MDA8-O3 concentrations have similar spatial distribution, and both present an 292 
increasing trend over the past decades, with more substantial increase observed between 1981 and 2010. The O3 levels in 293 
southern China are lower than those in northern China, but they are still relatively high in the PRD region, which is 294 
consistent to findings in previous studies (e.g. Liu and Wang, 2020b). During the first decade of 1981–1990, high O3 295 
concentration areas are mainly concentrated in the BTHs and northern Shandong. In the next two decades, O3 pollution 296 
extensively expands to most of East and North China, spreading northward to Jilin and Liaoning, westward to Shanxi and 297 
Ningxia, and southward to northern Hunan, Shanxi and Zhejiang. Moreover, the SCB and PRD regions also experience 298 
aggravated O3 pollution during this period. In the last decade of the study period, O3 concentrations remain at high levels 299 
in BTHs and SCB without obvious changes. To understand the detailed changes and trends of O3, next we analyze the 300 
interannual variability. 301 

 302 

Figure 4. Spatial distribution of the annual mean MDA8-O3 concentrations (μg m-3) during: (a) 1981–1990; (b) 303 
1991–2000; (c) 2001–2010; and (d) 2011–2019. Spatial distribution of the warm-season (May-September) mean 304 
MDA8-O3 concentrations of (e)1981–1990, (f) 1991–2000, (g) 2001–2010; and (h) 2011–2019.  305 

Fig. 5 shows that the annual averaged MDA8-O3 concentrations increase from 87 μg m–3 in 1981 to 98 μg m–3 in 306 
2019, with a growth rate of +0.26 μg m–3 yr–1, while the warm-season averaged MDA8-O3 concentrations increase from 307 
100 μg m–3 in 1981 to 117 μg m–3 in 2019, having a growth rate of +0.51 μg m–3 yr–1. Moreover, the average annual and 308 
warm-season O3 concentrations have a more obvious upward trend before 2000s, with a growth rate of 0.38 μg m–3 yr–1 309 
and 0.71 μg m–3 yr–1, compared to that after 2000s, when O3 concentrations appear to fluctuate within a certain range. 310 
GEOS-Chem-simulated O3 has a similar trend as the bias-corrected O3, but it generally overestimates O3 concentrations on 311 
national scale (Fig. S2). The annual and warm-season averaged MDA8-O3 concentrations in BTHs, YRD, SCB and PRD 312 
regions are shown in Fig. S3–S4. The warm-season increasing trend for BTHs, YRD, SCB and PRD regions are 0.32 μg 313 
m–3 yr–1, 0.63 μg m–3 yr–1, 0.84 μg m–3 yr–1, and 0.81 μg m–3 yr–1 from the year 1981 to 2019. 314 
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 315 

Figure 5. The bias-corrected MDA8-O3 predictions (black line; left y axis) and corresponding anomalies (colored 316 
bar; right y axis) from 1981 to 2019: (a) annual mean; and (b) warm-season mean (May-September). The trends 317 
(growth rates) are obtained by ordinary linear regression on mean values of MDA8-O3. The anomalies are defined 318 
as annual mean minus the multidecadal average over 1981–2019. 319 

In recent years, the worsening O3 pollution has fueled numerous studies on ground-level O3 spatial distribution and 320 
changes in China, which were conducted on local, regional and national scale using different O3 fields from observations, 321 
CTMs and ML estimates. In this study, we mainly focus on the regional and national O3 characteristics, and the reported 322 
O3 trends in recent studies are listed in Table 1. By comparing the results of existing works, we find that source-varied O3 323 
fields can induce great uncertainty of the O3 trends. Moreover, the O3 trends are found to be very sensitive to the study 324 
period even with the same O3 fields (Wei et al., 2022), which indicates large interannual variability, mostly reflecting the 325 
changing anthropogenic emissions and meteorology (Lu et al., 2019; Li et al., 2020). In contrast to the perceptible O3 trends, 326 
Liu et al. (2020) suggested that O3 pollution in most parts of China has only modest changes between 2005 and 2017, and 327 
their trends were not spatially continuous. Wang et al. (2022b) also reported that O3 has small positive increase rates for 328 
2013–2021 in many cities, and the O3 increase rates greatly differ from site to site even within the same region. 329 

In comparison, our results indicate no obvious increasing trends of national MDA8-O3 within the same study period 330 
(Fig. 5). On a regional scale, only BTHs have a perceptible increasing trend in more recent years, while no such trends are 331 
found over the YRD, SCB and PRD regions during the same period. The summertime MDA8-O3 in BTHs has a change 332 
rate of +0.81 μg m–3 yr–1, which is much lower than the results using O3 observations (Li et al., 2020). One possible reason 333 
is that most observational sites are in urban regions, which usually suffer more serious O3 pollution, while the O3 334 
concentrations from model simulations and ML methods are calculated on the scale of a grid cell with lower domain-335 
averaged values. Moreover, gridded data at a relatively coarse resolution may fail to capture larger site differences, leading 336 
to the larger discrepancy of between O3 observations and gridded O3 estimates. 337 
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Table 1 Summary of reported regional and national MDA8-O3 trends (μg m–3 yr–1).  338 
Region Period Increase rate Data source/Method References 
Nation 2013–2017 (annual) 0.35 ML (XGBoost) (Liu et al., 2020) 

2013–2017 (annual) 0.92 WRF-CMAQ (Liu and Wang, 2020a) 
2013–2017 (annual) 1.33 ML (ERT) (Wei et al., 2022) 
2015–2019 (annual) 4.40 ML (ERT) (Wei et al., 2022) 
2015–2019 (annual) 1.90 Observations (Maji and Namdeo, 2021) 
2013–2019 (summer) 3.80 Observations (Li et al., 2020) 
1981–2019 (annual) 0.26 ML (LightGBM) This study 
1981–2000 (annual) 0.38 ML (LightGBM) This study 
1981–2019 (warm-season) 0.51 ML (LightGBM) This study 
1981–2000 (warm-season) 0.71 ML (LightGBM) This study 

BTH 2010–2017 (annual) 0.60 ML (Random Forest) (Ma et al., 2021) 
2013–2017 (annual) 1.33 ML (XGBoost) (Liu et al., 2020) 
2013–2017 (annual) 4.78 ML (ERT) (Wei et al., 2022) 
2012–2017 (summer) 1.16  GEOS-Chem (Dang et al., 2021) 
2013–2019 (summer) 6.60  Observations  (Li et al., 2020) 
1981–2019 (summer) 0.46 ML (LightGBM) This study 
2013–2019 (summer) 0.81 ML (LightGBM) This study 

YRD 2013–2017 (annual) 2.94 ML (ERT) (Wei et al., 2022) 
2015–2019 (annual) 5.60 ML (ERT) (Wei et al., 2022) 
2012–2017 (summer) 3.48  GEOS-Chem (Dang et al., 2021) 
2013–2019 (summer) 3.20  Observations (Li et al., 2020) 
1981–2019 (annual) 0.24 ML (LightGBM) This study 
1981–2019 (summer) 0.73 ML (LightGBM) This study 

SCB 2013–2017 (annual) 2.37 ML (ERT) (Wei et al., 2022) 
2013–2019 (summer) 1.40 Observations  (Li et al., 2020) 
1981–2019 (annual) 0.48 ML (LightGBM) This study 
1981–2019 (summer) 0.98 ML (LightGBM) This study 

PRD 2007–2017 (annual) 1.20 Observations  (Yang et al., 2019) 
2013–2017 (annual) –0.72 ML (ERT) (Wei et al., 2022) 
2015–2019 (annual) 4.38 ML (ERT) (Wei et al., 2022) 
2013–2019 (summer) 2.20 Observations  (Li et al., 2020) 
1981–2019 (annual) 0.56 ML (LightGBM) This study 
1981–2019 (fall) 0.69 ML (LightGBM) This study 

 339 

3.3 Seasonal characteristics of O3 predictions 340 

Differences in averaged annual and warm-season O3 concentrations indicate that O3 has distinctive seasonal 341 
characteristics. Fig. 6a-d shows the seasonal variations in O3 concentrations from 2011–2019, and results for other past 342 
three decades are shown in Fig. S5-S7. In winter, pollution is mainly concentrated in the coastal areas of southern China. 343 
In spring, O3 pollution primarily occurs in eastern China and the southern part of Yunnan Province. O3 pollution continues 344 
to aggravate over eastern China in summer, particularly in BTHs, and further extends to SCB. The air quality in eastern 345 
and central China is greatly improved in fall, while southern China experiences the most pollution in this period. In general, 346 
the peak and trough values of O3 concentrations appear in summer and winter, respectively. However, O3 concentrations 347 
are found to be minimum in summer and maximum in fall over PRD, which is largely determined by the summer monsoon 348 
(Zhou et al., 2013; Wang et al., 2018). Fig. S8 shows the seasonal averaged MDA8-O3 concentrations in different regions 349 
from 1981 to 2019. In winter, O3 concentrations do not have much change across the four regions over the past decades, 350 
staying mostly between 70–80 μg m–3. Moreover, wintertime O3 concentrations after the 2000s are generally lower than 351 
that before the 2000s in BTHs, YRD and SCB. In contrast, summertime O3 concentrations have a dramatic increase over 352 
the four regions. In spring and fall, O3 concentrations have an increasing trend in PRD, while it mostly fluctuates within a 353 
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certain range in the other three regions. The results show that O3 in non-winter seasons has a more pronounced increase 354 
during 1981–2019 albeit with regional differences. The regional characteristics of O3 and its influencing factors will be 355 
further discussed in Section 3.4. 356 

 357 
Figure 6. Spatial distribution of the bias-corrected MDA8-O3 predictions (μg m–3) from 2011–2019: (a) winter; (b) 358 
spring; (c) summer; and (d) fall. 359 

3.4 Regional characteristics of O3 predictions 360 

Fig. 7 shows the bar plots of the seasonal MDA8-O3 concentrations in each region from 1981–2019 for bias-corrected 361 
and GEOS-Chem-simulated O3. For the bias-corrected O3, the averaged summertime MDA8-O3 concentrations in BTHs, 362 
YRD, SCB and fall-time MDA8-O3 concentrations in PRD are 137 ± 8 μg m–3, 119 ± 10 μg m–3, 113 ± 12 μg m–3 and 98 ± 363 
10 μg m–3, with the increasing rate being 0.46 μg m–3 yr–1, 0.73 μg m–3 yr–1, 0.98 μg m–3 yr–1 and 0.69 μg m–3 yr–1 from 1981 364 
to 2019, respectively (Fig. S9). For GEOS-Chem-simulated O3, the averaged summertime MDA8-O3 concentrations in 365 
BTHs, YRD, SCB and fall-time MDA8-O3 concentrations in PRD are 141 ± 7 μg m–3, 125 ± 11 μg m3, 120 ± 14 μg m–3 366 
and 100 ± 12 μg m–3, respectively. It shows that O3 concentrations of the four regions have a consistent upward trend in 367 
the summer over the past decades, but there are regional differences in other seasons. Compared to BTHs and YRD, PRD 368 
and SCB have more distinctive O3 increases in spring and fall. Among these four regions, the O3 concentrations in BTHs 369 
has the biggest seasonal differences, but have the smallest seasonal differences in PRD. 370 

The spatiotemporal patterns of O3 in China have been proven to largely depend on both emissions and meteorology. 371 
The regional O3 pollution is usually found to be triggered by specific circulation patterns as local meteorological factors 372 
are modulated by synoptic-scale circulation patterns. China has a large territory and is affected by different weather systems. 373 
The continental high-pressure systems, components of East Asian summer monsoon (EASM) and tropical cyclones, among 374 
others, are critical synoptic conditions leading to O3 formation and transport in China (Wang et al., 2022b; Han et al., 2020). 375 
For instance, regional O3 pollution in North China usually occurs under a typical weather pattern of an anomalous high-376 
pressure system at 500 hPa (Gong and Liao, 2019), which creates favorable meteorological conditions for high O3 levels 377 
with high temperature, low relative humidity, anomalous southerlies and divergence in the lower troposphere. As one of 378 
the most important components of EASM, the Western Pacific subtropical high (WPSH) strongly influences summertime 379 
precipitation and atmospheric conditions in East China. A strong WPSH can decrease O3 levels over YRD as enhanced 380 
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moisture is transported into YRD under prevailing southwesterly winds (Zhao and Wang, 2017). Located on the southern 381 
coast of China, PRD features a typical subtropical monsoon climate. There O3 concentrations are usually the lowest in 382 
summer due to the prevailing southerlies with clean air from the ocean and the associated large rainfall, while the worst O3 383 
pollution usually happens in fall mainly due to the occasional northerly winds during the monsoonal transition, thereby 384 
importing precursors from the north, and stable and still relatively warm and sunny weather conditions before the winter 385 
starts. Downdrafts in the periphery circulation of a typhoon system can also strongly enhance surface O3 before typhoon 386 
landing (Jiang et al., 2015; Lu et al., 2021; Li et al., 2022). On one the hand, the poor ventilation in the peripheral subsidence 387 
region of typhoons favors the accumulation of O3 and its precursors. On the other hand, the deep subsidence can transport 388 
the O3 in the upper troposphere and lower stratosphere to surface, causing aggravated O3 pollution. Moreover, smaller-389 
scale circulation patterns, such as land-sea and mountain-valley breezes, also influence O3 in coastal regions (Ding et al., 390 
2004; Zhou et al., 2013; Wang et al., 2018).  391 

When compared to the hybrid approach, GEOS-Chem generally has similar O3 distribution and trends over each 392 
region, while overestimating O3 concentrations (Table S1). GEOS-Chem particularly overestimates wintertime and fall-393 
time O3 concentrations in SCB, which are 10 ± 1 μg m–3 and 17 ± 3 μg m–3 higher than those of the hybrid approach, 394 
respectively. Previous studies reported such model overestimates and proposed a number of explanations involving 395 
precursor emissions, dry deposition, and vertical mixing in the planetary boundary layer (PBL), etc. Both observational 396 
analyses and inter-model comparisons suggested that the summertime dry deposition of O3 calculated by the Wesely 397 
scheme in GEOS-Chem could be underestimated, which has been invoked as a cause for model overestimates of O3. The 398 
biased emissions in the model, as consistent with the biased-high tropospheric NOx columns, result in overestimated O3. 399 
Travis et al. (2016) showed that GEOS-Chem with reduced NOx emissions provides an unbiased simulation of O3 400 
observations from the aircraft and reproduces the observed O3 production efficiency in the boundary layer.  Lin et al. (2008) 401 
suggested that the excessive PBL mixing can lead to the biased-high O3 concentrations. The fully mixed O3 throughout the 402 
PBL means that the higher O3 concentrations in the upper PBL are brought down to the surface much more efficiently. 403 
Moreover, the excessive spatial averaging of emissions at coarser resolutions could also lead to systematic overestimation 404 
of regional O3 production (Wang et al., 2013). In summary, with a higher prediction accuracy, the hybrid approach lends 405 
greater credence to using model simulations to extrapolate historical O3 further back in time, which can furthermore provide 406 
us with more accurate estimates of O3 impacts on crop production and human health. 407 

 408 
Figure 7. The seasonal mean MDA8-O3 concentrations (μg m–3) in different regions during 1981-2019. Bias-409 
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corrected MDA8-O3 in: (a) winter; (c) spring; (e) summer; and (g) fall. GEOS-Chem MDA8-O3 in: (b) winter; (d) 410 
spring; (f) summer; and (h) fall. The error bar represents the standard deviation. 411 

3.5 Crop production losses attributable to O3 pollution 412 

Fig. 8 shows the relative yield losses (RYLs; RYL = 1 – RY, where RY is the relative yield defined as the ratio of the 413 
O3-affected yield to the yield without O3 exposure) calculated with GEOS-Chem and bias-corrected O3 using AOT40-414 
China metric. For a given crop, the RYLs show generally consistent spatial distribution across the metrics, with BTHs 415 
having the most serious crop yield losses due to high O3 concentrations. Compared to the bias-corrected O3, using GEOS-416 
Chem-simulated O3 generally leads to larger yield losses, especially over BTHs and SCB, reflecting overestimated O3 417 
concentrations by GEOS-Chem in cropland areas during the growing seasons (Fig. S11), primarily in spring and summer, 418 
which is consistent to the above analysis. GEOS-Chem-simulated O3 leads to slightly underestimated wheat yield loss only 419 
over some parts of BTHs, mostly because the primary growing period of wheat there is in winter and spring, and GEOS-420 
Chem has lower O3 estimates than the hybrid approach during this period there (Table S2). 421 

 422 
Figure 8. Estimated annual mean relative yield losses (RYLs, in %) of four staple crops from 1981–2019 using the 423 
AOT40-China metric. The estimated RYLs using bias-corrected O3: (a) maize; (d) wheat; (g) soybean; and (j) rice. 424 
The estimated RYLs using GEOS-Chem-simulated O3: (b) maize; (e) wheat; (h) soybean; and (k) rice. The 425 
differences in estimated RYLs between GEOS-Chem-simulated and bias-corrected O3: (c) maize; (f) wheat; (i) 426 
soybean; and (l) rice. The GEOS-Chem-simulated O3 were regridded to 0.5°×0.5° for comparison with bias-427 
corrected O3. 428 

Fig. 9 shows the bar plots of the relative yield for each crop using AOT40-China dose-yield relationship. Crop yield 429 
losses are generally consistent with the O3 trends as the dose-yield relationships used here are essentially a set of linear 430 
functions. Most crops experience aggravated yield losses over the past four decades due to enhanced O3 concentrations, 431 
except for wheat, which has the largest yield loss during the period 1991 to 2000. The reason could be that BTHs have the 432 
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highest O3 concentrations in spring during the 1990s (Fig. S10), which is the primary growing season for wheat. Noticeable 433 
uncertainties of crop yield losses are found across metrics. 434 

The average annual crop RYLs from 1981 to 2019 for wheat, rice, soybean and maize range from 1.1 to 13.4%, 2.7 to 435 
13.4%, 6.3 to 24.8% and 0.8 to 7.4%, respectively. The differences in yield losses across crops reflect the dependence on 436 
crop-specific phenology and ecophysiology. The estimated annual RYLs using bias-corrected O3 for wheat, rice, soybean 437 
and maize from 1981 to 2019 range from 17.5–25.5%, 10.7–19.1%, 7.3–17.9% and 7.1–12.7%, with a growth rate of 0.03% 438 
yr–1, 0.04% yr–1, 0.27% yr–1 and 0.13% yr–1. Wheat is the most sensitive crop to the O3 concentrations, whereas maize is 439 
the least sensitive. Using GEOS-Chem-simulated O3, the estimated annual RYLs for wheat, rice, soybean and maize from 440 
1981 to 2019 are 18.7–28.7%, 14.0–22.0%, 12.4–23.1%, and 7.9–13.2%, having a growth rate of 0.08% yr–1, 0.14% yr–1, 441 
0.23% yr–1 and 0.11% yr–1. There are noticeable differences in crop yield estimates using the bias-corrected and GEOS-442 
Chem O3, indicating again the importance of the bias-corrected high-resolution O3 data in related crop issues. 443 

In existing studies evaluating the O3-induced crop losses in China, which also use dose-yield relationship derived from 444 
the experiments conducted in Asia, Zhang et al. (2017) reported that the ambient O3 concentrations in Northeast China 445 
cause substantial annual yield loss of soybean ranging from 23.4% to 30.2% during 2013 and 2014, depending on the O3 446 
metric used (including AOT40, W126, SUM06 and a flux-based metric). Feng et al. (2022), using AOT40, indicated that 447 
the annual average RYLs of wheat (33%), rice (23%) and maize (9%) from 2017 to 2019. Our correspondingly estimated 448 
RYLs for rice (18.0%) and maize (10.0%) are generally consistent to their results, while the RLYs for soybean (16.4%) 449 
and wheat (23.4%) are much lower than the estimates. Since we used the same dose-response relationships in their studies, 450 
the discrepancies are primarily attributed to the differences in used metrics (only for soybean), O3 fields and sensitivity of 451 
crop to the changes of O3 concentrations (Mukherjee et al., 2021; Feng et al., 2022; Mills et al., 2018). In Zhang et al. 452 
(2017), the O3 measurements are obtained from the experimental field (45°73′N, 126°61′E), and in Feng et al. (2022), the 453 
measured O3 concentrations are from over 3,000 monitoring sites across East Asia. The results of comparison are consistent 454 
to the previous analysis of O3 trends and variability from different sources, where the domain-average values of O3 455 
observations are larger than gridded O3 from model simulations (Section 3.2) and thus lead to larger estimates of RYLs. 456 
On one hand, it indicates that O3 fields should be considered as a great source of uncertainty when comparing the results 457 
of previous studies using source-varied O3 fields. Moreover, different degrees of importance should be given for specific 458 
crops, for example, the changes in O3 concentrations have a larger impact on wheat crop. On the other hand, it highlights 459 
again the necessity and importance of bias correction for model-simulated O3 when O3-inudec crop reduction.  460 

 461 
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Figure 9. The estimated decadal mean relative yield losses (RYLs) of four staple crops using different metrics from 462 
1981–2019. The estimated RYLs using bias-corrected O3: (a) maize; (c) wheat; (e) soybean; and (g) rice. The 463 
estimated RYLs using GEOS-Chem-simulated O3: (b) maize; (d) wheat; (f) soybean; and (h) rice. The error bar 464 
represents the standard deviation. 465 

3.6 Health impacts attributable to O3 pollution 466 

The exposure-response coefficients for the short-term, acute health impacts of O3 are shown in Table S4. The 467 
estimated annual all-cause premature deaths induced by O3 increase from 55,876 in 1981 to 162,370 in 2019 with an 468 
increasing trend of +2,979 deaths yr–1. The annual premature deaths related to respiratory and cardiovascular diseases are 469 
34,155 and 40,323 in 1998, and 26,471 and 79,021 in 2019, having a rate of change of –546 and +1,773 deaths yr–1 during 470 
1998–2019, respectively (Fig. 10a). Among three types of health outcomes, only respiratory diseases experienced a 471 
decreasing trend in premature mortality, and the premature mortality is constantly below 40,000. The decreasing trend of 472 
the respiration-related mortality primarily results from the decreased annual baseline mortality rate over the past decades 473 
(Fig. S12). As the total respiratory-related deaths decreased over the past decades, respiratory O3 deaths are decreasing 474 
even under aggravated O3 pollution. Based on GEOS-Chem-simulated O3, the corresponding estimated change rate for all-475 
cause disease is +3,516 deaths yr–1 from 50,384 in 1981 to 176,741 in 2019. Premature mortality induced by respiratory 476 
disease decreases from 37,822 in 1998 to 29,079 in 2019 with a change rate of –584 deaths yr–1, while cardiovascular 477 
disease increases from 44,516 in 1998 to 85,980 in 2019 with a change rate of +1,977 deaths yr–1 (Fig. S13). The result 478 
shows that using GEOS-Chem-simulated O3 generally gives higher estimates of mortality than using the bias-corrected 479 
data. Fig. 10b shows the provincial annual average premature mortality of different health endpoints. The five provinces 480 
with the highest all-cause mortality are Jiangsu [14,510 (95% CI: 9,022–19,935)], Shandong [12,684 (95% CI:4,258–481 
20,990)], Henan [12,290 (95% CI: 4,125–20,343)], Guangdong [9,268 (95% CI: 7,224–11,416)] and Hebei [8,276 (95% 482 
CI: 2,776–13,706), which are generally consistent with previous studies for China (Zhang et al., 2021; Zhang et al., 2022a). 483 
Similar distribution can be found for respiratory and cardiovascular diseases but with a different ranking order. Generally, 484 
those provinces in densely populated areas (Fig. 10c) with higher O3 concentrations, such as BTHs, YRD and PRD, have 485 
higher health burdens. In contrast, the northeastern and southern China (excluding Guangdong) suffer the least life losses 486 
induced by O3 exposure (Fig. S14). 487 

When compared with estimates from previous studies, our estimates of are generally quite consistent with that given 488 
by Maji and Namdeo (2021), which reported that the short-term all-cause, cardiovascular and respiratory premature 489 
mortalities attributed to ambient O3 exposure were 156,000, 73,500 and 28,600 in 2019. Based on O3 observations in 334 490 
Chinese cities, Zhang et al. (2021) suggested that the national all-cause, respiratory, cardiovascular mortalities attributable 491 
to O3 are 270,000 to 390,000, 49,000 to 63,000, and 150,000 to 220,000 million across 2015–2018, which are much higher 492 
than most existing results. Since the methodological approaches are largely similar and we use the log-linear exposure-493 
response function, we ascribe that the very high estimated mortalities are mainly due to concentration–response threshold 494 
X0 assumed to be zero in their study. A lower X0 means that O3 can cause more adverse impacts on human health even at 495 
low concentrations, thus leading to higher mortalities. 496 
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 497 
Figure 10. (a) Annual premature morality (thousand) for different diseases over the past decades; (b) annual mean 498 
province-based morality (thousand) attributed to different health endpoints; and (c) annual mean province-based 499 
population (million). The morality is calculated using the bias-corrected O3. 500 

4. Conclusions and discussion 501 

In this study, to have a more accurate characterization of O3 spatiotemporal distribution and trends as well as their 502 
impacts on agriculture and human health, we used a hybrid approach to generate bias-corrected O3 data across China from 503 
1981 to 2019. The hybrid approach helps improve O3 predictions by taking advantage of a chemical transport model, a ML 504 
algorithm and increasing availability of high-resolution environmental and meteorological data. The validation shows that 505 
the bias-corrected O3 can achieve a higher prediction accuracy than GEOS-Chem-simulated O3 alone when compared with 506 
historical in-situ measurements. Before being corrected, the GEOS-Chem-simulated O3 concentrations tend to be 507 
overestimated and lead to higher crop yield losses and larger O3-induced mortalities. Noticeable differences in crop RYLs 508 
and mortality estimates highlight the advantages of using high-resolution O3 data to improve our understanding of long-509 
term O3 impacts. 510 

When examining the regional and national O3 trends, we found that MDA8-O3 concentrations have a perceptible 511 
increasing trend before 2000s, but fluctuate within a certain range with large interannual variabilities in more recent years. 512 
The large discrepancies in previous studies indicate that the regional and national O3 trends in China still suffer with great 513 
uncertainties, particularly when different approaches are used to produce the O3 estimates. However, these studies using 514 
source-varied O3 fields consistently show the great interannual variabilities of O3 concentrations. Some insights can be 515 
obtained from existing findings, which need to be carefully considered when examining O3 trends and comparing them 516 
with existing results. First, given the large site differences, the calculation of observational O3 trends is very sensitive to 517 
the subsets of data from networks. Thus, great uncertainty could still exist even using O3 observations from the same source 518 
depending on the chosen subsets of data. Second, different formats of O3 fields (e.g., site-based and gridded) could lead to 519 
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large uncertainties of the O3 trend estimates. A higher resolution of gridded O3 estimates from CTMs and ML may reduce 520 
the differences between O3 observational results. Third, the calculated O3 trends are very sensitive to the chosen study 521 
period due to large interannual variability and seasonal differences. The changing meteorological conditions are the major 522 
factor causing the large interannual O3 variations, and reductions in the emissions of NOx, SO2 and PM also have complex 523 
effects on ground-level O3 concentrations (Wang et al., 2022b). Liu and Wang (2020b) suggested that the meteorological 524 
impacts on O3 trends vary region by region and year by year and could be comparable with or even larger than the impacts 525 
of changes in anthropogenic emissions.  526 

Our estimated RYLs for maize and rice and soybean in China are generally consistent to existing studies, while the 527 
RLYs for soybean and wheat are lower than their estimates mainly due to the differences in used metrics, O3 fields and 528 
crop sensitivity to ambient O3 concentrations. It suggests that plating O3-resistant cultivars could be an effective approach 529 
to increase total crop production to meet the increasing food demands. In addition to the metrics and O3 fields, uncertainties 530 
of estimated O3-induced crop losses could be also from other sources (e.g., dose-yield relationships). Though some other 531 
metrics (e.g., M7/M12 and W126) have also been used in some studies (Van Dingenen et al., 2009; Avnery et al., 2013; 532 
Wang et al., 2022c), there are not available dose-relationships for all four major crops specific for China. The estimated 533 
RYLs for crops could be largely biased using metrics with dose-yield relationships developed for U.S. or Europe (Fig.S15), 534 
as they are inadequate to represent Asian crop genotypes and environmental conditions. So, the region-specific dose-yield 535 
relationships are highly recommended to be used in future study estimating the O3-induced crop reduction, especially for 536 
the regional study. Moreover, it is worth noting that as the concentration-based metrics do not account for how crop 537 
physiological responses to the changing atmospheric environment, the associated dose-yield relationships which is 538 
currently useful may not hold in the future (Tai et al., 2021). So, the flux-based metrics and the process-based crop model 539 
are more recommended to be used for future O3 risk assessments, wherein more crop- and region-specific experiments and 540 
trials are needed to acquire appropriate metrics and dose-response functions and calibrate the process-based crop model. 541 

In recent years, although existing studies have made efforts to quantify the O3-related health impacts in China, only a 542 
few focused on the nationwide acute O3 health burden assessment, particularly for assessment over multiple decades (Maji 543 
and Namdeo, 2021; Sahu et al., 2021; Zhang et al., 2021; Zhang et al., 2022a). There are some remaining issues to be 544 
addressed regarding O3 health impacts. For instance, the existence of a “safe” threshold of O3 levels still remains debated. 545 
A recent study reported that no consistent evidence was found for a threshold in the O3-mortality concentration-response 546 
relationship in seven cities of Jiangsu Province, China during 2013–2014 (Chen et al., 2017; Maji and Namdeo, 2021). 547 
Given the importance of the threshold assumption in assessing health effects of air pollution, more studies are needed to 548 
determine a most likely threshold for O3-mortality association in the future. Moreover, the multiple temporal O3 metrics 549 
(e.g.,1-h maximum and daytime average O3 concentrations) have also been proved to play an important role in the 550 
variability of estimated health effects, even though standard ratios are used to convert among multiple metrics (Anderson 551 
and Bell, 2010). In addition to the uncertainties from varying methodologies, interpretation of the O3 epidemiological 552 
impact is also constrained by the variability in geographical, seasonal, and demographic characteristics (Yin et al., 2017b). 553 
Liu et al. (2013) suggested that associations between O3 and mortality appeared to be more evident during the cool season 554 
than in the warm season, and stronger in the oldest age group and among those with less education. The effect modification 555 
by population susceptibility and the confounding effects of concomitant exposures (temperature, particulate matter, etc.) 556 
should be further considered in future works. 557 

A major limitation of our study lies in the uncertain predictions in regions where monitoring data are scarce (e.g., the 558 
western half of China). The monitoring sites are sparsely distributed in those areas, which may fail to capture the accurate 559 
association between O3 concentrations and various predictors there, especially considering that the ML algorithm has likely 560 
over-emphasized such relationships in the data-intensive eastern regions. Second, the land use data were prescribed in 2013 561 
due to the limited availability of data, and this may neglect some major land use changes in China over the past decades. 562 
Though the land use data were found by the ML algorithm to contribute little to the overall model, more detailed land use 563 
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data are expected to further increase model accuracy. In addition, though concentration-based metrics are easy to calculate 564 
and ensured to be scientifically sound in some experiments (Fuhrer et al., 1997; Mills et al., 2007), they do not consider 565 
the active responses of plant ecophysiology to ambient climatic and environmental changes and thus likely inadequate for 566 
examining yield losses in a future climate and atmospheric environment. Thus, flux-based metrics are recommended in 567 
future studies to better understand the long-term evolution of crop losses over China (Feng et al., 2012; Zhang et al., 2017; 568 
Tai et al., 2021; Pleijel et al., 2022). Despite these limitations, our study represents important progress in evaluating the 569 
long-term, multidecadal health burdens and agricultural losses resulting from O3 pollution in China, which can provide 570 
important references for governments and agencies when making related policies to meet the imperative environment, 571 
health, and food security demands. 572 
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