
Responses to Reviewers’ Comments on “Multidecadal ozone trends in China and implications for human health 
and crop yields: A hybrid approach combining chemical transport model and machine learning” by Mao et al. (MS 
No.: acp-2023-1052) 

We would like to thank the reviewers for the thoughtful and insightful comments. The manuscript has been revised 
accordingly, and our point-by-point responses are provided below. The reviewers’ comments are italicized, our replies are 
in black font, and our new/modified text cited below is highlighted in bold. 

Response to Referee #1 

The aims of the presented study are to 1) use improved finer high-resolution hourly ozone data to assess ozone impacts on 
human health and crop yields over the past four decades in China, and 2) use the findings to offer more comprehensive 
policy implications for mitigation of ozone-related impacts across China. The research conducted is interesting and 
beneficial to the agricultural, modeling, and health fields, mainly in China. The study is well described, however, there are 
some minor issues that hinder the clarity. Minor revision is recommended before acceptance. 

We thank the reviewer for the very helpful comments. The paper has been revised accordingly to address the 
reviewer’s concerns point by point, and all changes are cited and discussed in the responses below. 

Why were the BTH, SCB, YRD, and PRD given more detailed analysis compared to other regions? Which areas correspond 
more to agricultural production or human health? This should be stated.  

We thank the reviewer for the comments. The BTH, SCB, YRD, and PRD are hotspots of O3 pollution in China 
mostly due to the high level of industrialization and urbanization. Moreover, these regions are densely populated 
(Wang et al., 2018) and major agricultural areas in China (Monfreda et al., 2008). These regions may face greater 
burdens of crop yield and human health losses with high O3 concentrations, and are therefore given more detailed 
analysis here. We now state these more clearly in the manuscript: 

P12 L362: “…The regional characteristics of O3 and its influencing factors will be further discussed in Section 3.4. 
The BTH, SCB, YRD, and PRD regions have been identified as hotspots of O3 pollution in China. These regions 
are characterized by high population density (Wang et al., 2018) and are also major agricultural areas 
(Monfreda et al., 2008), which may face greater burdens of crop yield and human health losses with high O3 
concentrations. Therefore, here we provide more detailed analysis and investigation of these regions.” 

P20 L579: “Despite these limitations, our study represents important progress in evaluating the long-term, 
multidecadal health burdens and agricultural losses resulting from O3 pollution in China. Across the four major 
regions, BTHs experience the highest RYLs for major crops due to elevated O3. On the other hand, the YRD 
and PRD regions have greater human health losses primarily due to their large population size.” 

The authors state that the findings can offer more comprehensive policy implications for mitigation of O3-related impacts, 
but do not mention any policy implication in the Conclusion/discussion section. This should be added to the Conclusion. 

We now discuss the policy implications and possible efforts more fully in the Conclusions and Discussion section. 



P20 L582: “…The results can provide important references for governments and agencies when making related 
national or regional policies to meet the imperative environment, health, and food security demands. To effectively 
address O3 impacts, collaborative efforts can be made in multifaceted aspects: (1) to implement stricter 
regulations and specific emission control measures for major ozone precursors from industrial, vehicular and 
agricultural sources that account for region-specific chemical, meteorological and terrestrial conditions; (2) to 
encourage the adoption of more sustainable and adaptive agricultural practices that minimize O3 exposure and 
its damage on crops (e.g., cultivating O3-resistant crop varieties); (3) to improve short-range O3 forecast 
capabilities of regional models, especially with the enhancement of artificial intelligence technology, which may 
enable better early warning systems to prepare the public and farmers for O3 episodes; (4) to raise public 
awareness via promotional campaigns and educational programs to inform individuals, communities, and 
farmers about the risks associated with O3. It is important for policymakers to consider these suggestions and 
act to effectively mitigate the negative O3 impacts.” 

Specific comments:  

Lines 181-182: “…datasets at different spatial resolutions were all regridded to a unified resolution of 0.25 x 0.25...”. 
How were they regridded/downscaled/aggregated? Please describe the methods used.  

The method was introduced in revised manuscript.  

P5 L177 “…Because the representation of input data for LightGBM should be regular, datasets at different spatial 
resolutions were all regridded to a unified resolution of 0.25°×0.25° with the operationally used bilinear 
interpolation approach (e.g., Accadia et al., 2003), consistent with the meteorological fields. 

Line 214: “It has been suggested that, suggesting…” please clarify sentence. 

The sentence was revised as suggested. 

Line 219: Should be referencing Table S2 instead of Table S1. Switch Table S2 and S1 in the supplementary since Table 
S2 is mentioned first. 

All Table/Figure order and referencing has been checked and revised. 

Line 239: Should be referencing Table S4 instead of S2. All Table/Figure order and referencing should be checked. 

All Table/Figure order and referencing has been checked and revised. 

Figure 2 x-axis label should be “Feature importance”. May be better to put label below x-axis instead of above plot. 

The label was added below x-axis as suggested. 

Line 276: Mention RMSE in µg m-3 instead of ppb for consistency with other results presented. 

The unit was changed to µg m-3 for consistency. 

Line 393: Should be referencing Table S3 instead of Table S1. 



All Table/Figure order and referencing has been checked and revised. 

Lines 395-396: “Previous studies reported…in the planetary boundary layer (PBL), etc.” Cite studies mentioned and 
remove “etc.”. 

The relevant references were added. 

Line 421: Should be referencing Table S3 instead of Table S2. 

All Table/Figure order and referencing has been checked and revised. 

Line 528: Use “RYL” instead of “RLY”. 

The same typo was revised through the whole draft. 

Response to Referee #2 

The manuscript utilized a machine learning algorithm, i.e., LightGBM, to bias-correct surface ozone estimates by the 
GEOS-Chem model during 1981-2019 in China. The results show that the accuracy of the simulated surface ozone 
estimates was considerably improved. The authors employed these improved surface ozone estimates to assess the extent 
to which crop yields and human health were impacted in China. Overall, the topic is of interest to the audience and the 
manuscript is generally well written and organized. However, before I can only recommend it to be accepted by the 
EGUsphere journal, the manuscript needs some major revision.  

We thank the reviewer for the very helpful comments. The paper has been revised accordingly to address the 
reviewer’s concerns point by point, and all changes are cited and discussed in the responses below. 

The surface ozone concentration measurements were obtained only for the period 2016-2018, whereas there are longer 
records. The authors need to clarify why they only adopted observations in such a short period to train and test the 
LightGBM model. 

We thank the reviewer for the very relevant comment. The surface ozone concentration measurements in China were 
available since in 2013 with relative scarce sites in the first few years. During the model training process, we found 
that the training time was approximately linearly related to the number of samples when altering the size of the training 
dataset, and a timescale of two years appears to strike a good balance between computational burden and utility for 
an operational system such as air quality forecasting (Fig. R1). To optimize computational efficiency without 
compromising model robustness and accuracy, we utilized observations from the period 2016-2017 as the training 
data, and observations in 2018 as the independent test data. 



 

Figure R1. Testing statistics with increasing length of training data for MDA8-O3. 

We now emphasize these in P6 L203 “…Our analysis revealed that training the model with one year or more of 
data results in only marginal reductions in RMSE and enhancements in R2 (Fig. S1); thus a timescale of two years 
appears to strike a good balance between computational burden and model accuracy. These results align with the 
findings of Ivatt and Evans (2020), who suggested that much of the variability in the power spectrum of surface O3 
can be captured by timescales of a year or less. Therefore, here we utilized observations from the period 2016-2017 
as the training data, which offered a more economical computing cost and improved training time efficiency, and 
observations in 2018 as the independent test data to evaluate model performance.” 

Fig.R1 is also added as Fig. S1 to the supplementary materials. 

There is a scale mismatch between ground observations and GEOS-Chem estimate for a grid, i.e., there may be multiple 
ground sites within a 0.25x0.25 grid cell. How did the authors handle this issue? 

We thank the reviewer for the comments. First and foremost, it is worth noting that the observations were only used 
for the purpose of model evaluation to assess the accuracy and robustness of the model. The handling method is now 
explained in greater detail: 

P6 L197 “…During evaluation, the model results in the grid cell covering or closest to each site were utilized to 
compare with observations. This approach of comparing model simulated gridded air pollutant concentrations 
(either from a CTM or ML model) against site-level observations has been commonly used to evaluate model 
performance (Ma et al., 2021; Meng et al., 2022; Thongthammachart et al., 2021). Additionally, when 
comparing the GEOS-Chem-simulated O3 with observations, the simulated O3 was first regridded to 
0.25°×0.25° using the operationally used bilinear interpolation approach to maintain consistency with the 
ERA5 dataset.” 

 
The GEOS-Chem simulations used the MERRA2 climate dataset, while the LightGBM used ERA5 climate data. The 
difference between the two climate datasets will be transferred into the LightGBM model training, which potentially 



impedes the machine learning model to capture the biases between GEOS-Chem estimates and ground observations. The 
authors need to analyze the uncertainty propagation. 

We thank the reviewer for the comments. To provide long-term GEOS-Chem simulated O3 fields for incorporation 
into the ML model, we conducted GEOS-Chem simulations at a resolution of 2.0°×2.5° as higher resolutions of 
GEOS-Chem in nested grids are available but computationally prohibitive for multi-decadal simulations. Therefore 
the MERRA2 climate dataset used to drive GEOS-Chem also has a resolution of a horizontal resolution of 2.0°×2.5°. 
We trained the model with MERRA2 dataset; however, the results show the higher-resolution ERA5 dataset 
performed better in reproducing observed O3 concentrations with smaller RMSE and larger R2 (Fig. R2) even though 
MERRA2 was first regridded to a resolution of 0.25°×0.25° consistent with ERA5 dataset. This analysis demonstrates 
the level to which higher-resolution meteorological data as opposed to the lower-resolution default MERRA2 data 
may help enhance the performance of the hybrid model, and the differences can be attributed to the differences in 
meteorological datasets. 

 
Figure R2. Density scatter plots and linear regression statistics of LightGBM bias-corrected O3 predictions vs. 
observation for 2018: (a) MDA8-O3 using ERA5 meteorology vs. observations; (b) MDA8-O3 using MERRA2 
meteorology vs. observations; (c) hourly O3 using ERA5 meteorology vs. observations; and (d) hourly O3 using 
MERRA2 meteorology vs. observations. The dashed red line indicates the 1:1 line, and the solid blue line indicates 
the line of best fit using orthogonal regression. The R2 is the coefficient of determination, RMSE is the root-mean-
square error, and N is the number of data points. The X and Y axis represents the O3 observations and predictions, 
respectively.  

Because the objective of our study is to reproduce more reliable O3 concentrations using the most comprehensive 
relevant data as much as possible, the greatest attention is given to the accuracy of the hybrid model rather than the 
biases of the GEOS-Chem model caused by errors in input data. In summary, with a higher prediction accuracy, the 



hybrid approach lends greater credence to using model simulations to extrapolate historical O3 further back in time, 
which can furthermore provide us with more accurate estimates of O3 impacts on crop production and human health. 

We now emphasize these in P8 L270 “… The MERRA2 dataset driving GEOS-Chem was also used to train the 
model; however, we found that the higher-resolution ERA5 dataset performs better in reproducing observed 
O3 concentrations with smaller RMSE and larger R2 (Fig. S3). This analysis demonstrates the level to which a 
higher-resolution meteorological dataset, despite not being strictly consistent with the input meteorology for 
the CTM, can help enhance the performance of the hybrid model. In summary, the result suggests that the CTM-
simulated results can be substantially improved by applying ML with multi-source datasets, and the bias-corrected 
data can improve our understanding of long-term O3 trends and its further implications on crop and human health 
over China, as discussed in the following sections.” 

P19 L515 “… In the model training process, we found that utilizing a higher-resolution meteorological dataset, 
albeit one that is not the same as the default CTM input meteorology, has high potential to enhance the 
performance of the hybrid model in reproducing observed O3 concentrations.”  

Fig. R2 is also added as Fig. S3 to the supplementary materials. 

In the abstract, the manuscript writes that meteorological factors play important roles in modulating the inter-annual 
variability of surface ozone. However, there is no any evidence (figures or statistics) in the manuscript to support this 
conclusion. 
 

We thank the reviewer for pointing this out. That statement is indeed mostly a summary of previous research findings, 
not a primary focus or finding from this study. To avoid confusion, this statement in the abstract has now been 
removed.   
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